Assignment 1 - Frontend

Deadline: See Canvas

The goal of the course assignments is to give you hands-on experience with all parts of a
modern compiler. To keep things simple, in this course you will work on a compiler for a
basic subset of C. At the end of the course, you should have a general idea how most parts
of a compiler work and where to start if you want to make your own.

Rules

To ensure you receive a grade that reflects your understanding of the course material and
the effort you put into the assignments, you have to follow the rules below. Breaking any of
these rules may lead to you receiving 0 points for a given task/assignment and potentially
being referred to the Examination Board.

1. The code you submit in your assignment has to be written by you.

2. Do not share your (partial) solutions with other students.

3. You can discuss the assignments with other students, but you should not share how
you solved an assignment.

o E.g., you can discuss whether a certain FenneC program is valid, what the
program’s output should be, or which parts of the program could be
optimized.

4. Do not hardcode the full/partial solution for certain tasks into your assignment.

o E.g., you can not submit a list of correct outputs for each test input and then
print them out. Your assignment should behave as if it was a proper compiler.

o In general, any logic in the form of if (input_file_name == “...”)
special logic(); will lead to a point reduction.

5. Do not try to cheat the grading system by e.g., modifying the grading script from
within your compiler or faking any output.

6. You are explicitly allowed to look at any part of the LLVM source code. This includes
the code that solves the same/similar problems as in the assignments.

Grading

All assignments are automatically graded using the provided grading script. You should run
this grading script to check if your solution is correct. The point count printed by the grading
script will match the actual points you receive when handing in your solution. The only
exception to this is if you broke one of the rules above.

Environment

This course provides a docker container for this and nearly all following assignments. You
have to get your lab code running within that docker container as this is how the grading
system will run your code. The docker container also comes with a hand-in script that you
have to use to create the hand-in zip files.



Frontend

This assignment lets you implement a frontend for a language called FenneC. This language
is a small subset of C, meaning that all FenneC programs are also valid C programs.
However, not all valid C programs are valid FenneC programs. The course resources
provide a grammar file which describes the syntactic subset of C you have to support.

All programs that can be expressed with this grammar behave identically to their C
counterparts.

The purpose of a compiler frontend is to parse source code, verify the syntactic and
semantic rules of the programming language, and then generate code suitable for the
middle-end of the compiler.

Our frontend should parse FenneC source code, enforce its syntax and type system, and
then generate LLVM IR from it. The tasks below provide you with more details on what
exactly you are expected to do.

Note: We suggest you write your frontend in Python using the referenced tools/libraries so
TAs can properly help you. However, you are free to use any other language and its
equivalent tools for this assignment assuming you can run it on the provided docker
container. You should reach out to the TAs or email coco-support@vusec.net before you
start working with a different language.

Task 1: Lexing and parsing (1pt)

The first task is to turn FenneC source code into an abstract syntax tree (AST). This can be
done using the appropriate tools, e.g., a parser generator. We provide you with the
appropriate grammar file for the Lark parser generator as part of the course material. You
can use this grammar file and Lark to automatically generate a parser. You are also allowed
to write a recursive-descent parser by hand.

If you find a lexer/parsing error, your compiler frontend should return the exit code 2 from
your frontend. In Python, this is done by calling sys.exit(2).

Grading:
Run ./grade --assignment 1.1 which will print the points you got for this task.

Task 2: Type checking and other checks (4pts)

Using your parser from task 1, you now have to enforce the type system of FenneC. This is
done by traversing each node in your AST and then checking the node-specific type
constraints. For example, a division operation node (e.g., 4/2) requires its two operands to
be of the same integer type.

If you find a typing error, your compiler frontend should return the exit code 2 from your
frontend.

Grading:
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Run ./grade --assignment 1.2 which will print the points you got for this task.

Hints:
[ ]

Think about the order in which you need to traverse the AST to properly handle
nested nodes.

FenneC allows shadowing of variables.

Ideally you would do all type checking in a dedicated type checking phase of the
compiler that is independent of the code generation. However, to keep things simple,
you will not get a point reduction for doing type checking while generating LLVM IR
(see the next task).

You can assume that Print/PrintU are built-in functions you hard-code in your
compiler. You don’t need to properly handle the FenneC.h include.

There are no implicit (or explicit) type conversions allowed in FenneC. E.g., you can
not multiply an int and an unsigned expression (such as 1 * 1U).

Task 3: Generating LLVM IR (5pts)

The final task is to produce LLVM IR from the parsed AST. LLVM IR is effectively another
programming language that is designed to be a middle-end for a modern compiler. Your job
is to translate your parsed C program into an equivalent LLVM IR program.

