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Attack Surface Reduction

x = getenv(“SET_ME”);

if (x)

    cold_code();

hot_code();
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Attack Surface Reduction
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Buggy features

ROP gadgets



Attack Surface Reduction
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    cold_code();
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Remove unwanted features

Attack surface reduced 

to well-tested code



Attack Surface Reduction
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setme_str: .asciz: “SET_ME”

push setme_str

call getenv

cmp eax, 0

je main

call cold_code

main:

call hot_code

Want to work on 
COTS binaries



Static approach

Input 
binary

Transformed 
binary

6

Transform



Static approach

Input 
binary

Transformed 
binary

7

incompletedisassemblyPIC?
obfuscated?

Transform
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incompletedisassembly

contains cold
code

PIC?
obfuscated?

which code is reached?

Transform



Dynamic approach by BinRec

TransformInput 
binary
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Transformed 
binary

precise
disassembly

only hot code

Execute



Recovery

Dynamic approach by BinRec

Input 
binary

Recovered 
binary
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TransformExecute



Recovery

Dynamic approach by BinRec

Input 
binary

Recovered 
binary
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TransformExecute

can we make this 
more generic?



BinRec goal: complex binary transformation

Attack Surface 
Reduction

/
Binary 

rejuvenation
/

Profile-guided 
optimization

/
(De)obfuscation

/
ISA retargeting

Input 
binary

Recovered 
binary
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many applications

Execute
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many applications

requires 

high-level 

code!

Execute



BinRec design
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Execute

Transform



BinRec design
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Execute

Transform

Lower

Sometimes we want more code coverage 
than a single code path



BinRec design
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Symbolic 
execution

Transform

Lower

Run with “symbolic” input and 
follow both sides of a branch



BinRec design
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Symbolic 
execution

Transform

Lower

Need to observe 
each instruction

Want to support 

multiple architectures



BinRec design

Lift in VM
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Symbolic 
execution

Transform

Lower

Emulate in VM,

translate instructions to IR
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BinRec design

Lift in VM

Input 
binary

Recovered 
binary

Compiler IR

Machine
Code

21

Symbolic 
execution

Transform

Compile

Just use the compiler
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Symbolic 
execution
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BinRec design

Lift in VM
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Symbolic 
execution

Transform

Compile

What about unlifted code paths?

...
if (getenv(“SET_ME”)) {
    puts(“thanks!”);  // not recovered!
}
...



BinRec design

Lift in VM
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Symbolic 
execution

Transform

Compile

What about unlifted code paths?

1. do nothing (breaks conservative behavior)

...
getenv(“SET_ME”);
...



BinRec design

Lift in VM

Input 
binary

Recovered 
binary

Compiler IR

Machine
Code

25

Symbolic 
execution

Transform

What about unlifted code paths?

2. yield error

...
if (getenv(“SET_ME”)) {
    abort();
}
...

Compile

Add errors



BinRec design
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Symbolic 
execution

Transform

What about unlifted code paths?

3. fallback to old code

...
if (getenv(“SET_ME”)) {
    goto old_code_address;
}
...

Compile

Add errors / fallbacks



BinRec design
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Symbolic 
execution

Transform

References data from input binary

Compile

Add errors / fallbacks
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Symbolic 
execution

Transform

Compile

Add errors / fallbacks

Link data sections

IR interacts with VM runtime



// Lifted code

emit_event(BASIC_BLOCK_START)

cpu_state.pc = 0x1000

ebx = &cpu_state.registers[R_EBX]

*ebx = *ebx + 1

cpu_state.icount++

cpu_state.pc = 0x1234

emit_event(BASIC_BLOCK_END)

BinRec design

Lift in VM

Input 
binary

Recovered 
binary

Compiler IR

Machine
Code
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Symbolic 
execution

Transform

Compile

Add errors / fallbacks

Link data sections

// machine code

0x1000:

add ebx, 1

jmp 0x1234

IR interacts with VM runtime
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Symbolic 
execution

Transform

Compile

Add errors / fallbacks

Link data sections

events, counters

// machine code

0x1000:

add ebx, 1

jmp 0x1234



// Lifted code
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Symbolic 
execution

Transform

Compile

Add errors / fallbacks

Link data sections

// machine code

0x1000:

add ebx, 1

jmp 0x1234

registers in CPU state

control flow through 
virtual program counter

Lift in VM
Strip emulation
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Symbolic 
execution

