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ABSTRACT

Polymorphism and inheritance make C++ suitable for writing com-
plex software, but significantly increase the attack surface because
the implementation relies on virtual function tables (vtables). These
vtables contain function pointers that attackers can potentially hi-
jack and in practice, vtable hijacking is one of the most important
attack vector for C++ binaries.

In this paper, we present VTable Pointer Separation (vps), a practi-
cal binary-level defense against vtable hijacking in C++ applications.
Unlike previous binary-level defenses, which rely on unsound static
analyses to match classes to virtual callsites, vps achieves a more
accurate protection by restricting virtual callsites to validly cre-
ated objects. More specifically, vps ensures that virtual callsites
can only use objects created at valid object construction sites, and
only if those objects can reach the callsite. Moreover, vps explicitly
prevents false positives (falsely identified virtual callsites) from
breaking the binary, an issue existing work does not handle cor-
rectly or at all. We evaluate the prototype implementation of vps
on a diverse set of complex, real-world applications (MongoDB,
MySQL server, Node.js, SPEC CPU2017/CPU2006), showing that
our approach protects on average 97.8% of all virtual callsites in
SPEC CPU2006 and 97.4% in SPEC CPU2017 (all C++ benchmarks),
with a moderate performance overhead of 11% and 9% geomean,
respectively. Furthermore, our evaluation reveals 86 false negatives
in VTV, a popular source-based defense which is part of GCC.

CCS CONCEPTS

• Security and privacy→ Software reverse engineering.
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1 INTRODUCTION

Software implemented in the C++ language is vulnerable to increas-
ingly sophisticated memory corruption attacks [8, 9, 19, 38, 44, 46].
C++ is often the language of choice for complex software because
it allows developers to structure software by encapsulating data
and functionality in classes, simplifying the development process.
Unfortunately, the binary-level implementations of C++ features
such as polymorphism and inheritance are vulnerable to control-
flow hijacking attacks, most notably vtable hijacking. This attack
technique abuses common binary-level implementations of C++
virtual methods where every object with virtual methods contains
a pointer to a virtual function table (vtable) that stores the addresses
of all the class’s virtual functions. To call a virtual function, the com-
piler inserts an indirect call through the corresponding vtable entry
(a virtual callsite). Using temporal or spatial memory corruption vul-
nerabilities such as arbitrary write primitives or use-after-free bugs,
attackers can overwrite the vtable pointer so that subsequent vir-
tual calls use addresses in an attacker-controlled alternative vtable,
thereby hijacking the control flow. In practice, vtable hijacking
is a common exploitation technique widely used in exploits that
target complex applications written in C++ such as web browser
and server applications [42].

Control-Flow Integrity (CFI) solutions [2, 5, 30, 34, 43, 45, 47]
protect indirect calls by verifying that control flow is consistent
with a Control-Flow Graph (CFG) derived through static analysis.
However, most generic CFI solutions do not take C++ semantics
into account and leave the attacker with enough wiggle room to
build an exploit [19, 38]. Consequently, approaches that specifically
protect virtual callsites in C++ programs have become popular. If
source code is available, compiler-level defenses can benefit from
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the rich class hierarchy information available at the source level [6,
7, 43, 49]. However, various legacy applications are still in use [31]
or proprietary binaries have to be protected which do not offer
access to the source code (e.g., Adobe Flash [3]). Here, binary-level
defenses [14, 17, 33, 35, 48] must rely on (automated) binary analysis
techniques to reconstruct the information needed to guarantee
security and correctness.

In this paper, we present VTable Pointer Separation (vps), a binary-
level defense against vtable hijacking attacks. Unlike previous
binary-only approaches that restrict the set of vtables permitted
for each virtual callsite, we check that the vtable pointer remains
unmodified after object creation. Intuitively, vps checks the vtable
pointer’s integrity at every callsite. Because the vtable pointer in a
legitimate live object never changes and the virtual callsite uses it to
determine its target function, vps effectively prevents vtable hijack-
ing attacks. In essence, we want to bring a defense as powerful as
CFIXX [7] (which operates at the source level) to binary-only appli-
cations, even though none of the information needed for the defense
is available. Our approach is suitable for binaries because, unlike
other binary-level solutions, we avoid the inherent inaccuracy in
binary-level CFG and class hierarchy reconstruction. Because vps
allows only the initial virtual pointer(s) of the object to ever ex-
ist, we reduce the attack surface even compared to hypothetical
implementations of prior approaches that statically find the set of
possible vcall targets with perfect accuracy.

Given that binary-level static analysis is challenging and un-
sound in practice, and may lead to false positives in identifying
virtual callsites, we carefully deal with such cases by over-approxi-
mating the set of callsites and implementing an (efficient) slow
path to handle possible false positives at runtime. Meanwhile, vps
handles all previously verified callsite with highly-optimized fast
checks. This approach allows us to prevent false positives from
breaking the application as they do in existing work [14, 17, 35, 48].
Additionally, while existing work [24–26, 33] only considers directly
referenced vtables, compilers also generate code that references
vtables indirectly, e.g., through the Global Offset Table (GOT). vps
can find all code locations that instantiate objects by writing the
vtable, including objects with indirect vtable references.

Our prototype of vps is precise enough to handle complex, real-
world C++ applications such as MongoDB, MySQL server, Node.js,
and all C++ applications contained in the SPEC CPU2006 and
CPU2017 benchmarks. Compared to the source code based approach
VTV, which is part of GCC [43], we can on average correctly iden-
tify 97.8% and 97.4% of the virtual callsites in SPEC CPU2006 and
SPEC CPU2017, with a precision of 95.6% and 91.1%, respectively.
Interestingly, our evaluation also revealed 86 virtual callsites that
are not protected by VTV, even though it has access to the source
code. A further investigation with the help of the VTV maintainer
showed that this is due to a conceptual problem in VTV which
requires non-trivial engineering to fix. Compared to the source
code based approach CFIXX, vps shows an accuracy of 99.6% and
99.5% on average for SPEC CPU2006 and CPU2017 with a precision
of 97.0% and 96.9%. These comparisons show that vps’s binary-level
protection of virtual callsites closely approaches that of source-level
solutions. While this still leaves a small attack window, it further
closes the gap between binary-only and source-level approaches
making vtable hijacking attempts mostly impractical.

Compared to state-of-the-art binary-level analysis frameworks
like Marx [33], our analysis identifies 26.5% more virtual callsites
in SPEC CPU2017 and thus offers improved protection. vps induces
geomean performance overhead of 9% for all C++ applications in
SPEC CPU2017 and 11% for SPEC CPU2006, which is slightly more
than Marx induces but with significantly better protection.

Contributions. We provide the following contributions:

• We present vps, a binary-only defense against vtable hijack-
ing attacks that sidesteps the imprecision problems of prior
work on this topic. The key insight is that vtable pointers
only change during initialization and destruction of an ob-
ject (never in between), a property that vps can efficiently
enforce.

• We develop an instrumentation approach that is capable of
handling false positives in the identification of C++ virtual
callsites which would otherwise break the application and
which most existing work ignores. Unlike prior work, we
also handle indirect vtable references.

• Our evaluation shows that our binary-level instrumenta-
tion protects nearly the same number of virtual callsites as
the source-level defenses VTV and CFIXX. In addition, our
evaluation uncovered a conceptual problem causing false
negatives in VTV (part of GCC).

The prototype implementation of vps and the data we used
for the evaluation are available under an open-source license at
https://github.com/RUB-SysSec/VPS.

2 C++ AT THE BINARY LEVEL

This section provides background on C++ internals needed to un-
derstand how vps handles C++ binaries.We focus on how high-level
C++ constructs translate to the binary level. For a more detailed
overview of high-level C++ concepts, we refer to the corresponding
literature [41].

2.1 Virtual Function Tables

C++ supports the paradigm of object-oriented programming (OOP)
with polymorphism and (multiple) inheritance. A class can inherit
functions and fields from another class. The class that inherits
is called the derived class and the class from which it inherits is
the base class. In addition to single inheritance (one class inherits
from one other class), C++ also allows multiple inheritance, where
a derived class has multiple base classes. A base class can declare
a function as virtual, which allows derived classes to override it
with their own implementations. Programmers may choose not to
implement some functions in a base class, so called pure virtual

functions. Classes containing such functions are abstract classes
and cannot be instantiated. Classes deriving from an abstract base
can only be instantiated if they override all pure virtual functions.

Polymorphism is implemented at the binary level using virtual
function tables (vtables) that consist of the addresses of all virtual
functions of a particular class. Each class containing at least one vir-
tual function has a vtable. Instantiated classes (called objects) hold
a pointer to their corresponding vtable, which is typically stored
in read-only memory. Since each class has its own corresponding
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vtable, it can also be considered as the type of the object. Through-
out this paper, we refer to the pointer to a vtable as a vtblptr , while
the pointer to the object is called thisptr .

class C : public A, public B { 
public: 
    int varC; 
    virtual void funcA1(); 
    virtual void funcB2(); 
    virtual void funcC(); 
}; 

class A { 
public: 
    int varA; 
    virtual void funcA1(); 
    virtual void funcA2(); 
}; 

0x00: vtblptrC1

0x08: varA

Object C

0x10: vtblptrC2

0x18: varB

0x20: varC

0x10: 0

0x08: &RTTI_C

Vtable C

 0x00: &C::funcA1

 0x10: &C::funcB2

 0x18: &C::funcC

0x10: 0x10

SubVtable C

0x08: &RTTI_C

 0x08: &thunk to
       C::funcB2

 0x00: &B::funcB1

thisptr

HighLevel

Binary Level

 0x08: &A::funcA2

class B { 
public: 
    int varB; 
    virtual void funcB1(); 
    virtual void funcB2(); 
}; 

OffsettoTop

RTTI

FunctionEntry1

FunctionEntry2

FunctionEntry3

FunctionEntry4

OffsettoTop

RTTI

FunctionEntry1

FunctionEntry2

0x00: vtblptrB

0x08: varB

Object B

0x10: 0

0x08: &RTTI_B

Vtable B

 0x00: &B::funcB1

thisptr

 0x08: &B::funcB2

OffsettoTop

RTTI

FunctionEntry1

FunctionEntry2

Figure 1: Example C++ class structure. The code at the top

shows base classes A and B; derived class C which overrides

virtual functions funcA1 and funcB2. The bottom shows the

binary-level structure of objects of classes B and C.

