
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Automating Live Update
for Generic Server Programs

Cristiano Giuffrida, Member, IEEE, Călin Iorgulescu,
Giordano Tamburrelli and Andrew S. Tanenbaum, Fellow, IEEE,

Abstract—The pressing demand to deploy software updates without stopping running programs has fostered much research on
live update systems in the past decades. Prior solutions, however, either make strong assumptions on the nature of the update
or require extensive and error-prone manual effort, factors which discourage the adoption of live update.
This paper presents Mutable Checkpoint-Restart (MCR), a new live update solution for generic (multiprocess and multithreaded)
server programs written in C. Compared to prior solutions, MCR can support arbitrary software updates and automate most of
the common live update operations. The key idea is to allow the running version to safely reach a quiescent state and then allow
the new version to restart as similarly to a fresh program initialization as possible, relying on existing code paths to automatically
restore the old program threads and reinitialize a relevant portion of the program data structures. To transfer the remaining data
structures, MCR relies on a combination of precise and conservative garbage collection techniques to trace all the global pointers
and apply the required state transformations on the fly. Experimental results on popular server programs (Apache httpd, nginx,
OpenSSH and vsftpd) confirm that our techniques can effectively automate problems previously deemed difficult at the cost of
negligible performance overhead (2% on average) and moderate memory overhead (3.9x on average, without optimizations).

Index Terms—Live update, DSU, Checkpoint-Restart, Quiescence detection, Record-Replay, Garbage collection

F

1 INTRODUCTION

Live update—also commonly known as dynamic soft-
ware updating [1]—has gained momentum as a solu-
tion to the update-without-downtime problem, that is,
deploying software updates without stopping run-
ning programs or disrupt their state. Compared to
the most common alternative—that is, rolling up-
grades [2]—live update systems require no redundant
hardware and can automatically preserve program
state across versions. Ksplice [3] is perhaps the best
known live update success story. According to its
website, Ksplice has already been used to deploy
more than 2 million live updates on over 100,000
productions systems at more than 700 companies.

Despite decades of research in the area—with the
first paper on the subject dating back to 1976 [4]—
existing live update systems still have important
limitations. For example, in-place live update solu-
tions [1], [3], [5], [6], [7] can transparently replace
individual functions in a running program, but are
inherently limited in the types of updates they can
support without significant manual effort. Ksplice,
for instance, is explicitly tailored to small and sim-
ple security patches [8]. Conversely, existing whole-

• C. Giuffrida, G. Tamburrelli, and A.S. Tanenbaum are with the Vrije
Universiteit Amsterdam, De Boelelaan 1081, 1081HV Amsterdam, The
Netherlands.
E-mail: {giuffrida,g.tamburrelli,ast}@cs.vu.nl

• Călin Iorgulescu is with École Polytechnique Fédérale de Lausanne,
Lausanne 1015, Switzerland.
E-mail: calin.iorgulescu@epfl.ch

program live update solutions [9], [10] can efficiently
support several classes of updates, but require a non-
trivial annotation effort which significantly increases
the maintenance burden and ultimately discourages
adoption of live update.

This paper presents Mutable Checkpoint-Restart
(MCR), a new live update solution for generic
server programs written in C. Building on kernel
support for emerging user-space checkpoint-restart
techniques [11], MCR (i) checkpoints the running
version—safely allowing its execution to reach a
quiescent state [12]—(ii) restarts the new version—
reinitializing it from scratch in a controlled way—(iii)
restores the checkpointed state in the new version—
automatically transferring the necessary state (e.g.,
open connections) from the old version. This is simi-
lar, in spirit, to a classic checkpoint-restart model [11],
but the mutability between versions yields a whole-
program live update strategy with support for arbi-
trarily complex software updates.

To minimize the annotation effort involved, MCR
relies on three key observations. First, while safely
allowing an arbitrary set of threads to reach a
quiescent state is extremely challenging with no
assumptions on the program internals [5], real-world
server programs generally exhibit a well-defined
quiescent behavior, with a limited number of long-
running tasks receiving, processing, and dispatching
server events. Building on this observation, MCR
relies on profile-guided quiescence to record the behavior
of a server program offline and automatically drive
all its threads into a quiescent state at runtime. In

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

particular, the profiling information gathered allows
MCR to safely quiesce all the program threads
with fast convergence and in a deadlock-free fashion.
Second, while transferring the entire execution state
between different program versions is a notoriously
hard problem [13] and generally requires significant
manual effort [9], [10], this is not necessary for
real-world server programs. Such programs typically
initialize most of their state at startup and introduce
only relatively small changes during their regular
execution. Building on this observation, MCR relies
on mutable replay techniques [14] to allow the new
version to start up as similarly to a fresh program
initialization as possible. Piggybacking on existing
code paths allows for the seamless reinitialization
of a relevant portion of the updated state. This
mutable reinitialization strategy allows code in the new
version to automatically restore updated program
threads and many data structures—possibly subject
to very complex changes between versions—with
little annotation effort. Third, when transferring
the data structures that cannot be automatically
restored by mutable reinitialization, precise knowledge
of data types in memory—which generally imposes
a nontrivial annotation effort at full coverage [9],
[10]—is only necessary for updated data structures
that need to be type-transformed between versions.
Building on this observation, MCR relies on a combi-
nation of precise [15] and conservative [16], [17] garbage
collection (GC) techniques to trace data structures and
transfer them between versions even with partial type
information. This mutable tracing strategy can dras-
tically reduce the number of developer-maintained
annotations. These are only required when data
structures with ambiguous type information—and
thus normally traced conservatively—are changed
by the update—and thus require precise tracing to
unambiguously apply type transformations.

Summarizing, we make the following contributions:

• We present profile-guided quiescence, a technique
which allows all the program threads to
automatically and safely block in a known
quiescent state using dedicated information
gathered during an offline profiling phase.

• We present mutable reinitialization, a technique
which record-replays startup operations between
different program versions and exploits existing
code paths to automatically reinitialize the new
program version, its threads, and a relevant
portion of its global data structures.

• We present mutable tracing, a technique which
transfers the remaining data structures between
versions using precise (when possible) and con-
servative (otherwise) GC-style tracing strategies.

• We demonstrate the effectiveness of our
techniques in Mutable Checkpoint-Restart
(MCR), a new live update solution for generic

server programs written in C. We present its
implementation on Linux and evaluate it on 4
popular server programs, showing that MCR
yields: (i) low engineering effort to support even
complex updates (334 annotation LOC in total
to prepare our programs for MCR), (ii) realistic
update times (< 1 s); (iii) negligible performance
overhead in the default configuration (2% on
average); (iv) moderate memory overhead (3.9x
on average, without optimizations).

The remainder of the paper is organized as follows.
Section 2 illustrates prior work and techniques in the
area of live update. Section 3 provides a high-level
overview of the proposed solution. Sections 4, 5, and 6
provide a detailed description of the three main tech-
niques that constitute the MCR approach: (i) profile-
guided quiescence, (ii) mutable reinitialization, and
(iii) mutable tracing, respectively. Section 7 provides
an in-depth discussion of the relevant implementation
details, while Section 9 presents experimental results
to validate the proposed solution. Finally, Section 10
summarizes the findings of the paper.

2 RELATED WORK

In this paper, we focus on local live update solutions
for operating systems and long-running C programs,
referring the reader to [2], [25], [26], [27] for live
update for distributed systems.

This section illustrates related work and is
organized into three distinct subsections that map
to the main steps involved in live update solutions
(i.e., quiescence detection, control migration, and state
transfer). Table 1 presents an overview of the most
relevant related approaches classified by category
and adopted techniques.