Hints:
[ ]

You do not need to generate efficient LLVM IR from your frontend. For example, you
can simply model all local variables as alloca’s and encode read/writing that
variable as load/store. This is also what real compiler frontends do.

There are no function/global declarations in FenneC. This means that every
function/global is defined in the source before it is first called. You can rely on this to
simplify your implementation.

You can emit hard-coded function declarations for Print/PrintU. You can find their
source in framework/fennec/. The way you declare a function in LLVM (and the
Python wrapper) is to create the Function but not add any BasicBlocks to it.

You are allowed to check what Clang (LLVM’s own C frontend) is doing. You can also
use a website such as godbolt for this. See the example here:
https://godbolt.org/z/57n9P7rco .

Grading:
Run ./grade --assignment 1.3 which will print the points you got for this task.


https://godbolt.org/z/57n9P7rco

Assignment 2 - Optimizations

Deadline: See Canvas

In the previous assignment, we parsed source code and translated it into LLVM IR. This
allows us to lower it into machine code and execute it. This assignment is about another
reason for why we generated LLVM IR: Optimizations. Your task in this assignment is to
optimize a set of existing programs with the help of the compiler.

Grading

This assignment has no fixed point count associated with each task. Instead, there are a
total of 10 points to gain in the whole assignment. Your point count is calculated on how fast
the programs run after your compiler passes optimized them. The faster these programs
run after optimization, the more points you get. The tasks we give you are designed to
give you 10 points assuming you implement them correctly.

The grading script comes with several programs that we each assigned an ‘optimal’ runtime.
If you can optimize each program to stay below this runtime, you will receive 10 points. If
your optimized program runs as slow as the unoptimized version (or slower), you will receive
0 points. We linearly interpolate the points you receive based on how close your
performance comes to the optimal runtime for all programs combined. The actual score is
determined by the average improvements of all tests.

Note: You will get 2 points less for each program that produces a different output after
optimization. In other words, you have to preserve the behavior of the unoptimized program.
We also added several tests in the ‘benchmarks/csmith’ folder that are not benchmarked for
performance, but they are used to check your program for correctness. If one of those tests
fails, your optimization is incorrect and the best course of action is to revert your breaking
changes to your pass. Do NOT try to fix’ broken passes later once you see csmith tests
failing, as this will most likely not be easy.

As before, the grading script will tell you your expected point count. It will also give you
various useful statistics about which programs have the largest remaining optimization
potential and which programs were incorrectly compiled.

The respective grading script invocation is ./grade --assignment 2.

The Benchmarking In-Order Machine Emulator (BIOME)

Because every student has different hardware, this assignment does not measure the actual
CPU/wall-time of programs. Instead, we run each program in an emulator that ensures a
level playing field for all students as well as consistent grading. This emulator is called
BIOME and is part of the course framework.

BIOME runs your programs and outputs how many simulated ‘CPU cycles’ the program
used. Each LLVM instruction is given a fixed cycle count that is summed up for the total



program execution. In a real machine, these LLVM instructions would have been lowered to
actual hardware instruction during compilation, but we stick to counting the LLVM
instructions to keep things simple and independent of your actual hardware.

In addition to a cost for execution, BIOME also simulates a (very primitive) instruction cache
that only fits a fixed amount of 16 (LLVM) instructions. Each instruction has to be loaded into
the instruction cache before being executed. If the instruction is not in the cache already,
then the oldest executed instruction is evicted and the program slows down for 40 cycles.
The cache is never flushed/emptied otherwise and persists across calls.

You can find the cycle cost for each instruction in the file:
. /framework/BIOME/CostModel.h file.

Note: Not all LLVM instructions have a cost in this file. If an instruction is not listed, it means
it is unsupported by our made-up CPU and you can not use it.

Setup

The assign2 folder in the course contains several .cpp files that contain some of the
boilerplate code for your compiler passes. You have to implement the different optimizations
in the respective source files. You can also implement further optimizations, but that is not
necessary to achieve 10 points in this assignment.

Optimization Pipeline

The optimize. sh script is called by the grading script to optimize each program. It contains
example invocations for the no-op template passes you have to fill out. The result from one
optimization pass is passed towards the next one. The order in which the passes are run
matches the order in the file. E.g., the code below would run the LICM pass, then forward
the optimized IR to the ADCE pass.

run_pass coco-licm
run_pass coco-adce

You can (and should) change the pass order in optimize.sh in which the passes run and
how often you want to run them. There is no point deduction for running passes too often.
However, it will slow down the compilation process and make your own lab work more
tedious.