The Itanium C++ ABI [16] defines the vtable layout for Linux
systems.1 The vtblptr points to the first function entry in the vtable,
and the vtable contains an entry for each virtual function (either
inherited or newly declared) in the class. For example, in Figure 1,
class B’s vtable contains two function entries because the class im-
plements virtual functions funcB1 and funcB2. Class C inherits from
two classes, A and B, and therefore has two vtables (a base vtable
and one sub-vtable). The base vtable contains all virtual functions
inherited from class A and implemented by class C. The sub-vtable
is a copy of class B’s vtable with a special entry that refers to the
overwritten virtual function (called a thunk). Preceding the function
entries, a vtable has two metadata fields: Runtime Type Identification

(RTTI) and Offset-to-Top. RTTI holds a pointer to type information
about the class. Among other things, this type information con-
tains the name of the class and its base classes. However, RTTI is
optional and often omitted by the compiler. It is only needed when
the programmer uses, e.g., dynamic_cast or type_info. Hence, a
1Linux uses the Itanium C++ ABI for x86-64 (amd64), our target architecture.

reliable static analysis cannot rely on this information. Classes that
do not contain RTTI have the RTTI field set to zero. Offset-to-Top
is needed when a class uses multiple inheritance (hence has a base
vtable and one or more sub-vtables) as class C does. Offset-to-Top
specifies the distance between a sub-vtable’s own vtblptr and the
base vtblptr at the beginning of the object. In our example, the
vtblptr to class C’s sub-vtable resides at offset 0x10 in the object,
while the vtblptr to the base vtable resides at offset 0x0. Hence, the
distance between the two, as stored in the Offset-to-Top field in
sub-vtable C, is -0x10. Offset-to-Top is 0 if the vtable is the base
vtable of the class or no multiple inheritance is used.

Vtables can contain one additional field, called Virtual-Base-

Offset, but it is only used in case of virtual inheritance, an advanced
C++ feature for classes that inherit from the same base multiple
times (diamond-shaped inheritance). An explanation is out of scope
here because vps needs no adaptations to support virtual inheri-
tance, so we defer to the ABI [16].

2.2 C++ Object Initialization and Destruction

Because vps secures virtual callsites by protecting the vtblptr set at
initialization time, we explain object initialization of classes with
vtables. For the remainder of this paper, we only consider classes
and objects that have at least one virtual function and therefore a
vtable.

During object instantiation, the vtblptr is written into the object
by the constructor. The lower part of Figure 1 depicts an object’s
memory layout at the binary level. The vtblptr is at offset 0x0, the
start of the object. For classes with multiple inheritance, the con-
structor also initializes vtblptrs to the sub-vtable(s). In addition, the
programmer may initialize class-specific fields in the constructor.
These fields are located after the vtblptr and, in case of multiple
inheritance, after any sub-vtblptrs.

For classes that have one or more base classes, the constructors
of the base classes are called before the derived class’s own initial-
ization code. As a result, the base class places its vtblptr into the
object, which is subsequently overwritten by the derived class’s
vtblptr . Depending on the optimization level, constructors are often
inlined, which may complicate binary analysis that aims to detect
constructors.

An analogous principle is applied for object destruction through
destructor functions. However, the destructors are executed in re-
versed order (destructor of the base class is executed last).

Abstract classes form a special case: although programmers can-
not instantiate abstract classes, and despite the fact that their vtables
contain pure_virtual function entries, the compiler can still emit
code that writes the vtblptr to an abstract class into an object. How-
ever, this happens only when creating or releasing an object of a
derived class, and the abstract vtblptr is immediately overwritten.

2.3 C++ Virtual Function Dispatch

Because classes can override virtual functions, the compiler cannot
determine the target of a call to such a function at compile time.
Therefore, the emitted binary code uses an indirect function call
through the vtable of the object. This is called a virtual function
call, or vcall for short. In the Itanium C++ ABI [16], the compiler
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Table 1: C++ binary-only mitigation mechanisms

Defense Binary-only

Protects

vcalls

Protects

type

Protects

dangl. ptrs

Tolerates

FP vcalls

Security Strategy

Marx (VTable) [33] ✓ ✓ ✗ ✓ ✓ vtblptr in reconstructed class hierarchy (fallback PathArmor [45]).
Marx (Type-safe) [33] ✓ ✗ ✗ ✓ n.a. Memory allocator uses class hierarchy as type.
vfGuard [35] ✓ ✓ ✗ ✓ ✗ Call target resides in at least one vtable at correct offset.
T-VIP [17] ✓ ✓ ✗ ✓ ✗ vtblptr and random vtable entry must point to read-only memory.
VTint [48] ✓ ✓ ✗ ✓ ✗ Verifies vtable ID, vtable must be in read-only memory.
VCI [14] ✓ ✓ ✗ ✓ ✗ vtblptr must be statically found, in class hierarchy, or vfGuard-allowed.
VTPin [37] needs RTTI ✗ ✗ ✓ n.a. Overwrites vtblptr when object freed.

VPS ✓ ✓ ✓ ✓ ✓ Check at vcall if object was created at a legitimate object creation site.

emits the following structure:

mov RDI, thisptr

call [vtblptr + offset]

The thisptr is an implicit call argument, so it is moved into the
first argument register, which is RDI on Linux x86-64 systems. Next,
the call instruction uses the vtblptr to fetch the target function
address from the object’s vtable. The offset added to the vtblptr
selects the correct vtable entry. Note that the offset is a constant,
so that corresponding virtual function entries must be at the same
offset in all vtables of classes that inherit from the same base class.

The same code structure holds for cases that use multiple in-
heritance. Depending on which (sub-)vtable the virtual function
entry resides in, the vtblptr either points to the base vtable or one
of the sub-vtables. However, if the vtblptr points to a sub-vtable,
thisptr does not point to the beginning of the object, but rather to
the offset in the object where the used vtblptr lies. Consider the
example from Figure 1: when a function in the sub-vtable of class
C is called, the call uses the vtblptr to its sub-vtable, and the thisptr
points to offset 0x10 of the object. Because the code structure is
the same, the program treats calls through sub-vtables and base
vtables as analogous.

2.4 Threat Model: VTable Hijacking Attacks

As we explained in Section 2.3, virtual callsites use the vtblptr to
extract the pointer to the called virtual function. Since the object
that stores the vtblptr is dynamically created during runtime and
resides in writable memory, an attacker can overwrite it and hijack
the control flow at a virtual callsite.

The attacker has two options to hijack an object, depending on
the available vulnerabilities: leveraging a vulnerability to overwrite
the object directly in memory, or using a dangling pointer to an
already-deleted object by allocating attacker-controlled memory
at the same position (e.g., via a use-after-free vulnerability). In the
first case, the attacker can directly overwrite the object’s vtblptr
and use it to hijack the control flow at a vcall. In the second case,
the attacker does not need to overwrite any memory; instead, the
vulnerability causes a virtual callsite to use a still existing pointer
to a deleted memory object. The attacker can control the vtblptr by
allocating new memory at the same address previously occupied
by the deleted object.

We assume the attacker has an arbitrary memory read/write
primitive, and that theW ⊕ X defense is in place as well as the
vtables reside in read-onlymemory. These are standard assumptions

in related work [2, 14, 43, 48]. The attacker’s goal is to hijack the
control flow at a virtual callsite (forward control-flow transfer).
Attacks targeting the backward control-flow transfer (e.g., return
address overwrites) can be secured, for example, by shadow stacks
which are orthogonal to vps and thus out of scope. Furthermore,
data-only attacks are also out of scope.

2.5 Related Work on Binary-only Defenses

Here, we briefly compare our design against binary-only related
work as shown in Table 1. A detailed discussion including source-
level approaches is provided in Section 9.

Most existing vtable hijacking defenses assign a set of allowed
target functions to each virtual callsite (e.g., Marx VTable Protec-

tion [33], vfGuard [35], T-VIP [17], VTint [48] and VCI [14]). The
inaccuracy of binary analysis forces them to overestimate the target
set, leaving room for attacks [38]. In contrast, vps enforces that
vtable pointers remain unmodified after object construction, ensur-
ing that only validly created objects can be used at virtual callsites
and reducing the attack surface even compared to a hypothetical
defense with a perfect set of allowed targets. Marx Type-safe Object

Reuse and VTPin [37] protect against the reuse of dangling pointers
by modifying the memory allocator. vps protects against dangling
pointers without any further modification.

As the comparison in Table 1 shows, vps combines the protection
targets given by related work and additionally protects the type
integrity of the object itself.

3 VTABLE POINTER SEPARATION

Our approach is based on the observation that the vtblptr is only
written during object initialization and destruction and cannot
legitimately change in between. Therefore, only the vtblptr that
is written by the constructor (or destructor) is a valid value. If a
vtblptr changes between the object was created and destroyed, a
vtable hijacking attack is in progress. Since these attacks target
virtual callsites, it is sufficient to check at each virtual callsite if the
vtblptr written originally into the object still resides there.