2.1 Quiescence detection

Similar to prior work in the area, MCR relies on
quiescence [12] as a way to restrict the number
of possible program states at checkpointing time
and ensure that live updates are only deployed in
safe updates states (e.g., all the program threads
blocked waiting for socket events). In other words,
quiescence is used to guarantee update safety.
Some approaches [24] relax this constraint, but then
automatically remapping all the possible program
states between versions—or simply allowing mixed-
version execution [7], [18], [19]—becomes quickly
intractable without extensive developer annotations.
Quiescence detection algorithms proposed in prior
work operate at the level of individual functions [3],
[6], [20], [21] or generic events [1], [5], [10], [22], [23],
[28]. The former approach is known for its weak
consistency guarantees [10], [29] and typically relies
on passive stack inspection [3], [6], [20], [21] that cannot
guarantee convergence in bounded time [18], [24].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

TABLE 1: Related Work: Overview

Category Techniques Our Approach
(MCR)

Quiescence

Mixed execution:
[7], [18], [19]

Individual function
quiescence:

[3], [6], [20], [21]

Design-induced
quiescence:

[10], [22], [23]

Explicit per-thread
quiescence:

[1], [5], [9], [24]

Profile-guided
quiescence

Strengths

NO QUIESCENCE
NEEDED

EASE OF
IMPLEMENTATION

NATIVE SUPPORT
EASE OF

IMPLEMENTATION

GUARANTEED
TIME-BOUNDED
CONVERGENCE

Weaknesses
EXTENSIVE

ANNOTATIONS
REQUIRED

WEAK
CONSISTENCY
GUARANTEES

NOT SUITABLE FOR
EXISTING SERVERS

NO TIME-BOUNDED
CONVERGENCE
GUARANTEES

OFFLINE PROFILING
REQUIRED

Control
Migration

In-place updates:
[1], [3], [5], [6], [7],

[18], [19], [22]

Design-induced
control migration:

[10], [23]

Stack
reconstruction:

[24]

Explicit control
annotations:

[9]

Mutable
reinitialization

Strengths

NO CONTROL
MIGRATION NEEDED

NATIVE SUPPORT
IMMEDIATE

UPDATES
EASE OF

IMPLEMENTATION

AUTOMATICALLY
REUSES EXISTING

CODE PATHS

Weaknesses

INHIBIT CERTAIN
UPDATES

NOT SUITABLE FOR
EXISTING SERVERS

MANUAL CALL
STACK MAPPING

REQUIRED

MIGRATION
DELEGATED TO

DEVELOPER

MAY REQUIRE
ANNOTATIONS1

State Transfer

In-place updates:
[3], [6], [7], [18],

[19], [22]

Whole-program
updates:

[21], [23], [24]

Type transformers:
[1], [5]

Precise GC-style
tracing:
[9], [10]

Mutable
Reinitialization and
Mutable Tracing

Strengths

NO STATE
TRANSFER

OVERHEAD

NO RESTRICTIONS
ON STATE CHANGES

DATA STRUCTURE
CHANGES HANDLED

AUTOMATICALLY

DATA STRUCTURE
CHANGES HANDLED

AUTOMATICALLY

AUTOMATED
THROUGH HYBRID
GC TECHNIQUES

Weaknesses
STATE TRANSFER

DELEGATED TO
DEVELOPER

STATE TRANSFER
DELEGATED TO

DEVELOPER

NO SUPPORT FOR
POINTER

TRANSFORMATIONS

GLOBAL POINTER
ANNOTATIONS

REQUIRED

MAY REQUIRE
ANNOTATIONS1

The latter approach relies on either update-friendly
system design [10], [22], [23]—rarely an option for
existing server programs written in C—or explicit
per-thread update points [1], [5], [9], [24]—typically
annotated at the top of per-thread long-running
loops. Two update-point-based quiescence detection
strategies are dominant: free riding [5], [24]—that is,
allow program threads to run until they all happen
to reach a valid update point at the same time–and
barrier synchronization [9], [30]—that is, immediately
block each thread at the next valid update point.
The first strategy cannot guarantee convergence
in bounded time. To mitigate this problem, prior
solutions suggest expanding the number of update
points using static analysis [5] or adopting per-
function update points [24]. Both solutions can
introduce substantial overhead, yet they still fail to
guarantee convergence. The second strategy, on the
other hand, offers better convergence guarantees but
ignores interthread dependencies making it deadlock
prone [5]. In addition, all the prior update-point-

1. See Section 8.

based strategies require abruptly interrupting the
in-progress blocking calls, which would otherwise
delay quiescence indefinitely. To address this problem,
prior solutions suggest a combination of annotations
and either signals [9] or file descriptor injection [24].
The former strategy is more general, but inherently
race prone and potentially disruptive for the running
program. MCR, in contrast, relies on profile-guided
quiescence to safely and automatically quiesce all the
program threads using offline profiling information.
Unlike prior solutions, our quiescence detection
strategy is designed to eliminate code annotations
and provide efficient, race-free, and deadlock-free
quiescence in bounded time. This is possible by
controlling external and internal events individually
processed by server programs in bounded time.

2.2 Control migration
Similar to prior work in the area, MCR relies on
control migration [9] as a way to restore all the up-
dated program threads after restart. Prior in-place live
update models [1], [3], [5], [6], [7], [18], [19], [22]—
which patch the existing program state in place to

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

adapt it to the new version—however, provide no
support for control migration. Instead, they implicitly
forbid particular types of updates: Ksplice [3], for
example, cannot easily support a simple update to a
global flag that changes the conditions under which
kernel threads enter a particular fast path. Failure to
remap the latter may, for instance, introduce silent
data corruption or synchronization issues such as
deadlocks. Prior whole-program live update models,
in turn, implement control migration using system
design [10], [23], stack reconstruction [24], or annota-
tions [9]. The first option is overly restrictive for many
C programs. The second option exposes the developer
to the heroic effort of remapping all the possible
thread call stacks across versions. The last option,
finally, reduces the effort by encouraging existing code
path reuse, but still delegates control migration com-
pletely to the developer. MCR, in contrast, relies on
mutable reinitialization to automatically reuse existing
startup code paths in the new version and restore the
program threads in the quiescent state equivalent to
the one in the old version. Since server programs tend
to naturally reach quiescence at startup, this strategy
can drastically reduce the annotation effort required
to complete control migration.

2.3 State transfer
MCR relies on state transfer [21] as a way to remap
the program state between versions (and to apply
the necessary data structure transformations) after
restart. Existing in-place live update solutions, how-
ever, either delegate state transfer entirely to the
developer [3], [6], [7], [18], [19], [22] or provide sim-
ple type transformers with no support for pointer
transformations [1], [5]. Such restrictions are inher-
ent to the in-place live update model. Prior whole-
program solutions, in turn, either delegate state map-
ping functions to the developer [23], [24] or attempt
to reconstruct the state in the new version using
precise GC-style tracing [9], [10]. The latter, however,
requires a nontrivial annotation effort to identify all
the global program pointers correctly. MCR, in con-
trast, relies on mutable reinitialization to allow existing
startup code paths to seamlessly reinitialize a relevant
portion of the program state, and on mutable tracing
to automatically transfer the remaining portions be-
tween versions using hybrid GC techniques. The lat-
ter encourages annotationless semantics by tolerating
partial pointer information and gracefully handling
uninstrumented shared libraries and custom memory
allocation schemes.

3 MCR OVERVIEW

The MCR approach consists of several steps as ex-
plained hereafter. The first two steps occur at build
time (see Figure 1a) and produce a MCR-enabled
version of a server program of interest. The following

provides

input to

identifiesinput to

annotates

compilesinput to

Test

Workload

MCR

Quiescience
Profiler

Server Program

(Source)

MCR

Instrumenter
and

Compiler

Quiescence

Points

MCR-enabled

Server Program

(Compiled)

Developer

(a) Build time

Startup Log

input to initializes

generates

MCR-enabled

Server Program

(Compiled)

MCR

Mutable
Tracing

MCR

Mutable
Reinitialization

transfers

state

MCR-enabled

Server Program

(Compiled)

triggers

quiescence

requests

update

Developer

(b) Live update time

Fig. 1: MCR Overview

two steps occur instead at run time (see Figure 1b)
and enable the live update process upon request.

1. Program annotation and profiling. To build a MCR-
enabled version of a server program developers may
need to annotate its source code (if necessary, as
explained later) to allow the MCR Quiescence Profiler to
run the annotated server under a given test workload.
This preliminary step helps the developer identify
the quiescent points in the program, later used by our
instrumentation. This is a relatively infrequent opera-
tion which should only be repeated when the quies-
cent behavior of the program changes—we envision
programmers simply integrating quiescence profiling
as part of their regression test suite.

2. Instrumentation and compilation. Building a MCR-
enabled version of the program requires only setting
standard compiler flags which instruct the toolchain
to link the code against the MCR static library and
to enable the MCR link-time pass implemented in
LLVM [31]. The latter instruments the profiled qui-
escent points for the benefit of our profile-guided qui-
escence strategy as explained later in Section 4.

