
BinRec: Attack Surface Reduction
Through Dynamic Binary Recovery

Taddeus Kroes, Anil Altinay, Joseph Nash,
Yeoul Na, Stijn Volckaert, Herbert Bos,

Michael Franz, Cristiano Giuffrida

October 19, 2018

Attack Surface Reduction

x = getenv(“SET_ME”);

if (x)

 cold_code();

hot_code();

2

Attack Surface Reduction

x = getenv(“SET_ME”);

if (x)

 cold_code();

hot_code();

3

Buggy features

ROP gadgets

Attack Surface Reduction

x = getenv(“SET_ME”);

if (x)

 cold_code();

hot_code();

4

Remove unwanted features

Attack surface reduced

to well-tested code

Attack Surface Reduction

5

setme_str: .asciz: “SET_ME”

push setme_str

call getenv

cmp eax, 0

je main

call cold_code

main:

call hot_code

Want to work on
COTS binaries

Static approach

Input
binary

Transformed
binary

6

Transform

Static approach

Input
binary

Transformed
binary

7

incompletedisassemblyPIC?
obfuscated?

Transform

Static approach

Input
binary

Transformed
binary

8

incompletedisassembly

contains cold
code

PIC?
obfuscated?

which code is reached?

Transform

Dynamic approach by BinRec

TransformInput
binary

9

Transformed
binary

precise
disassembly

only hot code

Execute

Recovery

Dynamic approach by BinRec

Input
binary

Recovered
binary

10

TransformExecute

Recovery

Dynamic approach by BinRec

Input
binary

Recovered
binary

11

TransformExecute

can we make this
more generic?

BinRec goal: complex binary transformation

Attack Surface
Reduction

/
Binary

rejuvenation
/

Profile-guided
optimization

/
(De)obfuscation

/
ISA retargeting

Input
binary

Recovered
binary

12

many applications

Execute

BinRec goal: complex binary transformation

Attack Surface
Reduction

/
Binary

rejuvenation
/

Profile-guided
optimization

/
(De)obfuscation

/
ISA retargeting

Input
binary

Recovered
binary

13

many applications

requires

high-level

code!

Execute

BinRec design

Input
binary

Recovered
binary

Compiler IR

Machine
Code

14

Execute

Transform

BinRec design

Lift

Input
binary

Recovered
binary

Compiler IR

Machine
Code

15

Execute

Transform

Lower

BinRec design

Lift

Input
binary

Recovered
binary

Compiler IR

Machine
Code

16

Execute

Transform

Lower

Sometimes we want more code coverage
than a single code path

BinRec design

Lift

Input
binary

Recovered
binary

Compiler IR

Machine
Code

17

Symbolic
execution

Transform

Lower

Run with “symbolic” input and
follow both sides of a branch

BinRec design

Lift

Input
binary

Recovered
binary

Compiler IR

Machine
Code

18

Symbolic
execution

Transform

Lower

Need to observe
each instruction

Want to support

multiple architectures

BinRec design

Lift in VM

Input
binary

Recovered
binary

Compiler IR

Machine
Code

19

Symbolic
execution

Transform

Lower

Emulate in VM,

translate instructions to IR

BinRec design

Lift in VM

Input
binary

Recovered
binary

Compiler IR

Machine
Code

20

Symbolic
execution

Transform

Lower

BinRec design

Lift in VM

Input
binary

Recovered
binary

Compiler IR

Machine
Code

21

Symbolic
execution

Transform

Compile

Just use the compiler

BinRec design

Lift in VM

Input
binary

Recovered
binary

Compiler IR

Machine
Code

22

Symbolic
execution

Transform

Compile

BinRec design

Lift in VM

Input
binary

Recovered
binary

Compiler IR

Machine
Code

23

Symbolic
execution

Transform

Compile

What about unlifted code paths?

...
if (getenv(“SET_ME”)) {
 puts(“thanks!”); // not recovered!
}
...

BinRec design

Lift in VM

Input
binary

Recovered
binary

Compiler IR

Machine
Code

24

Symbolic
execution

Transform

Compile

What about unlifted code paths?

1. do nothing (breaks conservative behavior)

...
getenv(“SET_ME”);
...

BinRec design

Lift in VM

Input
binary

Recovered
binary

Compiler IR

Machine
Code

25

Symbolic
execution

Transform

What about unlifted code paths?

2. yield error

...
if (getenv(“SET_ME”)) {
 abort();
}
...

Compile

Add errors

BinRec design

Lift in VM

Input
binary

Recovered
binary

Compiler IR

Machine
Code

26

Symbolic
execution

Transform

What about unlifted code paths?

