Going beyond /etc/shadow

Alexandra Sandulescu, Matteo Rizzo
Google

Can we “get root”

e Threat model
o Published PoC: unprivileged user attacking the host kernel
o Real world scenario:
e Leakrate
o Published PoC: 1kB/s
o Real world scenario
m total number of leaked bytes needed to “get root”
n fast
e Risk
o Published PoC: leaks the root password hash
o Real world scenario:
m keys or tokens that if leaked, break the security guarantees of the system
e Limitation
o Published PoC: dependent on the host kernel image, gadgets, exploit primitives location in memory
o Real world scenario: flexible :)

01

Better attack scenarios

Sandboxed attack scenario

e Most PoCs attack from an unsandboxed unprivileged process

e Reality: kernel exploits are much more practical in this scenario

o https://qithub.com/google/security-research/tree/master/pocs/linux/kernelctf

e Better: focus on sandboxed attackers

o E.g. Chromium sandbox, sandbox2, sandboxed API

https://github.com/google/security-research/tree/master/pocs/linux/kernelctf

Sandboxed attack scenario

e Sandboxes restrict which system calls an attacker has access to
e Bad for kernel exploits (can eliminate most attack surface)
e Avrealistic retbleed/inception exploit only needs 2-3 common system calls

e Sandboxed services make CPU exploits more appealing

On leaking /etc/shadow

e Alot of POCs focus on leaking the contents of /etc/shadow

Th: int prctl(PR_SET_NO_NEW_PRIVS, 1L, OL, OL, OL);

o <

DESCRIPTION top

L Set the calling thread's no_new_privs attribute. With
no_new_privs set to 1, execve(2) promises not to grant privileges
to do anything that could not have been done without the
execve(2) call (for example, rendering the set-user-ID and set-
group-ID mode bits, and file capabilities non-functional).

Once set, the no_new_privs attribute cannot be unset. The

L setting of this attribute is inherited by children created by
fork(2) and clone(2), and preserved across execve(2).

e You still have to crack the password

On leaking /etc/shadow

e Scanning memory for /etc/shadow is not realistic
e Most exploits leak at best a few 10s of KB/s

e \We have servers with many TiB of memory.

o Scanning all of that would take many weeks.

Alternatives to reading /etc/shadow

e Credentials that an attacker can actually use. Some ideas:

o Leak cookies from Chrome
o Leak TLS private keys from a web server

o Leak access tokens from another service that interacts with an API

Alternatives to scanning memory

e TJargeted leaking is much better with a low-bandwidth attack
e Traverse the Linux process tree to find a target
e Parse the target process’s VMA tree to find its stack/heap

e Parse the page tables to resolve virt->phys mappings

Root page table

struct mm_struct {

Targeted leaking on Linux v v

pgd_t * pgd;
struct task_struct init_task; /o
unsigned long start_code, end_code, start_data, end_data;
unsigned long start_brk, brk, start_stack;
l unsigned long arg_start, arg_end, env_start, env_end;
I
struct task_struct { l
/] Start of stack/heap/argy, ...
struct mm_struct *mm;
struct list_head children;
struct list_head tasks; *
Process tree
//

List of all tasks

10

02

Faster exploits

11

Training in speculation

Retbleed/inception exploit: jmp kernel_addr

e Slow (1 page fault + SIGSEGV / training)
e Even worse with ptrace (1 roundtrip to the tracer / training)
e Noisy

e Context switches evict cache/TLB/branch predictor entries

12

Training in speculation

Better: train in speculation

e Fast (no architectural page faults)
e Ptracer not notified
e Completely silent

e No context switches

clflush [rsp-8]
mfence
call after

jmp training
after:

add rsp, 8
ret

13

Speculative ROP

7.2 Using non-trivial disclosure gadgets
e From the retbleed paper:

The gadgets that we discover are non-trivial to exploit. We
discuss some of the problems that we encounter and how we
overcome them.

e Usually hard/impossible to find good gadgets even in large binaries (e.g.
kernel)

e Idea: chain multiple simple gadgets to do something more powerful

14

Speculative ROP: flush+reload

__ksys_mprotect: movzx eax, BYTE PTR [rdi]
ret ret

shl rax, 12 movzx eax, WORD PTR [rsi+rax]

pop r-bp/

ret

Trained return target
-

15

Speculative ROP: Inception

-»| -] G, G, G,
G, Gy Gy i .
-> e Dueling recursive phantom calls

->

ﬂ ﬂ 2 E _g e The attacker doesn’t control the order
RSB RSB RSB RGSZB RSB

@ ® ®

— - o G1 must be idempotent irt G2 state
@ ®

Source: https://comsec.ethz.ch/wp-content/files/inception_sec23.pdf

Speculative ROP: Gadget chaining in the RAS

rdtsc

nop

nop RAS

nop

shl rdx,0x20 G1

or rdx, rax G2

mov rax,QNORD PTR [rip+0x3069772] G1

cmp rdx, rax G2

jb ffffffff81059ff4 // Phantom JMP

G1 - 5: // Phantom Call G2 Y iGN - 5 // Phantom Call G1
G1: pop G2: movzx eax, BYTE PTR [reg]
pop movzx eax, WORD PTR [rbx+rax*4]
pop

ret

Source: https://github.com/google/security-research/tree/master/pocs/cpus/inception

Inception: Speculation control

Is this even
exploitable?

the recovery mechanisms, as shown in Figure 6. Specifically,
on Zen 3 microarchitectures we hijack a single return 4 c-
tion by first exhausting 17 uncorrupted RSB entries. On Zen 4,
we need to exhaust 8 uncorrupted RSB entries, after which we

control the next 16 return target predictions. We find that the
number of RSB entries polluted heavily relies 0-

Improve the gadget?

cation at which we trigger PHANTOM speculation, the state of
the cache, the state of the BTB, and the preceding control flow.

Source: https://comsec.ethz.ch/wp-content/files/inception_sec23.pdf

18

Inception DSI

cpuid // Dispatch serializing instruction
instr

instr

ret // At this point the RAS is fully controlled

e AMD Security Bulletin:
https://www.amd.com/en/resources/product-security/bulletin/amd-sb-7031.html

e No new information, previous guidance applies

Source: https://github.com/google/security-research/tree/master/pocs/cpus/inception

19

https://www.amd.com/en/resources/product-security/bulletin/amd-sb-7031.html

03

Impact

20

What we learned

e Real world exploitation incurs extra challenges

o complex threat model: sandbox-host, guest-host
o restrictive environment: can’t spawn threads, processes, can’t co-locate, can’t crash, etc.
o gadgets limitations

o widely used side channels might not be available

e Risk is sometimes misunderstood
e More exploits would be nice

21

HWCTF

e Part of Google VRP

e Reward exploits of CPU bugs for a specific threat model
o Guest-Host arbitrary memory read
o Leak something interesting e.g. data that belongs to other processes or to VMs running on the
same host
o Fast and stable
e Some mitigations are disabled
o We care a lot about exploit techniques

e Firstrelease
o BHlis in scope

e Notlive yet @

o We can share the kernel image and the host configuration

22

Questions

23