3. Startup recording and run-time monitoring. During
program startup, MCR records all the external oper-
ations (i.e., system calls) performed by the program
in a startup log. This is later used by mutable reini-
tialization in the new version. After startup, MCR also
efficiently monitors changes to existing data structures

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

1 /* Auxiliary data structures. */
2 char b[8];
3 typedef struct list_s {
4 int value;
5 struct list_s *next;
6 } l_t; l_t list;
7

8 /* Startup configuration. */
9 struct conf_s *conf;

10

11 /* Server implementation. */
12 int main() {
13 server_init(&conf); // startup
14 while(1) { // main loop
15 void *e = server_get_event();
16 server_handle_event(e, conf, b, &list);
17 }
18 return 0;
19 }
20

21 /* MCR annotations. */
22 MCR_ADD_OBJ_HANDLER(b, custom_b_handler);
23 MCR_ADD_REINIT_HANDLER(custom_reinit_handler);
24 MCR_ADD_QUIESC_HANDLER(custom_quiesc_handler);

Listing 1: A sample MCR-enabled server program.

and marks those modified/created after startup as
dirty in its internal metadata. This is later used by
mutable tracing in the new version.

4. Live update. When an update is available, the user
can signal the running version—using our mcr-ctl
tool—to request a live update. In response, MCR first
relies on our profile-guided quiescence to allow all the
program threads to reach a checkpoint in a quiescent
state. Next, it allows our mutable reinitialization to start
up the new version from scratch, replay the necessary
operations from the old startup log to prevent re-
execution errors (e.g., attempt to rebind to port 80),
restore the program threads, and reinitialize all the
startup-time data structures and in-kernel state (e.g.,
open files, sockets, etc.). When startup in the new
version completes, MCR allows our mutable tracing
strategy to transfer the remaining (dirty) data struc-
tures from the old version to the new version. At the
end of the process, MCR allows the new version to
restart execution and terminates the old version.

Failure to complete the restart phase simply causes
the new version to terminate and the old version to
resume execution from the checkpoint. Since the entire
MCR process is guaranteed to be atomic, the restart
phase prevented from modifying the existing environ-
ment by mutable reinitialization, and the two program
versions are completely isolated from one another, the
failure is never exposed to the clients or propagated
back to the old version by construction. This design
yields a reversible live update strategy which can
safely and automatically rollback all the failed update
attempts—in contrast to prior user-level solutions for
generic C programs [1], [5], [6], [7], [9], [24].

3.1 A simplified example
Listing 1 exemplifies a MCR-enabled server pro-
gram with a simple but typical (event-driven)

server structure. The program begins executing on
line 13, with the entire startup code enclosed in the
server_init function. Such function performs the
necessary startup operations (e.g., socket creation) and
also initializes the conf data structure containing the
startup configuration (line 9) from persistent storage.
After startup, the execution is confined in the long-
running main loop on line 14, which, in each iteration,
simply waits for a new event (e.g., a new connection)
from the client and handles the event accordingly
(e.g., sending back a welcome message). The function
server_get_event (invoked on line 15) contains a
natural quiescent point for the server program, given
that execution may block waiting for events for an ex-
tended period of time with minimal in-flight state [9].
The function server_handle_event (invoked on
line 16), in turn, handles each event in a timely fash-
ion, possibly reading from the conf data structure and
writing into the other auxiliary data structures (line 1).

During startup, MCR records all the operations
performed by server_init in the startup log, un-
til the program enters the main loop and profile-
guided quiescence detects its first quiescent state
in server_get_event. After startup, MCR detects
changes to the auxiliary data structures and marks
them as dirty. When live update is requested, profile-
guided quiescence induces the main (and only) pro-
gram thread to safely quiesce in server_get_event.
Subsequently, MCR allows the new program version
to independently start up. When the new version
initializes (i.e., server_init), mutable reinitialization
replays all the necessary operations from the recorded
startup log. Simultaneously, profile-guided quiescence
induces the new version to naturally reach its first
quiescent state in server_get_event and block. With
both versions now in an equivalent quiescent state,
mutable tracing transfers all the dirty auxiliary data
structures from the old version to the new version,
omitting the (non-dirty) conf data structure automat-
ically reinitialized by the startup code.

While MCR can, in principle, handle this simple sce-
nario in a fully automated way, annotations (line 21)
can be specified by the developer to handle more
complex server structures and updates. For example,
the MCR_ADD_OBJ_HANDLER state annotation at the bot-
tom can help MCR identify hidden data structures
and pointers stored in the b buffer (see example in
Figure 4). The annotation takes as parameters the
pointer to a data structure that MCR might have
trouble identifying correctly and a pointer to a custom
callback function. During live update, the annotation
is called when MCR tries to infer the type of b and
returns the missing type information (in a predefined
format). Mutable tracing can normally handle these
cases automatically, but cannot alone apply changes
to such data structures when required by the update.
Further, similar to prior solutions, state annotations
are necessary to handle complex updates operating

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

semantic changes to data structures or to external
state (e.g., config files on persistent storage) [9], [32].
The MCR_ADD_REINIT_HANDLER annotation, in turn, can
help mutable reinitialization replay startup operations
when their semantics changes between versions or
restore a quiescent state in the old version not auto-
matically recreated at startup by the new version. For
example, this is the case with servers that dynamically
spawn threads/processes with long-lived quiescent
points after startup. The MCR_ADD_QUIESC_HANDLER
annotation, finally, can help profile-guided quiescence
avoid undesirable quiescent states (e.g., those that are
particularly challenging to restore in the new ver-
sion) by invalidating particular per-thread quiescent
points—that is, allowing blocking behavior for an
extended period of time or gracefully returning an
application-handled error code to the program. Each
of the latter two annotations accept as parameter a
pointer to a callback function invoked at a particular
point in time (i.e., after reinitialization has finished
and during quiescence detection, respectively).

4 PROFILE-GUIDED QUIESCENCE

Profile-guided quiescence, a crucial component of the
MCR approach, has been conceived from two sim-
ple observations. First, the problem of transparently
synchronizing multiple threads in bounded time and
in a deadlock-free fashion is undecidable (i.e., eas-
ily reducible to the halting problem) without extra
information on thread behavior. Second, every long-
running program has a number of natural per-thread
execution-stalling points [33] (i.e., program points in
which thread execution may stall for an unbounded
period of time), which are obvious choices to identify
a globally quiescent state.

The key idea behind profile-guided quiescence is
to profile the program at runtime and automatically
identify quiescent points [29]—which specify program
locations to safely block long-lived program threads
and converge to a globally quiescent state—from all
the stalling points observed.

We note a number of interesting stalling point prop-
erties in server programs. First, they always originate
from long-lived blocking calls (e.g., accept) with well-
known semantics. This allows us to automatically
gather fine-grained information on a stalling thread
and carefully control its behavior. Second, stalling
points are often found at the top of long-running
loops, which prior work has already largely recog-
nized as ideal update points [1], [5], [9]. Third, even
when stalling points are deeper in the call stack, fine-
grained control over them is clearly crucial to reach
quiescence, a common problem in prior work [9], [24].

The following two subsections illustrate in detail
how MCR identifies quiescent points and how it
exploits them through a dedicated protocol to identify
quiescent states of a server program.

4.1 Quiescent point identification

To identify stalling points and the corresponding long-
lived loops, our profiler relies on standard profil-
ing techniques. In particular, MCR leverages static
instrumentation to track all the threads (and processes)
in the program and to intercept all the function
calls, library calls, and loop entries/exits at runtime.
The MCR Quiescence Profiler thus exploits dynamic
analysis to identify all the classes of threads with
the same stalling points. To produce the necessary
profiling data (i.e., the dynamic traces), the profiler
requires a test workload able to drive the program
into all the potential execution-stalling states (e.g.,
a thread blocked on an idle connection, large file
transfer, etc.) that must be accepted as legal quiescent
states at live update time. In our experience, this
workload is typically domain-specific—can be reused
across several programs of the same class—and often
simple to extrapolate from existing regression test
suites. Even for very complex programs that may
exhibit several possible stalling states, we expect this
approach to be more intuitive, less error-prone, and
more maintainable than manually annotated update
points used in prior work [1], [5], [9].

