KASPER: Scanning for
Generalized Transient Execution
Gadgets in the Linux Kernel

Brian Johannesmeyer*, Jakob Koschel*,
Kaveh Razavi, Herbert Bos, Cristiano Giuffrida

*Joint first authors

VU . ETHziirich

&le New York Eimes

Researchers Discover Two Major
Flaws in the World’s Computers

CYBERSECURITY

Massive Intel Vulnerabilities Just N_leltdow!" and SPeCtrel
Landed -- And Every PC User On | Fixes Arrive—But Don't
The Planet May Need To Update | Solve Everything

&le New York Eimes

Researchers Discover Two Major
Flaws in the World’s Computers

orbes SHWEIRI D]
CYBERSECURITY

Massive Intel Vulnerabilities Just| Meltdown and Spectre
Landed -- And Every PC User On | Fixes Arrive—But Don't
The Planet May Need To Update | Solve Everything

&2

SPECTRE

&le New York Eimes

Researchers Discover Two Major
Flaws in the World’s Computers
orbes SNWHRED

Massive Intel Vulnerabilities Just| Meltdown and SPe(:trel 0
Landed -- And Every PC User On | Fixes Arrive—But Don't
The Planet May Need To Update | Solve Everything

@@gﬁ SPECTRE
=
— Gy &

&le New York Eimes

Researchers Discover Two Major
Flaws in the World’s Computers
bes SAWH R D

Massive Intel Vulnerabilities Just | Meltdown and Spectre 0

Landed -- And Every PC User On | Fixes Arrive—But Don't

The Planet May Need To Update | Solve Everything

&le New York Eimes

Researchers Discover Two Major
Flaws in the World’s Computers
bes SAWH R D

Massive Intel Vulnerabilities Just | Meltdown and Spectre 0

Landed -- And Every PC User On | Fixes Arrive—But Don't

The Planet May Need To Update | Solve Everything

&le New York Eimes

Researchers Discover Two Major
Flaws in the World’s Computers
bes SAWH R D

Massive Intel Vulnerabilities Just | Meltdown and Spectre 0

Landed -- And Every PC User On | Fixes Arrive—But Don't

The Planet May Need To Update | Solve Everything

&le New York Eimes

Researchers Discover Two Major
Flaws in the World’s Computers
orbes SNWHRED

Massive Intel Vulnerabilities Just IV_IeItdowp and Spectrel 0
Landed -- And Every PC User On | Fixes Arrive—But Don't

The Planet May Need To Update | Solve Everything

&le New York Eimes

Researchers Discover Two Major
Flaws in the World’s Computers
orbes SNWHRED

Massive Intel Vulnerabilities Just IV_IeItdowp and Spectrel 0
Landed -- And Every PC User On | Fixes Arrive—But Don't

The Planet May Need To Update | Solve Everything

&le New York Eimes

Researchers Discover Two Major
Flaws in the World’s Computers
orbes SNWHRED

Massive Intel Vulnerabilities Just IV_IeItdowp and Spectrel 0
Landed -- And Every PC User On | Fixes Arrive—But Don't

The Planet May Need To Update | Solve Everything

&le New York Eimes
Researchers Discover Two Major 1
Flaws in the World’s Computers 3 79 ga dge tS
orbes ERWH{R}AD]
Massive Intel Vulnerabilities Just | Meltdown and Spectre 0

Landed -- And Every PC User On | Fixes Arrive—But Don't
The Planet May Need To Update | Solve Everything

&le New York Eimes
R hers Di Two Maj
Flws in the Worlds Computers 1379 gadgets

Massive Intel Vulnerabilities Just IV_IeItdowp and Spectre 0
Landed -- And Every PC User On | Fixes Arrive—But Don't

Solve Everything

What is a Spectre gadget?

What is a Spectre gadget?

-

X

N

Y
Z

get user (ptr)
i1f (x < size) {

arrl[x];
arr2[yl;

;-

/

What is a Spectre gadget?

9
/; = get_user(pkr)
i1f (x < size) {

vy = arrl|[x];
z = arr2[v];

;-

< Y

What is a Spectre gadget?

/@\

7
@
1f (x
y =

v -

N

= get_user(p¥

< size) {
arrl[x];
arr2[yl;

~

r);

/

What is a Spectre gadget?

O\

S
/@—z\get_user (p\cr) ,\
if (@< size) {

Y% arrl[x];
Z arr2|[v];

< Y

What is a Spectre gadget?

/_E\

/

N

——\get user (p
if (@< size) {
Y

Z

= arrl[x];

= arrzlyl;

\cr) \

Kernel memory

arrl

What is a Spectre gadget?

O\

_—
@ oy

@ —=get user(p
if (@< size) {

vy = arrl[x]s
z = arr2[v];

N

Kernel memory

@

W

IE

IE

IE

/

Y
IE

IE

arrl

What is a Spectre gadget? Kernel memory

@

////”’_—!E,\\ @

/ \: \ & |arrl
—-\get user (ptr) ;

if @< size) {

y = arrl[x]+—
z = arr2|[v];

< e

What is a Spectre gadget? Kernel memory

@

////”’_—!E’\\ @

/ \: \ & |arrl
—-\get user (ptr) ;

if (@< size) {

y = arrl[x]+—
z = arr2|[v];

< e

What is a Spectre gadget? Kernel memory
@

/g\ @
/ \: & | arrl
KE-:\g_e’g~user (p r);\ -
if (@< size) {
y = arrlfg@+— |

z = arr2|[v];

What is a Spectre gadget? Kernel memory
@
/g\ @
& |arrl
/ -<\g_et user (p\cr) \

1f (@< Slze) {
Y —[arrl ﬂ]‘r‘ﬁ @

N\

z = arr2|[v]; \

\ o
\

} .
N -

- @

What is a Spectre gadget? Kernel memory
@
/g\ @
& | arrl
/a\g_et user(p\cr)\ -

1f (@< Slze) {
Y —[arrl %]‘Pﬁ @

N\

z = arr2|[v]; \

\‘ ©
} \ @
- A

What is a Spectre gadget? Kernel memory
@
/g\ @
& | arrl
/a\g_et user(p\cr)\ -

1f (@< Slze) {
G = [arrl%]—,-ﬁ o

N\

z = arr2|[v]; \

\‘ ©
} \ @
- A

What is a Spectre gadget? Kernel memory
@
/g\ @
& |arrl
/ -<\g_et user (p\cr) \

1f (@< Slze) {
W = [arrlﬂ]_’v " ©

N\

z = arr2fyl; v P
} N @
- A

What is a Spectre gadget? Kernel memory

@

/g\ @

/ \: \ & |arrl
©=-get_user(ptr);

if (@< si Ze) {

(&)_

N

What is a Spectre gadget? Kernel memory

@

/g\ @

/ \: \ & |arrl
©=-get_user(ptr);

if (@< si Ze) {

(&)_

How do existing gadget scanners work?