Figure 2 depicts the differences between a traditional application
and a vps-protected application. The traditional application initial-
izes an object and uses a vcall and the created object to call a virtual
function. As explained in Section 2.3, the application uses the vtable
to decide which virtual function to execute. If an attacker is able to
corrupt the object between the initialization and vcall, she can place
her own vtable in memory and hijack the control flow. In contrast,
the vps-protected application adds two additional functionalities to
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[...]

new Object A

Function X

[...]

A>funcA1()

[...]

RIP

Code

0x00: vtblptrA

0x08: varA

Object A

0x10: 0

0x08: &RTTI_A

Vtable A

 0x00: &A::funcA1

thisptr

 0x08: &A::funcA2

Memory State

[...]

new Object A

Function X

[...]

A>funcA1()

[...]

RIP

Code

0x00: vtblptrA

0x08: varA

Object A

0x10: 0

0x08: &RTTI_A

Vtable A

 0x00: &A::funcA1

thisptr

 0x08: &A::funcA2

Memory State

write safe memory

check safe memory [...]

Object A > vtblptrA

Safe Memory

[...]

1

2a

2b

3

4a

4b

5

1

2

3

4

5

Traditional Application VPS Application

Figure 2: High-level overview of the object instantiation and virtual callsite of a traditional application (left side) and a vps

protected application (right side). For both applications the memory state is given while the instruction pointer executes the

function call.

the executed code. While the object is initialized, it stores the vtblptr
in a safe memory region. Before a vcall, it checks if the vtblptr in
the object is still the same as the one stored for the object in the
safe memory region. The vcall is only executed when the check
succeeds. As a result, the same attacker that is able to corrupt the
object in between can no longer hijack the control flow. The same
concept holds for vtblptrs written in the destructors. The vtblptr is
written into the object and used for vcalls during its destruction (if
it is used at all). Since a vps-protected application stores the written
vtblptr into the safe memory region and checks the integrity of the
one in the object if it is used at a vcall, the approach does not need
to differentiate between object initialization and destruction.

In contrast to other binary-only defenses for virtual callsites
[14, 17, 33, 35, 48] that allow a specific overestimated set of classes
at a virtual function dispatch, vps has a direct mapping between an
object initialization site and the reachable vcalls.

Even though vps looks conceptually similar to CFIXX, adding
this protection at the binary level encounters multiple hurdles.
Performing accurate analysis at the binary level is a challenging
problem, especially with regards to object creation sites, where
false negatives would break the protected application. Our analysis
has to take direct and indirect vtable accesses into account, which
do not exist on the source level. The virtual callsite identification
has to be as precise as possible in order to provide a high level of
security and it has to be performed without type information. Any
false positive in this result breaks the application, which makes an
instrumentation capable of handling these necessary (a problem
that other binary-only approaches do not consider).

4 ANALYSIS APPROACH

vps protects binary C++ applications against control-flow hijacking
attacks at virtual callsites. To this end, we first analyze the binary
to identify C++-specific properties and then apply instrumenta-
tion to harden it. We divide the analysis into three phases: Vtable
Identification, Vtable Pointer Write Operations, and Virtual Callsite

Identification. At a high-level, our analysis first identifies all vtables
in the target binary in the Vtable Identification phase. Subsequently,
the identified vtables are used to find all locations in the binary
that write vtblptrs. Eventually, the identified vtables are also used
to identify and verify vcalls in the Virtual Callsite Identification
phase. While the Vtable Identification static analysis is an improved

and more exact version of Pawlowski et al. [33] (finding vtables
in .bss and GOT, considering indirect referencing of vtables), the
other analyses are novel to vps. In the remainder of this section, we
explain the details of our analysis approach. Note that we focus on
Linux x86-64 binaries that use the Itanium C++ ABI [16]. However,
our analysis approach is conceptually mostly generic and with ad-
ditional engineering effort can be applied to other architectures
and ABIs as well. For architecture-specific steps in our analysis, we
describe what to modify to port the step to other architectures.

4.1 Vtable Identification

To protect vtblptrs in objects, we need to know the location of all
vtables in the binary. To find these, our static analysis searches
through the binary and uses a set of rules to identify vtables. When-
ever all rules are satisfied, the algorithm identifies a vtable. As
explained earlier, Figure 1 shows a typical vtable structure. The
smallest possible vtable in the Itanium C++ ABI [16] consists of
three consecutive words (Offset-to-Top, RTTI, and Function-Entry).
We use the following five rules to determine the beginning of a
vtable:

R-1. In principle, our algorithm searches for vtables in read-only
sections such as .rodata and .data.rel.ro. However, there are
exceptions to this. If a class has a base class that resides in another
module and the compiler uses copy relocation, the loader will copy
the vtable into the .bss section [18]. Additionally, vtables from
other modules can be referenced through the Global Offset Table
(GOT), e.g., in position-independent code [1]. To handle these cases
where the vtable data lies outside the main binary, we parse the
binary’s dynamic symbol table and search for vtables that are either
copied to the .bss section or referenced through the GOT. Note
that we do not rely on debugging symbols, only on symbols that
the loader uses, which cannot be stripped.

R-2. Recall that the vtblptr points to the first function entry in a
class’s vtable, and is written into the object at initialization time.
Therefore, our algorithm looks for code patterns that reference this
first function entry. Again, there are special cases to handle. The
compiler sometimes emits code that does not reference the first
function entry of the vtable, but rather the first metadata field at
offset -0x10 (or -0x18 if virtual inheritance is used). This happens
for example in position-independent code. To handle these cases,
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we additionally look for code patterns that add 0x10 (or 0x18) to
the reference before writing the vtblptr into the object, which is
necessary to comply with the Itanium C++ ABI [16]. Our algorithm
also checks for the special casewhere vtables are referenced through
the GOT instead of directly.

R-3. As depicted in Figure 1, the Offset-to-Top is stored in the
first metadata field of the vtable at offset -0x10. In most cases this
field is 0, but when multiple inheritance is used, this field gives the
distance between the base vtblptr and the sub-vtblptr in the object
(see Section 2.1). Our algorithm checks the sanity of this value by
allowing a range between -0xFFFFFF and 0xFFFFFF, as proposed
by Prakash et al. [35].

R-4. The RTTI field at offset -0x8 in the vtable, which can hold
a pointer to RTTI metadata, is optional and usually omitted by the
compiler. If omitted, this field holds 0; otherwise, it holds a pointer
into the data section or a relocation entry if the class inherits from
another class in a shared object.

R-5. Most of the vtable consists of function entries that hold
pointers to virtual functions. Our algorithm deems them valid if
they point into any of the .text, .plt, or .extern sections of the
binary, or are relocation entries.

Abstract classes are an edge case. For each virtual function with-
out implementation, the vtable points to a special function called
pure_virtual. Because abstract classes are not meant to be instan-
tiated, calling pure_virtual throws an exception. Additionally, the
first function entries in a vtable can be 0 if the compiler did not
emit the code of the corresponding functions (e.g., for destructor
functions). To cope with this, Pawlowski et al. [33] allow 0 entries
in the beginning of a vtable. We omit this rule because our approach
can safely ignore the instantiation of abstract classes, given that
vtblptrs for abstract classes are overwritten shortly after object
initialization.

In case of multiple inheritance, we do not distinguish between
vtables and sub-vtables. That is, in the example in Figure 1, our
approach identifiesVtable C and Sub-Vtable C as separate vtables. As
discussed later, this does not pose any limitations for our approach
given our focus on vtblptr write operations (as opposed to methods
that couple class hierarchies to virtual call sites).

The combination of multiple inheritance and copy relocation
poses another edge case. In copy relocation, the loader copies data
residing at the position given by a relocation symbol into the .bss
section without regards to the type of the data. For classes that use
multiple inheritance, the copied data contains a base vtable and
sub-vtable(s), but the corresponding relocation symbol holds only
information on the beginning and length of the data, not the vtable
locations. To ensure that we do not miss any, we identify every
8-byte aligned address of the copied data as a vtable. For example, if
the loader copies a data chunk of 0x40 bytes to the address 0x100,
we identify the addresses 0x100, 0x108, 0x110, . . . up to 0x138 as
vtables. While this overestimates the set of vtables, only the correct
vtables and sub-vtables are referenced during object initialization.

Note that on other architectures, the assumed size of 8-byte per
vtable entry as used by our rules may have to be adjusted. For
example, Linux on x86 (32-bit) and ARM would use 4-byte entries,
with no conceptual changes.

4.2 Vtable Pointer Write Operations

The next phase of our static analysis is based on the observation
that to create a new object, its vtblptr has to be written into the
corresponding memory object during the initialization. This is done
in the constructor of the class which can be either an explicit func-
tion or inlined code. The same holds for object destruction by the
corresponding destructor function. Hence, the goal of this analysis
step is to identify the exact instruction that writes the vtblptr into
the memory object. This step is Linux-specific but architecture-
agnostic.

First, we search for all references from code to the vtables identi-
fied in the previous step. Because vtables are not always referenced
directly, the analysis searches for the following different reference
methods:

(1) A direct reference to the start of the function entries in the
vtable. This is the most common case.

(2) A reference to the beginning of the metadata fields in the
vtable. This is mostly used by applications compiled with
position-independent code (e.g., MySQL server which addi-
tionally uses virtual inheritance).

(3) An indirect reference through the GOT. Here, the address to
the vtable is loaded from the GOT.

Starting from the identified references, we track the data flow
through the code (using Static Single Assignment (SSA) form [12])
to the instructions that write the vtblptrs during object initialization
or destruction. We later instrument these instructions, adding code
that stores the vtblptr in a safe memory region. Our approach is
agnostic to the location the C++ object resides in (i.e., heap, stack,
or global memory). Furthermore, since we focus on references from
code to the vtables, our approach can handle explicit constructor
functions as well as inlined constructors and destructors.

