
UNCONTAINED: Uncovering Container Confusion in the Linux Kernel

Jakob Koschel†

Vrije Universiteit Amsterdam
j.koschel@vu.nl

Pietro Borrello†

Sapienza University of Rome
borrello@diag.uniroma1.it

Daniele Cono D’Elia
Sapienza University of Rome

delia@diag.uniroma1.it

Herbert Bos
Vrije Universiteit Amsterdam

herbertb@cs.vu.nl

Cristiano Giuffrida
Vrije Universiteit Amsterdam

giuffrida@cs.vu.nl
† Equal contribution joint first authors

Abstract
Type confusion bugs are a common source of security prob-
lems whenever software makes use of type hierarchies, as an
inadvertent downcast to an incompatible type is hard to detect
at compile time and easily leads to memory corruption at run-
time. Where existing research mostly studies type confusion
in the context of object-oriented languages such as C++, we
analyze how similar bugs affect complex C projects such as
the Linux kernel. In particular, structure embedding emulates
type inheritance between typed structures. Downcasting in
such cases consists of determining the containing structure
from the embedded one, and, like its C++ counterpart, may
well lead to bad casting to an incompatible type.

In this paper, we present UNCONTAINED, a systematic, two-
pronged solution to discover type confusion vulnerabilities re-
sulting from incorrect downcasting on structure embeddings—
which we call container confusion. First, we design a novel
sanitizer to dynamically detect such issues and evaluate it
on the Linux kernel, where we find as many as 11 container
confusion bugs. Using the patterns in the bugs detected by
the sanitizer, we then develop a static analyzer to find similar
bugs in code that dynamic analysis fails to reach and detect
another 78 bugs. We reported and proposed patches for all the
bugs (with 102 patches already merged and 6 CVEs assigned),
cooperating with the Linux kernel maintainers towards safer
design choices for container manipulation.

1 Introduction

Complex software often makes use of class and type hier-
archies to achieve modularity in the design and favor code
reuse for operations meant to work on similar objects. Inter-
estingly, this phenomenon is not exclusive to software written
in object-oriented languages. One compelling case involves

the C language, as implementors of kernels and large user-
land applications commonly resort to custom means, namely
structure embedding, to model inheritance between typed
structures. In the lack of explicit language provisions, the
validity of casting operations becomes an implicit assumption
from code semantics (i.e., on implementation correctness).

Structure embedding operates by declaring an instance of
a more general typed structure (the parent) as a field of a
more specific one (the child). A well-known example is the
list_head structure in the Linux kernel. In this paper, we will
sometimes refer to such structures as objects. Code that needs
to access the more general representation of an object, thus
realizing an upcast, will simply use the member field for the
parent in the object. This operation is intuitively safe. Code
that needs to access a more specialized representation of an
object, thus realizing a downcast, will (unsafely) manipulate
the parent pointer to recover the address of the child.

In more detail, an object downcast subtracts the offset of
the parent field in the child object from the address available
for the parent, yielding the address of its container structure
(i.e., the child). The term container follows from the popular
container_of macro pioneered by the Linux kernel. Issuing a
downcast is not only always unsafe, but even not conforming
to any C language standard [43]. Thus, the correctness and
safety burden is on the shoulder of the developers, who have to
guarantee through program semantics that the requested child
type is correct. Failing to meet this requirement would cause
a type confusion, which may have possibly disastrous conse-
quences, such as a memory corruption vulnerability [39].

For object-oriented languages, runtime type information
(RTTI) enables straightforward validation of downcasting
operations. For example, current solutions that look for
type confusion in C++ code rely on forms of RTTI track-
ing [13, 15, 21, 31]. Solutions with provisions for C code can
detect (some) cases of type confusion by intercepting heap

1

allocations of objects and binding them with their top-level
allocation type [13, 31] in userland code. Automatic type
identification is difficult in C programs due explicit/implicit
unions, pointer casting, allocation wrappers, and other factors
as shown in previous work [16, 58]. For kernels, current type-
based solutions resort to manually annotating allocation sites
with the necessary type information [15].

In this paper, we take a systematic approach to discover
type confusion vulnerabilities resulting from incorrect down-
casting on structure embeddings, which we call container
confusion. We design a new sanitizer that does away with
runtime type tracking of objects and uses instead information
on object allocation boundaries, which we obtain using an off-
the-shelf solution. In more detail, we rely on redzones from
memory sanitization literature [50] to augment allocation sites
for out-of-bound access detection. Our sanitizer checks type
compatibility for a downcasting operation by checking the
relative position of the embedded parent structure, the outer
child structure, and the redzones. This scheme transforms a
type check in multiple straightforward structure bound checks,
with low runtime overhead and no manual code changes.

We apply our sanitizer to the Linux kernel, one of the most
complex and security-sensitive program instances. An initial
study of its code base, which we conducted to gauge the
potential bug surface, reveals more than 50,000 occurrences
of container_of involving nearly 4,000 structure types. The
type graph is also highly connected, with extreme cases such
as list_head used as parent for over 1,800 child types.

We fuzzed a sanitized build of the kernel for one week
and uncovered 11 cases of container confusion, including
long-standing container confusion bugs present in its code
base since 18 years. As the kernel is continuously fuzzed
under multiple sanitizers and configurations, these findings
lead us to argue that our approach can find bugs that current
state-of-the-art testing practices fail to capture.

By analyzing the nature of such bugs, we identify five con-
tainer confusion patterns of general interest. We use such
patterns to develop a static code analyzer that can process the
whole kernel in only a few seconds, allowing us to reach
also code compartments that fuzzers may not cover. The
static analyzer identifies 366 potential cases of confusion:
by manual analysis, we identify 78 other bugs along with 179
anti-patterns where code correctness hinges only on implicit
assumptions on program semantics.

We reported our findings to the Linux kernel maintainers,
who acknowledged them, and proposed patches for all the
bugs we found. At the time of writing, 102 patches have
been merged in the kernel, and 6 CVE identifiers have been
assigned for bugs whose security implications were imme-
diately apparent. Our reports sparked valuable discussions
which, among others, resulted in upgrading the C standard (to
mitigate recurrent issues that we found) and in an attempt to
change the list iterator integral to the kernel.

In sum, this paper proposes the following contributions:

• We systematize a class of type confusion bugs, showing
how C programs are affected by incorrect downcasting
on structure embeddings. We dub it container confusion.

• We design a sanitizer for them that does away with type
tracking and show its applicability to the Linux kernel.

• We derive 5 general patterns of container confusion from
bugs we found in the kernel and design a static analyzer
around them to make our approach scale in coverage.

• We evaluate our approach on a recent Linux kernel ver-
sion, identifying 11 bugs with dynamic analysis (e.g.,
fuzzing) and another 78 bugs through our static analyzer.

Our sanitizer and static analyzer together form a framework,
termed UNCONTAINED, which is open source and available
at: https://vusec.net/projects/uncontained.

2 Background

In this section, we will provide the relevant background to
understand the remainder of the paper.

2.1 Type Confusion Bugs in C++... and in C
Casting an object to an incompatible type violating casting
rules (i.e., bad-casting) causes type confusion. For instance,
a static downcast in C++ checks only if the source and des-
tination types are in the same type hierarchy, but not if the
runtime destination type is the expected one. As a result, large
C++ projects, such as the major browsers, parts of Windows,
and the Oracle JVM [21], are rife with type confusion bugs.

Downcasting in C. The problem is not limited to object-
oriented languages such as C++ but also extends to large
programs written in C. Since C is not an object-oriented
programming language, it does not support classes like C++.
However, developers use structure embedding to benefit from
an approximation of classes and inheritance. In particular,
properties shared by multiple types are defined as a struct
embedded in all the relevant types. In such a way, all the child
types inherit the struct members declared in the parent type
that is embedded. We show a simplified example of such use
in Listing 1. Since the child type includes the parent type in
this design, it is called a container.

Analogous to C++, we require primitives to go from the
child type to its parent (“upcasting”) and from the parent to
its child type (“downcasting”). Upcasting is implemented by
obtaining a pointer to the embedded parent structure from
the child structure and is guaranteed safe. Downcasting is
not defined in the C standard since it would require using a
pointer to the parent structure to obtain a pointer outside of the
memory defined by the type of the parent structure itself [43].
Still, many projects, including the Linux kernel, do exactly
that. Given a pointer to the parent in a type hierarchy based

2

https://vusec.net/projects/uncontained

on structure embedding, they implement their own version of
downcasting, often in the form of a macro, that uses pointer
arithmetic to calculate a pointer to the child type.

Such a macro is often named container_of. The reference
implementation in the Linux kernel is shown in Listing 2. The
container_of macro is not exclusive to the Linux kernel but
present in many large C projects such as Qemu, Nodejs, Xorg,
the Windows kernel, git, FreeBSD, and XNU.

List Iterators. As an example, consider the popular list_ ⌋

head structure that programmers embed in their data structures
in the Linux kernel to create a double-linked circular list,
with next and prev pointers pointing to the next and previous
list_head element of the list. Iterating over a list, we know
we have reached the end when we encounter the same pointer
a second time. An empty list has its next and prev pointers
pointing to itself. Issuing a container_of on a list_head allows
access to the derived type, i.e., the element of the entry.

While there are different ways to use list_head, adding
a linked list to a structure in the Linux kernel is a matter of
embedding a list_head whose next field points to the first entry
of the list, while that of the last entry points back to the list_ ⌋

head in the “owning” data structure. In this way, all list entries
have the same type, except the owning structure that anchors
the head of the circular list. Similarly, it is safe to issue a
container_of from any list entry, except for the list_head in
the owning structure, where it would lead to container/type
confusion. The owning structure need not even be a struct, as
it could also be a single list_head variable.

To iterate over a list, the kernel uses macros such as list_ ⌋

for_each_entry. It repeatedly follows the next pointer to find
the next list_head and then uses container_of to set the iterator
to the base of the entry that embeds it. For instance, we can
iterate over all inodes of a superblock as follows:

struct superblock *sb; // owning data structure ->
struct superblock embeds 'struct list_head
s_inodes'

↪→

↪→

struct inode *inode; // iterator -> struct inode
embeds 'struct list_head i_sb_list'↪→

...
list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
spin_lock(&inode->i_lock);
... // do more with inode

}

This is safe if the possibly invalid list iterator, upon loop ex-
iting, is not used afterwards. While the most common, list_ ⌋

head is not the only iterator in the Linux kernel but most work
in a similar way. Well-known further examples include single-
linked lists (hlist_node) and red-black trees (rb_node).

This paper will highlight several cases where iterator in-
variants are violated, resulting in buggy code.

// parent struct
struct usb_request {

void *buf;
unsigned length;
dma_addr_t dma;
...

}
// child struct
struct gr_request {

struct usb_request req; // member field
...
struct gr_dma_desc *first_desc;
...

};
// child struct
struct goku_request {

struct usb_request req; // member field
...
unsigned mapped:1;

};

Listing 1: Structure embedding example, where gr_request

and goku_request “inherit” from usb_request.

#define container_of(ptr, type, member) ({ \
void *__mptr = (void *)(ptr); \
((type *)(__mptr - offsetof(type, member))); \

})

Listing 2: container_of implementation in the Linux kernel.