-

X

N

Y
Z

get user (ptr)

i1f (x < size) {

arrl[x];
arrZ2lyl;

;-

/

How do existing gadget scanners work?

& Existing scanners are pattern-driven.

-

X

N

Y
Z

get user (ptr)

i1f (x < size) {

= arrl[x];
= arr2[yl;

;-

/

How do existing gadget scanners work?

Suspicious copies
from userspace

& Existing scanners are pattern-driven.

X = get user

i1f (x < size)
vy = arrl|[x];
z = arr2|[v];

How do existing gadget scanners work?

& Existing scanners are pattern-driven.

Suspicious copies
from userspace

Out-of-bounds
accesses

—

How do existing gadget scanners work?

& Existing scanners are pattern-driven. Suspicious copies

°
4

from userspace
/x = get user @

if (x < ~1ize)
Y

Out-of-bounds
accesses

arrlf

—

Z aLrr

Attacker-dependent

\\} accesses

How do existing gadget scanners work?

-

X

N

Y
Z

get user (ptr)

i1f (x < size) {

arrl[x];
arrZ2lyl;

;-

/

How do existing gadget scanners work?

& Existing scanners are limited in scope.

-

X

N

Y
Z

get user (ptr)

i1f (x < size) {

= arrl[x];
= arr2[yl;

;-

/

How do existing gadget scanners work?

& Existing scanners are limited in scope.

Direct
/ attacker input
x = [get user(ptr)y—7

i1f (x < size) {
% arrl[x];
Z arr2|[v];

< Y

How do existing gadget scanners work?

& Existing scanners are limited in scope.

Direct

-

X

N

i1f (x < size) {

attacker input

= [get _user (ptr)

An out-of-bounds
arr 1 [X I] ° secret access

Y
Z

= arr2[yl;

How do existing gadget scanners work?

& Existing scanners are limited in scope.
Direct

/ attacker input

x = [get user (ptr)

if (X < size) { An out-of-bounds
Y = |alX 1 [X T > secret access
Z

= [larr2[y]k

covert channel

\\} A cache-based

However, in reality, attackers do
not care about patterns.

However, in reality, attackers do
not care about patterns.

D

mov
call
lea

However, in reality, attackers do
not care about patterns.

mov
call
lea

However, in reality, attackers do
not care about patterns.

mov
call
lea

However, in reality, attackers do
not care about patterns.

BN ')
mov @
call

lea

However, in reality, attackers do
not care about patterns.

N 4l
;.:Zil “.

How do existing gadget scanners work?

& Existing scanners are limited in scope.
Direct

/ attacker input

x = [get user (ptr)

if (X < size) { An out-of-bounds
Y = |alX 1 [X T > secret access
Z

= [arr2[vy]k

covert channel

\\} A cache-based

How do existing gadget scanners work?

& Existing scanners are limited in scope.

-

X
if

N

Y
Z

get user (ptr)

{

Spectre-V1

arr2[vl]s

Direct
attacker input

An out-of-bounds
secret access

A cache-based
covert channel

How do existing gadget scanners work?

& Existing scanners are li

LV

d in scope.

Q%Ser(ptrn

Spectre-V1

Y
Z

N

arr2[y

{

Direct
attacker input

An out-of-bounds
secret access

A cache-based
covert channel

How do existing gadget scanners work?

& Existing scanners are limitgg

LV

N

Y
Z

\ SMOThers

Z

Spectre-V1

z

arr2[y

in scope.

Direct
attacker input

Pectre

An out-of-bounds
secret access

A cache-based
covert channel

How do existing gadget scanners work?

& Existing scanners are limi

Direct
attacker input

Spectre-V1 An out-of-bounds
Y ’ secret access

r = [larr2[y]ll

A cache-based
r covert channel

How do existing gadget scanners work?

& Existing scanners are limi

Direct
attacker input

Spectre-V1 An out-of-bounds
’ secret access

» = [larr2[y]ll

A cache-based
r covert channel

How do existing gadget scanners work?

& Existing scanners are limi

Direct
attacker input

An out-of-bounds
secret access

A cache-based
covert channel

How do existing gadget scanners work?

& Existing scanners are limi

Direct
attacker input

ounds
SS

based
annel

An attacker has all of these
primitives at their disposal.

An attacker has all of these
primitives at their disposal.

An attacker has all of these
primitives at their disposal.

But how can a gadget scanner even
begin to model all of them?

Our approach: Modeling generalized gadgets

Our approach: Modeling generalized gadgets
4)

1. Attacker injection

- J

Our approach: Modeling generalized gadgets

User data %

(

1. Attacker injection

-

\

J

Our approach: Modeling generalized gadgets

User data %

(

1. Attacker injection

\

_
-

J
~

2. Secret access

_

Our approach: Modeling generalized gadgets

Out-of-bounds read

L

User data %

(

1. Attacker injection

\

_
-

2. Secret access

_

J
~

Our approach: Modeling generalized gadgets

Out-of-bounds read

L

User data %

(

1. Attacker injection

\

_
-

2. Secret access

VAN

_
-

3. Secret leakage

g

N\

Our approach: Modeling generalized gadgets

User data %

Out-of-bounds read

L

(

1. Attacker injection

\

G
-

VAN

Cache interference

2. Secret access

.
-

VAN

p—

3. Secret leakage

_

Our approach: Modeling generalized gadgets

Memory massaging

User data %

(

1. Attacker injection

—

Out-of-bounds read

L

\

G
-

VAN

Cache interference

2. Secret access

.
-

VAN

p—

3. Secret leakage

_

Our approach: Modeling generalized gadgets

Memory massaging

User data

|

(

1. Attacker injection

—

Out-of-bounds read

L

\

o
-

Cache interference

2. Secret access

VAN

o
-

VAN

p—

3. Secret leakage

_

Our approach: Modeling generalized gadgets

Memory massaging

User data %

(

1. Attacker injection

—

Out-of-bounds read

L

\

o
-

VAN

Cache interference

Use-after-free read %

2. Secret access

o
-

VAN

3. Secret leakage

_

Our approach: Modeling generalized gadgets

Memory massaging

User data %

(

1. Attacker injection

—

Out-of-bounds read

L

\

o
-

VAN

Cache interference

Use-after-free read %

2. Secret access

o
-

VAN

MDS ‘

3. Secret leakage

_

Our approach: Modeling generalized gadgets

Memory massaging

User data %

(

1. Attacker injection

—

Out-of-bounds read

L

\

o
-

Cache interference

Use-after-free read %

2. Secret access

VAN

o
-

MDS ‘

3. Secret leakage

Port contention ‘

_

VAN

10

Okay, so how do we actually
identify these gadgets?