During our research, we encountered functions with inlined
constructors where the compiler emits code that stores the vtblptr
temporarily in a stack variable to use it at multiple places in the
same function. Therefore, to ensure that we do not miss any vtblptr

write instructions, our algorithm continues to track the data flow
even after a vtblptr is written into a stack variable. Because we
cannot easily distinguish between a temporary stack variable and
an object residing on the stack, our algorithm also assumes that the
temporary stack variable is a C++ object. While this overestimates
the set of C++ objects, it ensures that we instrument all vtblptr
write instructions, making this overapproximation comprehensive.

4.3 Virtual Callsite Identification

Because vps specifically protects vcalls against control-flow hijack-
ing, we first have to locate them in the target binary. Hence, we have
to differentiate between vcalls and normal C-style indirect call in-
structions. We follow a two-stage approach to make this distinction:
we first locate all possible vcall candidates and subsequently verify
them. The verification step consists of a static analysis component
and a dynamic one. In the following, we explain this analysis in
detail.

4.3.1 Virtual Callsite Candidates. To find virtual callsite candidates,
we use a similar technique as previous work [14, 17, 35, 48]. We
search for the vcall pattern described in Section 2.3, where the
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thisptr is the first argument (stored in the RDI register on Linux
x86-64) to the called function and the vcall uses the vtblptr to
retrieve the call target from the vtable. Note that the thisptr is also
used to extract the vtblptr for the call instruction. A typical vcall
looks as follows:

mov RDI, thisptr

mov vtblptr, [thisptr]

call [vtblptr + offset]

Note that these instructions do not have to be consecutive in
the application, but can be interspersed with other instructions.
Two patterns can be derived from this sequence: the first argument
register always holds the thisptr , and the call instruction target can
be denoted as [[thisptr] + offset], where offset can be 0 and
therefore omitted. This specific dependency between call target
and first argument register is rare for non-C++ indirect calls. With
the help of the SSA form, our algorithm traces the data flow of the
function. If the previously described dependency is satisfied, we
consider the indirect call instruction a vcall candidate.

Note that the same pattern holds for classes with multiple in-
heritance. As described in Section 2.3, when a virtual function of a
sub-vtable is called, the thisptr is moved to the position in the object
where the sub-vtable resides. Therefore, the first argument holds
thisptr + distance, and the call target [[thisptr + distance]
+ offset]. This still satisfies the aforementioned dependency be-
tween first argument and call target. Furthermore, the pattern also
applies to Linux ARM, Linux x86, and Windows x86-64 binaries,
requiring only a minor modification to account for the specific
register or memory location used for the first argument on the
platform (R0 for ARM, the first stack argument for Linux x86, and
RCX for Windows x86-64).

To effectively protect vcalls, it is crucial to prevent false positive
vcall identifications, as these may break the application during
instrumentation. This is also required for related work [14, 17, 35,
48]. While the authors of prior approaches report no false positives
with the above vcall identification approach, our research shows
that most larger binary programs do indeed contain patterns that
result in indirect calls being wrongly classified as virtual callsites.

A possible explanation for the lack of false positives in previous
work is that most prior work focuses on Windows x86 [17, 35, 48],
where the calling conventions for vcalls and other call instructions
differ. That is, on Windows x86, the thisptr is passed to the virtual
function via the ECX register (thiscall calling convention), while
other call instructions pass the first argument via the stack (stdcall
calling convention) [15]. This is not the case for Windows x86-
64 and Linux (x86 and x86-64). On these architectures, the thisptr
is passed as the first argument in the platform’s standard calling
convention (Microsoft x64, cdecl and System V AMD64 ABI, respec-
tively). While Elsabagh et al. [14], who work on Linux x86, did not
report false positives, our evaluation does show false positives in
the same application set. We contacted the authors, but they could
not help us find an explanation for these differing outcomes and
could not give us access to the source code to allow us to reproduce
the results.

4.3.2 Virtual Callsite Verification. Because a single false positive
can break our approach, the next phase in our static analysis verifies

the virtual callsite candidates. Basically, we perform a data-flow
analysis in which we track whether a vtblptr is used at a virtual
callsite candidate. If the candidate uses the vtblptr to determine the
call target, we consider it as verified. However, a data-flow graph
alone is not sufficient to verify this connection. The control flow
and actual usage of the vtblptr have also to be considered. Figure 3
depicts an overview of the analysis process. The following describes
our analysis in detail.

Data-Flow Graphs. First, our analysis tracks the data flow back-
wards with the help of SSA form starting from all vtable references
in the code (which create the vtblptr). The data flow is tracked
over function boundaries when argument registers or the return
value register RAX are involved. This means the tracking is done
interprocedurally. The same data-flow tracking is done for the call
target of each virtual callsite candidate. As Figure 3a shows, we
obtain data-flow graphs showing the source of the data used by the
vtable-referencing instructions and the virtual callsite candidates.
Whenever a data-flow graph for a virtual callsite candidate has
the same data source as a vtable-referencing instruction, we group
them together as depicted in Figure 3b.

Control-Flow Path. Virtual callsite candidates and vtable-referen-
cing instructions that share the same data source represent a possi-
ble connection between a created vtblptr and a corresponding vcall.
However, this connection alone does not give any information on
whether the vtblptr is actually used at the virtual callsite candidate.
To verify this, we have to check if a control-flow path exists that
starts at the data-source instruction, visits the vtable-referencing
instruction, and ends at the vcall instruction. For this, our anal-
ysis searches all possible data-flow paths through the graph that
start at a data-source instruction and end in a vtable-referencing
instruction. Additionally, all data-flow paths through the graph are
identified that start at a data-source instruction and end at a virtual
callsite candidate. Then, they are split into common and unique
parts as Figure 3c depicts.

Next, our analysis tries to transform these data-flow paths into a
control-flow path by translating each data-flow node into the basic
block that contains the corresponding instruction (see Figure 3d).
With the help of the Control-Flow Graph (CFG), our analysis then
searches for a path from basic block to basic block until it reaches
the final block as Figure 3e shows. Eventually, if a path exists, the
algorithm finds a possible control-flow path that starts from the
data-source instruction, visits the vtable-referencing instruction,
and ends at the vcall instruction.

Symbolic Execution. As a last step, we symbolically execute the
obtained control-flow paths to track the flow of the vtblptr through
the binary. When an instruction writes a vtable into the memory
state, we replace that vtblptr with a symbolic value. To keep the
analysis scalable to large real-world applications, our symbolic
execution simply executes basic blocks without checking whether
branches can actually be taken in a concrete execution. If a basic
block contains a call instruction that is not part of our original data-
flow path, we simply execute a return instruction immediately after
the call instead of symbolically executing the called function. When
the symbolic execution reaches the vcall instruction, we check the
obtained memory state to verify that the vtblptr is used for the call
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0x4e call [rax_21+0x10]

0x42 mov rax_21, [rbx_7-0xd0] 0x21 mov [rbx_7-0xd0], vtblptr

0x10 mov rbp_5, rsp_0

 Vcall Data Flow

0x10 mov rbp_5, rsp_0

Vtable Data Flow

0x4e call [rax_21+0x10]

0x32 mov rax_21, [rbx_7-0xd0] 0x21 mov [rbx_7-0xd0], vtblptr

0x10 mov rbp_5, rsp_0

Combined Data Flow

0x13 mov rbx_7, rbp_5 0x13 mov rbx_7, rbp_5 0x13 mov rbx_7, rbp_5

Common Data Flow Path

a) b)

0x10 mov rbp_5, rsp_0

0x13 mov rbx_7, rbp_5

0x21 mov [rbx_7-0xd0], vtblptr

0x4e call [rax_21+0x10]

0x32 mov rax_21, [rbx_7-0xd0]

Vtable Data Flow Path Vcall Data Flow Path

c)

Basic Block 1

0x10 mov rbp, rsp

0x13 mov rbx, rbp

[...]

Basic Block 2

0x21 [rbx-0xd0], vtblptr

[...]

[...][...]

Basic Block 4

[...]

[...]

0x4e call [rax+0x10]

Basic Block 3

[...]

[...]

0x32 mov rax, [rbx-0xd0]

Common Basic Blocks Vtable Basic Blocks

Vcall Basic Blocks

d) e)

Control Flow Path

Basic Block 1

Basic Block 2

Basic Block 3

Basic Block

Basic Block

Basic Block 4

Basic Block
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Basic Block

Figure 3: Data-flow and control-flow analysis of our vcall verification phase. Step a) shows the data-flow graph in SSA form,

with the starting node in gray (data source). Step b) combines the data-flow graphs of a). Step c) divides the paths through the

data-flow graph into three components. Step d) shows the basic blocks corresponding to the data-flow paths. Step e) shows a

path through the CFG containing all previously identified basic blocks.

target. If so, we conclude that the vcall candidate is in fact a vcall
and consider it a verified vcall.

In addition to explicit vtable-referencing instructions, this analy-
sis phase checks implicit vtable references as well. In case the earlier
backward data-flow analysis shows that a vcall target stems from
the first argument register, we check whether the calling function is
a known virtual function (by checking whether the function resides
in any previously identified vtable). If it is, we add a special virtual
function node to the data-flow graph. We then search for a path
from this virtual function node to the vcall instruction. If a path is
found, we apply the steps described previously for transforming
the data-flow path to a control-flow path. For such paths, before
starting the symbolic execution, we add an artificial memory object
containing the vtblptr and place the thisptr in the first argument
register. This way, we simulate an implicit use of the vtable through
the initialized object.

We perform the whole vcall verification analysis in an iterative
manner. When the data-flow tracking step stops at an indirect call
instruction, we repeat it as soon as our analysis has verified the
indirect call as a vcall and has therefore found corresponding vtables
for resolving the target. The same applies to data-flow tracking
that stops at the beginning of a virtual function (because no caller
is known). As soon as we can determine a corresponding vcall

instruction, we repeat the analysis. The analysis continues until we
reach a fixed point where the analysis fails to find any new results.

