
Building data-only attacks with EINSTEIN

Background

BRIAN JOHANNESMEYER, ASIA SLOWINSKA, HERBERT BOS, & CRISTIANO GIUFFRIDA

Practical Data-Only
Attack Generation

PUBLISHED AT USENIX SECURITY 2024 AND ;LOGIN: MAGAZINE

Data-only attacks do 
not corrupt a victim’s 
control flow.

Instead, they corrupt 
other data, e.g., 
function arguments.

Definition

Victim server
Data

Execution

cgi_bin: “/usr/cgi-bin”
...

execute(file=“/usr/cgi-bin/sort-script”,
        stdin=“2 1 3”);

Run “/sort-script” with the 
input “2 1 3”

The answer is “1 2 3”

Run “/sh” with the input
“touch /tmp/attacker-was-here”

execute(file=“/bin/sh”,
        stdin=“touch /tmp/attacker-was-here”);

Exploit a memory corruption 
bug to overwrite cgi_bin

Arbitrary code execution on the server!

How an attacker exploits the serverHow a client uses the server

1

2

3

4

5

6

7

“/bin”

Example data-only attack

Data-only attacks are not considered a 
practical threat because they may require:

We can easily build data-only attacks by 
leveraging insights from the example attack:

Heavyweight 
analyses

Complex dataflow 
constraints

Bypass 
defenses

Turing
completeness

Victim executes its 
intended code

Victim passes 
attacker data to a 
syscall verbatim

Application-specific 
knowledge

Building the example attack

➊ Run the victim with 
EINSTEIN instrumentation

execve(pathname = “/usr/cgi-bin/...”, ...);

Determine which 
data to overwrite 
using dynamic taint 
analysis

Victim server

Execution

fmt_str: &err_msg
err_lvl: “notice..info....debug..”
session_cnt: 21
retry_cnt: 224
cgi_bin: “/usr/cgi-bin”
cgi_pid: 3820
urandom_path: “/dev/urandom”
env_tmp: “FOO=XXXXXXXXXXXXXXXXXXX”
local_send_buffer: “HTTP/1.1 2...”
...

Data

HTTP GET ...

HTTP PUT ...
...

Exploit:

cgi_bin    “/bin”

execve(pathname = “/bin/...”, ...);

Determine what to 
overwrite it with by 
targeting data copied 
verbatim

➋ Taint all attacker-
corruptible data

➌ Send workloads 
to the server

➍ Identify syscalls 
with tainted args

➎ Build exploits for 
args that are copied from 
attacker data verbatim

➏ Re-run the victim and carry out the exploit

➐ Confirm that 
the exploit works

Results

Attacks generated for nginx
Attack primitive Count

CODE-EXECUTION 1

WRITE-WHAT-WHERE 17

WRITE-WHAT 375

WRITE-WHERE 79

SEND-WHAT-WHERE 41

SEND-WHAT 372

SEND-WHERE 59

Total 944

Vulnerable file-configuring syscall (e.g., openat)
+

Vulnerable file-write syscall (e.g., write)

Vulnerable socket-configuring syscall (e.g., connect)
+

Vulnerable socket-write syscall (e.g., sendmsg)

Vulnerable execve

We identify thousands of vulnerable 
gadgets in popular web servers.

We present two case studies of attacks 
that bypass state-of-the-art defenses.

Our data-only attacks call upon 
researchers and vendors to rethink 
mitigation strategies.