2.2 Sanitizers
Sanitizers are runtime tools to detect undefined behavior in
programs, typically through compiler-based instrumentation
that checks undefined behavior. The best-known example
is AddressSanitizer (ASan) [50], which detects memory er-
rors such as buffer overflows and use-after-frees. ASan in-
struments every memory access with a check that consults
a shadow memory to see if the memory access is valid. In
particular, to detect buffer overflows, ASan pads memory allo-
cations with redzones and poisons the memory in the shadow
memory (setting it to a nonzero value) so that any future ac-
cess results in an ASan error. In this paper, we will repurpose
ASan redzones to detect object boundaries.

3 Container Confusion in the Linux Kernel

In this section, we discuss security risks that can arise from
container confusion, examine a real-world bug as a running
example, and show to what extent the Linux kernel resorts to
structure embedding.

3.1 Security Implications
Like C++’s static_cast, the container_of macro does not per-
form runtime checks to verify whether the structure is actually
contained within the expected outer structure. When this is
not the case, container confusion leads the program to access

3

1 static int gr_dequeue(struct usb_ep *_ep,
2 struct usb_request *_req) {
3 struct gr_request *gr_req; // renamed: was `req`
4 ...
5 struct gr_ep *ep = ...; // derived from `_ep`
6 list_for_each_entry(gr_req, &ep->queue, queue) {
7 if (&gr_req->req == _req)
8 break;
9 }

10 if (&gr_req->req != _req) {
11 ret = -EINVAL;
12 goto out;
13 }
14 ...
15 }

Listing 3: Using the list iterator gr_req past its validity causes
container confusion.

memory under wrong assumptions on its layout. Two base sce-
narios are possible: a) the structure is embedded in a different
container, leading to member access over memory contents
typed for another layout; or b) the structure is not embedded
in a container, leading to a pointer that is out-of-bounds by
the relative offset assumed within the container.

The security implications of bad casting have been well-
researched for C++ (e.g., in the CaVeR paper [39]) and simi-
larly apply here, being container_of equivalent to C++’s static
downcasting. Such effects can range from subtle state corrup-
tions to controlled out-of-bounds accesses that attackers can
evolve for exploit construction. The security risk is mainly
dependent on structure layouts, for example when memory
containing function pointers can be overwritten. To probabilis-
tically mitigate these and other issues, the Linux kernel can
randomize the layout of some structures at compile time [27].
While this can make exploitation less reliable, in some cases it
may also turn an unexploitable bug into a security vulnerabil-
ity. In fact, as the offset for the embedded structure changes,
also does the memory pointed by the type-confused pointer,
directly affecting the bug exploitability (for example, when
further memory corruption becomes possible under some ran-
domized layouts). At the time of writing, only a few structure
types (65 in the entire kernel) can undergo randomization: en-
abling it globally (as done in research operating systems [17])
can be difficult as code may assume a specific layout for some
structures, while others have layouts that are tuned for better
performance [12].

We will show concrete examples of security risks uncov-
ered by the dynamic and static analyses of UNCONTAINED
in Sections 6 and 7.3, where we outline, among others, a vul-
nerability that breaks Kernel Address Space Randomization
(KASLR) and a controlled out-of-bound write. We will also
discuss examples of bugs that may affect execution semantics.

list_head work_struct hlist_node timer_list qspinlock

Figure 1: Type graph for container_of (and alike) instances.

3.2 Running Example

We discuss next our running example (Listing 3) involving
the kernel USB stack to better illustrate container confusion.

The function gr_dequeue() iterates over a list of requests
to find and remove the one matching the supplied _req argu-
ment. Under correct operation, container_of(&ep->queue.next,
struct gr_request, queue) in the macro at line 6 takes the
address of field queue in a gr_request list entry and subtracts
a quantity χ=offsetof(struct gr_request, queue) to make it
point to the entry itself.

However, if the list is empty or does not contain it, the exe-
cution leaves the list iterator variable gr_req with a container-
confused pointer. As mentioned in Section 2.1, the list iterator
would incorrectly reference the owning structure (i.e., the
list head), which has gr_ep type. The confused container_ ⌋

of subtracts χ from the pointer to the field queue in this other
structure: the result will point somewhere within structure *ep.

The exploitability of the bug depends on the position of
field req, used at line 10, within gr_request structures. List-
ing 1 shows the partial structure layout. Had the position been
“deeper”, the resulting pointer could have reached and sur-
passed the outer gr_ep structure, referencing the adjacent heap
storage. Were _req to match such an out-of-bound pointer,
the code attempts to remove a list entry that is not present,
possibly causing further memory corruption.

Rich discussions followed our disclosure of the bug to the
Linux kernel mailing list. As a result, the maintainers opted
to migrate to the C11 standard, which would allow them to
define the iterator variable with a scope limited to specific
loops, preventing its usage afterwards. In the next section,
we will examine the potential surface for container confusion
cases in the Linux kernel.

4

3.3 Type Graph Complexity

To examine the use of structure embedding in the Linux ker-
nel, we analyze the prevalence of container_of and its deriva-
tives, as container_of takes part in several macros and inline
functions. Depending on the selected kernel configuration, we
note that the build system of the kernel can choose between
different function implementations and even type definitions.
Hence, we study the Linux kernel v.5.17 with the configura-
tion in use to Google’s syzbot [18] for continuous fuzzing.

We write an LLVM compiler pass to spot all the uses of
container_of in the source code as lowered during compilation
and track the parent and child types at each such use. This
allows us to build a type graph that captures the possible
containment relationships between different structure types.
We count over 56,000 downcast instances (as container_of or
any of its derivatives) under our kernel configuration.

As the paper will detail, the type graph is a foundational
element of our approach to container confusion detection.
Figure 1 shows the one being discussed here, highlighting
the relationships between the embedded types. Each node
represents a type involved in a downcast. We have a (directed)
edge between two types if we find a downcast instance that
derives a child of the destination node type from a parent of
the source node type. We also compute edge weights based
on the number of such instances.

While we count as many as 18323 types in all the code for
the build, we find 4275 of them to be involved in downcast
operations: 506 can occur as parent and 4033 as child object.
To our surprise, this implies that almost one-fourth (23.3%)
of all types are involved in structure embedding.

For example, the usb_request structure shown in Listing 1
can be embedded in 17 different child structures in use to
different USB drivers. Generally speaking, a variety of desti-
nation types may favor cases of invalid runtime downcasts.

By looking at topological properties of the type graph, we
find that 3486 of the 4033 possible destination types are not
contained in any other type, meaning no other type “inherits”
from them. 419 of the 506 possible source types have an out-
degree greater than one, meaning that they can have multiple
child types; 221 have more than 10 possible child types.

In the figure, we also highlighted the top-5 structure types
by highest number of child types: list_head (1857), work_ ⌋

struct (611), hlist_node (244), timer_list (235), and qspinlock

(223). Each colored cluster shows the possible destination
types for such a source type during downcasting.

Looking at edge weights, the structure types most often
used as parent when downcasting are list_head (22033), inode
(7669), device (4130), hlist_node (3221), and rb_node (2272).
Several of them are involved in iterators.

We also note that list_head emerges as the type with most
child types that inherit from it and as the most used parent
type across the whole kernel code base.

As the main takeaway of this study, we argue that the

list

container_of(ptr, outer_type, list)

list

container_of(ptr, outer_type, list)

outer_type

outer_type

Figure 2: Redzone layout for a valid downcast (top) and for
an invalid one (bottom). Here, list is the member field name.

prevalence of container_of and derivatives, combined with
the notable complexity of the type graph they induce, makes
a compelling case for seeking container confusion bugs.

4 UNCONTAINED Overview

In this paper, we design and implement UNCONTAINED to
detect container confusion bugs in the Linux kernel.

In Section 5, we present a novel container confusion san-
itizer that uses object boundaries to detect invalid down-
casts during dynamic analysis. After describing the design
and implementation, we evaluate effectiveness and perfor-
mance of the sanitizer by combining it with the well-known
syzkaller [19] kernel fuzzer and other benchmarks. Finally,
we use the sanitizer to analyze the occurrence of container
confusion in the Linux kernel.

Achieving code coverage with dynamic analysis on the
Linux kernel can be challenging due to the amount of com-
plex code. In Section 6, we therefore analyze the bugs we
detect through fuzzing and identify common bug patterns that
result in invalid container_of usage. Based on these patterns,
we develop a static analyzer to search for additional bugs
without suffering from the lack of code coverage inherent to
dynamic analysis in Section 7. In particular, we design and im-
plement a configurable LLVM forward and backward dataflow
analysis to identify potentially buggy code patterns. We then
analyze any additional bugs found by the static analysis, in-
cluding a worrying out-of-bounds write, and demonstrate an
acceptable rate of false positives. Although static analysis has
lower accuracy than dynamic analysis, it acts as an effective
complement for code that dynamic analysis fails to reach.

5 Container Confusion Sanitizer

This section introduces the sanitizer component of UNCON-
TAINED meant to detect cases of container confusion at run-
time. We explain its design and implementation in Section 5.1
and Section 5.2, respectively, and evaluate it in Section 5.3.

5

5.1 Design
Our sanitizer aims to expose container_of uses where an incor-
rect destination (i.e., child) type causes a container confusion.
As we anticipated in Section 1, detecting such errors with ex-
isting approaches to type confusion detection would require
maintaining a form of RTTI for each allocated object.

Our design aims instead for a general solution that does not
incur code modifications and/or pointer tracking costs while
achieving broad compatibility. The key idea is to turn a down-
casting validity check into multiple bound checks relative to
the current embedded object (the parent) and the requested
container object (the child) of a container_of operation. Parent
and child here are synonyms for inner and outer structure.

We analyze structure definitions and use the relative dis-
tances of an embedded structure from the start and the end of
its container structure as the discriminating factor for viola-
tions. When the container object is of the requested type, its
allocation boundaries will align perfectly with those that one
can infer starting from the parent pointer. A violation occurs
instead when the object enclosing the parent turns out to be
larger or smaller than expected on either side.

To insert sanitization checks, inferring the expected bound-
aries of a child object is straightforward, as both its size and
the displacement of the parent field from its start are known at
compile time. However, even at runtime, the actual boundaries
of an object are normally not available in C programs.

Object Boundaries. For reliable boundary identification,
we rely on standard runtime means in use to sanitizers that
target spatial memory safety violations. Namely, we pad ob-
ject allocations with redzones (Section 2.2) and use them to
recover object boundaries. The addresses immediately pre-
ceding and following an object will appear as invalid in the
shadow memory, while those at the boundaries will be valid.

For a container_of operation, we can thus check for the
validity of memory at the expected start and end addresses of
the requested container, and the invalidity of the memory right
before and after them, respectively. This will readily expose
mismatches between expected and actual boundaries.

Figure 2 shows an example of valid and bad downcasting,
highlighting the differences in their object redzone layouts.

We chose a redzone-based approach over other bounds-
tracking designs due to its efficiency, practicality, and compat-
ibility with complex code bases: mainly, inspections have O(1)
cost and we can build on an existing, well-tested infrastruc-
ture from memory sanitizers for kernels. Alternative design
points such as low-fat pointers [36] remain a possibility.