4.3.3 Dynamic Profiling. Our approach includes a dynamic pro-
filing phase that further refines the vcall verification. During this
phase, we execute the application with instrumentation code added
to all virtual callsite candidates (only the vcall candidates, not the
already verified vcalls). Whenever the execution reaches a vcall,
the instrumentation code verifies that the first argument contains
a valid thisptr . To verify this, we check if the first element of the
object the thisptr points to contains a valid pointer to a known
vtable (vtblptr). If it does, we consider the vcall verified. Otherwise,
we regard the vcall as a false positive of the static analysis and
discard it.

Because this phase only instruments vcall candidates identified
by the static analysis described in Section 4.3.1, it is safe to assume
the dependency between first argument and call instruction target.
Hence, the above dynamic profiling check is sufficient to remove
false positives seen during the profiling run, given that the odds
of finding a C-style indirect callsite with such a distinctive pattern
that uses C++ objects is extremely unlikely. We did not encounter
any such case during our comprehensive evaluation. Also note, that
only this dynamic analysis step discards vcall candidates as false
positives. Vcalls that could not be verified by the static analysis
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(or not reached during this dynamic profiling) are still considered
vcall candidates since the reason for the failed verification can be
missing information (e.g., analysis gaps through indirect control-
flow transfers).

5 INSTRUMENTATION APPROACH

vps protects virtual callsites against control-flow hijacking attacks
by instrumenting the application using the results from the analysis
phase. We instrument two parts of the program: Object Initialization
and Destruction and Virtual Callsites. The following describes how
both kinds of instrumentation work.

5.1 Object Initialization and Destruction

We use the data collected in Section 4.2 to instrument object initial-
ization, specifically the instruction that writes the vtblptr into the
object. When an object is created, the instrumentation code stores
a key-value pair that uses the memory address of the object as the
key and maps it to the vtblptr , which is the associated value. To
prevent tampering with this mapping, we store it in a safe memory
region.

Recall that during the creation of a C++ object whose class inher-
its from another class, the initialization code first writes the vtblptr
of the base class into the object, which is then overwritten by the
vtblptr of the derived class. Our approach is agnostic to inheritance
and simply overwrites the vtblptr in the same order (because each
vtblptr write instruction is instrumented).

Similarly, our approach is agnostic to multiple inheritance, be-
cause object initialization sites use the address where the vtblptr
is written as the object address. As explained in Section 2.3, at a
virtual callsite the thisptr points to the address of the object the
used vtblptr resides in. For a sub-vtable, this is not the beginning
of the object, but an offset somewhere in the object (in our running
example in Figure 1 offset 0x10). Because this is exactly the ad-
dress that our approach uses as the key for the safe memory region,
our approach works for multiple inheritance without any special
handling.

Since this instrumentation only focuses on vtblptr write instruc-
tions, it is also agnostic to object initialization and destruction.
Hence, we do not have to differentiate between constructor and
destructor and can use it for both.

Moreover, despite the fact that we ignore object deletion, our ap-
proach does not suffer from consistency problems. This is because,
when an object is deleted and its released memory is reused for a
new C++ object, the instrumentation code for the initialization of
this new object automatically overwrites the old value in the safe
memory region with the current vtblptr .

5.2 Virtual Callsites

Because a single false positive virtual callsite can break the appli-
cation, we designed the vcall instrumentation code such that it
can detect false positives and filter them out. In doing so, the vcall
instrumentation continuously refines the previous analysis results.
The vcall instrumentation consists of two components, described
next: Analysis Instrumentation and Security Instrumentation.

5.2.1 Analysis Instrumentation. We add analysis instrumentation
code to all vcall candidates that we were unable to verify during

our static vcall verification and dynamic profiling analysis. For
verified vcall sites, we only add security instrumentation and omit
the analysis code.

Before executing a vcall candidate, the analysis instrumentation
performs the same check as the dynamic profiling phase described
in Section 4.3.3. If the check fails, meaning that this is not a vcall but
a regular C-style indirect call, we remove all instrumentation from
the call site. If the check succeeds, we replace the analysis instru-
mentation with the more lightweight security instrumentation for
verified virtual callsites described in Section 5.2.2, and immediately
run the security instrumentation code.

Through our use of adaptive instrumentation, our approach is
able to cope with false positives and further refine the analysis
results during runtime. By caching the refined results on disk, we
can reuse these in later runs of the same application, improving
vps’s performance over time. Furthermore, caching also improves
the security of our adaptive instrumentation as we discuss in Sec-
tion 8.2.

Because the analysis instrumentation verifies all remaining vcall
candidates for false positives at runtime, the static vcall verification
from Section 4.3.2 and the dynamic profiling from Section 4.3.3 can
be omitted. Omitting these steps does not affect the correctness
of our approach, although we recommend using them for optimal
performance.

5.2.2 Security Instrumentation. Weprotect verified vcall sites against
control-flow hijacking by adding security instrumentation code that
runs before allowing the vcall. The instrumentation uses the thisptr
in the first argument register to retrieve the vtblptr stored for this
object in the safe memory region. To decide whether to allow the
vcall, the instrumentation code compares the vtblptr from the safe
memory region with the one stored in the actual object used in the
vcall. If they are the same, the instrumentation allows the vcall. If
not, we terminate with an alert.

6 IMPLEMENTATION

Based on the approach from Section 4, we integrated our static
analysis into the open sourceMarx framework [33]. This framework
provides a basic symbolic execution based on the VEX-IR from the
Valgrind project [13] and data structures needed for C++ binary
analysis. It is written in C++ and targets Linux x86-64 (amd64)
binaries. To support integration of our approach into the Marx

framework, we added support for SSA and a generic data-flow
tracking algorithm.

Because the VEX-IR supports multiple architectures, the frame-
work is easily extendable to these. The same is true for our approach,
which is mostly independent from the underlying architecture (Sec-
tion 4). To balance precision and scalability, the symbolic execution
emulates only a subset of the 64-bit VEX instructions that suits our
focus on vtable-centered data-flow tracking in real-world applica-
tions.

We use IDAPython [23] for vtable identification and CFG extrac-
tion. Additionally, we use instruction data provided by IDA Pro to
support the SSA transformation, and use Protocol Buffers [21] to
export the results in a programming language–agnostic format. We
implement dynamic profiling with Pin [29]. We build the runtime
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component of vps on top of Dyninst v9.3.2 [4]. Dyninst is responsi-
ble for installing vtblptr write and (candidate) virtual callsite hooks.
We inject these wrappers into the target program’s address space
by preloading a shared library.

To set up the safe memory region, our preloaded library maps
the lower half of the address space as a safe region at load time;
this is straightforward for position-independent executables as
their segments are mapped exclusively in the upper half of the
address space by default. To compute safe addresses, we subtract
64 TB2 from the addresses used by vtblptr writes or virtual calls. To
thwart value probing attacks in the safe region, we (i) mark all safe
region pages as inaccessible by default and make them accessible on
demand, and (ii) use a fixed offset chosen randomly at load time for
writes to the safe region. To achieve the latter, we write a random
value to the gs register and use it as the offset for all accesses to the
safe region. To mark pages as readable/writable on demand, we use
a custom segfault handler that uses mprotect to allow accesses
from our library. This means that when a vtblptr is written into the
safe memory region and the page is not yet accessible, our segfault
handler checks if the write access is done by our library and makes
the page accessible if it is. Otherwise, a probing attack is detected
and execution is stopped. The page remains accessible which speeds
up further vtblptr writes to it.

We omit an evaluation of potential optimizations already ex-
plored in prior work [7, 28], such as avoiding Dyninst’s penalties
for (re)storing unclobbered live registers or removing trampoline
code left over after nopping out analysis instrumentation code. Sim-
ilarly, we do not implement hash-based safe region compression
that would reduce virtual and physical memory usage and allow
increased entropy in the safe region, nor do we use Intel MPK [10]
to further secure the safe region. Since we focus on the exact anal-
ysis of binary applications and the subsequent instrumentation, we
consider these optimizations orthogonal to our work.

7 EVALUATION

In this section, we evaluate vps in terms of performance and ac-
curacy. We focus our evaluation on MySQL, Node.js, MongoDB,
and the fifteen C++ benchmarks found in SPEC CPU2006 and
CPU2017 [39, 40]. Even though our approach is able to handle
proprietary software, we evaluate it on open source software since
otherwise we are not able to generate a ground truth to compare
against.

7.1 Virtual Callsite Identification Accuracy

In order to measure the accuracy of the protection of vps, we evalu-
ate the accuracy of the vcall identification analysis. The results show
that vps, although a binary-only approach, can almost reach the
same degree of protection as a source based approach. Compared to
the state-of-the-art binary-only approach Marx, it identifies more
vcalls with fewer false-positives. As applications for our evaluation,
we use the C++ programs of SPEC CPU2006 and SPEC CPU2017
that contain virtual callsites, as well as the MySQL server binary
(5.7.21), the Node.js binary (8.10.0), and the MongoDB binary (3.2.4).
We used the default optimization levels (O2 for CPU 2006, O3 for all

2Linux x86-64 provides 47 bits for user space mappings, and 247 = 128 TB.

2545 Vector<double> us[dim];
2546 for (unsigned int i=0; i<dim; ++i)
2547 us[i].reinit (dof_handler.n_dofs());

Figure 4: Source code snippets from grid_generator.cc
where VTV fails to identify a virtual callsite.

others). The analysis was performed on Ubuntu 16.04 LTS running
on an Intel Core i7-2600 CPU with 32 GB of RAM.

