
Going beyond /etc/shadow
Alexandra Sandulescu, Matteo Rizzo
Google

1

Can we “get root”

● Threat model
○ Published PoC: unprivileged user attacking the host kernel
○ Real world scenario: sandboxed or running in VM

● Leak rate
○ Published PoC: 1kB/s
○ Real world scenario

■ total number of leaked bytes needed to “get root”
■ fast

● Risk
○ Published PoC: leaks the root password hash
○ Real world scenario: arbitrary memory read primitive

■ keys or tokens that if leaked, break the security guarantees of the system
● Limitation

○ Published PoC: dependent on the host kernel image, gadgets, exploit primitives location in memory
○ Real world scenario: flexible :)

2

Proprietary + Confidential

Better attack scenarios
01

3

Sandboxed attack scenario

● Most PoCs attack from an unsandboxed unprivileged process

● Reality: kernel exploits are much more practical in this scenario

○ https://github.com/google/security-research/tree/master/pocs/linux/kernelctf

● Better: focus on sandboxed attackers

○ E.g. Chromium sandbox, sandbox2, sandboxed API

4

https://github.com/google/security-research/tree/master/pocs/linux/kernelctf

Sandboxed attack scenario

● Sandboxes restrict which system calls an attacker has access to

● Bad for kernel exploits (can eliminate most attack surface)

● A realistic retbleed/inception exploit only needs 2-3 common system calls

● Sandboxed services make CPU exploits more appealing

5

On leaking /etc/shadow

● A lot of POCs focus on leaking the contents of /etc/shadow

● That’s cool, but…

● Sandboxed processes can’t sudo

● Sandboxed processes can’t talk to polkit/systemd

● SSH password login is disabled

● You still have to crack the password

6

On leaking /etc/shadow

● Scanning memory for /etc/shadow is not realistic

● Most exploits leak at best a few 10s of KB/s

● We have servers with many TiB of memory.

○ Scanning all of that would take many weeks.

7

Alternatives to reading /etc/shadow

● Credentials that an attacker can actually use. Some ideas:

○ Leak cookies from Chrome

○ Leak TLS private keys from a web server

○ Leak access tokens from another service that interacts with an API

8

Alternatives to scanning memory

● Targeted leaking is much better with a low-bandwidth attack

● Traverse the Linux process tree to find a target

● Parse the target process’s VMA tree to find its stack/heap

● Parse the page tables to resolve virt->phys mappings

9

Targeted leaking on Linux

struct task_struct init_task;

struct task_struct {
 // ...

 struct mm_struct *mm;
 struct list_head children;
 struct list_head tasks;

 // ...

};

struct mm_struct {
 // ...

 pgd_t * pgd;

 // ...
 unsigned long start_code, end_code, start_data, end_data;
 unsigned long start_brk, brk, start_stack;
 unsigned long arg_start, arg_end, env_start, env_end;
};

Process tree

List of all tasks

Root page table

Start of stack/heap/argv, …

10

Proprietary + Confidential

Faster exploits
02

11

Training in speculation

Retbleed/inception exploit: jmp kernel_addr

● Slow (1 page fault + SIGSEGV / training)

● Even worse with ptrace (1 roundtrip to the tracer / training)

● Noisy

● Context switches evict cache/TLB/branch predictor entries

12

Training in speculation

Better: train in speculation

clflush [rsp-8]
mfence
call after

jmp training

after:
add rsp, 8
ret● Fast (no architectural page faults)

● Ptracer not notified

● Completely silent

● No context switches

13

Speculative ROP

● From the retbleed paper:

● Usually hard/impossible to find good gadgets even in large binaries (e.g.
kernel)

● Idea: chain multiple simple gadgets to do something more powerful

14

Speculative ROP: flush+reload

15

Speculative ROP: Inception

16

● Dueling recursive phantom calls
● The attacker doesn’t control the order

○ G1 must be idempotent irt G2 state

Source: https://comsec.ethz.ch/wp-content/files/inception_sec23.pdf

Speculative ROP: Gadget chaining in the RAS

17
Source: https://github.com/google/security-research/tree/master/pocs/cpus/inception

Inception: Speculation control

18

Is this even
exploitable?

Improve the gadget?

Source: https://comsec.ethz.ch/wp-content/files/inception_sec23.pdf

Inception DSI

19

cpuid // Dispatch serializing instruction
instr
instr
..
ret // At this point the RAS is fully controlled

Source: https://github.com/google/security-research/tree/master/pocs/cpus/inception

● AMD Security Bulletin:
https://www.amd.com/en/resources/product-security/bulletin/amd-sb-7031.html

● No new information, previous guidance applies

https://www.amd.com/en/resources/product-security/bulletin/amd-sb-7031.html

Proprietary + Confidential

Impact
03

20

What we learned

● Real world exploitation incurs extra challenges
○ complex threat model: sandbox-host, guest-host
○ restrictive environment: can’t spawn threads, processes, can’t co-locate, can’t crash, etc.
○ gadgets limitations
○ widely used side channels might not be available

● Risk is sometimes misunderstood
● More exploits would be nice

21

HwCTF

● Part of Google VRP
● Reward exploits of CPU bugs for a specific threat model

○ Guest-Host arbitrary memory read
○ Leak something interesting e.g. data that belongs to other processes or to VMs running on the

same host
○ Fast and stable

● Some mitigations are disabled
○ We care a lot about exploit techniques

● First release
○ BHI is in scope

● Not live yet 😫
○ We can share the kernel image and the host configuration

22

23

Questions