Transform

Compile

Add errors / fallbacks

Link data sections

// stripped code

global ebx

lifted_1000:

ebx = ebx + 1

goto lifted_1234

// machine code

0x1000:

add ebx, 1

jmp 0x1234

// Lifted code

emit_event(BASIC_BLOCK_START)

cpu_state.pc = 0x1000

ebx = &cpu_state.registers[R_EBX]

*ebx = *ebx + 1

cpu_state.icount++

cpu_state.pc = 0x1234

emit_event(BASIC_BLOCK_END)

Strip emulation
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Symbolic 
execution

Transform

Compile

Add errors / fallbacks

Link data sections

Strip emulation
Pre-process Post-process

Needed to prevent over-optimization during 
transformations (details in paper)



This is quite bit of code
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Implementation
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Symbolic 
execution
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Compile
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Strip emulation
Pre-process Post-process

S2E
Lift in VM

LLVM

Bash +
Python

Binutils



Case study
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Lift in VM
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Recovered 
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Symbolic 
execution

Transform

Compile
Add errors / fallbacks

Link data sections

Strip emulation
Pre-process Post-process

// ab.c
int main(int argc, char **argv) {
  char a = argv[1][0];
  char b = argv[1][1];
  if (a == 'a') {

if (b == 'b') {
    puts("You entered \"ab\"");

}
  }
  return 0;
}
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Symbolic 
execution

Transform

Compile
Add errors / fallbacks

Link data sections

Strip emulation
Pre-process Post-process

Raw code is heavily instrumented

- event triggers
- instruction counter
- program counter, registers, flags, etc. stored in CPU state in memory

Lift in VM
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Symbolic 
execution

Transform

Compile
Add errors / fallbacks

Link data sections

Strip emulation
Pre-process Post-process

Lift in VM

cmp eax, 1

jle label

“heavily” instrumented
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Symbolic 
execution
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Compile
Add errors / fallbacks

Link data sections

Pre-process Post-process

Lift in VM

Pruned

Optimized
Raw

Strip emulation
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Lift in VM
Strip emulation

Cascading optimizations
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.text
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...

.text

.rodata

.data

Recovered binary

.got
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Link data sections

entry

entry
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Symbolic 
execution

Transform

Add errors / fallbacks

Pre-process Post-process

Lift in VM
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Compile

.text

.rodata

.data

Old binary

.got

.plt

...

.text

Recovered code

...

.text

.rodata

.data

Recovered binary

.got

.plt

.text.new

=+

...

Link data sections

Remove for error,

Keep for fallback

entry

entry
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Symbolic 
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Pre-process Post-process

Lift in VM
Strip emulation

Original C

Recovered LLVM



Input 
binary

Recovered 
binary

52

Symbolic 
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Pre-process Post-process

Lift in VM
Strip emulation

Original LLVM

Recovered LLVM
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Experiments

- Correctness

- Attack Surface Reduction: ROP gadgets

- Performance
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Experiment: correctness

Do our transformations preserve semantics?

- Yield errors for unknown code paths

- Check that recovered binary has same output as input binary
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Experiment: correctness

Do our transformations preserve semantics?

- Yield errors for unknown code paths

- Check that recovered binary has same output as input binary

24 input binaries from SPEC-CPU2006 (x86)

- 15 succeeded, 9 failed (unexpected fallback / crash)
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Experiment: ROP gadget reduction

Is the attack surface actually smaller?

- 72% fewer instructions
- 48% fewer ROP gadgets

(both numbers are geomean)
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Experiment: performance

- -O3 input binaries: expect similar performance

- -O0 input binaries: expect speedup

- Disable fallback errors: maybe expect speedup

58~44% overhead



- -O3 input binaries: expect similar performance

- -O0 input binaries: expect speedup

- Disable fallback errors: maybe expect speedup

Experiment: performance

59~2% overhead



- -O3 input binaries: expect similar performance

- -O0 input binaries: expect speedup

- Disable fallback errors: maybe expect speedup

Experiment: performance

60~5% performance gain



Wish list / future work

- Gadget-aware compiler backend

- Improve performance

- Do aggressive profile-guided optimization

- Deobfuscation
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- BinRec successfully transforms binaries at compiler IR level

- … and halves the ROP attack surface in the process

Also

- Binary lifting is hard

Conclusion
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