VTV. In order to gain a ground truth of virtual callsites, we use
VTV [43] and compare against our analysis results. Since VTV
leverages source code information, its results are usually used as
ground truth for binary-only approaches focusing on C++ virtual
callsites. All programs except MongoDB are compiled with GCC
8.1.0. MongoDB crashed during compilation and had to be compiled
with the older version GCC 4.9.3. Unfortunately, compiling 450.so-

plex results in a crash and it is therefore omitted. Table 2 shows the
results of our vcall accuracy evaluation.

Overall, we observe that the analysis of vps is capable of identi-
fying the vast majority of virtual callsites in the binary. This ranges
from 91.7% (510.parest_r) to all vcalls detected (several benchmarks).
Our average recall is 97.8% on SPEC CPU2006 and 97.4% on SPEC
CPU2017. With the exception of one outlier (526.blender_r with
precision 68.3%) we have a low number of false positives, with
precision ranging from 87.0% (447.dealII ) to no false positives at all
(several benchmarks). The results are similar for large real-world
applications with a recall ranging from 91.8% (MongoDB) to 97.6%
(MySQL) and a precision ranging from 97.2% (Node.js) to 99.7%
(MongoDB). The high recall rate shows that our binary-only ap-
proach is able to protect almost as many virtual callsites as VTV
does and hence provides comparable security as this source-based
approach. However, it still misses some vcalls which may leave an
attacker with a small room to perform an attack under the right
circumstances. The precision rates show that although we have a
low false positive identification rate, we still have some.

In order to cope with the problem of false positive identifica-
tions, we verify vcalls before we actually instrument them with
our security check. The static analysis verification is able to verify
37.9% in the best case (526.blender_r) and in the worst case none.
On average we verified 20.4% on SPEC CPU2006 and 18.3% on SPEC
CPU2017. For large applications, the best verification rate is 12.2%
(Node.js) and the worst 3.1% (MongoDB). Dynamic verification (see
Section 4.3.3) considerably improves verification performance, veri-
fying 35.1% and 25.9% for SPEC CPU2006 and 2017. Unfortunately,
we were not able to execute 510.parest_r, MySQL and MongoDB

with VTV. The applications crashed with an error message stating
that VTV was unable to verify a vtable pointer (i.e., a false posi-
tive). Hence, the only large real-world application with dynamic
verification Node.js verified 20.2% of the vcalls.

A manual analysis of the missed virtual callsites (false negatives)
reveals two possibilities for a miss: the data flow was too complex
to be handled correctly by our implementation, or the described
pattern in Section 4.3.1 was not used. The former can be fixed by
improving the implemented algorithm that is used for finding the
described pattern. In the latter, the vtblptr is extracted from the
object, however, a newly-created stack object is used as thisptr for
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Table 2: Results of our vcall accuracy evaluation. For each application this table shows (i) the code size, time needed for the

static analysis (hh:mm:ss) and the ground truth generated by VTV; (ii) static vcall identification, depicting the number of indi-

rect call instructions identified as vcall that are true positives and false positives as well as recall and precision; (iii) static vcall

verification results, listing the number of verified vcall instructions, verified vcalls in percentage and verified false positives;

(iv) static and dynamic verification results, showing the number of verified vcall instructions, verified vcalls in percentage,

verified false positives, and the number of identified false positives removed. Cases where dynamic verification failed due to

VTV false positives are in parentheses.

Static Identification Static Verification Static and Dynamic Verification

Program Code Size Time #GT #TP #FP Recall (%) Precision (%) # % #FP # % #FP # removed

447.dealII 4.18 MB 0:02:15 1,558 1,450 215 93.0 87.1 379 24.3 7 423 27.2 18 0
450.soplex – – – – – – – – – – – – – –
453.povray 1.09 MB 0:00:04 102 102 10 100.0 91.1 32 31.4 0 55 53.9 0 6
471.omnetpp 1.17 MB 0:04:00 802 800 0 99.8 100.0 245 30.6 0 530 66.1 0 0
473.astar 0.04 MB 0:00:00 1 1 0 100.0 100.0 0 0.0 0 0 0.0 0 0
483.xalancbmk 7.17 MB 5:54:25 13,440 12,915 17 96.1 99.9 2,122 15.8 0 3,792 28.2 1 0

Average [SPEC CPU2006] 97.8 95.6 20.4 35.1

510.parest_r 12.69 MB 1:00:00 4,678 4,288 528 91.7 89.0 660 14.1 13 (660) (14.1) (13) –
511.povray_r 1.20 MB 0:00:05 122 122 14 100.0 89.7 33 27.1 0 62 50.8 0 6
520.omnetpp_r 3.60 MB 0:06:57 6,430 6,190 23 96.3 99.6 1,585 24.7 0 2,286 35.6 6 0
523.xalancbmk_r 10.34 MB 15:20:40 33,880 33,069 12 97.6 100.0 1,948 5.8 0 4,961 14.6 0 0
526.blender_r 11.47 MB 0:03:29 174 172 80 98.9 68.3 66 37.9 0 70 40.2 0 49
541.leela_r 0.33 MB 0:00:01 1 1 0 100.0 100.0 0 0.0 0 0 0.0 0 0

Average [SPEC CPU2017] 97.4 91.1 18.3 25.9

MongoDB 48.22 MB 1:57:39 17,836 16,366 44 91.8 99.7 552 3.1 0 (552) (3.1) (0) –
MySQL 35.95 MB 65:57:27 11,876 11,592 179 97.6 98.5 1,330 11.2 3 (1,330) (11.2) (3) –
Node.js 38.13 MB 5:16:09 12,643 12,330 353 97.5 97.2 1,538 12.2 10 2,559 20.2 45 118

Table 3: Results of our comparison against CFIXX. For each

application this table shows (i) the ground truth generated

by CFIXX; (ii) static vcall identification, depicting the num-

ber of indirect call instructions identified as vcall that are

true positives and false positives as well as recall and preci-

sion.

Static Identification

Program #GT #TP #FP Recall (%) Precision (%)

447.dealII – – – – –
450.soplex 553 553 10 100.0 98.2
453.povray 110 110 11 100.0 90.9
471.omnetpp 943 942 0 99.9 100.0
473.astar 1 1 0 100.0 100.0
483.xalancbmk 12,670 12,427 527 98.0 95.9

Average [SPEC CPU2006] 99.6 97.0

510.parest_r 7,288 7,194 265 98.7 96.5
511.povray_r 119 119 11 100.0 91.5
520.omnetpp_r 6,037 6,032 71 99.9 98.8
523.xalancbmk_r 23,661 26,407 528 98.9 97.8
526.blender_r – – – – –
541.leela_r 2 2 0 100.0 100.0

Average [SPEC CPU2017] 99.5 96.9

MongoDB 20,873 20,716 448 99.3 97.9
MySQL 13,035 12,921 380 99.1 97.1
Node.js 13,013 12,982 491 99.8 96.4

the virtual callsite which does not follow a typical C++ callsite

pattern. This could be addressed by considering additional vcall
patterns, at the risk of adding false positives. Given our already
high recall rates, we believe this would not be a favorable trade-off.

We also verified 86 cases which VTV did not recognize as vir-
tual callsite instructions. A manual verification of all cases show
that these are indeed vcall instructions and hence missed virtual
callsites by VTV. An example is given in Figure 4 for 510.parest_r.
Here, a vector is created and the function reinit() is invoked on
line 2547. However, since the class dealii::Vector<double> is
provided by the application and reinit() is a virtual function of
this class, this function call is translated into a virtual callsite. We
contacted the VTV authors about this issue and they confirmed
that this happens because the compiler accesses the memory of the
objects directly when calling the virtual function in the internal
intermediate representation. Usually, the compiler accesses them
while going through an internal vtblptr field. Unfortunately, to fix
this issue in VTV would require a lot of non-trivial work since the
analysis has to be enhanced.

CFIXX. Since CFIXX performs the enforcement in a similar way,
we also evaluated our binary-only approach against this source code
based method. Hence, we compiled the applications with CFIXX
which is based on LLVM and extracted the protected virtual callsites
as ground truth for our comparison. Table 3 shows the results of this
evaluation. Unfortunately, we were not able to compile 447.dealII
and 526.blender_r with CFIXX. As the table shows, vps can identify
on average 99.6% of all SPEC CPU2006 and 99.5% of SPEC CPU2017
virtual callsites that are also protected by CFIXX. Furthermore,
vps also yields a high precision with 97.0% for SPEC CPU2006
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Table 4: Results of Marx’s vcall accuracy evaluation. For

each application this table shows (i) the ground truth gen-

erated by VTV; (ii) static vcall identification, depicting the

number of indirect call instructions identified as vcall that

are true positives and false positives as well as recall and

precision.

Static Identification

Program #GT #TP #FP Recall (%) Precision (%)

447.dealII 1,558 1,307 122 83.9 91.5
450.soplex – – – – –
453.povray 102 98 10 96.1 90.7
471.omnetpp 802 701 3 87.4 99.6
473.astar 1 1 0 100.0 100.0
483.xalancbmk – – – – –

Average [SPEC CPU2006] 91.8 95.4

510.parest_r 4,678 3,673 295 78.5 92.6
511.povray_r 122 115 11 94.3 91.3
520.omnetpp_r 6,430 5,465 22 85.0 99.6
523.xalancbmk_r 33,880 23,541 33 69.4 99.9
526.blender_r 174 171 1,347 98.3 11.3
541.leela_r 1 0 0 0.0 0.0

Average [SPEC CPU2017] 70.9 65.8

MongoDB 17,836 12,437 1,249 69.7 90.9
MySQL 11,876 10,867 1,214 81.3 88.8
Node.js 12,643 10,648 1,095 84.2 90.7

and 96.9% for SPEC CPU2017 on average. For large real-world
applications, the recall and precision rates are similar with a recall
of 99.1% for MySQL and 99.8% for Node.js and a precision of 97.1%
and 96.4% respectively. A manual analysis of the missed virtual
callsites (false negatives) showed the same two reasons for a miss
that also occurred for VTV.

