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Embedded crypto and side-channel
analysis (SCA)



Known challenge: embedded crypto devices
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Side-channel analysis (SCA)= Greybox scenario

Cryptographic Device CiphertextPlaintext

Leakage

Greybox = SCA adversary in the wild:

I Crypto is implemented on a real device such as a microcontroller, FPGA, ASIC
I Adversary can measure and process physical quantities in the device’s vicinity
I Adversary’s goal: secret key, message recovery, IP, etc.

Whitebox = Security evaluator:

I Algorithms and implementation details are (partially) known
I Adversary’s goal: secret key or message recovery by observing input/output pairs

while trying all attacks possible
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SCA/FI setups @CESCAlab
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Power side-channel: Modeling the leakage

I The Hamming distance model counts the number of 0→ 1 and 1→ 0 transitions

I Example: Assume a hardware register R storing the result of an AES round. The
register initially contains value v0 and gets overwritten with value v1

I The power consumption because of the register transition v0 → v1 is related to
the number of bit flips that occurred

I Thus it can be modeled as HammingDistance(v0, v1) = HammingWeight(v0⊕ v1)
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Differential Power Analysis (DPA)

Figure: Distance of means test plotted over time for the correct and a wrong key.

I The most popular side-channel attack on crypto implementations

I Aims at recovering the secret key by using a large number of power
measurements (traces) collected for known inputs or outputs

I Nowadays often combined/replaced with a leakage evaluation methodology such
as Test Vector Leakage Assessment (TVLA)
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Test Vector Leakage Assessment (TVLA)

I It is using Welch’s t-test to differentiate between two sets of measurements, one
with fixed inputs and the other with random inputs

I Leakage assessment of a device is very important for the semiconductor and the
security evaluation industries

I Number of attacks to check the device’s resistance against keeps on growing

I Various attackers’ models possible but security evaluation often goes for the
strongest adversary
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Countermeasures against DPA: main idea

Goal: break the link between the actual data and power consumption

I Masking: power consumption remains dependent on the data on which
computation is performed but not the actual data

I Hiding: power consumption is independent of the intermediate values and of the
operations
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Masking

Boolean masking: a dth-order (Boolean) masking scheme splits an internal sensitive
value v into d + 1 shares (v0, v1, ..., vd ), as follows:

v = v0 ⊕ v1 ⊕ · · · ⊕ vd

Probing-secure scheme. We refer to a scheme that uses certain families of shares as
d−th order probing-secure iff any set of at most d intermediate variables is
independent from the sensitive values.

Consequently, the leakage of up to d values does not disclose any information to the
attacker.

Masking in practice: unintended interactions between values in the processor cause
leakage in 1st order (caused often by transitional effects and glitches).
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TVLA on 1st-order secure implementations

The slowdowns of the “fixes” for ChaCha, Xoodoo and AES are 61% (1 322 vs. 2 122 cycles),
18% (637 vs. 753 cycles) and 15% (1 285 vs 1 479).

M. A. Shelton, N. Samwel, L. Batina, F. Regazzoni, M. Wagner, Y. Yarom: Rosita: Towards
Automatic Elimination of Power-Analysis Leakage in Ciphers. NDSS 2021.
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AI and Side-channel analysis



AI entering Crypto and Security

Security applications with AI

I AI in Security market is expected to exceed US $ 61.30 Bil. by 2027

I ML applications: image recognition, natural languages, robotics, . . .

I ML in IoT devices: image and speech recognition

I AI in small devices manipulating our data and affecting our privacy

AI in cryptography

I Privacy-preserving AI

I AI for cryptanalysis

I AI-assisted SCA and SCA of AI
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AI and Side-channel Analysis (SCA): How it all started

I Machine learning (ML) for SCA was introduced 15 years ago:

• ML improving DPA attacks (collaboration with Data Science@RU)
• ML for attack preparation (collaboration with Riscure)

I Deep learning in SCA:

• neural nets for profiled attacks
• defeating countermeasures e.g. attacking higher-order masking
• leakage assessment/simulators (first AI-based simulator, ABBY developed

@CESCAlab)
• TEMPEST-like techniques e.g. screen gleaning

I Attacks on AI:

• SCA for reverse engineering neural net (NN) implementations
• SCA for input recovery from NN implementations
• Cryptographic attacks for NN parameters recovery
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Side-channel evaluations
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Workflow machine learning
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Data preparation for SCA

I Over-fitting: the model performance is very good on the training data, and on
testing data is poor;

I Under-fitting: when the model does not produce accurate results on the training
data;
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A simple multilayer perceptron (MLP) architecture

MLP architecture a series of layers formed of connected neurons. The strength of the
connection between two neurons is determined by the associated weight.