The optimize.sh script emulates what a real optimization pipeline in a compiler looks like.
However, unlike a real optimization pipeline, the one in this assignment can be static (i.e.,
pick a list of passes and put them in the file). A real compiler could also dynamically
schedule further optimizations.



Task 1: Aggressive Dead Code Elimination (ADCE)

Dead code elimination removes all code that is not reachable or unnecessary from a
program. For example, an assignment of a variable that is never used can be eliminated
without changing the semantics of a program.

Aggressive dead code elimination (ADCE) achieves this by assuming a computation is dead
until it is proven to be live. A benefit of ADCE is that it allows the compiler to prove that an
instruction is dead even if they are in a cycle in the def-use graph.

The algorithm starts by going through all basic blocks in depth-first order. This way we
ensure we do not visit unreachable blocks. The algorithm then marks instructions as
(trivially) alive (if it has side effects) or trivially dead (if it has no side effects and has no
uses). We then mark the use-def chains of every alive instruction as alive as well, and finally
we remove every instruction not marked as alive.

Since this is the first time you will be writing an LLVM pass, we list the exact steps, hints and
the pseudocode of the algorithm below. While implementing this pass, try to think of why this
approach works!

Approach

e Visit each Basic Block in depth-first order. This ensures we do not visit trivially dead
blocks.

e Gather all instructions that are trivially live in a worklist and mark them as live.
Remove trivially dead instructions.

e Propagate liveness to all (instruction) operands of the items in the worklist. If an
operand of an element in your worklist is an instruction, mark it as live and add it to
the worklist. Skip cases where you already marked the instruction as live.

e Drop all references to instructions not marked live, and then erase them.

Hints

e An instruction is trivially live if it may have side-effects (check with
Instruction: :mayHaveSideEffects(), orifitis a terminator, a volatile load, a
store}, or a call.

An instruction is trivially dead if it has no uses (use I.use_empty()).

For the worklist you can use LLVM's built-in SmallVector type.

You can iterate through basic blocks in depth-first order using depth_first or
depth_first_ext. The latter stores reachable blocks in the
df_iterator_default set<BasicBlock*> passed as its second argument.

e Use a set (or DenseMap) for keeping track of live instructions.

Algorithm

// Initial pass to mark trivially live and trivially
// dead instructions. Perform this pass in depth-first



// order on the CFG so that we never visit blocks that
// are unreachable: those are trivially dead.
LiveSet = emptySet;
for (each BB in F in depth-first order)
for (each instruction I in BB)
if (isTriviallyLive(I))
markLive(TI)
else if (I.use_empty())
remove I from BB;
// Worklist to find new live instructions
while (WorkList is not empty) {
I = get instruction at head of work list;
if (basic block containing I is reachable)
for (all operands op of I)
if (operand op is an instruction)
markLive(op)
}
// Delete all instructions not in LiveSet. Since you
// may be deleting multiple instructions that may be
// in a def-use cycle, you must call I.dropAllReferences()
// on all of them before deleting any of them
// because you cannot delete a Value that has users.
for (each BB in F in any order)
if (BB is reachable)
for (each non-live instruction I in BB)
I.dropAllReferences();
for (each BB in F in any order)
if (BB is reachable)
for (each non-live instruction I in BB)
erase I from BB;

Task 2: Combining Instructions

Your first task is to find sets of instructions that can be combined into a set of cheaper

instructions. All optimizations you implement here can be done as peephole optimizations. In
other words, you traverse your program and during every traversal step, you inspect just a
small subset of the program (the peephole) to search for instructions to combine. You can

limit yourself to just inspecting each instruction and its direct arguments for this task.

There are three groups of optimizations that you should implement here:

e Constant propagation: Computes expression involving only constants at compile

time and replaces them with the result. For example, the compiler can replace
unsigned x = 1 * 2 - 4 with simply unsigned x = 0.

e Algebraic simplification: This involves removing operations that are algebraic
identities, such as simplifying x * 1 to just x.



e Reduction-in-strength: Find a cheaper set of instructions that behave the same as
the original instructions. For example, x * 2 is faster on BIOME when expressed as
‘X + x (as the cycle cost for addition is lower).

Task 3: Loop Invariant Code Motion

Large part of a program’s workload usually occurs within loops. Often there are
computations within the loop body that always produce the same results (i.e, they are
loop-invariant). In this task you implement loop-invariant code motion (LICM), which hoists
(moves out) computations from a loop without changing the semantics of the program,
usually saving a lot of unnecessary computation.