To detect per-thread stalling points, the profiler re-
lies on statistical profiling of library calls. Intuitively, a
stalling point is simply identified by the blocking call
where a given thread spends most of its time during
the execution-stalling test workload. To detect per-
thread long-lived loops, our profiler relies on standard
loop profiling techniques [34], [35]. Intuitively, a long-
lived loop is simply identified by the thread’s deepest
loop that never terminates during the test workload.
At the end of the profiling run, our quiescence profiler
produces a report with all the (short-lived and long-
lived) classes of threads identified, their long-lived
loops, and their stalling points.

Each stalling point is automatically classified as
persistent or volatile—that is, whether it is already
visible or not right after server initialization—
and as external or internal—that is, whether the
corresponding blocking call is listening for external
events (e.g., select) or not (e.g., pthread_cond_wait).
In addition, a policy decides how each stalling point
participates in our quiescence detection protocol
(explained later on in the paper). Three options are
possible: (i) quiescent point—marks a valid quiescent
state for a given thread to actively participate in our
protocol; (ii) blocking point—allows execution to stall
indiscriminately before reaching the next quiescent
point; (iii) cancellation point—allows returning an
error (e.g., EINTR) to the program at quiescence
detection time. The default policy is to promote all
the persistent stalling points to quiescent points and
all the volatile ones to blocking points. The rationale
is to allow, by default, only the globally quiescent
states that can be reconstructed in a fully automated

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

way by mutable reinitialization after restart.
Let us now take a closer look at MCR’s instrumen-

tation process. MCR’s static instrumentation relies
on the gathered profile data to instrument all the
stalling points identified in the call stack of each long-
lived thread in the program. Our instrumentation
currently relies on thread-local flags to propagate call
stack information to every long-lived blocking call
site and instrument stalling points correctly. For this
purpose, MCR wraps every blocking library call site
corresponding to a profiled stalling point in a way
that it allows what we refer to as unblockification (i.e.,
elimination of persistent blocking behavior).

Unblockification exposes the original library call
semantics to the program, but guarantees that every
wrapped blocking call never truly blocks user-space
execution for an extended period of time. Meanwhile,
it periodically calls a predetermined hook—which
implements MCR’s quiescence detection protocol.
This design ensures that all the blocking calls are
short-lived and fully controllable by construction at
quiescence detection time.

Unblockification meets three key requirements: (i)
efficiency; (ii) low CPU utilization; (iii) low quiescence
detection latency. Concerning efficiency, unblockifi-
cation relies on standard timeout-based versions of
library calls (e.g., semtimedop) and simply loops
through repeated call invocations until control must
be given back to the program. When a timeout-based
version of the call is not available, we resort to either
the asynchronous version of the call (e.g., aio_read)
or—depending on availability—its nonblocking ver-
sion (e.g., nonblocking accept) followed by a generic
timeout-based call listening for the relevant events
(e.g., select). The latter strategy reduces the number
of mode switches to the minimum when the program
is under heavy load and thus on a performance-
sensitive path. Our other requirements highlight the
evident tradeoff between unblockification latency and
CPU utilization. In other words, short timeouts trans-
late to very fast loop iterations and frequent invoca-
tions of our instrumentation hooks, but also to high
CPU utilization. To address this problem, our im-
plementation dynamically adjusts the unblockification
latency, using low values that guarantee fast conver-
gence at quiescence detection time—currently 1ms—
and higher, more conservative values otherwise—
currently 100ms, which resulted in no visible CPU
utilization increase in our test programs.

We note that unblockification is a semantics-
preserving transformation of the original program
which ensures three important properties. First, it
guarantees that stalling point execution always re-
volves around short-lived loops with bounded iter-
ation latency even when a thread is blocked indefi-
nitely. Second, it provides a simple way to enforce our
stalling point policies (e.g., allow blocking behavior
in case of blocking points or call our hooks at the top

1: procedure COORDINATOR
2: Q← 1
3: repeat
4: A← 0
5: SYNCHRONIZE_RCU()
6: SYNCHRONIZE_RCU()
7: until A = 0
8: Q← 2
9: SYNCHRONIZE_RCU()

10: SYNCHRONIZE_RCU()

1: procedure QUIESCENTPOINT
2: if Q > 0 then
3: if Active then
4: A← 1
5: if Initiator or Q > 1 then
6: RCU_THREAD_OFFLINE()
7: THREAD_BLOCK()
8: RCU_THREAD_ONLINE()
9: THREAD_UNBLOCKED()

10: RCU_QUIESCENT_STATE()

Fig. 2: Quiescence detection protocol pseudocode. The
COORDINATOR code runs on a separate thread. The
QUIESCENTPOINT is called by application threads
when a quiescent point is reached.

of each short-lived loop iteration in case of quiescent
points). Third, it can unambiguously identify internal
or external events received by long-lived blocking
calls (given the well-defined semantics of standard
library calls) and pass this knowledge to our hooks at
quiescence detection time. These properties all serve
as a basis for our quiescence detection protocol.

4.2 Quiescence detection protocol
Given the instrumentation process described in the
previous subsections to identify quiescence points and
“unblockify” them, it is possible to detect when the
program under analysis reaches a quiescent state and
exploit this setting to induce a safe live update.

MCR identifies quiescence through an ad-hoc qui-
escence detection protocol based on two key obser-
vations. First, long-running programs are naturally
structured to allow threads waiting for external events
(e.g., a new service request or a timeout) to block
indefinitely. Second, in the face of no external events,
well-formed programs must normally reach a globally
quiescent state—all the threads stalling at quiescent
points—in bounded time. Building on these observa-
tions, our protocol enforces simple barrier synchroniza-
tion for all the threads blocked on external events—
that is, initiator threads—and waits for all the threads
processing internal events—that is, internal threads—to
complete pending event-processing operations before
detecting quiescence. When quiescence is detected, no
new event can be initiated by construction and all the
threads can be safely blocked at their quiescent points.
The key challenge is to automatically determine how
long to wait for internal events to complete without
blocking threads in a deadlock-prone fashion (or de-
laying quiescence for an extended period of time).

The naive solution is to scan all the thread call
stacks and verify each thread has reached a quies-
cent point. This strategy, however, is not race free
in absence of a consistent view of all the running
threads. Worse, even a globally consistent snapshot
of all the call stacks is not sufficient in the presence of
asynchronous thread interactions. Suppose a thread A
signals a thread B blocked on a condition variable and
then reaches its next quiescent point. Before B gets a

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

chance to process the event, a global call stack snap-
shot might mistakenly conclude that both threads are
idle at their quiescent points and detect quiescence.

This race condition, known as the launch-in-transit
hazard [36], is a recurring problem in the Distributed
Termination Detection (DTD) literature [36], [37], [38].
All the solutions to the DTD problem rely on explicit
event tracking [37], a costly solution in a local context
partially explored in prior work [24]. Fortunately,
unlike in DTD, we found that, in a local context,
avoiding event tracking is possible, given that local
events propagate in bounded time.

In particular, the key idea is to wait for all the
threads to reach a quiescent point with no event
received since the last quiescent point. This strat-
egy effectively reduces our original global quiescence
detection problem to a local quiescence detection
problem—that is, quiescing short-lived loop itera-
tions. To address the latter, we rely on RCU [39],
a scalable, low-latency, and deadlock-free local qui-
escence detection scheme. RCU-like solutions to the
problem of global quiescence detection were at-
tempted before [22], [28], but in much less am-
bitious architectures that simply disallowed long-
lived threads. Our design is based on the QSBR
flavor of liburcu [40], the fastest known user-space
implementation for local quiescence detection with
nearly zero overhead. The implementation provides a
synchronize_rcu primitive, which allows a controller
thread to wait for one quiescent period—that is, for all
the threads to reach a quiescent state at least once from
the beginning of the period (i.e., from the moment the
synchronize_rcu primitive was invoked). A detailed
explanation of the QSBR is beyond the scope of the
paper and can be found in [40]. In the remainder of
this paragraph we focus on the specific aspects of our
solution and we complement our explanation with a
simple example.

Our RCU-based instrumentation ensures that
threads atomically enter a nonquiescent state at cre-
ation time (i.e., pthread_create blocks waiting for the
new thread to complete RCU registration), atomically
traverse a quiescent state at each quiescent point right
before reaching the designated blocking call, and enter
an extended quiescent state [40] (i.e., they no longer
participate in the quiescence detection protocol) at
exit time or when our quiescence detection protocol
dictates them. This strategy allows our protocol to
transparently deal with an arbitrary number of short-
lived and long-lived threads.