Container Nesting. The bounds-checking policy we just
presented may mishandle containers that are embedded in
another container. For those cases, we cannot expect the pres-
ence of redzones for the inner container, being it a structure
field. However, we can still do the validation through the

1 static int gr_dequeue(struct usb_ep *_ep,
2 struct usb_request *_req) {
3 struct gr_request *gr_req; // renamed: was `req`
4 ...
5 struct gr_ep *ep = ...; // derived from `_ep`
6 list_for_each_entry(gr_req, &ep->queue, queue) {
7 if (&gr_req->req == _req)
8 break;
9 }

10 if (!check_redzone(gr_req, sizeof(struct
gr_request))) {↪→

11 uncontained_report(gr_req);
12 }
13 if (&gr_req->req != _req) {
14 ret = -EINVAL;
15 goto out;
16 }
17 ...
18 }

Listing 4: Running example with our bound checks added.

 0.5
 1
 2
 4
 8

 16
 32
 64

 128
 256

C
o
u
n
t

container_of class: (offset of parent field, size of child)

Figure 3: Distribution of container_of invocations according
to offset of parent field and container size. Logarithmic scale.

outer container. In the Linux kernel, only 547 of its 4033
container types may incur such a scenario, whereas for 3486
no nesting is possible. Therefore, when the desired child type
of a container_of instance is one of those 547, we apply the
following scheme if the normal bound checks fail.

We note that a container_of operation carries the expected
type for the innermost container only. Moving to an outer
container, we can check if its boundaries (i.e., the redzones
around it) align with the layout expected for any of the con-
tainer types that have a field of the expected inner container
type. This information is available in the type graph (Sec-
tion 3.3) at compile time and we compute it recursively for
multi-nesting cases. If the redzones of the outermost con-
tainer do not match any feasible layout, we report a container
confusion error.

This strategy effectively allows us to avoid false positives
from container nesting. The attentive reader may notice that,
by accepting more redzone layouts as valid, we open the door
to more false negatives: however, as we will show later in this
section, the probability of such layout collisions is very low.

Time-of-use Checking. In the Linux kernel code, we found
several cases where a container_of instance sees at runtime
also objects of an incompatible type but the following code
is never affected by the confusion. For example, with list
iterators, the obtained child pointer was used only to access
the parent again through the child field corresponding to it.

6

These cases in the programming practice are not strictly bugs.
Therefore, in our design, we opted to validate a container_of

instance at the time of use for its output pointer rather than
immediately when downcasting. Listing 4 shows our running
example augmented with bound checks around redzones.

To identify uses of the output pointer, we run a standard
intra-procedural def-use [23] analysis. As the program may
modify it before dereferencing it (e.g., to access a child field),
we analyze pointer arithmetic operations and, when the modi-
fication can be determined statically, we forward the check to
the next use of the pointer. When the program dereferences it
or we can no longer follow it statically, we emit bound checks
and have them account for the modified offset, if any.

Discussion. The sanitization scheme we propose can de-
tect container confusion by relying solely on structure layout
knowledge (known at compile time) and object boundaries
(obtainable with off-the-shelf lightweight techniques). When
both sources are accurate, no false positives are possible.

Compared to an ideal design that tracks pointer types, the
price we may pay for our efficiency and compatibility relates
to false negatives when an invalid downcast involves an object
whose layout coincides with the one of a valid child type1.

To look into this dimension, we identify a domain and
a codomain for it. As domain, we study how many unique
container_of instances are present in the Linux kernel as we
consider the pair (parent field, child type) for a downcast op-
eration. We include the field as one child may embed multiple
parents. As codomain, we identify pairs of the form (offset
of parent field, size of child) for such operations, since these
are the two quantities that we use—independently from one
another—for bound checking. We count 6,526 unique in-
stances mapping to unique 3,262 pairs. A collision occurs
when two distinct instances map to the same pair.

The distribution in Figure 3 shows that 40.8% of the unique
container_of instances map to one pair exclusively, 16.9% to
2-4 pairs, 21.1% to 4-32 pairs, and only 5 of them to 100 or
more pairs. Hence, we expect collisions to be infrequent. We
then analyze them under the realistic hypothesis that incorrect
downcasts happen only over objects of related types. When
counting all the siblings and descendants in the type hierarchy
for the expected downcast type of a unique container_of in-
stance, we measure the probability of a collision to be 0.0283,
which decreases to 0.0088 when considering siblings only.

Note also that one may avoid false negatives almost entirely
by adding padding bytes to structures mapped to the same
codomain point(s). We leave this investigation to future work.

1We deem a container confused if not immediately preceded (resp., fol-
lowed) by a redzone byte and if its first (resp., last) byte is valid memory. With
a false negative, the former check lands on invalid memory and the latter on
valid memory. Note also that this property is not affected by the redzone size.

5.2 Implementation
The sanitizer of UNCONTAINED consists of two components.
The first one is a coccinelle [44] script to intercept occurrences
of container_of at the source level, which the C preprocessor
would otherwise expand before we may instrument them.

The second one is a pass for the intermediate representa-
tion (IR) of the LLVM compiler (v.12.0.1) implemented in
1640 lines of C++ code. The pass is responsible for building
the type graph of the code base, expanding the intercepted
container_of instances, and adding sanitization machinery.

We also develop a framework2 of potentially independent
interest to apply custom LLVM passes during kernel com-
pilation and run VMs for testing (e.g., with syzkaller) and
debugging, automatically spawning one with a breakpoint
attached to the found crash site for manual inspection in gdb.

To have full visibility on type information, we run our pass
as a link-time optimization. We then leverage the existing
redzone insertion and shadow memory mechanisms of Kernel
Address Sanitizer (KASAN) [33] to support object boundary
identification for stack, global, and heap-allocated variables.
While our sanitizer can coexist with KASAN’s machinery to
sanitize memory accesses for safety violations, we disable its
generation as these checks are unnecessary for our purposes.

As mentioned in the previous section, correct object bound-
ary identification is essential for precision. This aspect is not
influenced by the redzone size (for which we use KASAN’s
defaults), as the shadow memory has always 1-byte granu-
larity. However, even state-of-the-art techniques for redzones
fail to handle the edge cases we discuss next. As they may
lead to false positives, we disable confusion checks for them.

We find two object allocation schemes that require special
handling. One involves a known limitation of redzones with
arrays: in these cases, redzones cannot be inserted around their
individual elements, unless one modifies the type definition.
With a coccinelle script, we identify in the code base all
the types that take part in array allocations and disable the
validation of container_of instances using them as a child type.
For future work, we are considering the addition of machinery
to test all possible array cells when their number is known
statically, whereas for dynamic sizes the recent proposal of
bounded flexible C arrays [8] may be of help.

The second scheme involves the allocation of multiple, dif-
ferently typed structures (e.g., kalloc(sizeof(A) + sizeof(B),

...)) followed by pointer extraction for each structure. This
coding choice brings performance benefits, as it optimizes
the use of the allocator, but complicates memory sanitization
schemes. To avoid false positives for objects involved in such
allocations, we devise a coccinelle script to disable the in-
volved types from validation. However, for a few recurring
cases and if code semantics allowed doing so safely, we manu-
ally split allocations and enable container confusion detection
for types like io_buffer used in io_uring code or net_device

2Available at https://github.com/Jakob-Koschel/kernel-tools.

7

https://github.com/Jakob-Koschel/kernel-tools

private data in networking code.
Overall, for the two schemes, we disable validation for

13,926 out of 56,468 downcasts. We also highlight that the
shadow memory and redzones of KASAN operate only after
the early boot phase of the kernel. Heap objects allocated
by the boot memory allocator memblock have no redzones: we
identify and skip them using address range checks at runtime.

While we test and evaluate our sanitizer around the Linux
kernel, the adaptations needed for other subjects would be
limited. Redzone management for userland software is avail-
able in LLVM with AddressSanitizer [50], while kernels like
FreeBSD and XNU have their own KASAN implementation.

5.3 Evaluation
We run our sanitizer on the Linux kernel v.5.17 (commit
c269497d248e). For the fuzzing experiments, we use syzkaller
(commit 9e8eaa75a18a) and build two images compiled, respec-
tively, with the default kernel configuration and the one in
use to Google’s syzbot [18], as it enables additional features.
The choice is an attempt to slightly balance the exploration
of code between pervasiveness and breadth.

To stress specific/additional components, we also run typi-
cal userland workloads such as installing programs with the
aptitude package manager, executing binutils utilities, code
for SGX enclaves, and the Linux Test Project [37].

As experimental setup, we ran syzkaller for one week on
two Ubuntu 22.04.1 (Linux kernel v.5.15) host machines with
16 cores @2.3GHz (AMD EPYC 7643), using a total of 16
QEMU-KVM virtual machines with 4GB RAM and even
distribution of the default and the syzbot-configured builds.

5.3.1 Discovered Cases of Container Confusion

Our fuzzing campaign revealed 37 cases of container confu-
sion. After manual analysis of the crash sites, we identified
11 unique bugs and 10 anti-patterns (see below). The remain-
ing 16 are false positives deriving from missing redzones in
mixed-type allocations that our coccinelle scripts miss (Sec-
tion 5.2). Adding them to our filtering logic is a one-time
effort that would prevent such false positives from occurring
in future campaigns.

We consider anti-patterns type confusion cases where the
use of a confused pointer is a “controlled” case of undefined
behavior as the code does not incur a corruption only thanks
to implicit assumptions on program semantics (which may
silently change over time) and/or compiler behavior. Such
anti-patterns might silently turn into bugs in future releases.

The 11 bugs affect the following kernel subsystems:
drivers/net, net/{ipv4&6, sctp}, fs/f2fs, and sgx. We dis-
closed and proposed patches to the maintainers for all the
bugs: at the time of writing, all patches have been or are being
merged. We present five of these bugs in Section 6. The 11
bugs had not emerged, e.g., in the continuous fuzzing efforts

from Google’s syzbot, which uses state-of-the-art sanitizers
like KASAN and tests several configurations.

The 10 anti-patterns relate to places where a container con-
fusion occurred but developers manage it explicitly later. As
examples, we briefly describe two of the anti-patterns that our
sanitizer found. The first involves the function crypto_alg_ ⌋

lookup() of the Kernel Crypto API. The function can return a
pointer to a synchronous-hash structure (shash_alg) confused
as if it were an asynchronous (ahash_alg) one. However, all
the users of the function eventually check the requested in-
stance type through additional fields to differentiate them and
correctly cast the confused pointer before use. The second
involves the inet_lookup_established() networking function,
which can return a pointer to a struct inet_timewait_sock con-
fused as a struct sock. Similar to above, all the users of the
function check the socket state to differentiate them.

5.3.2 Runtime Overhead

We conduct two sets of experiments to measure the overhead
introduced by the sanitizer component of UNCONTAINED: the
bare sanitization costs with LMbench [41] and their impact
on the end-to-end throughput when fuzzing with syzkaller.