Marx. A direct comparison of the accuracy with other binary-
only approaches is difficult since different test sets are used to
evaluate it. For example, vfGuard evaluates the accuracy of their ap-
proach against only two applications, while T-VIP is only evaluated
against one. VTint states absolute numbers without any compari-
son with a ground truth. VCI evaluates their approach against SPEC
CPU2006, but the numbers given for the ground truth created with
VTV differ completely from ours (e.g., 9,201 vs. 13,440 vcalls for
483.xalancbmk) which makes a comparison difficult. Additionally,
the paper reports no false positives during their analysis which
we encounter in the same application set with a similar identifi-
cation technique. Unfortunately, as discussed in Section 4.3.1, we
were not able to determine the reason for this. Furthermore, most
approaches target different platforms than vps (Windows x86 and
Linux x86) and are not open source. Since Marx is the only open
source approach that targets the same platform, we analyzed our
evaluation set with it. In order to create as few false positives as pos-
sible, we used its conservative mode. Unfortunately, Marx crashed
during the analysis of 483.xalancbmk. The results of the analysis
can be seen in Table 4. Compared to Marx, we have considerably
higher recall with better precision. Averaged over the CPU2006
benchmarks supported by Marx, vps achieves 98.2% recall (91.8%
for Marx) and on CPU2017 97.4% versus 70.9%, respectively. This

Table 5: Object creation and destruction accuracy results,

showing the number of vtable references in the code as

found in the ground truth and as identified ormissed by our

analysis.

Program #GT # identified #missed

447.dealII – – –
450.soplex 102 228 0
453.povray 103 226 0
471.omnetpp 372 871 0
473.astar 0 8 0
483.xalancbmk 2,918 6,530 0

510.parest_r 12,482 25,804 0
511.povray_r 103 224 0
520.omnetpp_r 1,381 3,280 0
523.xalancbmk_r 2,790 6,323 0
526.blender_r – – –
541.leela_r 87 180 0

MongoDB 8,054 11,401 0
MySQL 8,532 11,524 0
Node.js 7,816 19,204 0

does not come at the cost of more false positives, as our precision is
similar on CPU2006 (94.5% vs. 95.4%) and much better on CPU2017
(91.1% vs. 65.8%). For large real-world applications like MySQL and
MongoDB, vps identifies 16.3% and 28.1% more virtual callsites with
better precision (98.5% vs. 88.8% for MySQL and 99.7% vs. 90.9% for
MongoDB).

Overall, our analysis shows that vps is precise enough to pro-
vide an application with protection against control-flow hijacking
attacks at virtual callsites. The evaluation showed that on aver-
age only 2.5% when comparing against VTV and 0.5% comparing
against CFIXX of the vcalls were missed. Since binary analysis is
a hard problem, the results are very promising in showing that a
sophisticated analysis can almost reach the same degree of protec-
tion as a source based approach. In addition, it shows that even
source code approaches such as VTV do not find all virtual callsite
instructions and can benefit from binary-only approaches such as
vps. Furthermore, the number of false positives show the sensibility
of our approach to handle them during instrumentation rather than
assume their absence.

7.2 Object Initialization/Destruction Accuracy

To avoid breaking applications, vps must instrument all valid ob-
ject initialization and destruction sites. To ensure that this is the
case, we compare the number of vtable-referencing instructions
found by vps to a ground truth. We generate the ground truth
with an LLVM 4.0.0 pass that instruments Clang’s internal func-
tion CodeGenFunction::InitializeVTablePointer(), which
Clang uses for all vtable pointer initialization.

Table 5 shows the results for the same set of applications we used
in Section 7.1. We omit results for 447.dealII from SPEC CPU 2006
and 526.blender_r from SPEC CPU 2017 because these benchmarks
fail to compile with LLVM 4.0.0. The results for the remaining appli-
cations show that our analysis finds all vtable-referencing instruc-
tions. It conservatively overestimates the set of vtable-referencing
instructions, ensuring the security and correctness of vps at the
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Figure 5: Normalized runtime for C++ programs in SPEC

CPU2006 and CPU2017, with cumulative configurations: (i)

only instrument vtblptr writes; (ii) also instrument virtual

call instructions; (iii) secure the safe region by marking all

pages unwritable, and only selectively mprotect-ing them if

they are accessed from our own instrumentation code; and

(iv) include offline dynamic analysis results, reducing the

need for hot-patching.

cost of a slight performance degradation due to the overestimated
instruction set.

7.3 Performance

This section evaluates the runtime performance of vps by measur-
ing the time it takes to run each C++ benchmark in SPEC CPU2006
and CPU2017. We compare vps-protected runtimes against the
baseline of original benchmarks without any instrumentation. We
compile all test cases as position-indepedent executables with GCC
6.3.0. For each benchmark, we report the median runtime over 11
runs on a Xeon E5-2630 with 64GB RAM, running CentOS Linux 7.4
64-bit. We use a single additional run with more logging enabled
to obtain statistics such as the number of executed virtual calls.
Table 6 details our results.

Our results show the variety in properties of C++ applications.
Some programs make little to no use of virtual dispatching, e.g.,
444.namd, 508.namd_r, 531.deepsjeng_r, and 473.astar. Others con-
tain thousands of vtblptr writes and virtual callsites, e.g., 510.parest_r
with over 12,000 vtblptr writes, or 483.xalancbmk in CPU2006 with
more than 1,300 verified virtual callsites. Further details are shown
in the first group in Table 6.

The comparison of verified virtual calls (true positive) and regu-
lar indirect calls (false positive) shows the accuracy of our analysis.
Almost all vcall candidates turn out to be real vcalls. Furthermore,
with absolute numbers of executed virtual calls and vtblptr writes in
the billions, it is clear that our instrumentation must be lightweight.
The second group in Table 6 depicts the exact numbers.

The runtime overhead of our instrumentation varies from 0%
for programs with little to no virtual dispatch code to 35% for the
worst-case scenario (483.xalancbmk). In almost all cases, we see
a correlation between increased overhead and number of instru-
mentation points (vtblptr writes and virtual calls). An exception is
511.povray_r, which shows a 15% performance decrease despite a
relatively low number of vcalls and vtblptr writes. Further inspec-
tion shows that this is caused by the 6 false positives candidate
vcalls; if we disable hot-patching, our vcall instrumentation code
is called over 18 billion times. While we remove instrumentation
hooks for the majority of these cases, which are not real vcalls, our
current implementation does not remove the Dyninst trampolines.
These trampolines are the source of the unexpected overhead. The
numbers depicting the comparison of the uninstrumented baseline
runs to vps-protected runs are shown in the third group in Table 6.

To better understand the overhead of vps, we gathered detailed
statistics for both SPEC CPU2006 and SPEC CPU2017 in varying
configurations. We first run SPEC with only instrumentation for
vtblptr writes enabled. In this run, the entire safe region is read-
/writable and the instrumentation only (i) computes the address
in the safe region to store the vtable pointer at, and (ii) copies the
vtable pointer there. In the second configuration, we additionally
instrument virtual calls. We check whether candidates are actual
vcalls by testing the call’s first argument and, if it can be deref-
erenced, looking this value up in the list of known vtables. We
then either patch verified vcalls to enable the fast path, or remove
instrumentation for false positives. The fast path fetches the vtable
pointer by dereferencing the first argument, and then compares it
against the value stored in the safe region. The third configuration
additionally makes the safe region read-only and uses a segfault
handler to mark pages writable on demand. Finally, the fourth con-
figuration includes dynamic analysis results, removing the need to
hot-patch previously verified vcalls at runtime. The results show
that the majority of vps’s overhead stems from (i) vtblptr writes,
and (ii) virtual callsite instrumentation. Figure 5 details the numbers
of this evaluation.

Overall, with a geometric mean performance overhead of 11% for
SPEC CPU2006 and 9% for SPEC CPU2017, vps shows a moderate
performance impact. As expected, it does not perform as well as a
source-based approach such as VTV with reported 4% geometric
mean for SPEC CPU2006 [43]. However, it outperforms compara-
ble previous work (VCI with 14% [14] and T-VIP with 25% [17])
and performs slightly worse than Marx’s VTable Protection with
a reported 8% geometric mean for SPEC CPU2006, however, with
better accuracy and additional type integrity.

8 DISCUSSION

This section first discusses the susceptibility of vps to COOP at-
tacks [38]. Next, we discuss the limitations of vps.
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Table 6: vps performance results and runtime statistics. For each binary, this table shows (i) binary instrumentation details,

depicting the number of instrumented vtblptr writes (#vtblptr), positive virtual calls (#positive), and candidate vcalls (#candi-

dates); (ii) runtime statistics, listing the number of true positive (#TP) and false positive (#FP) virtual calls, and the total number

of virtual calls (#vcalls) and vtblptr writes (#vtblptr); and (iii) runtime overhead, listing runtime overhead (vps) compared to

the baseline (base) in seconds.