Our approach: An example

11

Our approach: An example

//;oid syscall handler (int x) {\\

if (x < size) {
% arrl[x];
z arr2([vy];

}

N /

11

Our approach: An example

1. Fuzz the syscall
interface

//;oid syscall handler (int x) {\\

ié.(x < size) {
% arrl[x];
Z arr2([vy];
}

N /

11

Our approach: An example

= =7 X x = 100000
1. Fuzz the syscall

//;oid syscall handler (int x) {\\

ié.(x < size) {
% arrl[x];
Z arr2([vy];
}

N /

11

Our approach: An example

1. Fuzz the syscall
interface

LD —

x = 100000

//;01d syscall handler (int x

if (x

Yy
z

< size) {
arrl[x];
arr2[yl;

2. Add an attacker
label

11

Our approach: An example

1. Fuzz the syscall
interface

LD —

x = 100000

//;01d syscall handler (int x

if (x

Yy
z

< size) {
arrl[x];
arr2[yl;

2. Add an attacker
label

12

Our approach: An example

1. Fuzz the syscall
interface

LD —

x = 100000

//;01d syscall handler (int x

if (x

Yy
z

< size) {
arrl[x];
arr2[yl;

2. Add an attacker
label

13

Our approach: An example

= -7 x = 3 x = 100000

1. Fuzz the syscall \
interface | 2. Add an attacker

speculative e
emulation — 1if (x < size) {

Yy
z

|abe|
3. Start \\ void syscall handler (lnt X {

arrl[x];
arr2[yl;

N /

Our approach: An example

= =7 x =3 x = 100000
1. Fuzz the syscall \
interface 2. Add an attacker
label
(oo e
3. Start \\ void syscall handler (int x) {
speculative .
emulation —([1f (x < size) {
| Yy = arrilxl;
z = arr2[y];
}

N /

Our approach: An example

1. Fuzz the syscall
interface

3. Start
speculative
emulation

= -7 x = 3 x = 100000

S~

2. Add an attacker
label

;

L@
-

v
oid syscall handler(int x

if (X < size) {
y = arrl[x];
z = arr2[y];

=

13

Our approach: An example

= -7 x = 3 x = 100000

1. Fuzz the syscall \
interface 2. Add an attacker

label
*/
3. Start void syscall handler (int x) {

speculative e

emulation [1f (x < size) {

~—»Yy = arrl[x];
z = arr2[y];

}

} /

Our approach: An example

= -7 x = 3 x = 100000

1. Fuzz the syscall \
interface 2. Add an attacker

label
*/
3. Start void syscall handler (int x) {

speculative e

emulation [1f (x < size) {

~—»y = arrl[x];
z = arr2[y];

}

} /

Our approach:

An example

1. Fuzz the syscall
interface

3. Start
speculative
emulation

x =3 x = 100000

}

[1f (x

< size) {

7 =

}

s

void syscall handler (int x

2. Add an attacker
label

||

arrl[x]>
arr2[yl;

4. Memory error detector

identifies unsafe access

14

Our approach: An example

= =7 x =3 x = 100000
1. Fuzz the syscall
interface \ 2. Add an attacker
label
V/
3. Start void syscall handler (int x) {
speculative e |
emulation L if (x < size) {
~_,V = arrl[x]; 4. Memory error detector

z = arr2[y]; identifies unsafe access

5. Add a secret } }

label /

14

Our approach: An example

= =7 x =3 x = 100000
1. Fuzz the syscall
interface \ 2. Add an attacker
label
V/
3. Start void syscall handler (int x) {
speculative e |
emulation L if (x < size) {
~_,V = arrl[x]; 4. Memory error detector

z = arr2[y]; identifies unsafe access

5. Add a secret } }

label /

15

Our approach: An example

= =7 x =3 x = 100000
1. Fuzz the syscall
interface \ 2. Add an attacker
label
V/
3. Start void syscall handler (int x) {
speculative e |
emulation L if (x < size) {
~_,V = arrl[x]; 4. Memory error detector

z = arr2[y]; identifies unsafe access

5. Add a secret } }

label /

16

Our approach:

An example

1. Fuzz the syscall
interface

3. Start
speculative
emulation

5. Add a secret
label

.

x = 100000

2. Add an attacker
Iabel

void syscall handler (int x

< size) {

||

arrl[x]>
arr2[y]ls

identifies unsafe access

4. Memory error detector

6. Cache interference detector
identifies gadget

16

Our approach:

An example

1. Fuzz the syscall
interface

3. Start
speculative
emulation

5. Add a secret
label

.

x = 100000

2. Add an attacker
Iabel

void syscall handler (int x

< size) {

||

arrl[x]>
arr2[y]ls

identifies unsafe access

4. Memory error detector

6. Cache interference detector
identifies gadget

17

Our approach: An example

= -7 X x = 100000
1. Fuzz the syscall
interface \ 2. Add an attacker
Iabel

3. Start void syscall handler (int x
speculative e |
emulation L if (x < size) {
~_,V = arrl[x]; 4. Memory error detector
z = arr2[yls identifies unsafe access
5. Add a secret } }
label

T&

6. Cache interference detector
identifies gadget

7. Revert speculative operations

17

Our approach: An example

= -7 X x = 100000
1. Fuzz the syscall
interface \ 2. Add an attacker
Iabel

3. Start void syscall handler (int x
speculative -~ T T T~]
emulation r1f (x < size) { -
~_,V = arrl[x]5 7 4. Memory error detector
z = arr2[yls // identifies unsafe access
} ~
5. Add a secret } S _
label
L 6. Cache interference detector