For example, the following loop:

for (int i =0; i < n; i++) {
X =Yy + Z;
a[i] =6 * i + x * x;

}
can be rewritten to reduce the total number of computations needed as follows:

X =y + z;

tl = x * x;

for (int i =0; i < n; i++) {
a[i] = 6 * 1 + t1;

}

Your task is to hoist loop-invariant computations out of loops. To keep things simple we focus
on register-to-register computations (i.e., we ignore computations that read or write to
memory). We focus only on computations that are actually used within the loop. You can
assume that the -loop-simplify pass has been run before your pass, so that all loops have a
proper preheader.

Approach

Obtain the current loop header.

Get every BasicBlock dominated by the current loop header. Use the DominatorTree
class to find out which blocks are dominated.

Find the blocks that are within the current loop (i.e., not a sub-loop).

Move every loop-invariant instruction of these blocks to the preheader of the loop.

We leave it up to you to find out which instructions are loop-invariant. In general, side-effects
mean that variables are not loop-invariant (you can check for that via the LLVM function
called issafeToSpeculativelyExecute). Also, dependencies on non-constants or values
produced in the loop are also (usually) not loop-invariant.



Task 4: Inlining Calls

Inlining replaces a function call in the IR with the body of the called function (and all
arguments substituted). Unlike the previous optimizations in this assignment, inlining a
function call does not always make your program faster. It only guarantees to eliminate the
cost of the call itself and can enable other optimizations. However, it might increase your
code size and slow down the program by causing additional pressure on the instruction
cache.

There is no simple algorithm that can decide if inlining a specific is beneficial (the problem is
NP-hard), so in this assignment you have to come up with your own heuristic.

Hints:
e The heuristic that gives you a good grade is not very complicated.
e You can only consider direct calls for this assignment. l.e., you don’t need to inline
calls using function pointers for an optimal score.

FAQ

Hi all, some FAQ and updates regarding assignment 2. I'll update them when | get
more questions, so maybe check this page from time to time.

How do | know where the cycles are lost?
There is a profiler in the framework (and part of the simulator). If you run
PROFILE_CODE=1 ./grade -a 2

it will show you a heat map of where cycles are spent for each program. | also
enabled it for the submissions on CodeGrade (even though you don't have color
output there).

Do we need to optimize the most optimal program to geta 10?

No. The 10pt cycle count is based on a (suboptimal) solution. You can outperform it
in several ways (this includes also implementing other minor peephole optimizations)

Why does the grading script round down?

The raw score is just interpolated between unoptimized code and the optimized code
from the incomplete solution. The rounding and scoring is picked so there is an
appropriate grading curve.

| got a cool inliner heuristic but it produces terrible performance. Why?

You most likely inline something that you shouldn't. And you probably do this
because your heuristic is wrong. Note that you shouldn't just copy an heuristic from
the internet (which most likely will not work as it assumes different optimizations and
code cache structure).



Can we get any tips for the inliner heuristic?

e You probably have to inspect the contents of a function to make a good
heuristic. This goes beyond just counting the instructions in it.

e Inspecting the call site(s) you are inlining can also help in some cases.

e Basing your heuristic on whether the call site is in a loop (and how big that
loop is) can help. Note that loops can be very slow if they don't fully fit into
the [-Cache.

We also have office hours on purpose. While we can't tell you a good heuristic, the
TAs can help you with figuring out why your heuristic is bad.

My inliner solution slows down the code so much | get a 0 (even though | have
other passes)?

Just disable the inliner in the optimize.sh pipeline and submit like that. Or remove
your inliner implementation.

| noti hat | =simplify is not run befor r ?

The loops you have to optimize should already be in the loop-simplify format (one
preheader, etc.). If they are not, you don't have to optimize them and can just skip
them. You might encounter those in the csmith/ tests (which are not benchmarked).

Can | call a certain function from our pass or are there functions that are
off-limits?

In general, anything that does a significant part of the job of your pass is off-limits. If
the function sounds very specific to what you're supposed to implement, it's most
likely off-limits. If you're unsure whether you can use a function, ask
coco-support@vusec.net . Note that this check isn't automated yet, so when |
manually check your submissions I'll try to be not too strict.



Assignment 3 - Security

Deadline: See Canvas

By default, C programs use manual memory management and rely on the programmer to
perform manual bounds checking for buffers and free memory after its last use. When done
incorrectly, the resulting bugs are often subtle and have no negative effects until they start
being exploited by an attacker.

In reaction to this, various memory error detection tools such as valgrind or AddressSanitizer
have been developed. These tools instrument a target program so these subtle errors
become visible and are reported in a deterministic way. Instrumentation means in this
context to add code to the program that performs additional logic such as error checking.
However, the original program logic is preserved and still produces the same results as
without instrumentation (assuming the program is free of errors).