Figure 2 illustrates the simplified steps of our qui-
escence detection protocol in more details, as also
described hereafter. The COORDINATOR publishes a
quiescence detection protocol event (Q = 1) and resets
the global active flag (A) to 0. Next, it waits for a first
quiescent period to ensure the protocol is visible to
both INITIATOR and INTERNAL threads. It then waits
a second quiescent period to give any instrumented

Quiescent period 2

Publish

Time

Coordinator

Initiator 1

Internal 1

Internal 2

Initiator 2

Quiescent period 1

B Q B Q

Receive Report

B Q

B Q B Q

Thread

exits

M.send()

B Q B M.received() Q

Active Flag (A)

Thread reports

active

Set Q=1

Reset

A to 0

A = 0
Message still

in transit

Fig. 3: A sample run of the 1st phase quiescence
detection protocol with 2 Initiator threads, 2 Internal
threads, and the Coordinator thread. This is a worst-
case scenario, with a message still in transit after
the 1st period, even though no thread has reported
being active. B represents native blocking calls, and Q
represents quiescent point instrumentation hook calls.

thread a chance to report an active state—whether
the last blocking call received an event (or a new
thread was created). The entire sequence is repeated
until quiescence is detected, that is, no thread changed
A in the last quiescent period. In the second phase,
the coordinator publishes a barrier event (Q = 2)
and waits for two more periods, the first period to
ensure the barrier event is visible to all the threads
and the second period to ensure all the threads react
and safely block at their quiescent points.

Our quiescent point instrumentation, in turn, imple-
ments the thread-side protocol logic. When the proto-
col is in progress (Q > 0), our hook reports an active
state (if any) to the coordinator and blocks the current
thread if it is an initiator thread or a barrier event is in
progress. For this purpose, lines 6–7 allow the current
thread to enter an extended quiescent state and block
on a condition variable. Lines 8–9, in contrast, allow
the current thread to leave an extended quiescent
state and synchronize before resuming execution—
in case the coordinator decides to abort the protocol,
for example after a predetermined timeout. Note the
rcu_quiescent_state call at the bottom, the only step
executed also during regular execution, to mark all the
quiescent state transitions correctly.

By leveraging two common and well-known
RCU uses—publish-subscribe and waiting for things
to finish [41]—our protocol provides race-free and
deadlock-free quiescence detection in only 2q + 2
quiescent periods—with q = 1 if the program is
already globally quiescent and otherwise bounded
by the length of the maximum internal event chain.

4.3 A simplified example
Figure 3 exemplifies a run of the first phase of our qui-
escence detection protocol (Q = 1). This sample run

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

depicts a worst-case scenario, with two active threads
reacting to the published protocol event only after two
quiescent periods due to in-transit messages. In the
example, the INITIATOR 2 thread sends a message to
the INTERNAL 2 thread, and reports an active state by
setting A = 1. Immediately after, the COORDINATOR
thread publishes a quiescence detection event (Publish
stage), setting Q = 1 and resetting A = 0. At the
beginning of the first quiescent period (Receive stage),
both program threads immediately reach a quiescent
state—only later followed by the first initiator thread
(entering an extended quiescent state) and by the first
internal thread (marking the end of the first quiescent
period). This ensures that the INTERNAL 2 thread can
receive the pending message, but does not prevent the
receiving thread from reporting an active state only at
a later stage. As a result, at the end of this stage, no
threads have reported being active, but in reality one
of them is still processing a message. Hence, we need
a second quiescent period (Report stage) to ensure that
the INTERNAL 2 thread can finally report being active
(A = 1) before reaching a new quiescent state. This al-
lows the COORDINATOR thread to detect nonquiescent
behavior and repeat the first phase of our protocol
until quiescence is detected. Since INITIATOR threads
are structurally prevented from receiving new exter-
nal events, the protocol converges by construction.

5 MUTABLE REINITIALIZATION

Mutable reinitialization seeks to restore all the updated
program threads (and processes) in the new version
in the quiescent state equivalent to the one obtained
in the old version at update time. This is to complete
control migration in the new version and also auto-
matically reinitialize the largest possible portion of
the global data structures. To minimize the number of
annotations, mutable reinitialization relies on the key
observation that running a server program’s startup
code tends to naturally initialize long-lived server
threads (and processes) and converge to a quiescent
state that closely matches the one in the old ver-
sion. When the server model yields stable quiescent
states (e.g., in event-driven servers), in particular, this
strategy fully automates the entire process with no
additional annotations required.

Piggybacking on existing startup code paths,
however, raises two challenges: (i) how to prevent
the startup code from accepting new server requests,
which would violate MCR’s atomic live update
semantics and hamper the ability to rollback failed
update attempts; (ii) how to allow startup code to
complete correctly without disrupting the old version,
which is blocked but still active in the background.

Mutable reinitialization addresses the first challenge
by allowing a controller thread to reinitiate the quies-
cence detection protocol before allowing the startup
code to run. This strategy forces all the long-lived

threads to safely block at their quiescent points with-
out being exposed to new external events. To address
the second challenge, mutable reinitialization care-
fully controls the startup process in the new version
by replaying the necessary startup-time operations
(i.e., system calls) from the log recorded in the old
version, providing the code in the new version with
the illusion that the execution of the program is
starting up from a fresh state.

Unlike traditional record-replay [42], [43], [44], [45],
however, mutable reinitialization does not attempt to
deterministically replay execution, a strategy which
would otherwise forbid any startup-time changes. The
idea is to replay only the operations that refer to
immutable state objects.

5.1 Handling immutable state objects

Immutable state objects are all the objects that refer to
external (e.g., in-kernel) state, which MCR must con-
servatively inherit and preserve in the new version.
In other words, these are the only objects allowed to
violate the mutable MCR semantics. For example, the
file descriptor associated to the server’s main listening
socket—automatically inherited by MCR at startup—
cannot be altered (or recreated) by the startup code or
the associated in-kernel state will be lost. Neverthe-
less, the startup code in the new version may expect
such file descriptor to be created and stored in global
data structures. Thus, replaying all the operations
associated to such file descriptor (e.g., socket()) is
crucial to allow the new startup code to complete
correctly and without disrupting the file descriptor in-
herited but still shared with the old version. The rest of
the startup code—potentially very different between
versions—in turn, is executed live. Since the replayed
operations all refer to state already inherited in the
new version by construction, execution can seamlessly
transition between live and replay mode without the
specialized kernel support required in traditional mu-
table replay [14], [46]. Our record-replay implemen-
tation, in contrast, is simply based on library-level
interception of all the startup-time syscalls.

MCR currently supports three main classes of im-
mutable objects based on our experience with real-
world server programs: (i) file descriptor numbers
inherited from the old version—immutable due to
the associated in-kernel state; (ii) immutable mem-
ory object addresses identified by mutable tracing
(see below)—immutable due to partial knowledge of
global pointers; (iii) process/thread IDs—immutable
since they carry process-specific state potentially
stored in global data structures that must be trans-
ferred to the new version.

Unfortunately, mapping and preserving immutable
objects inherited from the old version at replay time
is challenging in a multiprocess context (e.g., a server
with one master and one worker process). The prob-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

lem is exacerbated by the need to avoid unnecessary—
and potentially expensive—immutable object tracking
during normal execution. Consider the naïve solution
for file descriptors of having every process in the
new version (e.g., the new worker process) inherit
all of its counterparts’ (i.e., the old worker process’s)
file descriptors. There are two major problems with
this approach, with similar considerations applicable
for other immutable objects as well. First, the mul-
tiprocess nature of the startup process may result in
an old file descriptor number clashing with another
one already inherited from the parent process at fork
time. Second, file descriptor numbers may be reused
during or after startup, which implies that mutable
reinitialization can no longer unambiguously deter-
mine whether a file descriptor number inherited from
the old version matches the one associated to a partic-
ular operation in the old startup log. This hampers the
ability to establish whether a given operation should
be replayed or not in the new version.