We run the LMbench programs on a single QEMU-KVM
instance with 8 GB of RAM executing on an i7-10700K CPU
host machine with minimal background activity and identical
software to the previous experiments. We repeat each exper-
iment 10 times, taking the median value for every program.
Our sanitizer introduces a geomean overhead of 74%. As a
reference, KASAN introduces a 126% overhead (with 33%
coming from redzone management, which we use too). We
list figures for the individual programs in Appendix B.

For fuzzing throughput, we measure how many test cases
one syzkaller VM executes within the first hour of fuzzing. We
take the median value of 10 experiment repetitions, starting
from an empty fuzzing corpus. The syzkaller baseline with
no sanitizers enabled executed 80348 test cases, whereas with
UNCONTAINED 69734 with a net reduction of the fuzzing
throughput of around 13%. As a reference, KASAN intro-
duced a 55% net reduction of the throughput. We find our
approach to induce an overhead3 acceptable for fuzzing.

6 Retrospective Analysis and Bug Patterns

The cases of container confusion that our sanitizer detected
when fuzzing revealed several lingering bugs and anti-patterns
in the Linux kernel. Their analysis brought out two key reflec-
tions we present next, as they motivate and form the basis of
the research from the remainder of the paper.

3One opportunity to reduce it would be to follow [52] by disabling stack
walking upon memory (de)allocation events, as it helps only for crash debug-
ging/deduplication but is expensively frequent. Each crash may be analyzed
offline by re-running the test case in an unmodified KASAN.

8

Unexplored Code. In spite of the widespread use of con-
tainers, the issues found were located in a fairly limited, yet
relevant, subset of the Linux kernel code base. Prolonging the
fuzzing campaign by a few days did not uncover new bugs.

We find this to stem directly from the inherent coverage
problem of dynamic tools. Much code may be locked under
specific kernel states [22, 61], require emulation for crossing
the hardware/software barrier with device drivers [47], or
need complex input generation logic (e.g., with protocols).
Special-purpose fuzzers [11, 45, 47, 49, 52–54, 57], which one
may run naturally on our instrumented kernels, currently exist
only for a fraction of such components.

This led to us eventually to investigate container confusion
detection through static approaches that could cover the whole
code base, even if with a diminished precision/recall.

Dynamics of Bugs. We noted a few distinctive traits in the
nature of the bugs spotted with the experiments of Section 5.3.
These may make some bugs harder to reason about, especially
for static analysis. However, as we show in Section 7, domain
knowledge (e.g., on list operations) can come to the rescue.

For example, one trait relates to whether, for a container_of

instance that sees objects incoming from a given program
path, confusion occurs on all or only a few of them (e.g., only
on a list’s owning element). Another relates to whether, on
the path(s) from the container allocation to its confused use,
pointer upcasts and downcasts involve indirection (e.g., the
address is stored in a field of another object).

In the following, we present five bug patterns that encom-
pass all the issues of Section 5.3 and represent general forms
of container confusion. These patterns are distinct, albeit not
exhaustive in terms of possible types of confusion (other than
those we encountered). Most importantly, the descriptions we
give are actionable for program analysis (Section 7).

Pattern 1 : Statically Incompatible Containers. This pat-
tern describes the most generic and shallow container confu-
sion that we identified. It involves using a type (or member
field) that is always incorrect when downcasting object point-
ers incoming from a certain program path.

Listing 5 reports an exemplary bug found when fuzzing
in the sock_init_data() function while manipulating a socket

struct. The function assumes that its struct socket* sock pa-
rameter is embedded in a socket_alloc container. This assump-
tion is correct for most sockets in the kernel, except for TUN
and TAP ones. Hence, when a program path from function
tun_chr_open() reaches the buggy function, its argument is
embedded in a tun_file container instead.

When the function assigns the socket with the owner’s UID,
the confused bytes are always set to zero in the kernel config-
uration that we tested. Any TUN or TAP socket thus appears
as owned by the root user, nullifying user-based firewall/rout-
ing rules possibly in place. The severity of the bug may be

1 static int tun_chr_open(struct inode *inode, struct
file *file) {↪→

2 struct tun_file *tfile;
3 ...
4 sock_init_data(&tfile->socket, &tfile->sk);
5 ...
6 }
7

8 struct inode *SOCK_INODE(struct socket *socket) {
9 return &container_of(socket,

10 struct socket_alloc, socket)->vfs_inode;
11 }
12

13 void sock_init_data(struct socket *sock, struct sock

*sk) {↪→

14 if (sock) {
15 ...
16 sk->sk_uid = SOCK_INODE(sock)->i_uid;
17 } else {
18 ...
19 }
20 ...
21 }

Listing 5: The first argument to sock_init_data() is contained
within tfile when called from tun_chr_open(). SOCK_INODE()
incorrectly assumes sock to be contained within a socket_alloc

struct.

even amplified by the effects of structure randomization (Sec-
tion 3.1). At the time of disclosure, the bug had been present
in the Linux kernel for more than 6 years.

Pattern 2 : Empty-list Confusion. As we anticipated
in Section 2.1, a confusion can originate when issuing a
container_of operation on the owning structure of a circular
list. When such a list is empty, the owning structure sees the
next and prev fields of its embedded list_head point to itself.
Accessing list members in a list_entry4, list_first_entry, or
list_last_entry operation causes container confusion.

Listing 6 reports an exemplary bug found in the kernel
networking stack when fuzzing. Since the inet_diag_msg_ ⌋

sctpasoc_fill() function assumes that the asoc->base.bind_ ⌋

addr.address_list list is populated without checking for it,
laddr points to a container-confused object when the list_ ⌋

entry() operates on an empty list. The code at line 11 copies
some of its fields into memory provided to userspace. As
these confused fields contain kernel heap pointers, this results
in a KASLR leak that deterministically breaks the address
randomization of the kernel, which often represents one of the
first steps in kernel exploitation [20,26,28,34]. At the time of
disclosure, the bug had been present in the Linux kernel for
almost 7 years.

Pattern 3 : Mismatch on Data Structure Operators. In-
sertion, deletion, selection, and other operations on objects

4We recall that list_entry is simply an alias for container_of.

9

1 static void inet_diag_msg_sctpasoc_fill(
2 struct inet_diag_msg *r,
3 struct sock *sk,
4 struct sctp_association *asoc) {
5 union sctp_addr laddr;
6 ...
7 laddr =

list_entry(asoc->base.bind_addr.address_list.next,↪→

8 struct sctp_sockaddr_entry, list)->a;
9 ...

10 if (sk->sk_family == AF_INET6) {
11 *(struct in6_addr *)r->id.idiag_src =

laddr.v6.sin6_addr;↪→

12 ...
13 }
14 ...
15 }

Listing 6: list_entry() assumes the presence of at least
one entry within asoc->base.bind_addr.address_list, causing
a container confusion in inet_diag_msg_sctpasoc_fill due to
the missing check for whether the list is empty.

taking part in container-based data structures (e.g., lists, trees)
should see the use of consistent types and member fields.

Listing 7 shows an exemplary bug found when fuzzing
involving the sock structure. A struct sock can be inserted into
multiple lists and therefore embeds multiple list structures.
Among others, it contains two single-linked lists using the
fields sk_bind_node and sk_node. With a list, its elements must
always be accessed via the field used to insert them into it. The
socket code manages the &tb->owners list, which holds sockets
using their sk_bind_node member. But __inet_hash_connect()

accesses the same objects using the sk_node member. In this
case, the two members are located at different offsets, thus
the downcast on the access adjusts the pointer incorrectly,
causing container confusion.

As a result, the condition at line 17, which controls a fast
path for the function, never evaluates to true. At the time of
disclosure, the bug had been present in the Linux kernel for
18+ years (i.e., the extent of its git history).

Pattern 4 : Past-the-end Iterator. Developers often rely
on a break-like logic when searching for an element in a data
structure using iterators. Program semantics may sometimes
deceive them into believing that a search will always succeed,
so they may use an iterator without checking for its validity,
which would not hold if the loop completes.

This container confusion characterized our running exam-
ple (cf. Section 3.2). Listing 8 shows another exemplary bug
that we found in SGX code when running an enclave in our
instrumented kernel build using qemu-sgx. As the function pro-
cesses an empty &encl_mm->encl->mm_list list, the tmp iterator
is never assigned a valid entry, holding a confused pointer
after the loop. At the time of disclosure, the bug had been
present in the Linux kernel for more than 2 years.

1 void inet_bind_hash(struct sock *sk,
2 struct inet_bind_bucket *tb,
3 const unsigned short snum) {
4 ...
5 hlist_add_head(&sk->sk_bind_node, &tb->owners);
6 ...
7 }
8

9 int __inet_hash_connect(..., struct sock *sk, ...) {
10 ...
11 struct inet_bind_bucket *tb;
12 ...
13 if (port) {
14 ...
15 tb = inet_csk(sk)->icsk_bind_hash;
16 ...
17 if (hlist_entry((&tb->owners)->first,
18 struct sock, sk_node) == sk &&
19 !sk->sk_bind_node.next) {
20 inet_ehash_nolisten(sk, NULL, NULL);
21 spin_unlock_bh(&head->lock);
22 return 0;
23 }
24 ...
25 }
26 ...
27 }

Listing 7: inet_bind_hash() inserts list elements using the sk_ ⌋

bind_node member, whereas __inet_hash_connect() accesses
them incorrectly using the sk_node member.

Pattern 5 : Containers with Contracts. An object embed-
ded in a data structure may come with additional metadata
(e.g., custom RTTIs [39]) that program semantics uses as an
implicit contract to control what operations can be done on it.

This is the case with the sysfs subsystem of the kernel,
which lets userspace programs inspect and control several
kernel features. Listing 9 shows a container confusion that
we found in an inspection function when fuzzing. Here, the
kobject that kobject_init_and_add() registers is not embedded
in another structure, but the buggy f2fs_attr_show() function
treats it as if embedded in a f2fs_sb_info structure.

This plays out as a “controlled” confusion, as the contract
(i.e., the companion object of type ktype at line 3) carries a
pointer, retrieved at line 11, to a function that does not access
the confused sbi supplied at line 12. We classify this as an
anti-pattern, as an imperfect knowledge of program semantics
or changes to it would open up the possibility for bugs.

Bug Counts. With our sanitizer (Section 5.3.1), we dis-
covered 6 mismatches on data structure operators, 2 cases of
empty-list confusion, and 1 case for each of the other patterns.

7 Static Analyzer

This section introduces the static analyzer component of UN-
CONTAINED, which aims to identify the container confusion

10

1 void sgx_mmu_notifier_release(struct mmu_notifier

*mn,↪→

2 struct mm_struct *mm) {
3 struct sgx_encl_mm *encl_mm = ...;
4 struct sgx_encl_mm *tmp = NULL;
5 ...
6 list_for_each_entry(tmp, &encl_mm->encl->mm_list,

list) {↪→

7 if (tmp == encl_mm) {
8 list_del_rcu(&encl_mm->list);
9 break;

10 }
11 }
12 ...
13 if (tmp == encl_mm) {
14 synchronize_srcu(&encl_mm->encl->srcu);
15 mmu_notifier_put(mn);
16 }
17 }

Listing 8: Incorrect use of the list iterator variable tmp after
the loop in sgx_mmu_notifier_release().