_ _ identifies gadget
7. Revert speculative operations

17

Our implementation: KASPER

18

Our implementation: KASPER

[Linux kernel A
\L-(/

18

Our implementation: KASPER

[Linux kernel&

~

: . : Q.0
KASPER runtime libraries {_é;‘

18

Our implementation: KASPER

[Linux kernel& [KASPER runtime libraries {_é%o

'fuild the kernel with KASPER’S LLVM passes

18

Our implementation: KASPER

[Linux kernel&

|

~

: . : Q.0
KASPER runtime libraries {_é;‘

Bt

~

Q.0

&

\ 4

[KASPER-instrumented kernel }

uild the kernel with KASPER’s LLVM passes

18

Our implementation: KASPER

[Linux kernel& [KASPER runtime libraries {_é%o

"Build the kernel with KASPER's LLVM passes

~

Q.0

&

\ 4

[KASPER-instrumented kernel }

|Fuzz the kernel so that KASPER reports gadgets at runtime

18

Our implementation: KASPER

[Linux kernel& [KASPER runtime libraries {_é%o

"Build the kernel with KASPER's LLVM passes

~

Q.0

&

\ 4

[KASPER-instrumented kernel }

Fuzz the kernel so that KASPER reports gadgets at runtime

[Gadgets statistics @

18

Comparison with previous approaches

19

Comparison with previous approaches

Gadgets reported in the kernel when running UNIX’s 1s command

19

Comparison with previous approaches

Gadgets reported in the kernel when running UNIX’s 1s command
Total gadgets reported FP rate FN rate (“Spectre-V1” only)

SpecFuzz 662 99% 33%
SpecTaint 688 99% 0%

KASPER (“Spectre-V1” only) 8 25% 0%

19

Comparison with previous approaches

Gadgets reported in the kernel when running UNIX’s 1s command

SpecFuzz
SpecTaint

KASPER (“Spectre-V1” only)

Total gadgets reported
662
688

8

FP rate FN rate (“Spectre-V1” only)
- 99% 33% |

99% 0%

25% 0%

Only targets speculative
out-of-bounds accesses

19

Comparison with previous approaches

Gadgets reported in the kernel when running UNIX’s 1s command

Total gadgets reported

SpecFuzz 662
SpecTaint 688

KASPER (“Spectre-V1” only) 8

Only targets attacker-
dependent accesses

FP rate

FN rate (“Spectre-V1” only)

- 99%

33% |

0%

0%

Only targets speculative
out-of-bounds accesses

19

Comparison with previous approaches

Gadgets reported in the kernel when running UNIX’s 1s command

Total gadgets reported FP rate

SpecFuzz 662
SpecTaint 688

KASPER (“Spectre-V1” only) 8

FN rate (“Spectre-V1” only)

-

99%

33% |

Only targets attacker-
dependent accesses

Non-deterministic
overtainting

0%

0%

Only targets speculative
out-of-bounds accesses

19

Comparison with previous approaches

Gadgets reported in the kernel when running UNIX’s 1s command

SpecFuzz

SpecTaint

KASPER (“Spectre-V1” only)

Total gadgets reported FP rate

662

688

Fewer, higher
quality gadgets

FN rate (“Spectre-V1” only)

-

99%

33% |

Only targets attacker-
dependent accesses

Non-deterministic
overtainting

0%

0%

Only targets speculative
out-of-bounds accesses

19

Gadgets discovered

20

Gadgets discovered

Gadget type Number of reports

USER-CACHE 147
MASSAGE-CACHE 47

LVI-CACHE 12

USER-MDS 600
MASSAGE-MDS 193
USER-PORT 407
MASSAGE-PORT 123

Total 1379

20

Gadgets discovered

Gadget type Number of reports

The original “Spectre-V1” remains
largely unmitigated.

USER-CACHE

MASSAGE-CACHE 47

LVI-CACHE 12

USER-MDS 600
MASSAGE-MDS 193
USER-PORT 407
MASSAGE-PORT 123

Total 1379

Gadgets discovered

Gadget type Number of reports The original “Spectre-V1” remains

largely unmitigated.

USER-CACHE

MASSAGE-CACHE 47 |
LVI-CACHE (12] condtional branch mispredicion. @ | @
USER-MDS 600 R |
MASSAGE-MDS 193

USER-PORT 407

MASSAGE-PORT 123

Total 1379

20

Gadgets discovered

Gadget type

USER-CACHE
MASSAGE-CACHE
LVI-CACHE
USER-MDS
MASSAGE-MDS

USER-PORT

MASSAGE-PORT

Number of reports
P The original “Spectre-V1” remains

Total

147 largely unmitigated.
47 |
LVl is indeed an issue from a
12 conditional branch misprediction. Q Q
600 R |
|
Transient memory massaging is a P @
legitimate attack vector.
407 |
1379

20

Gadgets discovered

The original “Spectre-V1” remains
largely unmitigated.

LVI is indeed an issue from a Q Q
conditional branch misprediction.
|

Transient memory massaging is a Q Q
legitimate attack vector.

Gadget type Number of reports
USER-CACHE 147
MASSAGE-CACHE 47
LVI-CACHE 12
USER-MDS 600 R
MASSAGE-MDS
USER-PORT 407
MASSAGE-PORT 123
Total 1379

There are a ton of gadgets! But are
any of them actually exploitable...