In this assignment, you will develop your own LLVM-based tool that can catch both spatial
errors (i.e., buffer under/overflows) as well as temporal memory errors (use-after-free errors).

Task 1: Spatial Heap Safety (4pts)

The first task is to protect each program against under/overflows that affect buffers on the
heap. For the tests in this task (and this task only) you can assume that all vulnerable buffers
are located on the heap (i.e., they are created via malloc).

While we don’t require you to use a specific implementation, the recommended solution is to
create your own malloc/free functions which track all heap allocations. Then, replace all
existing calls to the custom malloc/free functions you created. You should use the
assign3/Runtime. cpp file to implement your custom malloc and free and
assign3/Sanitizer.cpp to implement your pass.

Your custom malloc/free functions should allocate additional space around each memory
buffer. This additional space is considered not valid for any memory access and is usually
called a red zone. Note that the program should still get a valid memory buffer of the
requested size when calling malloc.

The next step is to instrument (i.e., prefix with additional instruction) all memory accesses to
call a new function that checks if the accessed address is valid. If a memory access is
detected to read/write memory in a red zone, you should abort the program with exit code 66
(e.g., by calling exit(66)). You can implement this check in Runtime. cpp, but be aware
that a real tool would generate LLVM IR for the check for performance reasons.

Grading:
Run ./grade --assignment 3.1 which will print the points you got for this task.



Hints:

e All out of bounds memory accesses in this task (and the ones below) are within 32
bytes of the original buffer. You don’t need to detect invalid accesses beyond these
32 bytes.

e You do not need to detect when pointers go out of bounds unless they are used to
access memory. l.e., you do not need to report when pointer arithmetic causes a
pointer to go out of bounds unless that pointer is dereferenced.

e Your custom malloc should have a different name than just malloc to avoid linking
issues (same for free). You can declare a function with the same name in your pass
and generate a Calllnst to it to call the respective C++ function in your runtime.

e You can get the byte size of a type with
ModuleVar->getDatalLayout().getTypeAllocSize(type).getFixedValue();

Task 2: Spatial Stack Safety (3pts)

There are also vulnerable buffers on the stack that could underflow or overflow. In this task
you have to check those too for potential under/overflows. You shouldreturn exit code 66 (as
above) when you detect an under/overflow.

The general approach here is to replace all AllocaInst instances in your program.
Allocalnst is in the case of Clang/LLVM the representation of a stack buffer. The replacement
should be a larger Allocalnst that reserves a red zone before/after the actual buffer. Note
that you should not create several Allocalnst instances, but instead one large one that
contains both the red zone as well as the original buffer.

Hints:
e You can reuse the utility functions of the previous task for this one.
e Note that Allocalnst has both a type and also an element size that you need to
consider to get the stack buffer size (A->getArraySize()).
e There is no equivalent of a free call for stack buffers. They still have a lifetime
though (think about when the buffer is no longer used) and their redzone might be
valid memory in subsequent function call.

Grading:
Run ./grade --assignment 3.2 which will print the points you got for this task.

Task 3: Temporal Heap Safety (3pts)

The final task is to detect temporal memory errors. In other words, you need to detect
memory accesses to buffers that have been free’d before. The general approach for this is
to quarantine memory when it is deallocated. In other words, you keep the free’d memory
around for a while before reusing it. While in the quarantine, any access to it should be
reported like an access to a red zone.



To avoid leaking memory, a buffer is usually removed from quarantine after a certain amount
of free calls. However, for this assignment you can just assume that all programs are
short-lived and you do not need to free up quarantined memory.

Grading:
Run ./grade --assignment 3.3 which will print the points you got for this task.

Hints:

e You can once again reuse some of the utility functions of the previous tasks for this
one.



Assignment 4 - Optimization Verification

Deadline: See Canvas

Note: For BSc students, this assignment is optional. You will not get any points for doing it
and it will not influence your grade.

This assignment is mandatory and graded like a normal assignment for MSc students.

NOote: lnere an alternate A gnment 4 you can ao QU ONN Nave 10 do one or tnNe

In this assignment you are given 3 incorrect compiler passes. Each pass contains a bug that
causes subtle miscompilations in the optimized programs. In other words, the passes
change the behavior of the optimized programs under some circumstances.

Your task is to fix all 3 bugs and provide a minimal test case that demonstrates the bug.

The code you’re given are real LLVM optimization passes, so you will have a hard time
spotting the bugs with the bare eye. This assignment will teach you how you can still find
each bug easily using random differential testing.

Task 1: Differential testing script (1 pt)

Your first task is to write a testing script that takes a program and decides whether it exposes
an optimization bug. This can be done by comparing the output (i.e., the stdout or exit
code) of the program compiled with and without optimizations. For any well-defined
deterministic program, a changed output implies an optimization pass is misbehaving.