1 ...
2 ret = kobject_init_and_add(&f2fs_feat,
3 f2fs_feat_ktype,
4 NULL, "features");
5 ...
6 ssize_t f2fs_attr_show(struct kobject *kobj,
7 struct attribute *attr, char

*buf) {↪→

8 struct f2fs_sb_info *sbi = container_of(kobj,
9 struct f2fs_sb_info,

10 s_kobj);
11 struct f2fs_attr *a = ...;
12 return a->show ? a->show(a, sbi, buf) : 0;
13 }

Listing 9: Invalid container_of on kobj (originating from
&f2fs_feat) in f2fs_attr_show().

patterns presented in the previous section. We illustrate the de-
sign of our static analyses in Section 7.1, their implementation
in Section 7.2, and the experimental results in Section 7.3.

7.1 Design
As anticipated in Section 6, our static analyzer aims for the
code regions that are not within easy reach of current dynamic
testing solutions. We note, though, that the reflections and bug
patterns we presented involve phenomena, like indirection
via memory, that may be expensive to reason about statically.
Also, most of the bugs found involved inter-procedural flows.

For our analysis to scale to a code base as huge as the Linux
kernel while maintaining satisfying accuracy, we make the
following design choices. We cast bug pattern search to a
static information flow analysis problem, relying on def-use
information to track value propagation. The five bug pat-
terns become rules for an on-demand backward or forward
analysis where container_of instances act as sources or sinks
depending on the pattern. We extend def-use chains through

procedure boundaries (as a simplified form of [23]) and model
memory as a single, coarse-grained symbolic location for scal-
ability. We use semantic knowledge of common data structure
manipulations (e.g., list iterators) to model several flows that
involve indirection, enabling static reasoning.

We provide descriptions below for how we encode the
five bug patterns as rules for the information flow analysis.
Appendix C contains more rigorous definitions of what we
use as (and do at) sources, sinks, and path-discarding filters.

Pattern 1 . To spot statically incompatible containers, we
run a backward analysis from the pointer supplied to a
container_of instance to every operation, if any, that obtains a
pointer to an embedded structure starting from a pointer typed
as a container. If the type (or member field) is incompatible
with what container_of is asked for, we report a confusion.

Static reasoning is limited to instances for which we can
infer the container type, i.e., cases where the code computes
the parent structure pointer flowing into container_of by ref-
erencing the member field of the child structure—e.g., with
a &(child.member) pattern. Our static reasoning gives up in-
stead if the code reads the parent pointer value directly from
memory: in these cases, even complex pointer analyses may
be inconclusive due to aliasing, indirection, and other factors.

Pattern 2 . To spot potential accesses on empty lists, check-
ing only for the use of dedicated helpers (e.g., list_empty,
list_is_head, list_entry_is_head) would be prone to false pos-
itives. In fact, a code may keep track of the list size in a
separate variable and check it before any downcasting; we
find this to happen frequently in the Linux kernel.

We thus conduct a forward analysis from any occurrence
of list_{entry, next, prev, first, last} to any use of the
output pointer. If we encounter no conditional check guarding
a use in the control flow, we report a potential confusion.

When reviewing buggy code, we also noted that some code
erroneously compares the assigned pointer to NULL (whereas,
when the list is empty, the result would reference the owning
structure). Therefore, we added an analysis that detects such
checks and deems them as incorrect (unless the code did not
explicitly initialize the pointer as such before list iteration).

Pattern 3 . Object flows between operations involving
container-based data structures (e.g., insertion and retrieval
in a list) are in general hard to reason about statically, as they
involve memory contents manipulation. However, we can rely
on domain knowledge on the identity of the operations to
detect cases of container confusion from inconsistent member
selection.

We do a forward analysis from any operation on a data
structure type to any subsequent operation on the same struc-
ture (e.g., from list_add to list_entry). If the pointers sup-

11

plied to both can be determined to be the same but the con-
tainer type or field is different, we report a potential confusion.

Pattern 4 . To detect when an iterator may have outlived
its validity and cause container confusion if dereferenced, we
analyze the instances of iterator-related macros that take part
in loops. For each of them, we conduct an intra-procedural
forward analysis to see if the code uses it outside the loop. We
deem such a use as potentially confused if it is not guarded by
a conditional check (e.g., using a boolean variable set by the
loop), as developers typically insert one to assess whether the
loop stopped advancing the iterator (i.e., before invalidity).

Pattern 5 . Confusion cases on containers with contracts
are hard to spot in terms of code manipulations alone. We find
it reasonable to assume that, for a given code base, the identity
of such container types is known. For the Linux kernel, we
devise an analysis for kobject containers that one may in
principle adapt to other types from other code bases. The
analysis comes with a forward and a backward component.

For each occurrence of the kobject_init_and_add() function,
which is designed to register an object with its contract, we run
a backward analysis to identify the containment relationships
of the registered object and collect its ktype contract.

For each contract, we gather what functions of sysfs may
be called on the object by inspecting its related fields. Then,
we run a forward analysis from the kobject argument in each
such function, looking for container_of invocations incompat-
ible with any valid containment identified by the backward
component.

7.2 Implementation
We implement the general forward and backward information
flow analyses and the rules for patterns 1 , 2 , 3 , and 5
as a pass for LLVM IR in 1286 lines of C++ code. Similarly
to the dynamic analyzer (Section 5.2), we intercept every
container_of occurrence at the source level and expose its
source and destination type and object at the IR level. We
run the pass at link time so we can effectively extend def-use
chains across procedure boundaries. However, in this sce-
nario LLVM would normally merge type definitions having
an identical memory layout: to keep our analyses accurate,
we disabled this behavior by changing ~25 lines of code in
the compiler.

The forward analysis starts from an IR value representing
a source and follows its uses. When a use eventually reaches
a function call argument, the analysis continues by seeing the
uses of the arguments in the callee, recursively. The analysis
also accounts for uses that concur to the return value of a
callee, returning to the caller for continuing the analysis.

The backward analysis proceeds from a source IR value to
its reaching definition(s). When it meets a function argument,
it continues by exploring the code of each possible caller.

Description FP AP Bug

1 Statically Incompatible Containers 72 27 3
2 Empty-list Confusion 19 4 20
3 Mismatch on Data Structure Operators 16 8 1
4 Past-the-end Iterator 0 137 56
5 Containers with Contracts 0 3 0

Table 1: Reports from the static analyzer categorized as False
Positives (FP), Anti-Patterns (AP), and Bugs for each pattern.

Both analyses stop exploring a path upon reaching a sink,
a memory dereferencing operation (as we modeled memory
as a single location), or an instruction already visited when
analyzing a particular source. The rules for the patterns to
check specify sources, sinks, direction of the exploration, and
filters (if applicable) to stop a path exploration early.

Since our analysis visits each instruction at most once for
each source location, and source locations are generally lim-
ited in number, we can approximately estimate the cost of our
analysis as linear in the number of LLVM IR instructions.

As an implementation refinement, for pattern 2 we sup-
press false positives involving container confusion in func-
tions passed as callbacks for list_sort() or seq_operations

structures. The reason is that the latter come with additional
logic for emptiness checks before invoking the callbacks.

To ease the analysis of the reported confusion cases, we
implement a Visual Studio Code plugin that recovers and
presents to the developer the relevant code locations involved.

For pattern 4 , when reporting the bug presented in Sec-
tion 3.2, the kernel maintainers pointed us to a coccinelle
script proposed in 2012 by Julia Lawall on their mailing list
to flag uses of iterators after loops. We assume that it had
limited impact because of the high false positive rates. How-
ever, since our analysis for 4 is simple and local, coccinelle
is a great fit for it. We therefore extended the script in ways
(mainly, with detection of checking logic already in place)
that significantly reduced its false positive rate.

7.3 Evaluation
We run our static analyzer on the same kernel code base
studied in Section 5.3. Table 1 summarizes the findings from
a manual analysis of the reported cases of potential container
confusion: we identified 80 bugs, 179 anti-patterns, and 107
false positives. We disclosed and proposed patches (144 in
total with 97 already merged at the time of writing) for all
the bugs as well as for the anti-patterns that can be removed
without intrusive program semantics changes.

For the analysis time, we recall that pattern 2 employs
two rules whereas the others just one (5 included, as its
two analyses run in combination). We measure it took an
average of 33.6 seconds for a rule to process all the container
downcasts in the code that meet the definition of source for it.

12

We classify a report as a bug when the container confusion
is unintended, which can lead to errors and possibly security-
sensitive behavior. We consider as anti-pattern (AP) those
cases where confusion can happen but program semantics
prevents any use of the pointer. We consider as false positive
(FP) those cases where pointers cannot have a confused value
but the over-approximation of static analysis fails to see it.

Pattern 1 . Reports about Statically Incompatible Contain-
ers cases include 3 bugs, 27 anti-patterns, and 72 false pos-
itives. This pattern is prone to false positives (67.3% of the
total among all five patterns) due to imprecision of the static
analysis: we found most of them to occur when some back-
ward control flows are unfeasible as they are guarded by
checks on fields carrying explicit type tags5. A similar seman-
tics is also behind most of the anti-patterns we found. As for
the bugs, static checking identifies the TUN bug from fuzzing
that we discussed when presenting the pattern in Section 6,
but also a similar variant for TAP socket interfaces.

Pattern 2 . Reports about Empty-list Confusion cases are
the second most numerous: we found 20 bugs (5 from missing
checks and 15 from checks against NULL) and 2 anti-patterns.

For example, we found a container confusion in code that
incorrectly checks HID device drivers reports, affecting all
the 9 kernel drivers that rely on it. The bug had been present
in the kernel for almost 9 years. In other HID driver code,
we found 2 use-after-free and 1 NULL pointer dereference
bugs. We also found a bug in the RT scheduler for an incorrect
check on the task queue that had been present for 15 years.

The 19 false positives involve lists that cannot be empty due
to program semantics, missing effects of indirect calls (like the
sort comparators that we model already), and implementation
limitations for non-nearby conditional checks.

Pattern 3 . We found a notable bug by looking for pattern
Mismatch on Data Structure Operators cases. The bug af-
fects the function rds_rm_zerocopy_callback(), which writes
a cookie provided by userspace to memory. The function is-
sues a list_entry() directly on the list_head instead of using
list_first_entry(). The code passes the container-confused
pointer to a function that finalizes the write.

The function uses confused values to write data to an offset
where both are under userspace control, offering a controlled
out-of-bounds (OOB) write primitive. Due to the container
confusion, also an overlapping lock structure gets corrupted
in the process, de-synchronizing it and potentially causing
a use after free. The bug had been present in the kernel for
5 years. As the OOB write does not overlap with redzones,
ongoing continuous fuzzing efforts could not detect it.

5It could be a one-time effort to add such domain knowledge to the
checker and stop the analysis of the current path upon recognizing such
explicit checks over fields. However, we found 72 false positives here to still
be a reasonable number for the manual analysis we conducted.

Anti-patterns mainly originate from iterating a list with
an incorrect type, sharing a few initial member fields with
the intended type. False positives come from implementation
limitations with complex cases of GEP instructions in LLVM
IR and unfeasible control flows from switch-case constructs.