20

Case study: Linux’s list iterator

21

Case study: Linux’s list iterator

21

Case study: Linux’s list iterator

Data*

Data*

21

Case study: Linux’s list iterator

Data*

Prev

Next

Data*

Prev

Next

Prev

Next

21

Case study: Linux’s list iterator

A

Data*

> Prev

Next

Data*

A

21

Case study: Linux’s list iterator

Prev

Next

A

Data*

List head

> Prev

Next

Data*

A

\4

21

Case study: Linux’s list iterator

lteration 1

Prev

Next

A

Data*

List head

> Prev

Next

Data*

A

22

Case study: Linux’s list iterator

lteration 1

Prev

Next

A

Current
element
Data*
> Prev Next

List head

Data*

A

\4

22

Case study: Linux’s list iterator

lteration 1

Prev

Next

A

Current
element
Data*
> Prev Next

List head

Data*

A

\4

22

Case study: Linux’s list iterator

lteration 1

Prev

Next

A

Current
element
Data*
> Prev Next

List head

Data

Data*

A

\4

22

Case study: Linux’s list iterator

lteration 2

Prev

Next

A

Data*

List head

> Prev

Next

Data*

A

23

Case study: Linux’s list iterator

lteration 2

Prev

Next

A

Data*

List head

> Prev

Next

Current
element

|

Data*

A

\4

23

Case study: Linux’s list iterator

lteration 2

Prev

Next

A

Data*

List head

> Prev

Next

Current
element

|

Data

Data*

A

\4

23

Case study: Linux’s list iterator

lteration 3 (termination)

Prev

Next

A

Data*

List head

> Prev

Next

Data*

A

24

Case study: Linux’s list iterator

lteration 3 (termination)

Current
element

l

Prev

Next

A

Data*

List head

> Prev

Next

Data*

A

\4

Case study: Linux’s list iterator

lteration 3 (misprediction)

Current
element

l

Prev

Next

A

Data*

List head

> Prev

Next

Data*

A

Case study: Linux’s list iterator

lteration 3 (misprediction)

Current
element

l

O

Prev

Next

A

Data*

List head

> Prev

Next

Data*

A

Case study: Linux’s list iterator

lteration 3 (misprediction)

Current
element

.

Prev

Next

A

Data*

List head

> Prev

Next

Data*

A

Case study: Linux’s list iterator

lteration 3 (misprediction)

O

Current
element

L

Prev

Next

A

Data*

List head

> Prev

Next

Data*

A

Case study: Linux’s list iterator

lteration 3 (misprediction)

Current

element 6

b

A

Data*

Prev Next

> Prev

Next

Data*

A

List head

Case study: Linux’s list iterator

lteration 3 (misprediction)

Current

element g

L

A

Data*

Prev Next

> Prev

Next

Data*

A

\4

List head

Case study: Linux’s list iterator

lteration 3 (misprediction)

O

Current
element

l __________ ,/ ________ Segret

Prev

Next

A

Data*

List head

> Prev

Next

Data*

A

\4

26

Case study: Linux’s list iterator

lteration 3 (misprediction)

O

Current
element

Jil __________ ,/ Segret

A

-
———__—

\ 4

Data*

Prev Next

Prev

Next

Load buffer

Data*

A

\4

List head

Case study: Linux’s list iterator

lteration 3 (misprediction)

Current
element
l y/ Secret
/

A

\ 4

—
- —
- - o

-
—_-—__—

Data*

Prev Next

Prev

Next

Load buffer

Data*

A

\4

List head

27

Finally, we implemented a
proof-of-concept exploit of
an instance of this gadget.

Finally, we implemented a
proof-of-concept exploit of
an instance of this gadget.

Finally, we implemented a proof-
of-concept exploit of an instance

of this gadget.

But that’s just the beginning of
the story...

Finally, we implemented a proof-
of-concept exploit of an instance

of this gadget.

But that’s just the beginning of
the story...

Mitigation of the list gadget

28

Mitigation of the list gadget

To mitigate the gadget, the kernel has to:

28

Mitigation of the list gadget

To mitigate the gadget, the kernel has to:

(1) Rewrite its list implementation

28

Mitigation of the list gadget

To mitigate the gadget, the kernel has to:

(1) Rewrite its list implementation

28

Mitigation of the list gadget

To mitigate the gadget, the kernel has to:

(1) Rewrite its list implementation , and (2) Upgrade the version of C that it uses

28

Mitigation of the list gadget

To mitigate the gadget, the kernel has to:

(1) Rewrite its list implementation , and (2) Upgrade the version of C that it uses

28

Mitigation of the list gadget

To mitigate the gadget, the kernel has to:

(1) Rewrite its list implementation , and (2) Upgrade the version of C that it uses

News from the source

Content
AW VA bl

Moving the kernel to modern C

By Jonathan Corbet
February 24, 2022

possibly more significant anachronism is the use of the 1989 version of the

Despite its generally fast-moving nature, the kernel
project relies on a number of old tools. While 74 #lics L
to focus on the community's extensive use of ¢+ *

(From C89 to C11)

28

Mitigation of the list gadget

To mitigate the gadget, the kernel has to:

(1) Rewrite its list implementation , and (2) Upgrade the version of C that it uses

@ LWN .
"net Moving the kernel to modern C
-
News from the source By Jonathan Corbet Despite its generally fast-moving nature, the kernel
February 24, 2022 project relies on a number of old tools. While 74 #lics L
Content to focus on the community's extensive use of €7
e possibly more significant anachronism is the use of the 1989 version of the '

(From C89 to C11)

More than 500 treewide patches are required to implement a reasonable defense.

28

Conclusion

29

Conclusion

=V

SPECTRE

Conclusion

[»

SPECTRE

Conclusion

Conclusion

[»

SPECTRE

Conclusion

[»

SPECTRE

Conclusion

[»

SPECTRE

Conclusion

[»

SPECTRE

Conclusion

[»

SPECTRE

X

Conclusion

[»

SPECTRE

c @«al'w& Moving the kernel to modern C

News from the source By Jonathan Corbet Despite its generally fast-moving nature, the kernel
February 24, 2022 project relies on a number of old tools. While critics like
Content to focus on the community's extensive use of email, a
1 te Dbt o possibly more significant anachronism is the use of the 1989 version of the C

Thank you!