3. fallback to old code

...
if (getenv(“SET_ME”)) {
 goto old_code_address;
}
...

Compile

Add errors / fallbacks

BinRec design

Lift in VM

Input
binary

Recovered
binary

Compiler IR

Machine
Code

27

Symbolic
execution

Transform

References data from input binary

Compile

Add errors / fallbacks

BinRec design

Lift in VM

Input
binary

Recovered
binary

Compiler IR

Machine
Code

28

Symbolic
execution

Transform

Compile

Add errors / fallbacks

Link data sections

BinRec design

Lift in VM

Input
binary

Recovered
binary

Compiler IR

Machine
Code

29

Symbolic
execution

Transform

Compile

Add errors / fallbacks

Link data sections

IR interacts with VM runtime

// Lifted code

emit_event(BASIC_BLOCK_START)

cpu_state.pc = 0x1000

ebx = &cpu_state.registers[R_EBX]

*ebx = *ebx + 1

cpu_state.icount++

cpu_state.pc = 0x1234

emit_event(BASIC_BLOCK_END)

BinRec design

Lift in VM

Input
binary

Recovered
binary

Compiler IR

Machine
Code

30

Symbolic
execution

Transform

Compile

Add errors / fallbacks

Link data sections

// machine code

0x1000:

add ebx, 1

jmp 0x1234

IR interacts with VM runtime

// Lifted code

emit_event(BASIC_BLOCK_START)

cpu_state.pc = 0x1000

ebx = &cpu_state.registers[R_EBX]

*ebx = *ebx + 1

cpu_state.icount++

cpu_state.pc = 0x1234

emit_event(BASIC_BLOCK_END)

BinRec design

Lift in VM

Input
binary

Recovered
binary

Compiler IR

Machine
Code

31

Symbolic
execution

Transform

Compile

Add errors / fallbacks

Link data sections

events, counters

// machine code

0x1000:

add ebx, 1

jmp 0x1234

// Lifted code

emit_event(BASIC_BLOCK_START)

cpu_state.pc = 0x1000

ebx = &cpu_state.registers[R_EBX]

*ebx = *ebx + 1

cpu_state.icount++

cpu_state.pc = 0x1234

emit_event(BASIC_BLOCK_END)

BinRec design

Input
binary

Recovered
binary

Compiler IR

Machine
Code

32

Symbolic
execution

Transform

Compile

Add errors / fallbacks

Link data sections

// machine code

0x1000:

add ebx, 1

jmp 0x1234

registers in CPU state

control flow through
virtual program counter

Lift in VM
Strip emulation

BinRec design

Lift in VM

Input
binary

Recovered
binary

Compiler IR

Machine
Code

33

Symbolic
execution

Transform

Compile

Add errors / fallbacks

Link data sections

// stripped code

global ebx

lifted_1000:

ebx = ebx + 1

goto lifted_1234

// machine code

0x1000:

add ebx, 1

jmp 0x1234

// Lifted code

emit_event(BASIC_BLOCK_START)

cpu_state.pc = 0x1000

ebx = &cpu_state.registers[R_EBX]

*ebx = *ebx + 1

cpu_state.icount++

cpu_state.pc = 0x1234

emit_event(BASIC_BLOCK_END)

Strip emulation

BinRec design

Lift in VM

Input
binary

Recovered
binary

Compiler IR

Machine
Code

34

Symbolic
execution

Transform

Compile

Add errors / fallbacks

Link data sections

Strip emulation
Pre-process Post-process

Needed to prevent over-optimization during
transformations (details in paper)

This is quite bit of code

35

Implementation

Lift in VM

Input
binary

Recovered
binary

36

Symbolic
execution

Transform

Compile

Add errors / fallbacks

Link data sections

Strip emulation
Pre-process Post-process

Implementation

Input
binary

Recovered
binary

37

Symbolic
execution

Transform

Compile

Add errors / fallbacks

Link data sections

Strip emulation
Pre-process Post-process

S2E
Lift in VM

Implementation

Input
binary

Recovered
binary

38

Symbolic
execution

Transform

Compile

Add errors / fallbacks

Link data sections

Strip emulation
Pre-process Post-process

S2E
Lift in VM

LLVM

Implementation

Input
binary

Recovered
binary

39

Symbolic
execution

Transform

Compile

Add errors / fallbacks

Link data sections

Strip emulation
Pre-process Post-process

S2E
Lift in VM

LLVM

Bash +
Python

Binutils

Case study

40

Lift in VM

Input
binary

Recovered
binary

41

Symbolic
execution

Transform

Compile
Add errors / fallbacks

Link data sections

Strip emulation
Pre-process Post-process

// ab.c
int main(int argc, char **argv) {
 char a = argv[1][0];
 char b = argv[1][1];
 if (a == 'a') {

if (b == 'b') {
 puts("You entered \"ab\"");