Pattern 4 . Reports about Past-the-end Iterator are the
most numerous in our results: this is quite expected, being list
iteration popular in the kernel. We identify 56 bugs and 137
anti-patterns where the code may use a list iterator without
checking whether it surpassed the end of the data structure.

The most immediate effect of our reporting and patching
activity was upgrading the C standard for the Linux kernel
to C11 [9]: this makes it possible to declare iterators valid
only within loops, forcing developers to use (valid) retrieved
values in a safer way. Shortly after, Linus Torvalds and other
maintainers followed up with a proposal under adoption for a
safer design of list iterators [10] that prevents anti-patterns of
this kind completely.

Pattern 5 We conclude by briefly mentioning that our
reports from searching for Containers with Contracts cases
uncovered two anti-patterns involving kobject container con-
fusion in addition to the one discovered by dynamic analysis.

8 Discussion

We find that the dynamic and static components of UNCON-
TAINED operate synergetically to expose typically different in-
stances of bugs over large code bases such as the Linux kernel.

Thanks to precise runtime information, the sanitizer com-
ponent offers high accuracy by incurring only a few false
positives in our tests.

The wealth of information also allows it to detect bugs
that are out of reach of the static analyzer due to the latter’s
inherent under-approximation (e.g., for cases of memory indi-
rections that we cannot recover via domain knowledge). This
can be seen in the limited overlap in the bugs found: only 2
of the 11 bugs found dynamically occur in the reports of the
static analyzer.

On the other hand, the static analyzer succeeds in its in-
tended goals, revealing a large number of bugs (80) originat-
ing often in kernel areas that the dynamic experiments did not
stress sufficiently or at all—and are also fundamentally diffi-
cult to cover due to configuration and hardware entropy. These
include virtual drivers, ptrace facilities, the RT scheduler, and
the kernel components of NFS and KVM, among others. Be-
ing a static analysis, the main shortcoming of the approach
when it comes to analyzing reports is the lack of actionable
test cases to reach the involved code. While this is an inher-
ently hard problem for any static analysis, the patterns that we
propose are quite intuitive, greatly helping manual analysis.

13

The majority of false positives come from pattern 1 , pri-
marily because the static analysis is currently unable to recog-
nize explicit type checks on structure fields that act as runtime
type information and prevent container confusion bugs (Sec-
tion 7.3). Therefore, violations of pattern 1 can be regarded
with lower confidence compared to the other patterns.

False negatives in the static analysis may be caused by in-
complete control-flow information (e.g., indirect calls) and by
inaccuracies in our modeling of program state. For example,
precise modeling of memory may be an area worth examining
to improve the reach of the static analyzer. We opted not to
use pointer analyses as accurate ones are expensive on large
programs [56] and features desirable in this context (e.g., flow-
and context-sensitivity) would increase their costs consider-
ably. Moreover, they would be unaware of the many indirect
control transfers to functions caused by userland activities.
We leave this investigation to future work.

Similarly, it would be interesting to explore directed
fuzzing [3] and/or fuzzers specialized for certain kernel areas
(Section 6) to reach functions/regions where static analyses
report potential container confusion cases. Doing so may en-
able both their in-depth exploration and input generation for
some reports.

The security impact of type confusion bugs depends on
the memory layout of the objects involved. In an exploitation
scenario, an attacker would leverage a controlled type con-
fusion to overlap and corrupt interesting fields. On the other
hand, the type confusion bugs found by our approach have no
control over which types overlap. This may influence the im-
mediate exploitability of the bugs we found and require more
effort to turn a type confusion into memory corruption. How-
ever, 8 of our bugs were considered security-relevant for their
exploitability and got assigned 6 CVEs (3 bugs got merged
into the same CVE, as listed in Appendix A). As a concrete
illustration of security impact, we have also demonstrated a
controllable out-of-bounds write on the heap for one of the
CVEs reported.

9 Related Work

This section covers literature on type confusion, sanitization,
and static analysis that the research in this paper relates to.

Type Confusion Detection. Most existing type confusion
detectors are limited to C++. UBSan [40], for instance, re-
places static casts with dynamic casts in C++ to expose bugs.
CaVeR [39], TypeSan [21], HexType [29], and Bitype [46]
are specialized to find type confusion for C++ classes by man-
aging runtime type metadata and performing checks on cast
operations. CASTSan [42] efficiently detects type confusion
leveraging C++ virtual tables, but is limited to polymorphic
classes only. While all other existing approaches rely on dy-
namic analysis, TCD [62] uses a field-, context- and flow

sensitive pointer analysis to detect type-confused C++ code.
libcrunch [31] and EffectiveSan [13] support C programs.

However, both approaches rely on intercepting object alloca-
tions and binding them with their top-level allocation type. In
practice, this would be hard, if not impossible, to collect in
projects with the complexity of a kernel. For this reason, the
typed allocator mitigation in XNU resorted to manual annota-
tions in allocations [15]. Our approach overcomes the need of
both allocation-time type inference and manual annotations.

Speculative Type Confusion. Previous work has explored
speculative type confusion while dealing with objects of multi-
ple types. Confusion in the speculative domain fundamentally
differ from non-speculative one for observability and/or ex-
plainability. Kasper [30] scans the Linux kernel for arbitrary
speculative gadgets. It shows how the current list iterator im-
plementation is subject to speculative container confusion
when dealing with the list heads if the terminating condition
is mispredicted. Kirzner et al. [32] focus on speculative type
confusion in the Linux kernel. The paper highlights possi-
ble type confusion originating from eBPF code, compiler-
introduced vulnerabilities, and polymorphic types. BHI [2]
leverages a speculative type confusion in eBPF code in their
exploit. FPVI [48] and Spook.js [1] exploit speculative type
confusion in JavaScript engines.

Other Sanitizers. Similarly to ASan [50], several sanitizers
rely on redzones: Purify [25], Memcheck [51], Dr. Mem-
ory [6] and LPC [24] leverage them to detect memory corrup-
tions in the form of spatial and temporal safety violations.

MSan [55] targets reads from uninitialized memory using
a shadow map mechanism. Other sanitizers, such as Undan-
gle [7], FreeSentry [60], DangNull [38], and DangSan [59]
detect dangling pointers that cause use-after-free errors.

For boundary identification, other techniques encode track-
ing metadata within pointers, as with low-fat pointers [14,36]
and delta pointers [35]. For example, our approach could re-
place redzones with low-fat pointers on supported systems.

Static Analyzers. We conclude by mentioning a few popu-
lar static analysis tools for the Linux kernel. Coccinelle [44]
is pervasively used as a program matching and transformation
tool. In addition to its use for refactoring and code hardening,
it also has provisions to find intra-procedural bugs. Sparse [5]
uses Linux kernel-specific annotations to perform few special-
ized checks. Smatch [4] followed in its footsteps to build a
generic static analysis framework for several kernel bug types;
it can only conduct intra-procedural dataflow analyses.

10 Conclusion

We presented a sanitization scheme for container confusion
designed as a compiler-based runtime checker. For demonstra-

14

tion, we implemented the sanitizer for the Linux kernel, find-
ing 11 bugs, which were undetected by previous work. Those
bugs have often existed in the kernel for several years. Based
on our results, we identified common bug patterns and used
those categories to build a tailored static analyzer to discover
bugs in code often unreachable by dynamic analysis. With our
static analyzer, we unveiled 78 additional, previously undis-
covered bugs. We conclude that bad downcasting is not only
problematic in object-oriented programming languages but
also occurs in large C projects, with serious security impact.

We have disclosed and proposed possible fixes for all found
bugs and relevant anti-patterns to the Linux kernel mailing list,
with a total of 149 patches and 102 already merged. Some of
the disclosed issues have prompted significant changes to core
kernel design patterns, with fixes even requiring the kernel to
transition to the modern C11 standard.

Acknowledgments

We thank the anonymous reviewers for their feedback. This
work was supported by Intel Corporation through the “Allo-
camelus” project, the Dutch Ministry of Economic Affairs
and Climate through the AVR program (“Memo” project), the
Dutch Science Organization (NWO) through projects “TROP-
ICS”, “Theseus”, and “Intersect”.

References

[1] Ayush Agarwal, Sioli O’Connell, Jason Kim, Shaked
Yehezkel, Daniel Genkin, Eyal Ronen, and Yuval Yarom.
Spook.js: Attacking Chrome strict site isolation via spec-
ulative execution. In S&P, 2022.

[2] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert
Bos, and Cristiano Giuffrida. Branch history injection:
On the effectiveness of hardware mitigations against
cross-privilege Spectre-v2 attacks. In USENIX Security
Symposium, 2022.

[3] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed greybox fuzzing.
In CCS, 2017.

[4] Niel Brown. Smatch: pluggable static analysis for c.
https://lwn.net/Articles/691882/.

[5] Niel Brown. Sparse: a look under the hood. https:

//lwn.net/Articles/689907/.

[6] Derek Bruening and Qin Zhao. Practical memory check-
ing with Dr. Memory. In CGO, 2011.

[7] Juan Caballero, Gustavo Grieco, Mark Marron, and An-
tonio Nappa. Undangle: Early detection of dangling
pointers in use-after-free and double-free vulnerabilities.
In ISSTA, 2012.

[8] Kees Cook. Bounded flexible arrays in c. https:

//people.kernel.org/kees/bounded-flexible-arrays-in-c,
2023.

[9] Jonathan Corbet. Moving the kernel to modern C. https:
//lwn.net/Articles/885941/, 2022.

[10] Jonathan Corbet. Toward a better list iterator for the
kernel. https://lwn.net/Articles/887097/, 2022.

[11] Jake Corina, Aravind Machiry, Christopher Salls, Yan
Shoshitaishvili, Shuang Hao, Christopher Kruegel, and
Giovanni Vigna. Difuze: Interface aware fuzzing for
kernel drivers. In CCS, 2017.

[12] Arnaldo Carvalho De Melo. Profiling data struc-
tures. https://lpc.events/event/16/contributions/

1200/attachments/1054/2013/Profiling%20Data%

20Structures.pdf, 2022.

[13] Gregory J. Duck and Roland H.C. Yap. EffectiveSan:
Type and memory error detection using dynamically
typed C/C++. In PLDI, 2018.

[14] Gregory J. Duck, Roland H.C. Yap, and Lorenzo Cav-
allaro. Stack Bounds Protection with Low Fat Pointers.
In NDSS Symposium, 2017.

[15] Apple Security Engineering and Architecture. To-
wards the next generation of xnu memory safety:
kalloc_type. https://security.apple.com/blog/towards-

the-next-generation-of-xnu-memory-safety/, 2022.

[16] Cristiano Giuffrida, Călin Iorgulescu, and Andrew S.
Tanenbaum. Mutable checkpoint-restart: Automating
live update for generic server programs. In Middleware,
2014.

[17] Cristiano Giuffrida, Anton Kuijsten, and Andrew S
Tanenbaum. Enhanced operating system security
through efficient and fine-grained address space ran-
domization. In USENIX Security, 2012.

[18] Google. syzbot dashboard. https://

syzkaller.appspot.com.

[19] Google. syzkaller. https://github.com/google/syzkaller.