31

32

Backup slides

Background: Attacker injection via memory massaging

33

Background: Attacker injection via memory massaging

(if (a2 < size) {\\

b = arrl[a]l;
c = arr2[b];
d = arr3[c];

. /

33

Background: Attacker injection via memory massaging

Kernel memory

(if (2 < size) {\\ o
b = arrl[al]; -
c = arr2[b]l;)
d = arr3[c]; @
g / -

Background: Attacker injection via memory massaging

Kernel memory 6

. : [
/J-f (a < size) {\ Beforehand, ¥ lands
b = arrll[al; © data into a specific
c = arr2[b]; © place in the kernel’s
d = arr3[c]; — stack or heap
= ; =
g) =

33

@

Background: Attacker injection via memory massaging

=3
@ Kernel memory g

. : O
/J-f (a < size) {\ Beforehand, ¥ lands
b = arrll[al; © data into a specific
c = arr2[b]; © place in the kernel’s
d = arr3[c]; — stack or heap
= ; =
N, Y, =

33

@

Background: Attacker injection via memory massaging

S o
t Kernel memory

: - o
(if (@< size) {\ Beforehand, & lands
b = arrll[al; © data into a specific
c = arr2[b]; © place in the kernel’s
d = arr3[c]; — stack or heap
= ; =
N, Y, =

33

@

Background: Attacker injection via memory massaging

@ nel memory g
(if ('< size) {) /

Beforehand, & lands
b arrlf[a]l+—— data into a specific
c = arr2[b];

place in the kernel’s
d = arr3[c]; stack or heap

. /

@

A

@

@

@

@

@

@

33

@

Background: Attacker injection via memory massaging

nel memory g

o

(if ('< size) {
b = arrl 8] +—
c = arr2[b];
d = arr3[c];

. /

@

-

Beforehand, W lands

data into a specific

@

place in the kernel’s

@

stack or heap

@

@

@

@

@

33

Background: Attacker injection via memory massaging

.

(if ('< size) {

)

b |arr1 ﬁig
c = arr2[b];
d = arr3[c];
/

===
—
-
-

-

Beforehand, W lands

-
-
___—
—_ =

data into a specific

Then, © makes a

place in the kernel’s

transient out-of-bounds
or uninitialized read,

stack or heap

inadvertently loading (1]

@

33

Background: Attacker injection via memory massaging

—
@ nel memory E

@ /
=== + U -
(if (‘g_ —Si'Z'e)"{'\‘ -7 Beforehand, & lands
|arrl Eig . B © data into a specific
c = arr2[b]; Then, © makes a) place in the kernel’s
transient out-of-bounds stack or heap
= arr ’ i s 5
d 2 3[cl or uninitialized read, ©
N, _/inadvertently loading ® | ®
@
@
@
@) 33

Background: Attacker injection via memory massaging

R

(if ('_i_ size)- -{"\S """" T Beforehand, ® lands

U = larrl E;-H data into a specific

(&) = arr? m . Then, © makes a) place in the kernel’s

o= transient out-of-bounds stack or heap
= arrsok-1 s e Z
d ALLS W or uninitialized read, ©
Q / inadvertently loading & (9
@
@
@
] 33

Background: Attacker injection via memory massaging

R

a@a
Il
Q
S
B
N
e

/

Finally, @ leaks to &,

via e.g., the cache

\
\

3

Then, © makes a
transient out-of-bounds

or uninitialized read,
inadvertently loading (1]

7

Beforehand, W lands

data into a specific

place in the kernel’s

stack or heap

@

33

Background: Attacker injection via load value injection (LVI)

34

Background: Attacker injection via load value injection (LVI)

/1f (addr 1s mapped(ptr)) {\\
LINEE £

arr?2[x]:;

arr3[v];

N\ Y,

X

Y
Z

34

Background: Attacker injection via load value injection (LVI)

/1f (addr is mapped(ptr)) {\\

X =

y =
—

\

*pEr;
arr2[x];
arr3[yl;

O

l

W co-located on the
SMT core issues
faulting stores, filling
the CPU’s load port
with unresolved data
dependencies

34

Background: Attacker injection via load value injection (LVI)

) S—

v
A g

/1f (addr is mapped(ptr)) {\\

X =

y =
—

\

*pEr;
arr2[x];
arr3[yl;

O

l

W co-located on the
SMT core issues
faulting stores, filling
the CPU’s load port
with unresolved data
dependencies

34

Background: Attacker injection via load value injection (LVI)

>
A A
N’

/1f (addr_is_mapped(ﬁii)) {\\

X =

y =
—

\

*pEr;
arr2[x];
arr3[yl;

O

l

W co-located on the
SMT core issues
faulting stores, filling
the CPU’s load port
with unresolved data
dependencies

34

Background: Attacker injection via load value injection (LVI)

) S—

AA
N

/1f (addr_is_mapped(ﬁii)) {\\

X =

y =
—

\

*@r;
arr2[x];
arr3[yl;

O

1

W co-located on the
SMT core issues
faulting stores, filling
the CPU’s load port
with unresolved data
dependencies

34

Background: Attacker injection via load value injection (LVI)

o O

P
- -
- 5\‘
”

e ™ Meanwhile, @ ¥ co-located on the
if (addr 1is mapped (@)) { transiently loads SMT core issues
% = Wﬂ‘/@ _____ from the same faulting stores, filling
vy = arr2[x]; faulting address the CPU’s load port
with unresolved data
z = arr3 [Y] ’ dependencies

N\ Y,

34

Background: Attacker injection via load value injection (LVI)

o O

P
- -
- 5\‘
”

e ;- ™ Meanwhile, @ ¥ co-located on the

if (addr i1is mapped (p@)) | transiently loads SMT core issues
% = a\'ﬁ‘/a _____ : from the same faulting stores, filling
vy = arr2[x]; faulting |address the CPU’s load port

_ ! \ with unresolved data
z = arr3lyl; S dependencies
} I e
& / \\{ - -

As a result, the
CPU inadvertently
serves W to it

34

Background: Attacker injection via load value injection (LVI)

— - —
——

(i

\

f'Aaddr“Ié_mapped(ﬁfj)) {\\

Y
Z

-
_——‘
—=

W43 X
arr2[x]; \
arr3[yl;

~ -
=~ -
—
Ll -

O

_____ § l
p |

¥ co-located on the
SMT core issues
from the same faulting stores, filling
faulting |address the CPU’s load port
\ with unresolved data
h depenc}encies

Meanwhile, ©
transiently loads

As a result, the
CPU inadvertently
serves W to it

34

Background: Attacker injection via load value injection (LVI)

———
——

(it ,(addf;'fé;fnappg,ol(p'@)) ()
O -)
W}: arr? B : \\\

-
_——‘
—=

v arr3 W ; \
U .