}
 }
 return 0;
}

Lift in VM

Input
binary

Recovered
binary

42

Symbolic
execution

Transform

Compile
Add errors / fallbacks

Link data sections

Strip emulation
Pre-process Post-process

Input
binary

Recovered
binary

43

Symbolic
execution

Transform

Compile
Add errors / fallbacks

Link data sections

Strip emulation
Pre-process Post-process

Raw code is heavily instrumented

- event triggers
- instruction counter
- program counter, registers, flags, etc. stored in CPU state in memory

Lift in VM

Input
binary

Recovered
binary

44

Symbolic
execution

Transform

Compile
Add errors / fallbacks

Link data sections

Strip emulation
Pre-process Post-process

Lift in VM

cmp eax, 1

jle label

“heavily” instrumented

Input
binary

Recovered
binary

45

Symbolic
execution

Transform

Compile
Add errors / fallbacks

Link data sections

Pre-process Post-process

Lift in VM

Raw

Pruned

Strip emulation

Input
binary

Recovered
binary

46

Symbolic
execution

Transform

Compile
Add errors / fallbacks

Link data sections

Pre-process Post-process

Lift in VM

Pruned

Optimized
Raw

Strip emulation

Input
binary

Recovered
binary

47

Symbolic
execution

Transform

Compile
Add errors / fallbacks

Link data sections

Pre-process Post-process

Lift in VM
Strip emulation

Cascading optimizations

Input
binary

Recovered
binary

48

Symbolic
execution

Transform

Add errors / fallbacks

Link data sections

Pre-process Post-process

Lift in VM
Strip emulation

Compile

.text

Recovered code

...

Input
binary

Recovered
binary

49

Symbolic
execution

Transform

Add errors / fallbacks

Pre-process Post-process

Lift in VM
Strip emulation

Compile

.text

.rodata

.data

Old binary

.got

.plt

...

.text

Recovered code

...

.text

.rodata

.data

Recovered binary

.got

.plt

.text.new

=+

...

Link data sections

entry

entry

Input
binary

Recovered
binary

50

Symbolic
execution

Transform

Add errors / fallbacks

Pre-process Post-process

Lift in VM
Strip emulation

Compile

.text

.rodata

.data

Old binary

.got

.plt

...

.text

Recovered code

...

.text

.rodata

.data

Recovered binary

.got

.plt

.text.new

=+

...

Link data sections

Remove for error,

Keep for fallback

entry

entry

Input
binary

Recovered
binary

51

Symbolic
execution

Transform

Compile
Add errors / fallbacks

Link data sections

Pre-process Post-process

Lift in VM
Strip emulation

Original C

Recovered LLVM

Input
binary

Recovered
binary

52

Symbolic
execution

Transform

Compile
Add errors / fallbacks

Link data sections

Pre-process Post-process

Lift in VM
Strip emulation

Original LLVM

Recovered LLVM

Experiments

53

Experiments

- Correctness

- Attack Surface Reduction: ROP gadgets

- Performance

54

Experiment: correctness

Do our transformations preserve semantics?

- Yield errors for unknown code paths

- Check that recovered binary has same output as input binary

55

Experiment: correctness

Do our transformations preserve semantics?

- Yield errors for unknown code paths

- Check that recovered binary has same output as input binary

24 input binaries from SPEC-CPU2006 (x86)

- 15 succeeded, 9 failed (unexpected fallback / crash)

56

Experiment: ROP gadget reduction

Is the attack surface actually smaller?

- 72% fewer instructions
- 48% fewer ROP gadgets

(both numbers are geomean)

57

Experiment: performance

- -O3 input binaries: expect similar performance

- -O0 input binaries: expect speedup

- Disable fallback errors: maybe expect speedup

58~44% overhead

- -O3 input binaries: expect similar performance

- -O0 input binaries: expect speedup

- Disable fallback errors: maybe expect speedup

Experiment: performance

59~2% overhead

- -O3 input binaries: expect similar performance

- -O0 input binaries: expect speedup

- Disable fallback errors: maybe expect speedup

Experiment: performance

60~5% performance gain

Wish list / future work

- Gadget-aware compiler backend

- Improve performance

- Do aggressive profile-guided optimization

- Deobfuscation

61

- BinRec successfully transforms binaries at compiler IR level

- … and halves the ROP attack surface in the process

Also

- Binary lifting is hard

Conclusion

62