[20] Daniel Gruss, Clémentine Maurice, Anders Fogh,
Moritz Lipp, and Stefan Mangard. Prefetch side-channel
attacks: Bypassing SMAP and kernel ASLR. In CCS,
2016.

[21] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias
Payer, Cristiano Giuffrida, Herbert Bos, and Erik
Van Der Kouwe. TypeSan: Practical type confusion
detection. In CCS, 2016.

15

https://lwn.net/Articles/691882/
https://lwn.net/Articles/689907/
https://lwn.net/Articles/689907/
https://people.kernel.org/kees/bounded-flexible-arrays-in-c
https://people.kernel.org/kees/bounded-flexible-arrays-in-c
https://lwn.net/Articles/885941/
https://lwn.net/Articles/885941/
https://lwn.net/Articles/887097/
https://lpc.events/event/16/contributions/1200/attachments/1054/2013/Profiling%20Data%20Structures.pdf
https://lpc.events/event/16/contributions/1200/attachments/1054/2013/Profiling%20Data%20Structures.pdf
https://lpc.events/event/16/contributions/1200/attachments/1054/2013/Profiling%20Data%20Structures.pdf
https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety/
https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety/
https://syzkaller.appspot.com
https://syzkaller.appspot.com
https://github.com/google/syzkaller

[22] Yu Hao, Hang Zhang, Guoren Li, Xingyun Du, Zhiyun
Qian, and Ardalan Amiri Sani. Demystifying the depen-
dency challenge in kernel fuzzing. In ICSE, 2022.

[23] Mary Jean Harrold and Mary Lou Soffa. Efficient
computation of interprocedural definition-use chains.
TOPLAS, 16(2):175–204, 1994.

[24] Niranjan Hasabnis, Ashish Misra, and R Sekar. Light-
weight bounds checking. In CGO, 2012.

[25] Reed Hastings. Purify: Fast detection of memory leaks
and access errors. In Proceedings of USENIX Winter’92
Conference, 1992.

[26] Ralf Hund, Carsten Willems, and Thorsten Holz. Prac-
tical timing side channel attacks against kernel space
ASLR. In S&P, 2013.

[27] Nur Hussein. Randomizing structure layout. https:

//lwn.net/Articles/722293/, 2017.

[28] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking
kernel address space layout randomization with Intel
TSX. In CCS, 2016.

[29] Yuseok Jeon, Priyam Biswas, Scott Carr, Byoungyoung
Lee, and Mathias Payer. HexType: Efficient detection
of type confusion errors for C++. In CCS, 2017.

[30] Brian Johannesmeyer, Jakob Koschel, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. Kasper: Scanning
for generalized transient execution gadgets in the Linux
kernel. In NDSS Symposium, 2022.

[31] Stephen Kell. Dynamically diagnosing type errors in
unsafe code. In OOPSLA, 2016.

[32] Ofek Kirzner and Adam Morrison. An analysis of spec-
ulative type confusion vulnerabilities in the wild. In
USENIX Security Symposium, 2021.

[33] Andrey Konovalov and Dmitry Vyukov. KernelAddress-
Sanitizer (KASan): a fast memory error detector for the
Linux kernel. LinuxCon North America, 2015.

[34] Jakob Koschel, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. TagBleed: breaking KASLR on the iso-
lated kernel address space using tagged TLBs. In Euro
S&P, 2020.

[35] Taddeus Kroes, Koen Koning, Erik van der Kouwe, Her-
bert Bos, and Cristiano Giuffrida. Delta pointers: Buffer
overflow checks without the checks. In EuroSys, 2018.

[36] Albert Kwon, Udit Dhawan, Jonathan M. Smith,
Thomas F. Knight Jr, and Andre DeHon. Low-fat point-
ers: Compact encoding and efficient gate-level imple-
mentation of fat pointers for spatial safety and capability-
based security. In CCS, 2013.

[37] Paul Larson. Testing Linux with the Linux test project.
In Ottawa Linux Symposium, 2002.

[38] Byoungyoung Lee, Chengyu Song, Yeongjin Jang,
Tielei Wang, Taesoo Kim, Long Lu, and Wenke Lee.
Preventing use-after-free with dangling pointers nullifi-
cation. In NDSS Symposium, 2015.

[39] Byoungyoung Lee, Chengyu Song, Taesoo Kim, and
Wenke Lee. Type casting verification: Stopping an
emerging attack vector. In USENIX Security Sympo-
sium, 2015.

[40] LLVM. UndefinedBehaviorSanitizer - Clang
documentation. https://clang.llvm.org/docs/

UndefinedBehaviorSanitizer.html.

[41] Larry W McVoy and Carl Staelin. lmbench: Portable
tools for performance analysis. In USENIX Annual
Technical Conference, 1996.

[42] Paul Muntean, Sebastian Wuerl, Jens Grossklags, and
Claudia Eckert. CastSan: Efficient detection of poly-
morphic C++ object type confusions with LLVM. In
ESORICS, 2018.

[43] open std. Defect report 051. https://www.open-std.org/

jtc1/sc22/wg14/www/docs/dr_051.html, 1993.

[44] Yoann Padioleau, Julia Lawall, René Rydhof Hansen,
and Gilles Muller. Documenting and automating collat-
eral evolutions in Linux device drivers. ACM SIGOPS
Operating Systems Review, 2008.

[45] Shankara Pailoor, Andrew Aday, and Suman Jana.
MoonShine: Optimizing OS fuzzer seed selection with
trace distillation. In USENIX Security Symposium, 2018.

[46] Chengbin Pang, Yunlan Du, Bing Mao, and Shanqing
Guo. Mapping to bits: Efficiently detecting type confu-
sion errors. In ACSAC, 2018.

[47] Hui Peng and Mathias Payer. USBFuzz: A frame-
work for fuzzing USB drivers by device emulation. In
USENIX Security Symposium, 2020.

[48] Hany Ragab, Enrico Barberis, Herbert Bos, and Cris-
tiano Giuffrida. Rage against the machine clear: A
systematic analysis of machine clears and their implica-
tions for transient execution attacks. In USENIX Security
Symposium, 2021.

[49] Sergej Schumilo, Cornelius Aschermann, Robert Gaw-
lik, Sebastian Schinzel, and Thorsten Holz. kAFL:
Hardware-assisted feedback fuzzing for OS kernels. In
USENIX Security Symposium, 2017.

16

https://lwn.net/Articles/722293/
https://lwn.net/Articles/722293/
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_051.html
https://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_051.html

[50] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. AddressSanitizer: A
fast address sanity checker. In USENIX Annual Techni-
cal Conference (USENIX ATC), 2012.

[51] Julian Seward and Nicholas Nethercote. Using valgrind
to detect undefined value errors with bit-precision. In
USENIX Annual Technical Conference, General Track,
pages 17–30, 2005.

[52] Zekun Shen, Ritik Roongta, and Brendan Dolan-Gavitt.
Drifuzz: Harvesting bugs in device drivers from golden
seeds. In USENIX Security Symposium, 2022.

[53] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad
Spensky, Yeoul Na, Stijn Volckaert, Giovanni Vigna,
Christopher Kruegel, Jean-Pierre Seifert, and Michael
Franz. Periscope: An effective probing and fuzzing
framework for the hardware-OS boundary. In NDSS
Symposium, 2019.

[54] Dokyung Song, Felicitas Hetzelt, Jonghwan Kim,
Brent Byunghoon Kang, Jean-Pierre Seifert, and
Michael Franz. Agamotto: Accelerating kernel driver
fuzzing with lightweight virtual machine checkpoints.
In USENIX Security Symposium, 2020.

[55] Evgeniy Stepanov and Konstantin Serebryany. Memo-
rySanitizer: fast detector of uninitialized memory use in
C++. In CGO, 2015.

[56] Yulei Sui and Jingling Xue. SVF: interprocedural static
value-flow analysis in LLVM. In CC, 2016.

[57] Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli,
Hang Zhang, Zheng Zhang, Ardalan Amiri Sani, and
Zhiyun Qian. Charm: Facilitating dynamic analysis of
device drivers of mobile systems. In USENIX Security
Symposium, 2018.

[58] Erik Van Der Kouwe, Taddeus Kroes, Chris Ouwehand,
Herbert Bos, and Cristiano Giuffrida. Type-after-type:
Practical and complete type-safe memory reuse. In
ACSAC, 2018.

[59] Erik Van Der Kouwe, Vinod Nigade, and Cristiano Giuf-
frida. Dangsan: Scalable use-after-free detection. In
EuroSys, 2017.

[60] Yves Younan. Freesentry: protecting against use-after-
free vulnerabilities due to dangling pointers. In NDSS
Symposium, 2015.

[61] Bodong Zhao, Zheming Li, Shisong Qin, Zheyu Ma,
Ming Yuan, Wenyu Zhu, Zhihong Tian, and Chao Zhang.
StateFuzz: System call-based state-aware Linux driver
fuzzing. In USENIX Security Symposium, 2022.

[62] Changwei Zou, Yulei Sui, Hua Yan, and Jingling Xue.
TCD: Statically detecting type confusion errors in C++
programs. In ISSRE, 2019.

A Assigned CVEs

Table 2 presents the list of CVE identifiers assigned to the
type confusion bugs we reported.

B LMbench Evaluation

Table 3 presents detailed results for the LMbench tests men-
tioned in Section 5.3.2.

CVE Description

CVE-2023-1073 Type confusion in hid_validate_ values(),
Type confusion in bigben_probe(), NULL
pointer dereference in betopff_init()

CVE-2023-1074 KASLR leak in inet_diag_msg_

sctpasoc_fill()

CVE-2023-1075 Type confusion in tls_is_tx_ready()

CVE-2023-1076 Incorrect UID assigned to tun/tap sockets
CVE-2023-1077 Type confusion in pick_next_rt_ entity()

CVE-2023-1078 Heap OOB write in rds_rm_zerocopy_

callback()

Table 2: CVEs assigned to the reported type confusion bugs.

C Static Analysis Rules

Table 4 shows the definitions for our static information flow
analyses. For each pattern, we report the source where the
dataflow starts from, the sinks that the dataflow searches, the
path filters that inhibit the report (i.e., stop path exploration)
when met, and additional checks that the analysis performs at
a sink before reporting a potential container confusion.