O

1

¥ co-located on the
SMT core issues
from the same faulting stores, filling
faulting |address the CPU’s load port
\ with unresolved data
depenc}encies

_—__~~
-~

Meanwhile, ©
transiently loads

As a result, the
CPU inadvertently
serves W to it

~ -
=~ -
—
Ll -

34

Background: Attacker injection via load value injection (LVI)

———
-

(it ,(add‘r‘_‘i‘s?;fnappgol(p'@)) ()
O- \
W= arr2 u : \\\
Z arr3 W ; i

-
_———
—=

U '\

‘ “
\ ~

\
N\

Finally, @ leaks to & via
e.g., the cache v

3

O

1

¥ co-located on the
SMT core issues
from the same faulting stores, filling
faulting |address the CPU’s load port
\ with unresolved data
depenc}encies

_—__~~
-~

Meanwhile, ©
transiently loads

As a result, the
CPU inadvertently
serves W to it

~~~
-
-—
— e -

34



Background: Secret leakage via MDS

35



Background: Secret leakage via MDS

4 N

x = get user(ptr);
if (x < size) {
y = arrl[x];

& Y




Background: Secret leakage via MDS

9

4 N

x = get user(ptr);
if (x < size) {
y = arrl[x];

& Y




Background: Secret leakage via MDS

O

1
/€§==get_user(ptr);\\

if (x < size) {
y = arrl[x];

& Y

35



Background: Secret leakage via MDS

O

/
/€5==get_user(ptr);\\
if @< size) {

y = arrl[x];

& Y

35



Background: Secret leakage via MDS

O

1
/E = get user(ptr); A

if @< size) {
y = arrl[&zi;

& Y

35



Background: Secret leakage via MDS

O

y
/E= get user (ptr); h
if @< size) {
= arrl%ﬁ];
}
\_ /

35



Background: Secret leakage via MDS

-
- s

e x
< /" The victim copies &
© = get_user (Ptr) into the CPU’s load
if @< size) {/ buffer (and line fil

&) = arrmz buffer, store buffer, etc.)
}
N /

35



Background: Secret leakage via MDS

g / \ The victim copies & Meanwhile, & is co-
U = get_user (ptr) into the CPU’s load located on the SMT
if @< size) { buffer (and line fill core and issues

O = arrTEszE];’ buffer, store buffer, etc.) conflicting loads
}

\J /




Background: Secret leakage via MDS

¢
% = get user (ptr)

if @< size) {
arrTEAl]:]7

N

The victim copies @ Meanwhile, & is co-

into the CPU’s load located on the SMT
buffer (and line fill core and issues
buffer, store‘ buffer, etc.) conflictipg loads

As a result, the CPU
inadvertently serves @ to !



Background: Secret leakage via port contention

36



Background: Secret leakage via port contention

/; = get_user(ptr);\\
if (x < size) {
vy = arrl[x];
if (y) {

\}}... B

36



Background: Secret leakage via port contention

9

/; = get_user(ptr);\\
if (x < size) {
vy = arrl[x];
if (y) {

\\}}... B

36



Background: Secret leakage via port contention

O

/€§=:get_user(ptr);\\
if (x < size) {
vy = arrl[x];
if (y) {

\}}... B

36



Background: Secret leakage via port contention

O

/é= get_user(ptr);\
if (@< size) {

vy = arrl[x];

if (y) {

Q}... B

36



Background: Secret leakage via port contention

O

/é= get_user(ptr);\
if (@< size) |

y = arrl[z];

if (y) {

Q}... B

36



Background: Secret leakage via port contention

O

/é= get_user(ptr);\
if (@< size) {

() = arrl[z];

LE @)

2! /

36



Background: Secret leakage via port contention

O

/é— get user(ptr’) \\ _______ R

Depending on @, the
if (g < size ) { victim either executes
Qy) = arrl w - one set of instructions
if W { P or another

\}}... )

36



Background: Secret leakage via port contention

//g T

B get user(ptr’) TN *

Depending on @, the Meanwhile, & is co-located on the

if (E< size ) { victim either executes SMT core and issues instructions

('g‘r;) = arrl w b one set of instructions tha.t com.pet.e forthe same
. execution units (i.e., ports) as the
if o0 { or another . ]
w ,’ victim’s instructions

SEAN y

36



Background: Secret leakage via port contention

//g ----- T

/E= get user (p}:r’)’;}x— )

if @< size) /{
G = arrl ]’
if @) {7

SR

/

Meanwhile, W is co-located on the
SMT core and issues instructions
that compete for the same
execution units (i.e., ports) as the
victim’s instructions

Depending on @, the
victim either executes
one set of instructions

or another

-
—_ =
- -

As a result, & can use timing information to
infer which instructions the victim
executed, and hence, learn a bit of @!

36



Taint policies: Attacker injection

37



Taint policies: Attacker injection

Apply an attacker label to...

37



Taint policies: Attacker injection

Apply an attacker label to...

Data copied from userspace
(e.g., from syscall arguments,
copy from user (),
get user())

37



Taint policies: Attacker injection

Apply an attacker label to...

Data copied from userspace
(e.g., from syscall arguments,
copy from user (),

get user())

é N

x = get user(ptr);
if (x < size) {

y arrl[x];

z arr2[yl:;

U Y,

37



Taint policies: Attacker injection

Apply an attacker label to...

Data copied from userspace
(e.g., from syscall arguments,
copy from user (),

get user())

4 N

x = |get user (ptr)|;
if (x < size) {

y arrl[x];

z arr2[yl:;

U Y,

37



Taint policies: Attacker injection

Apply an attacker label to...

Data copied from userspace Data loaded from out-of-
(e.g., from syscall arguments, bounds accesses, i.e.,
copy from user (), data prone to memory
get user()) massaging
O )

x = |get user (ptr)|;
if (x < size) {

y = arrl[x];

z = arr2[y]l;

U Y,

37



Taint policies: Attacker injection

Apply an attacker label to...

Data copied from userspace Data loaded from out-of-
(e.g., from syscall arguments, bounds accesses, i.e.,
copy_from user(), data prone to memory
get user()) massaging
/x = |get_user (ptr)|; \ /if (a < size) {
if (x < size) { b = arrl[al;
y = arrl[x]; c = arr2[b];
z = arr2[y]l; d = arr3[c];

U Y, U Y,

37



Taint policies: Attacker injection

Apply an attacker label to...

Data copied from userspace Data loaded from out-of-