Mutable reinitialization addresses both challenges
by enforcing two key principles: global inheritance and
global separability. Global inheritance allows the first
process in the new version to inherit all the immutable
objects from all the processes in the old version before
allowing the startup code to run. The idea is to preal-
locate all the necessary immutable objects to avoid
object clashing and progressively propagate all the
objects down the process hierarchy in the new version
for replay purposes. For example, this translates to a
master process inheriting all the old file descriptors
at startup and every newly created worker process
automatically inheriting all of them as dictated by
the fork semantics. All the immutable objects that
do not participate in replay operations in a given
process are simply garbage collected when control mi-
gration completes. Global separability, in turn, allows
all the immutable objects created at startup to acquire
globally unique identifiers, preventing the ambiguity
introduced by reuse. For example, this translates to
the file descriptor number 10 allocated at startup
never being allowed to be reallocated after control
migration. Note that preventing reuse is not necessary
for immutable objects created after startup, which
are not target of replay operations and are simply
inherited from the old version with no constraints.

5.2 Matching operations

Mutable reinitialization opts for a conservative match-
ing and conflict resolution strategy when replaying
the operations from the startup log recorded in the
old version. Syscalls are only automatically replayed
when a perfect match is found with the log. For
instance, if the startup code in the new version is
updated to omit a previously recorded syscall, mu-
table reinitialization immediately flags a conflict—
which results in a rollback if not explicitly resolved

by the developer. While more sophisticated record-
replay strategies based on best-fit conflict resolution
are possible [14], our conservative strategy guaran-
tees correctness of control migration while detecting
complex changes that inevitably require developer
annotations. Further, since the replay surface is small,
we expect unnecessary conflicts caused by startup-
time changes to be minimal in practice.

To enforce a conservative matching strategy in pres-
ence of reordering of operations due to nondetermin-
ism or arbitrary version changes, mutable reinitial-
ization relies on call stack IDs associated to every
operation considered. A call stack ID expresses the
context of every recorded (or replayed) system call in
a version-agnostic way and is computed by simply
hashing all the active function names on the call
stack of the thread issuing the system call. Call stack
IDs are used to match every system call observed
at replay time with the corresponding system call
recorded in the old startup log. When a mismatch
is found, mutable reinitialization suspends replay
operations and immediately flags a conflict. Despite
its conservativeness—function renaming between ver-
sions may produce different call stack IDs for equiv-
alent operations and thereby introduce unnecessary
conflicts—we found this matching strategy to be gen-
erally more robust to addition/deletion/reordering
of system calls and changes to their arguments than
alternative strategies based on global or partial or-
derings of operations [14]. Finally, mutable reinitial-
ization conservatively flags a conflict when match-
ing system calls are issued with nonmatching argu-
ments between versions. To tolerate benign changes
to syscall invocations, however, MCR follows pointers
and performs a deep comparison of the arguments
similar to [14].

6 MUTABLE TRACING

Mutable tracing seeks to traverse all the dirty global
data structures (i.e., state objects) in the old version
and remap them to the new version, possibly
reallocating and type-transforming updated state
objects on the fly. This is to complete state transfer in
the new version for all the objects not automatically
restored by mutable reinitialization. This strategy
raises two challenges: (i) how to identify the dirty
state objects modified after startup in the old version;
(ii) how to remap and transfer those objects with
minimal manual effort, even with partial knowledge
of global pointers.

Mutable tracing relies on soft-dirty bits tracking to
address the first challenge. This is a lightweight user-
level dirty memory page tracking mechanism avail-
able in recent Linux releases and already adopted
by emerging user-space checkpoint-restart techniques
for incremental checkpointing purposes [11]. The idea
is to first clear all the kernel-maintained soft-dirty

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

bits (associated to each memory page in each pro-
cess) when program startup completes. This causes
the kernel to mark all the memory pages as soft-
clean and write-protect them to detect write accesses.
As a result, the first memory write issued by the
program into a given page after startup causes the
kernel to regain control, mark the page as soft-dirty,
and unprotect the page again—with no further track-
ing overhead for subsequent accesses. Finally, at live
update time, right after our update-time quiescence
detection protocol completes, all the soft-dirty bits are
retrieved from the kernel and used to determine all
the dirty memory pages (and the objects contained)
on a per-process basis.

To address the second challenge, in turn,
mutable tracing relies on three key observations:
(i) annotations in prior whole-program state transfer
strategies [9], [10] were only necessary to compensate
for C’s lack of rigorous type semantics. This
information is needed to unambiguously identify
types in the program state and to implement full-
coverage heap traversal, given a set of root pointers.
Note that garbage-collected languages already have
this information at their disposal, which is why we
further refer to precise tracing as GC-style tracing. Not
surprisingly, prior work has already demonstrated
that annotationless whole-program state transfer is
possible for managed languages like Java [47]; (ii)
similar problems are well-understood in the garbage
collection literature [15], [48], [49]. In particular, the
problem of remapping the program state in the face
of cross-version type and memory layout changes
faces the very same challenges of a precise and moving
tracing garbage collector for C [15]. By precise, we
refer to the ability to accurately identify object types,
necessary to apply on-the-fly type transformations.
By moving, we refer to the ability to relocate objects,
necessary to support arbitrary state changes in the
new version—induced by type transformations,
compiler optimizations, or ASLR (Address Space
Layout Randomization). Prior work identified
many real-world scenarios in which annotations are
necessary in this context, such as: explicit or implicit
unions, custom allocation schemes, uninstrumented
libraries, pointers as integers [15], [32]; (iii) conservative
garbage collectors are well-known solutions to these
problems [16], [17], in that they do not require
explicit type information at the cost, however, of
being unable to support moving behavior—and thus
limiting state transformations in our case.

Mutable tracing combines both precise and conser-
vative tracing techniques to form a hybrid GC-style
heap traversal strategy: it starts from a set of root
pointers and precisely traces types and pointers in the
face of complete and unambiguous type information,
but resorts to a conservative (but less update-friendly)
tracing strategy otherwise. For example, when visiting
a linked list node allocated by an uninstrumented

library, mutable tracing recognizes that no type in-
formation is available and conservatively tries to lo-
cate and traverse all the possible pointers therein
with no assumption on the actual object layout. To
implement this strategy for state transfer purposes,
MCR gracefully relaxes the original full-coverage data
structure transformation requirement. It marks stat-
ic/dynamic memory objects that are conservatively
traversed (and thus cannot be safely relocated after
restart) as immutable state objects and raises a conflict
when such objects with incomplete or ambiguous type
information (e.g., the linked list node in our example)
are found changed by the update. This strategy al-
lows the developer to tradeoff the initial annotation
effort against the number of update-induced state
transformations that can be automatically remapped
by mutable tracing without additional annotations.
We envision developers deploying an annotation-
less version of MCR at first, and then incrementally
adding annotations only on the data structures that
change more often if their experience with the system
generates an undesirable number of conflicts. Even
when a fully annotated state is desirable from the
developer perspective, our conservative strategy can
help developers identify missing annotations or other
problematic cases.

The next two subsections discuss in details the
tracing techniques adopted by MCR.

6.1 Precise tracing

There are two common strategies to implement the
precise tracing strategy required by mutable tracing:
(i) type-aware traversal functions generated by the
frontend compiler [9], [48], [49] or (ii) in-memory data
type tags associated to the individual state objects to
define their types [10]. The former is generally more
space- and time-efficient, but the latter can better deal
with polymorphic behavior and provide more flexible
type management. MCR implements the latter strat-
egy to seamlessly switch from precise to conservative
tracing as needed at runtime.

MCR’s precise tracing strategy operates in each
quiescent process in the new version, fully paralleliz-
ing the state transfer operations in a multiprocess
context. Each process requests a central coordinator
to connect to its counterpart in the old version (if
any) identified by the same creation-time call stack ID.
Once a connection is established with the old process,
MCR creates a fast read-only shared memory channel
to transfer over all the relocation and data type tags
from the old version. Starting from root global and
stack objects, MCR traces pointer chains to reconstruct
the entire program state in the old version and remap
each object found in the traversal to the new version—
copying data, reallocating objects, and applying type
transformations, similar to [9], [10]. We also allow
custom-specified traversal handlers to handle com-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

plex semantic state transformations (similar to [10]),
as exemplified earlier at the object level in Listing 1.