Binary instrumentation Runtime statistics Runtime overhead

#vtblptr #positive #candidates #TP #FP #vcalls #vtblptr base vps

444.namd 6 0 2 0 0 0 2,018 343.5 342.9 (+ 0%)
447.dealII 4,283 161 1,459 47 0 97m 21m 289.7 299.2 (+ 3%)
450.soplex 120 195 364 48 0 1,665,968 40 215.8 220.2 (+ 2%)
453.povray 98 21 91 21 6 101,743 162 135.8 153.3 (+13%)
471.omnetpp 507 117 677 327 0 1,585m 2,156m 290.0 370.2 (+28%)
473.astar 0 0 1 0 0 0 0 350.3 351.6 (+ 0%)
483.xalancbmk 4,554 1,348 11,623 1,639 0 3,822m 2,316m 185.0 249.4 (+35%)

Geometric mean [SPEC CPU2006] + 11%

508.namd_r 48 0 0 0 0 0 21 271.8 271.8 (+ 0%)
510.parest_r 12,206 243 4,539 350 4 2,625m 119m 586.3 603.1 (+ 3%)
511.povray_r 113 19 121 21 6 4,577 183 498.7 572.0 (+15%)
520.omnetpp_r 2,591 447 5,310 751 0 7,958m 2,070m 507.4 661.7 (+30%)
523.xalancbmk_r 4,512 801 30,771 2,844 0 4,873m 2,314m 366.8 461.5 (+26%)
526.blender_r 43 37 174 4 46 11 3 325.8 328.6 (+ 1%)
531.deepsjeng_r 0 0 0 0 0 0 0 345.1 353.1 (+ 2%)
541.leela_r 177 0 2 0 0 0 404,208 535.5 534.6 (+ 0%)

Geometric mean [SPEC CPU2017] + 9%

8.1 Counterfeit Object-oriented Programming

CFI approaches targeting C++ must cope with advanced attackers
using Counterfeit Object-oriented Programming (COOP) attacks
[11, 38]. This attack class thwarts defenses that do not accurately
model C++ semantics. As we argue below, vps reduces the attack
surface sufficiently that practical COOP attacks are infeasible.

For a successful COOP attack, an attacker must control a con-
tainer filled with objects, with a loop invoking a virtual function
on each object. The loop may be an actual loop, called a main loop

gadget, or can be achieved through recursion, called a recursion

gadget. We refer to both types as loop gadget. The attacker places
counterfeit objects in the container, allowing them to hijack control
flow when the loop executes each object’s virtual function. To pass
data between objects, the attacker can overlap the objects’ fields.

The first restriction vps imposes on an attacker is to prevent
filling the container with counterfeit objects; because the objects
were not created at legitimate object creation sites, the safe memory
does not contain stored vtblptrs for them. An attacker has only two
options to craft a container of counterfeit objects under vps: either
the program allows attackers to arbitrarily invoke constructors and
create objects, or the attacker can coax the program into creating
all objects needed on their behalf. The former occurs (in restricted
form) only in programs with scripting capabilities. The latter sce-
nario, besides requiring a cooperative victim program, hinges on
the attacker’s ability to scan data memory to find all needed objects
without crashing the program (hence losing the created objects)
and filling the container with pointers to these.

The second restriction is prohibiting overlapping objects (used
for data transfer in COOP), since objects can only be created by
legitimate constructors. As a result, a COOP attack would have to
pass data via argument registers or scratch memory instead. Data

passing via argument registers works only if the loop gadget does
not modify the argument registers between invocations. Moreover,
the virtual functions called must leave their results in the correct
argument registers when they return. Passing data via scratch mem-
ory limits the attack to the use of virtual functions that work on
memory areas. The pointer to the scratch memory area must then
be passed to the virtual function gadgets either via an argument
register (subject to the earlier limitations), or via a field in the ob-
ject. To use a field in the object as a pointer to scratch memory, the
attacker must overwrite that field prior to the attack, which could
lead to a crash if the application tries to use the modified object.

As a third restriction, vps’s checks of the vtblptr at each vcall
instruction limit the virtual functions attackers can use at a loop
gadget. Only the virtual function at the specific vtable offset used by
the vcall is allowed; attackers cannot “shift” vtables to invoke alter-
native entries. This security policy is comparable to vfGuard [35].

To summarize, vps restricts three crucial COOP components:
object creation, data transfer, and loop gadget selection. Because all
proof-of-concept exploits by Schuster et al. [38] rely on object over-
lapping as a means of transferring data, vps successfully prevents
them. Moreover, Schuster et al. recognize vfGuard as a significant
constraint for an attacker performing a COOP attack. Given that
vps raises the bar even more than vfGuard, we argue that vpsmakes
currently existing COOP attacks infeasible.

We found that multiple of the virtual callsites missed by VTV (as
shown in Section 7.1) reside in a loop in a destructor function (sim-
ilar to the main loop gadget example used by Schuster et al. [38]).
Because the loop iterates over a container of objects and uses a
virtual call on each object, COOP attacks can leverage these missed
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callsites as amain loop gadget even with VTV enabled. This demon-
strates the need for defense-in-depth, with multiple hurdles for an
attacker to cross in case of inaccuracies in the analysis.

8.2 Limitations

At the moment, our proof-of-concept implementation of the in-
strumentation ignores object deletion because it does not affect
the consistency of the safe memory. As a result, when an object is
deleted, its old vtblptr is still stored in safe memory. If an attacker
manages to control the memory of the deleted object, they can
craft a new object that uses the same vtable as the original object.
Because the vtblptr remains unchanged, this attack is analogous
to corrupting an object’s fields and does not allow the attacker
to hijack control. Thus, while our approach does not completely
prevent use-after-free, it forces an attacker to re-use the type of the
object previously stored in the attacked memory.

Another limitation of our approach lies in the runtime verifica-
tion of candidate vcall sites. If an attacker uses an unverified vcall
instruction, they can force the analysis instrumentation to detect a
“false positive” vcall and remove the security instrumentation for
this instruction, leaving the vcall unprotected. Because we cache
analysis results, this attack only works for vcall sites that are unver-
ified in the static analysis and have never been executed before in
any run of the program (since otherwise only the security check is
performed), leading to a race condition between the analysis instru-
mentation and the attacker. The only way to mitigate this issue is
by improving coverage during the dynamic profiling analysis and
therefore reducing the number of unverified vcalls. This is possible
by running test cases for the protected program or through tech-
niques such as fuzzing [22, 36]. Note also that this attack requires
specific knowledge of an unverified vcall; if the attacker guesses
wrong and attacks a known vcall, we detect and log the attack.

vps inherits some limitations from Dyninst, such as Dyninst’s
inability to instrument functions that catch or throwC++ exceptions
and Dyninst’s inability to instrument functions for which it fails to
reconstruct a CFG. These limitations are not fundamental to vps
and can be resolved with additional engineering effort.

Finally, we note that our safe memory region implementation—
an orthogonal research topic [27] and merely a building block for
vps—can be enhanced to provide stronger protection against prob-
ing attacks [20, 32]. For example, this can be done by using hardware
features such as Memory Protection Keys (MPK) [10]. In the cur-
rent implementation, an adversary might still be able to overwrite
values in the safe memory region under the right circumstances.

9 RELATEDWORK

Marx [33] reconstructs class hierarchies from binaries for VTable
Protection and Type-safe Object Reuse. VTable Protection verifies at
each vcall whether the vtblptr resides in the reconstructed class hier-
archy. However, the analysis is incomplete and the instrumentation
falls back to PathArmor [45] for missing results. Marx’s Type-safe
Object Reuse prevents memory reuse between different class hier-
archies, reducing the damage that can be done with use-after-free.
However, this approach leaves considerable wiggle room for at-
tackers for large class hierarchies. In contrast, vps does not rely on
class hierarchy information and provides stronger security by only

allowing exactly correct types. Moreover, Marx only protects the
heap whereas vps protects all objects.

VTint [48] instruments vtables with IDs to check their validity,
but unlike vps allows exchanging the original vtblptr with a new
pointer to an existing vtable. Moreover, VTint breaks the binary in
case of false positives.

VTPin [37] overwrites the vtblptr whenever an object is freed
to protect against use-after-free, but it requires RTTI and does not
prevent vtblptr overwrites in general.

vfGuard [35] identifies vtables and builds a mapping of valid
target functions at each vtable offset. At vcalls, it checks the target
and calling convention. Unlike vps, vfGuard allows fake vtables
as long as each entry appears in a valid vtable at the same offset.
Further, vfGuard may break the binary in case of false positives.

T-VIP [17] protects vcalls against fake vtables, but breaks the
binary when vtables reside in writable memory (e.g., in .bss).
Moreover, unlike vps, T-VIP uses potentially bypassable heuristics.

VCI [14] only allows a specific set of vtables at each vcall, mimick-
ing VTV [43]. When the analysis cannot rebuild the sets precisely,
VCI falls back to vfGuard. Moreover, false positive virtual callsites in
VCI break the application, as may incomplete class hierarchies (e.g.,
due to abstract classes [33]). In contrast, vps allows calls through
any legitimately created object. Moreover, even in the hypothetical
case of a perfect VCI analysis, VCI allows changing the vtblptr to
another one in the set, unlike vps.

VTV [43] is a GCC compiler pass that only allows a statically
determined set of vtables at each vcall, like most binary-only ap-
proaches [14, 17, 33, 35].

CFIXX [7] is the state-of-the-art source-based C++ defense. Like
vps, it stores vtblptrs in safe memory and fetches them at each
callsite. Given the lack of comparison against the vtblptr as stored
in the object, CFIXX prevents but does not detect vtable hijacking.
As an LLVM compiler extension, CFIXX cannot protect applica-
tions for which no source code (and LLVM compilation) is available.
Therefore, proprietary legacy applications cannot be protected af-
terwards. While CFIXX and vps offer similar security, our binary-
level analysis is completely novel. Unlike source-level analysis, our
analysis must consider both direct and indirect vtable accesses.
Moreover, identifying the virtual callsites for subsequent security
instrumentation is challenging given the lack of type information.

10 CONCLUSION

In this paper, we presented vps, a practical binary-level defense
against C++ vtable hijacking. While prior work restricts the tar-
gets of virtual calls, we protect objects at creation time and only
allow virtual calls reachable by the object, sidestepping accuracy
problems. vps improves correctness by handling false positives at
vcall verification. During our evaluation, we also uncovered several
inaccuracies in VTV, a source-based approach that is considered
the state-of-the-art among C++ defenses. We release vps as open
source software to foster research on this topic.
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