(e.g., from syscall arguments, bounds accesses, i.e.,
copy_from user(), data prone to memory
get user()) massaging
/x = |get_user (ptr)|; \ /if (a < size) {
if (x < size) { b =|larrl[al}
y = arrl[x]; c = arr2[b];
z = arr2[y]l; d = arr3[c];

U Y, U Y,

37



Taint policies: Attacker injection

Apply an attacker label to...

Data copied from userspace Data loaded from out-of-
(e.g., from syscall arguments, bounds accesses, i.e., Data loaded from invalid
copy from user(), data prone to memory accesses, i.e., data prone to LVI
get user()) massaging
/x = |get_user (ptr)|; \ fif (a < size) {
if (x < size) { b =|larrl[al}
y = arrl[x]; c = arr2[b];
z = arr2[y]l; d = arr3[c];

U Y, U Y,

37



Taint policies: Attacker injection

Apply an attacker label to...

Data copied from userspace Data loaded from out-of-
(e.g., from syscall arguments, bounds accesses, i.e., Data loaded from invalid
copy from user(), data prone to memory accesses, i.e., data prone to LVI
get user()) massaging
/x = |get_user (ptr)|; \ /if (a < size) { /if (addr is mapped(ptr)) {\
if (x < size) { b =Jarrl[al} X = *ptr;
y = arrl[x]; c = arr2|[b]l; y = arr2[x];
z = arr2[y]l; d = arr3[c]; z = arr3[vy];

U Y, U Y, J Y,

37



Taint policies: Attacker injection

Apply an attacker label to...

Data copied from userspace Data loaded from out-of-
(e.g., from syscall arguments, bounds accesses, i.e., Data loaded from invalid
copy from user (), data prone to memory accesses, i.e., data prone to LVI
get user()) massaging
/x = |get_user (ptr)|; \ /if (a < size) { /if (addr i‘s_mapped(ptr)) {\
if (x < size) { b =Jarrl[al} X = Eptrv;
y = arrl[x]; c = arr2[b]; y = arr2[x];
z = arr2[yl; d = arr3[c]; z = arr3[yl;

U Y, U Y, J Y,

37



Taint policies: Attacker injection

Apply an attacker label to...

Data copied from userspace Data loaded from out-of-
(e.g., from syscall arguments, bounds accesses, i.e., Data loaded from invalid
copy from user (), data prone to memory accesses, i.e., data prone to LVI
get user()) massaging
/x = |get_user (ptr)|; \ /if (a < size) { /if (addr i‘s_mapped(ptr)) {\
if (x < size) { b =Jarrl[al} X = Eptrv;
y = arrl[x]; c = arr2[b]; y = arr2[x];
z = arr2[yl; d = arr3[c]; z = arr3[yl;

U Y, U Y, J Y,

38



Taint policies: Secret access

39



Taint policies: Secret access

If a load with an attacker pointer is unsafe, then taint the output as a secret.

39



Taint policies: Secret access

If a load with an attacker pointer is unsafe, then taint the output as a secret.

(There are a few more details here, so if interested, refer to our paper @).

39



Taint policies: Secret access

If a load with an attacker pointer is unsafe, then taint the output as a secret.

(There are a few more details here, so if interested, refer to our paper ).

= R
get user (ptr);
1f (x < size) {
y = arrl[x]
Zz = arr2[yl]

3 /

N~

N~




Taint policies: Secret access

If a load with an attacker pointer is unsafe, then taint the output as a secret.

(There are a few more details here, so if interested, refer to our paper ).

= R
get user (ptr);
1f (x < size) {
y = arrl[x]
Zz = arr2[yl]

3 /

N~

N~




Taint policies: Secret leakage

When...

41



Taint policies: Secret leakage

When...

A memory access has a
secret pointer, report
a CACHE gadget.

41



Taint policies: Secret leakage

When...

A memory access has a
secret pointer, report
a CACHE gadget.

G )

X = get user(ptr);
if (x < size) {

y = arrl[x];

z = arr2[y]l;

J Y,

41



Taint policies: Secret leakage

When...

A memory access has a
secret pointer, report
a CACHE gadget.

( N

X = get user(ptr);
if (x < size) {

y = arrl[x];

z =larr2[y]ll;

J Y,




Taint policies: Secret leakage

When...

A memory access has a

secret pointer, report
a CACHE gadget.

//% = get user(ptr);
if (x < size) {
y = arrl[x];
z =larr2[y]ll;
}
\

~

A memory access
outputs a secret,
report an MDS gadget.

41



Taint policies: Secret leakage

When...

A memory access has a
secret pointer, report
a CACHE gadget.

//% = get user(ptr);
if (x < size) {
y = arrl[x];
z =larr2[y]ll;
}
\

A memory access
outputs a secret,
report an MDS gadget.

~

X = get user(ptr);
if (x < size) {
y = arrl[x];

}

41



Taint policies: Secret leakage

When...

A memory access has a
secret pointer, report
a CACHE gadget.

//% = get user(ptr);
if (x < size) {
y = arrl[x];
z =larr2[y]ll;
}
\

A memory access
outputs a secret,
report an MDS gadget.

~

X = get user(ptr);
if (x < size) {

Ly = arrl[x];
}

41



Taint policies: Secret leakage

When...
A memory access has a A memory access A branch has a
secret pointer, report outputs a secret, secret target, report
a CACHE gadget. report an MDS gadget. a PORT gadget.
Kx = get user(ptr) ;\ X = get user(ptr);
if (x < size) { if (x < size) {
y = arrl [x]; Ly = arrl[x];
z =larr2[y]l; }

J Y,




Taint policies: Secret leakage

When...

A memory access has a
secret pointer, report
a CACHE gadget.

( N

X = get user(ptr);
if (x < size) {

y = arrl[x];

z =larr2[y]ll;

A memory access
outputs a secret,

report an MDS gadget.

X = get user(ptr);
if (x < size) {

Ly = arrl[x];
}

J Y,

A branch has a

secret target, report

a PORT gadget.

(% =

if (x < size) {
y = arrl[x];
if (y) {

Q }

X = get user (ptr)




Taint policies: Secret leakage

When...

A memory access has a
secret pointer, report
a CACHE gadget.

( N

X = get user(ptr);
if (x < size) {

y = arrl[x];

z =larr2[y]ll;

A memory access
outputs a secret,

report an MDS gadget.

X = get user(ptr);
if (x < size) {

Ly = arrl[x];
}

J Y,

A branch has a
secret target, report
a PORT gadget.

(% =

X = get user(ptr);
if (x < size) {

y = arrl[x];

if (y) {

L.

! Y,

41