6.2 Conservative tracing

The conservative tracing strategy adopted by mutable
tracing operates obliviously to its precise counterpart.
The idea is to first perform a conservative analysis to
identify hidden pointers (i.e., pointers not explicitly
exposed by the type information available) and derive
a number of necessary invariants for the state objects
in the old version. Once the invariants are conserva-
tively preserved across versions, state transfer can be
simply implemented on top of precise tracing without
worrying about hidden pointers and type ambiguity.
In particular, our conservative tracing strategy gen-
erates two possible invariants for every object in the
old version: immutability—the object is immutable and
cannot be relocated in the new version—and nonup-
datability—the object cannot be type-transformed by
our precise tracing strategy in the new version (a
conflict is generated in case of type changes detected).

To identify such invariants, MCR operates similarly
to a conservative garbage collector [16], [17], scanning
opaque (i.e., type-ambiguous) memory areas looking
for likely pointers—that is, aligned memory words
that point to a valid live object in memory. Objects
pointed by likely pointers are marked as immutable
and nonupdatable—we could restrict the latter to only
interior pointers (i.e., pointers in the middle of an
object), but we have not implemented this option
yet. Objects that contain likely pointers are marked
as nonupdatable—we could restrict the latter to only
certain type changes, but we have not implemented
this option yet. Note that our strategy is only partly
conservative: MCR traverses the program state using
our precise strategy by default and switches to conser-
vative mode only when encountering opaque areas.
Further, when possible, our pointer analysis uses the
data type tag associated to the pointed object to reject
illegal (i.e., unaligned) likely pointers.

Our conservative tracing strategy raises two main
issues: accuracy—how conservative is the analysis
in determining updatability coverage—and timing—
when to perform the analysis. In our experience, the
former is rarely a issue in real-world programs. Prior
work has reported that even fully conservative GC
rarely suffers from type-accuracy problems on 64-
bit architectures—although more issues have been re-
ported on 32-bit architectures [50]. Other studies con-
firm that type accuracy is marginal compared to live-
ness accuracy [51]. In our context, liveness accuracy
problems are only to be expected for uninstrumented
allocator abstractions that aggressively use free lists—
or other forms of reuse. Nevertheless, these cases
can be easily identified and compensated by anno-
tations/instrumentation, if necessary. Also note that,
unlike standard conservative GC techniques, accuracy

0x9da6100

...

0x806a038

0x806a02c 0x9da68e8-1

0x9da68e8 5 0x000000

[char x4] char b[8] [char x4]

[int] [int] [int]

{next} {value} l_t list

...

0x9da6100

...

0x806a038

0x804a044 0x9f19830-1

0x9f19830 5

[char x4] char b[8] [char x4]

[int] [int] [int]

...
{next} {value} l_t list

{next} {value} {next} {value}

0x000000

Run time (v1) Run time (v2)

0x806a038 0x9da6104

10 20 30 10 20 30

0x806a038 0x9da6104

{new}

0

{new}

0

Fig. 4: Example of state mapping using mutable trac-
ing: Array b contains pointers to another array stored
as char types which are not captured by precise tracing
in v1, but are conservatively preserved in v2. While an
additional field new is added to the list type, all other
fields need to retain their previous values.

problems—that is, likely pointers not reflecting real
and live pointers—result only in more immutable ob-
jects that MCR cannot automatically type-transform,
but not in memory leaks for the running program.

As for the latter, our analysis should be normally
performed after the old version has become quiescent.
This strategy, however, would normally block the
running version for the time to relink the program and
prelink the shared libraries to remap nonrelocatable
immutable objects (e.g., global variables). Fortunately,
we have observed very stable immutable behavior
for such objects. As a result, our current strategy is to
simply run the analysis and the relinking operations
offline. If a mismatch is found after quiescence—
although we have never encountered this scenario
in practice—we could simply expand the set of
immutable objects, resume execution, allow relinking
operations in the background, and repeat the entire
procedure until convergence is detected.

6.3 A simplified example
Mutable tracing is exemplified in Figure 4, with im-
mutable state objects grayed out and wavy lines high-
lighting type transformations automatically operated
in the new version. In the example, two global objects
from Listing 1, the linked list head list and the array
b, are traversed following all the possible pointers to
reconstruct the reachable (heap-allocated) data struc-
tures. In the case of list, mutable tracing relies on the
accurate type information available to precisely locate
and follow the next pointer into the heap-allocated
list node in the old version (on the top left). Given
the complete knowledge of pointers and types, all the
list nodes are marked as mutable and automatically
relocated and type-transformed (i.e., with the newly
added field new) in the new version. The array b, in
turn, is treated as a generic buffer with unknown
type and thus conservatively scanned for possible
pointers. In the example, legal pointer values are
found to point into a heap-allocated array and b itself.
Since both values are inherently ambiguous and thus
prone to false positives, all the pointed objects in the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

old version are marked as immutable and forcefully
remapped at the same address in the new version.

7 IMPLEMENTATION

We have implemented MCR on Linux (x86), with
support for generic server programs written in
C. Static instrumentation—implemented in C++
using the LLVM v3.3 API [31]—accounts for 728
(quiescence profiler) and 8,064 LOC 2 (the other MCR
components). MCR instrumentation relies on a static
library, implemented in C in 4,531 LOC. Dynamic
instrumentation—implemented in C in a shared
library—accounts for 3,476 (quiescence profiler)
and 21,133 LOC (the other MCR components). The
mcr-ctl tool, which allows users to signal live
updates to the MCR backend using UNIX domain
sockets, is implemented in C in 493 LOC.

7.1 Profile-guided quiescence
In our implementation, profile-guided quiescence
enforces a fast and deadlock-free quiescence detection
protocol using liburcu [40], a popular user-space
RCU library. A current limitation of liburcu is its
inability to support multiprocess synchronize_rcu
semantics. To address this issue, MCR uses a process-
shared active counter and requests a controller thread
in each process to complete the first phase of the
protocol. In this phase, newly created processes
simply cause the entire protocol to restart. When all
the per-process threads complete, MCR transitions to
the second phase of the protocol and waits for all the
controller threads to report quiescence.

7.2 Mutable reinitialization
In our MCR implementation, as mentioned in Sec-
tion 5, mutable reinitialization enforces global in-
heritance and global separability (see Section 5) in
different ways for different classes of immutable ob-
jects. Immutable static memory objects (e.g., global
variables) are inherited using a linker script and natu-
rally guarantee global inheritance and separability by
design (no identifier ambiguity possible). Immutable
dynamic memory objects (e.g., heap objects) are inher-
ited using global reallocation (see below). Separability
is enforced by deferring all the free operations at the
end of startup (no startup-time address reuse) and
explicitly flagging startup-time heap objects in alloca-
tor metadata (no ambiguity from memory reuse after
startup). Immutable file descriptors are inherited us-
ing UNIX domain sockets. Separability is enforced by
intercepting startup-time file descriptor creation op-
erations (e.g., open) to (i) allocate new file descriptor
numbers in a reserved (non-reusable) range at the end
of the file descriptor space and (ii) structurally prevent

2. Lines of code reported by David Wheeler’s SLOCCount.

startup-time reuse. Immutable process and thread
IDs are handled similarly to file descriptor numbers,
except they cannot be simply inherited from the old
version. To enforce global inheritance, MCR intercepts
startup-time thread and process creation operations
(e.g., fork) and relies on Linux namespaces [52] to
force the kernel to assign a specific ID. This strategy
follows the same approach adopted by emerging user-
space checkpoint-restart techniques for Linux [11].

A key challenge is how to implement global re-
allocation of immutable dynamic memory objects,
ensuring that each object is reallocated in the new
version with the same virtual address as in the
old version. MCR addresses this challenge using
different strategies, coalescing overlapping memory
objects from different processes in the old version
into “superobjects” reallocated in the new version
at startup (and deallocated later when no longer in
use). In particular, shared libraries are copied and
prelinked [53] in a separate directory before startup.
MCR instructs the dynamic linker to use our copies,
allowing the libraries to be remapped at the same
virtual address as in the old version. This also allows
MCR to reallocate all the dynamically loaded libraries
correctly using dlopen. Memory mapped objects, in
turn, are remapped at the same address using stan-
dard interfaces (i.e., MAP_FIXED). To provide strong
safety guarantees in case of rollback, we also envision
memory shared with the old version to be shadowed
during startup and remapped as expected only at the
end, a strategy that our current prototype does not
yet fully support. Global reallocation of heap objects
poses the greatest challenge, given that standard al-
locators provide no support for this purpose. MCR
addresses this problem by leveraging the intuition
that common allocator implementations behave sim-
ilarly to a buffer allocator for an ordered sequence
of allocations in a fresh heap state. MCR implements
this strategy for ptmalloc [54]—the standard glibc
allocator—using a single malloc arena, but we be-
lieve a relatively allocator-independent implementa-
tion is possible assuming predictable allocation be-
havior and malloc header size—currently inferred
by gaps between dummy allocations performed at
startup. We also envision this abstraction to become
part of standard allocator interfaces once MCR is
deployed—similar to ptmalloc’s existing get_state
and set_state primitives for local reallocation used in
standard checkpoint-restart on a per-process basis.