For this task, we give you a trivially broken optimization pass called ExampleBrokenPass.
You can find its source code in assign4/ExampleBrokenPass.cpp. You're also given a simple
program that demonstrates the optimization bug in assign4/tests/simple-1load.c as well

as an undefined program in the invalid-test. c file in the same folder.

You can find the placeholder script in assign4/is-interesting.py. Adjust the file so that it
returns the exit code 0 if the program demonstrates an optimizer bug. Otherwise return the
exit code 1. If the program contains undefined behavior, you should also return exit code 1.

Grading:
Run ./grade --assignment 4.1 which will print the points you got for this task. The tests
will check the example test programs above and the respective exit code.

Hints:

e The assign4/optimize. sh script allows compiling a program with only a certain
compilation pass. You can invoke the script like this: optimize.sh input.c
output.bin ExampleBrokenPass to generate an output.bin executable. In this
example, ExampleBrokenPass is the name of a pass. You can pass None as a pass
name to not use any optimizations during compilation.



Debugging Tasks

The next three tasks are all concerned with three optimization passes: GVN, GlobalOpt and
InstSimplify. For each pass, you are expected to find and fix a bug we inserted into its
implementation. You also have to provide a small example test case that demonstrates the
found bug.

You can find the source of each pass in the assign4/ folder (e.g., GVN. cpp). You can build
all three passes by running make in the assign4/ folder, and the grading script will build
them for you automatically. You can use the assign4/optimize. sh script to run each of the
provided passes on a source file and produce a binary.

Finding a test case

The intended way for you to find a test case for each bug is as follows:

1. Write a simple Python script that runs the csmith program generator to produce a
well-defined random C program.

2. Use the is-interesting.py script from Task 1 to check if the generated program
demonstrates an optimizer bug.

3. Ifthe is-interesting.py scriptindicates an optimizer bug, you can stop and save
the generated program. Otherwise go back to step 1 and repeat.

Once you find this good test case, you should put it in a file in the assign4/tests/ folder that
has the name of the pass. E.g., assign4/tests/GVN. c for the GVN pass. This file is
checked by the grading script.

Reducing the test case

You now have a program that demonstrates the bug, but you still don’t know where the
optimizer bug is nor is the giant random program useful for debugging. In the next step, you
should minimize the program so you can use it to understand what bug the optimizer has.
For the sake of (automated) grading, we consider this task done when the test input is
smaller than 300 bytes.

We installed creduce on the docker setup that can automatically reduce a random C
program. This is done by repeatedly removing a small part of the C program. Each time the
program is modified, creduce checks if the modified version is still ‘interesting’. If the
modified version is not interesting, creduce will revert the change. If it is interesting, creduce
will keep shrinking the program. You should read the manual page for creduce to understand
better how it works: https://manpages.debian.org/testing/creduce/creduce.1.en.html

The definition of ‘interesting’ is left to the user of creduce (you) who has to provide a small
script that is called by creduce after each reduction. In this task, interesting means that the
smaller program still needs to be well-defined and demonstrate an optimizer bug. You can
therefore reuse the is-interesting.py script from the first task.


https://manpages.debian.org/testing/creduce/creduce.1.en.html

You should be able to get a minimal test case by running creduce on your found test case
and providing a small script that reuses the is-interesting.py script. However, creduce is
not deterministic and might break the test case by introducing some kind of
non-determinism. If the reduced test case is empty or non-deterministic, you should re-run
creduce until you find a test case that looks right. You can also find out if there is a compiler
warning (or some other utility) that can detect the non-determinism and enable this in the
has-ub. py script.

Once you have a minimal test case, replace the respective program in the assign4/tests/
folder with your smaller version. This file is checked by the grading script.

Finding the optimizer bug

The final step is to find and fix the optimizer bug in each pass. How you approach this is up
to you, but we recommend that you first understand the expected behavior of the
(unoptimized) minimal test case you generated. Then, try to understand what changed in the
optimized version and what the pass is supposed to do.

Once you understand what behavior changed, you can start searching the pass source code
for the respective logic that breaks. We recommend looking at the generated/modified LLVM
instruction in the test case and then search for that in the pass. E.g., if you see that the pass
generates a bogus load, then look for places where a LoadInst is created in the pass.