I In SCA, we use relatively small networks and simple arch.: MLP and CNN

I During training the value of the weights and biases are adjusted
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Activation functions

We also need to deal with non-linear functions.
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Side-channel analysis of AI
implementations



Motivation for SCA to reverse engineer NNs

I Well-trained models are valuable for certain industries

I In some cases parameters and other training details are considered IP

I Neural nets are being deployed on various platforms from low-end processors e.g.
ARM Cortex-M, to FPGAs, GPUs etc.

I This makes the NN architectures and their parameters target for adversaries
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New field: Physical SCA on NN implementations

Figure: Physical SCA on a Multi-Layer Perception (MLP) model for image classification.
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Threat model and attacker’s capabilities

Goal: Recover the architecture of a pre-trained NN model executed on an embedded
device while running inference using only side-channel information

Threat model:

I Adversary can query the model with known/chosen inputs and passively observe
side-channel information corresponding to the executed inference

I No specific assumption on the type of inputs or its source, as we work with real
numbers

The attacker wants to learn information about:

I layers

I neurons

I activation functions

I weights
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SEMA on hidden layers
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(a) One hidden layer with 6 neurons
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(b) 3 hidden layers (6,5,5 neurons
each)
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Weights recovery via DPA
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(a) First byte recovery (sign and 7-bit exponent)
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(b) Second byte recovery (lsb exponent and mantissa)
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Results for MLP on ARM Cortex M-3

Lejla Batina, Shivam Bhasin, Dirmanto Jap, Stjepan Picek: CSI NN: Reverse Engineering of
Neural Network Architectures Through Electromagnetic Side Channel. USENIX Security
Symposium 2019: 515-532.
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BarraCUDA: Attacking Nvidia GPUs

BarraCUDA: What is new

I Reverse engineering the closed source TensorRT library

I Using known SCA techniques (DEMA) to find the best location for the EM probe
and the time when a specific neuron is evaluated

I Performed parameter extraction from the EfficientNet model running on an
industry-strength Jetson Nano device

I Attack has a large complexity, which required developing a special CUDA-based
attack implementation

I The attack requires 11-12 days (traces collection and alignment), and the
parameters are recovered in 5-6 min per weight
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Setup and the Threat model

I Goal: recover the trade secrets encoded in NNs parameters, from an ML model
running on e.g. edge device

I Attacker learned the architecture details by some of known techniques

I Attacker has a physical access to the device and can monitor EM during the
inference for known inputs
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Results for weight recovery

Key rank and correlations of the 9th weight in the first layer in the real-world CNN
architecture.

P. Horvath, L. Chmielewski, L. Weissbart, L. Batina, Y. Yarom. BarraCUDA: GPUs do
Leak DNN Weights, USENIX Security 2025, to appear.
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BarraCUDA: Contributions

I Proprietary implementations of neural nets on GPU are vulnerable to parameter
extraction using SCA

I Recovered weights and biases of real-world networks from Nvidia Jetson Nano
and Nvidia Jetson Orin Nano

I Developed a CUDA-based implementation of DEMA to execute the attack an
order of magnitude faster for large datasets (millions of traces)

I The attack on Jetson Orin Nano requires only 1 day for trace collection and 1 day
for trace alignment with an input batch size of 1 (5 days for batch size 16)
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AI in Crypto/Security: Where do we go from here

I Point 1: “Provably” secure implementations are regularly broken

I Point 2: AI-assisted SCA attacks are in general more powerful, than the “old”
methods

I Point 3: SCA on NNs implementations (using AI) can recover architecture, inputs
etc. and the protection is not straightforward

I SCA and AI are getting more and more intertwined

• AI in leakage detection and assessment (now mandated by the security
evaluation bodies)
• AI-assisted fault analysis
• Neural-aided cryptanalysis: unclear if it could break state-of-the-art

algorithms
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Thank you for your attention!

https://cescalab.cs.ru.nl/
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