17

Benchmark baseline UNCONTAINED KASAN UNCONTAINED overhead KASAN overhead

Simple syscall 1.05 µs 1.21 µs 1.93 µs 16 % 84 %
Simple read 1.28 µs 1.64 µs 2.32 µs 28 % 82 %
Simple write 1.02 µs 1.24 µs 1.83 µs 21 % 79 %
Simple stat 8.34 µs 72.10 µs 37.59 µs 764 % 351 %
Simple fstat 5.01 µs 59.24 µs 21.24 µs 1083 % 325 %
Simple open/close 18.14 µs 86.89 µs 66.97 µs 379 % 269 %
Select on 10 fd’s 2.05 µs 2.41 µs 3.68 µs 18 % 80 %
Select on 100 fd’s 6.29 µs 6.79 µs 9.07 µs 08 % 44 %
Select on 250 fd’s 13.38 µs 14.13 µs 18.06 µs 06 % 35 %
Select on 500 fd’s 25.79 µs 29.10 µs 38.73 µs 13 % 50 %
Select on 10 tcp fd’s 2.19 µs 2.55 µs 3.95 µs 17 % 81 %
Select on 100 tcp fd’s 11.85 µs 12.74 µs 19.37 µs 07 % 63 %
Select on 250 tcp fd’s 28.23 µs 29.83 µs 45.37 µs 06 % 61 %
Select on 500 tcp fd’s 56.05 µs 61.16 µs 95.02 µs 09 % 70 %
Signal handler installation 1.32 µs 1.57 µs 2.46 µs 19 % 87 %
Signal handler overhead 4.75 µs 7.65 µs 14.51 µs 61 % 206 %
Pipe latency 16.58 µs 20.99 µs 39.54 µs 27 % 139 %
AF_UNIX sock stream latency 22.71 µs 38.03 µs 74.32 µs 67 % 226 %
Process fork+exit 627.32 µs 1076.48 µs 1869.73 µs 72 % 197 %
Process fork+execve 718.54 µs 1210.79 µs 2099.22 µs 69 % 191 %
Process fork+/bin/sh -c 2530.20 µs 5370.25 µs 6756.88 µs 112 % 167 %
UDP latency using localhost 44.56 µs 135.34 µs 106.43 µs 204 % 139 %
TCP latency using localhost 56.33 µs 113.18 µs 141.90 µs 101 % 152 %
TCP/IP connection cost to localhost 240.82 µs 494.53 µs 672.52 µs 105 % 179 %

geomean 74 % 126 %

Table 3: LMbench experiments: comparing the native execution baseline against UNCONTAINED and KASAN.

Bug Pattern Direction Source Sink Filters Checks

1 Statically Incompati-
ble Containers

B container_of() input Origin object of input
pointer

Mismatch between
container_of() desti-
nation type and origin
type

2 Empty-list Confusion
(rule 1)

F list_entry() result Any use Conditional Checks

2 Empty-list Confusion
(rule 2)

F list_entry() result Comparison with NULL Flows with explicit
NULL values

3 Mismatch on Data
Structure Operators

F Any list operation
(e.g. list_add() or
list_entry())

Any list operation
(e.g. list_add() or
list_entry())

Mismatch between mem-
ber field/type used

4 Past-the-end Iterator F Any iterator variable
used in a loop over a list,
e.g., list_for_each
_entry()

Any use after the loop Checks on found-like
variables

5 Containers with Con-
tracts (backwards part)

B Arguments of kobject_
init_and_add()

Collect containing struc-
ture of the kobject and
sysfs_ops functions

5 Containers with Con-
tracts (forward part)

F kobj argument of col-
lected sysfs_ops func-
tions

container_of() Mismatch between col-
lected containing struc-
ture of the kobject and
container_of() desti-
nation type

Table 4: Details of rules for the patterns defined for static analysis. Showing the direction (B for backwards dataflow, F for
forward dataflow), source and sink matched, and eventual filters and/or additional checks. 5 employs a single rule in two parts.

18

A Artifact Appendix

A.1 Abstract
In this artifact we provide the means to reproduce our main
results. Specifically, we show that our framework, UNCON-
TAINED, finds container confusion, both dynamically while
fuzzing and statically with dataflow tracking. We have eval-
uated our artifact on an Ubuntu 22.04.1 (stock Linux kernel
v.5.15) with 16 cores @2.3GHz (AMD EPYC 7643) using a
total of 16 QEMU-KVM virtual machines with 4GB RAM.
Our source code is available at: github.com/vusec/uncontained.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Since UNCONTAINED is only used for bug finding either stat-
ically or dynamically but running within VMs it does not
impose any machine security, data privacy or other ethical
concerns.

A.2.2 How to access

The files for the artifact evaluation are available at: https:

//github.com/vusec/uncontained/releases/tag/ae.

A.2.3 Hardware dependencies

UNCONTAINED does not impose any strict hardware re-
quirements but we assume a recent x86_64 machine with
enough RAM (minimum 64GB, or enough swap) to compile
LLVM/Linux and run virtual QEMU machines for fuzzing
with syzkaller.

A.2.4 Software dependencies

We expect certain packages from the Ubuntu package man-
ager to be installed, which are required to compile LLVM,
Linux, syzkaller, etc. We describe the necessary packages in
the Set-up section.

If you use a different distribution you need to make sure
to fulfil the necessary dependencies using your dedicated
package manager.

A.2.5 Benchmarks

None.

A.3 Set-up
In general, we recommend using a bare-metal desktop system
running Ubuntu 22.04. Make sure that you have KVM support
and your user is allowed to use KVM. The following packages
are required:

go-task
sh -c "$(curl -ssL https://taskfile.dev/install.sh)" \

-- -d -b ~/.local/bin
llvm-project
sudo apt install build-essential clang-12 lld-12 ninja-build \

ccache cmake
linux
sudo apt install bison flex libelf-dev libssl-dev coccinelle
syzkaller
sudo apt install debootstrap
install golang 1.20.5
GO_VERSION=go1.20.5.linux-amd64
wget https://go.dev/dl/$GO_VERSION.tar.gz
sudo rm -rf /usr/local/go
sudo tar -C /usr/local -xzf $GO_VERSION.tar.gz
rm -f $GO_VERSION.tar.gz
qemu
sudo apt install qemu-system-x86
evaluation
pip3 install scipy pandas

Then make sure that ~/.local/bin and /usr/local/go/bin are
in your PATH to find go and the task binaries:
export PATH=$HOME/.local/bin:/usr/local/go/bin:$PATH

A.3.1 Installation

1. Obtain the artifact source and necessary dependencies:
git clone --recurse-submodules \

https://github.com/vusec/uncontained.git

2. Create the kernel-tools/.env file with the following content
(replace /patch/to/uncontained with the actual absolute path):
REPOS=/path/to/uncontained
LLVMPREFIX=/path/to/uncontained/llvm-project/build
KERNEL=/path/to/uncontained/linux
ENABLE_KASAN=1
ENABLE_DEBUG=1
ENABLE_SYZKALLER=1
ENABLE_GDB_BUILD=1
ADDITIONAL_LLVM_VARIABLES=-DLLVM_ENABLE_EH=ON -DLLVM_ENABLE_RTTI=ON

3. Compile all the necessary dependencies (this will take a
while to compile llvm-project and Linux with fullLTO):
scripts/compile.sh

A.3.2 Basic Test

To test if the sanitizer and the static analyzers work as intended
you can use the tests by running the following:
LLVM_DIR=$PWD/llvm-project/build tests/test.sh
LLVM_DIR=$PWD/llvm-project/build tests/testDF.sh

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The UNCONTAINED sanitizer finds new types of con-
tainer confusions. This is proven by the experiment (E1).

(C2): The UNCONTAINED sanitizer comes with an accept-
able performance runtime overhead. This is proven by
the experiments (E2) and (E3).

(C3): The UNCONTAINED static analyzer has been used to
uncover new bugs in the Linux kernel. This is proven by
the experiments (E4).

19

github.com/vusec/uncontained
https://github.com/vusec/uncontained/releases/tag/ae
https://github.com/vusec/uncontained/releases/tag/ae

A.4.2 Experiments

(E1): [fuzzing evaluation] [2 human-hours + 24 compute-
hours]: This is the fuzzing experiment using the sanitizer
while fuzzing with syzkaller. Expected results are a range
of bugs reported.
How to: kernel-tools is responsible for starting the
fuzzer with the kernel that has been instrumented with
the sanitizer.
Preparation: Make sure you setup everything from
the Installation step, including building syzkaller and
create the syzkaller image (should be done by the
./scripts/compile.sh script).
Execution: You can compile the kernel with in-
strumentation and start the fuzzer with executing
./scripts/compile.sh && ./scripts/run.sh. Then
let it run for at least 24 hours to get some results.
Results: The result will be the crashes in the
kernel-tools/out/syzkaller-workdir/crashes

directory. We need to manually filter out bugs that are
not triggered by UNCONTAINED (all that do not have
three lines of [UNCONTAINED] before the BUG: line).

(E2): [2 human-hours + 30 compute-hours]: This is the
fuzzing performance experiment using the sanitizer while
fuzzing with syzkaller. Expected results are the overhead
in terms of throughput of executed testcases.
How to: We need to run syzkaller 10 times for one hour
for the baseline (stock syzkaller), with KASAN and with
UNCONTAINED.
Preparation: Make sure you setup everything from
the Installation step, including building syzkaller and
create the syzkaller image (should be done by the
./scripts/compile.sh script).
Execution: You can compile the kernel with in-
strumentation and start the fuzzer with executing
./scripts/run-fuzzing-performance-evaluation.sh.
Then let it run for the 30 hours to get the results.
Results: The result will be the percentage of decreased
executed testcases when running syzkaller. You can now
look at the results with executing:

./scripts/evaluation/syzkaller-bench.py --prefix \
'evaluation/syzkaller/results/syzkaller-bench-'

(E3): [1 human-hour + 1 compute-hour]: This is the LM-
Bench experiment using the sanitizer while running the
benchmarking suite to verify performance overhead.
How to: We need to run LMBench 10 times for the differ-
ent configurations (baseline, UNCONTAINED, KASAN).
Preparation: Make sure you setup everything from
the Installation step, including building syzkaller and
create the syzkaller image (should be done by the
./scripts/compile.sh script).
Execution: You can compile the kernel with in-
strumentation and start LMBench with executing

./scripts/run-lmbench-performance-evaluation.sh.
Then let it run to get the results.
Results: The result will be the overhead numbers of the
different configurations on top of the baseline for the
LMBench testcases. You can now look at the results with
executing:

./scripts/evaluation/lmbench.py --prefix \
'evaluation/lmbench/results'

(E4): [1 human-hour + 3 compute-hours]: This is the static
analyzers experiment using the static analyzer to find the
necessary reports with static analysis.
How to: Compile the kernel with our static analyzers
enabled to extract all the bug reports.
Preparation: Make sure you setup everything from
the Installation step, including building syzkaller and
create the syzkaller image (should be done by the
./scripts/compile.sh script).
Execution: You can generate all the reports with
./scripts/run-static-analyzer.sh. Then let it run
to get the results.
Results: The result will be the reports for the different
rules. The results from the LLVM passes are in YAML
and are not yet grouped by the source line (to remove
duplicates). The results from the coccinelle script are text
based and are already filtered based on uniqueness. You
can load the YAML reports into the vscode-extension

to look at them in a more convenient way and do the
grouping based on the source code line.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found
at https://secartifacts.github.io/usenixsec2023/.

20

https://secartifacts.github.io/usenixsec2023/

	Introduction
	Background
	Type Confusion Bugs in C++... and in C
	Sanitizers

	Container Confusion in the Linux Kernel
	Security Implications
	Running Example
	Type Graph Complexity

	uncontained Overview
	Container Confusion Sanitizer
	Design
	Implementation
	Evaluation
	Discovered Cases of Container Confusion
	Runtime Overhead

	Retrospective Analysis and Bug Patterns
	Static Analyzer
	Design
	Implementation
	Evaluation

	Discussion
	Related Work
	Conclusion
	Assigned CVEs
	LMbench Evaluation
	Static Analysis Rules
	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