Notes:

e The assign4/original-src/ folder has a copy of the pass source code that you
must NOT modify. The contents of this folder are reset on the grading environment.
You can run these passes by passing the pass name with a .original suffix. E.g.,
./optimize.sh input output GVN.original .

e You need to actually fix the pass. Not just disable part of it (or all of it) by commenting
out some chunk of code. If you ever disable/remove 6 or more lines of code, you are
doing something wrong.

e All bugs inserted into the passes consist of small source changes. You only need to
modify/remove a few lines and don’t need to write additional code from scratch. No
change is larger than 5 lines of code.

e CSmith programs require the following include paths to compile: -1
/usr/include/csmith/

Task 2: InstSimplify (3pts)

The provided InstSimplify pass does what you suspect from its name. It takes instructions
and tries to find a simpler way to express them. For example, X := A + @ could just be
expressed as X := A. You already implemented a somewhat similar version of this in
assignment 2.

You should find and fix the hidden bug in the assign4/InstSimplify.c and put a minimal
C program that demonstrates this bug in assign4/tests/InstSimplify.c.



Grading:
Run ./grade --assignment 4.2 which will print the points you got for this task.

Task 3: GlobalOpt (3pts)

The provided GlobalOpt pass optimizes global variables and their uses. E.g., if a global
variable is never assigned a value aside from its initial one, it's assumed to be constant and
all uses are replaced with the initial value.

You should find and fix the hidden bug in the assign4/GlobalOpt.c and put a minimal C
program that demonstrates this bug in assign4/tests/GlobalOpt.c.

Grading:
Run ./grade --assignment 4.3 which will print the points you got for this task.

Task 4: GVN (3pts)

The provided GVN pass performs Global Value Numbering, which removes redundant
computations in a program. This is similar to CSE, but not tied to any syntactic/structural
similarities in the code.

You should find and fix the hidden bug in the assign4/GVN.c and put a minimal C program
that demonstrates this bug in assign4/tests/GVN.c.

Grading:
Run ./grade --assignment 4.4 which will print the points you got for this task.



Assignment 4 - Backend

Deadline: See Canvas

Note: For BSc students, this assignment is optional. You will not get any points for doing it
and it will not influence your grade.

This assignment is mandatory and graded like a normal assignment for MSc students.

NOote: Inere an alternate A gnment 4 you can ao QU ONN Nave 10 do one or tine

Yet Another Note: There is no framework support this alternate Assignment 4. We'll leave
you mostly to your own devices here. But you can ask about build help with LLVM.

In the previous assignments you have seen how to take a source file, transform it into IR,
and finally do some optimizations on it. So far, actually converting the IR to executable
machine instructions has been happening in the magic backend of LLVM. In this assignment
you will have to add security features to the LLVM backend, allowing you to get familiar with
the deepest parts of LLVM.

Code randomization

In modern control-flow hijacking (or code reuse) attacks, the attacker needs to know the
exact layout of the code the hijacked control flow jumps into. Code randomization seeks to
make the code layout of a protected program randomized and thus unpredictable to the
attacker, raising the bar for such attacks. Many code randomization techniques are
described in the literature (e.g., https://bit.ly/206rALO and https://bit.ly/2U3SQ1y ). In this
assignment, we will focus on register assignment randomization and code pointer hiding, two
popular and practical code randomization techniques.

Register assignment randomization

Register assignment randomization ensures that register assignments are randomized in the
final binary, making the registers used by any given instruction unpredictable and overall
introducing significant randomness throughout the code. In this assignment, we will focus on
a simple implementation that randomizes the order of all the general-purpose registers
assigned by the register allocator on a per-function basis.

Code pointer hiding

Code pointer hiding ensures that if attackers learn the memory address of a given function
(i.e., a function pointer) or call instruction (e.g., a return address)—for instance, by leaking
information from memory—they still have no information about the neighboring instructions.
This property can be enforced in a number of ways. In this assignment, we will focus on a
simple implementation that inserts a random number of NOP instructions for padding at
function entry/exit points and before/after every call instruction.


https://bit.ly/2O6rALO
https://bit.ly/2U3SQ1y

Spectre-RSB mitigation

A clever mitigation for Spectre variant #2 is given by the use of a retpoline in place of indirect
jumps or indirect calls. Another Spectre variant targets the Return Stack Buffer (RSB) to
cause a misspeculation (https://bit.ly/2tVI6bK). In this case, a variation of 1 retpoline, that
we’re going to call ret-retpoline, can be used to trap speculative execution in an infinite loop.
This mitigation is explained in the paper at page 11.

Assignment Objectives

In this assignment you have to delve into the CodeGen (lib/CodeGen) and the
targetdependant (lib/Target) parts of LLVM. In the former you will be able to implement
compile-time register randomization and code pointer hiding, while in the latter you can
implement ret-retpoline for x86.

Compiling LLVM

For this assignment you have to delve into the LLVM source tree and build LLVM yourself.

You can find the source code for LLVM 10 here:
https://github.com/llvm/llvm-project/releases/download/llvmorg-10.0.1/llvm-10.0.1.src.tar.xz .
The official LLVM build instructions can be found here: https://llvm.org/docs/CMake.html. The
simplest way to build LLVM is by first creating a build directory via

mkdir build ; cd build

Then you can run these commands in the build directory to build LLVM:

cmake -DLLVM TARGETS TO BUILD="X86" .. and then make -3j8.

Note: You should replace the '8’ in the make command with the number of CPU
cores/hardware threads on your machine. Note that the first build might take quite some time
depending on your machine. You can do a (much faster) incremental build after the initial
build via make -3j8 in the build directory you created above. You can find your own built
version of LLVM tools in the build/bin/ directory.

1 Register Assignment Randomization (3 pts)

In this part of the assignment you will implement register assignment randomization. To
achieve this goal, you will add a new register allocator to LLVM. We split this into two
different steps:

1.1 Adding a custom register allocator

Start by adding a new allocator that can be invoked with the lic command in the following
manner: 11c -regalloc=coco . Adding a register allocator can be quite tricky! Start by
copying the file implementing the basic register allocator and changing all mentions of basic,


https://github.com/llvm/llvm-project/releases/download/llvmorg-10.0.1/llvm-10.0.1.src.tar.xz

to coco (i.e., call the allocator RegAllocCoco). You need to change some header files (found
in include/11lvm/CodeGen). Hint: search for RABasic.

Also remember to add your new file implementing the RegAllocCoco allocator to the
CMakelLists.txt in the lib/CodeGen directory. Build LLVM using cmake --build . --target
install. You can check whether the allocator has been added by executing lic --help and
looking for the -regalloc flag (it should now mention the coco register allocator).

1.2 Randomizing the registers

Once you have added your custom allocator you can start implementing the actual
randomization. To improve the reproducibility of builds you should use the seed from the
RandomNumberGenerator class. Get the random number generator seed for your allocator
in the following manner: mf.getFunction()->getParent()->createRNG(this);

Hints

e You should implement the register assignment randomization in the lib/CodeGen
directory.

e The amount of code required to implement this is minimal. The hard part is finding
where to implement it.

e Use tools such as gdb or objdump -D to verify that you are actually randomizing the
registers.

2 Code Pointer Hiding (3 pts)

For this part, as an additional diversification strategy, you have to insert a random number of
NOP instructions for padding at certain locations in the program.

2.1 Adding a MachineFunctionPass

Start by copying the MachineFunctionPrinterPass.cpp in the 1ib/CodeGen folder. This will
give you a bare-bone MachineFunctionPass on which to base your implementation.

Your task is now to insert a random number (between 0 and a certain N) of NOP instructions
at certain locations in the program.

MachineFunctionPasses are analogous to normal FunctionPasses, but are executed in the
LLVM backend, where IR has already been transformed into machine code.

Refer to http://llvm.org/doxygen/classlivm 1 1MachineFunctionPass.html and the following
blogpost ( http://www.kharghoshal.xyz/blog/writing-machinefunctionpass ) for more
information on how to write machine passes.



http://llvm.org/doxygen/classllvm_1_1MachineFunctionPass.html
http://www.kharghoshal.xyz/blog/writing-machinefunctionpass

2.2 Requirements

The implementation should be target-independent. Moreover, you should add a compiler flag
that represents the largest size of a single NOP sled. Finally, you should add NOP padding
at the following locations:

e Before the first/last instruction in a function
e Before each call site
e After each call site

3 Spectre-RSB Mitigation (4 pts)

In this part of the assignment you have to implement ret-retpoline as a mitigation to
Spectre-RSB attacks. In particular, you have to replace every RET instruction with a 3
pre-determined snippet that will trap speculative execution in an infinite loop.

3.1 Adding a Target-Specific MachineFunctionPass

Create a new MachineFunctionPass inside lib/Target/X86 and, for each RET instruction you
find, replace it with the following snippet:

call return_new
spec_trap:
pause

jmp spec_trap
return_new:

add rsp, 8

ret

3.2 Requirements

e You have to implement ret-retpoline only for x86 64
e To build the instructions you should use the MachinelnstrBuilder and helpers like
BuildMI().

Grading and Support

e The assignment is intentionally left open-ended. Do not expect much help. For
instance, it is entirely up to you to figure out which files need to be modified in the
LLVM backend. No hints will be given.

e Submit your solution as one (or three) patches for LLVM-10.0.1. Also include a
(short) README file detailing what you did.
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