7.3 Mutable tracing

In our MCR implementation, mutable tracing relies on
instrumentation-maintained data type tags to enforce
precise tracing behavior and on run-time policies to
decide when a traversed memory area must be treated
as opaque—thus resorting to conservative tracing.

Similar to prior precise tracing strategies based on

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

data type tags [10], [15], MCR relies on static instru-
mentation to store relocation and data type tags for all
the relevant static objects (i.e., global variables, func-
tions, etc.) and change all the allocator invocations to
call ad-hoc wrapper functions that maintain relocation
and data type tags in in-band allocator metadata.
To determine the allocation type on a per-callsite
basis, MCR relies on static analysis of allocator oper-
ations, similar to [15]. MCR also borrows the tracking
technique for generic stack variables, maintaining a
linked list of overlay stack metadata nodes [15]. While
inspired by prior work, our instrumentation has a
number of unique properties. First, ambiguous cases
like unions require no annotations [10] or tagging [15],
given that our tracing strategy can be made conser-
vative when needed. Similarly, MCR does not require
full allocator instrumentation for complex allocation
schemes. Our allocation type analysis can currently
only support standard allocators (i.e., malloc) or—
using annotations—region-based allocators [55]. For
more complex allocator abstractions, our allocation
type analysis resorts to fully conservative behavior.
Finally, stack variable tracking—expensive at full cov-
erage [15]—is limited to all the functions that quies-
cence profiling found active on the call stack of some
thread blocked at a quiescent point.

To recognize object pairs across versions for
remapping purposes (i.e., variable x in the old
version is to be remapped to variable x in the new
version), we use a number of strategies dictated by
the MCR model. We use symbol names to match
static objects and allocation site information to match
dynamic objects not automatically reallocated by
mutable reinitialization at startup time—which must
thus be reallocated at state transfer time. Dynamic
objects already reallocated at startup time, in contrast,
are matched by their call stack ID, similar to the anal-
ogous startup-time operations. Individual program
threads, finally, are matched based on their creation-
time call stack IDs and all their stack variables
remapped using the associated symbol names.

Finally, MCR allows developers to configure
run-time policies to identify opaque memory areas
that must be traced using a conservative rather
than precise tracing strategy, but also provides
default values that we found realistic in real-
world server programs. The default behavior is to
enable conservative tracing for unions, pointer-sized
integers, char arrays, and uninstrumented allocator
operations, but different program-driven policies are
also possible. Currently, MCR does not conservatively
analyze nor transfer shared library state by default,
since we have observed that most real-world server
programs already reinitialize shared libraries and
their state correctly at startup time. Nonetheless, the
user can instruct MCR to transfer–and conservatively
analyze—the state of particular uninstrumented
libraries in an opaque way, when necessary.

8 VIOLATING ASSUMPTIONS

We report on the key issues that might allow
real-world server programs to violate MCR’s
annotationless semantics—excluding developers
extensions required to support complex semantic
updates. The intention is to foster future research in
the field, but also allow programmers to design more
live update-friendly (and better) software.

Our profile-guided quiescence strategy might
require extra manual effort in the following cases:
(i) missing stalling points in profile data (i.e., not
covered by the test workload)—weakens convergence
guarantees; (ii) misclassified stalling points in profile
data (e.g., an external library call used to synchronize
internal events)—weakens convergence or deadlock
guarantees; (iii) overly conservative stalling point
policies (i.e., promoting a semi-persistent stalling
point to a blocking point)—weakens convergence
guarantees. In our experience, the first two cases are
rarely a concern in practice. In contrast, we found
the last case to be more common in real-world server
programs. We believe, however, that these cases
are generally straightforward to detect (i.e., either
by running the program or simply inspecting the
generated profiling information) and can be easily
compensated with simple developers annotations
(i.e., a quiescence handler).

Our mutable reinitialization strategy requires extra
manual control migration effort when the quiescent
state obtained at startup time in the new version does
not match the update-time one in the old version.
We found this scenario to be relatively common
in practice for server programs that dynamically
spawn threads and processes on demand. A possible
solution is to extend our record-replay strategy to
code paths leading to all the possible quiescent
points, but this may also introduce nontrivial run-
time overhead. While annotations are possible, we
believe these cases are generally better dealt with at
design time. Purely event-driven servers (e.g., nginx)
are an example, with a single possible quiescent state
allowed throughout the execution.

Mutable reinitialization might also require extra
manual effort in the following cases: (i) unsupported
immutable objects (e.g., process-specific IDs with no
namespace support, such as System V shared mem-
ory IDs, stored into global variables); (ii) nondeter-
ministic process model (e.g., a server dynamically
adjusting worker processes depending on the load);
(iii) nonreplayed operations actively trying to violate
MCR semantics (e.g., a server aborting initialization
when detecting another running instance). We believe
these cases to be relatively common, the last two in
particular—Apache httpd being an example. While
the last case is trivial to address at design time,
the others require better run-time support and more
sophisticated process mapping strategies.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

Quiescence profiling Updates Changes Engineering effort

SL LL QP Per Vol Num LOC Fun Var Type Ann LOC ST LOC

Apache httpd 2 8 8 5 3 5 10,844 829 28 48 181 302
nginx 1 2 2 2 0 25 9,681 711 51 54 22 335
vsftpd 0 5 5 1 4 5 5,830 305 121 35 82 21
OpenSSH 3 3 3 1 2 5 14,370 894 84 33 49 135

Total 6 18 18 9 9 40 40,725 2,739 284 170 334 793

TABLE 2: Overview of all the programs and updates used in our evaluation. Quiescence Profiling: SL – Short-
lived loops, LL – Long-lived loops, QP – Quiescence points, PER – Persistent (visible after startup), VOL – Volatile
(not immediately visible after startup). Engineering effort: Lines of code written to enable mutable reinitialization
(ANN) and to allow transferring of complex memory objects (ST), respectively.

Finally, our mutable tracing strategy shares a
number of problematic cases that require extra
manual effort with prior garbage collection strategies
for C [15]. Examples include storing a pointer on
the disk or relying on specialized encoding to store
pointer values in memory. In the MCR model, these
cases are best described as examples of immutable
objects not supported by our run-time system. While
seemingly uncommon and generally easy to tackle at
design time, we did find 1 real-world program (i.e.,
nginx) using pointer encoding in our evaluation.

9 EVALUATION

We evaluated MCR on a workstation running Linux
v3.12 (x86) and equipped with a 4-core 3.0 Ghz AMD
Phenom II X4 B95 processor and 8 GB of RAM. For
our evaluation, we considered the two most popular
open-source web servers—Apache httpd (v.2.2.23) and
nginx (v0.8.54). In addition, for comparison purposes,
we also considered a popular FTP server—vsftpd
(v1.1.0)—and a popular SSH server—the OpenSSH
daemon (v3.5p1). Such programs (and versions) have
been extensively used for evaluation purposes in prior
solutions [1], [7], [9], [24], [29]. We configured our
programs (and benchmarks) with their default set-
tings and instructed Apache httpd to use the worker
module with two servers and fifty worker threads
without dynamically adjusting its process model. We
benchmarked our programs using the Apache Bench-
mark (AB) (web servers), the pyftpdlib FTP bench-
mark (vsftpd), and the built-in test suite (OpenSSH
daemon). We repeated all our experiments 11 times
and report the median.

Our evaluation answers four questions: (i) engineer-
ing effort: how much effort does MCR require? (ii) per-
formance: how much overhead does MCR add? (iii) up-
date time: what is the MCR update time? (iv) memory
usage: how much memory does MCR use?

9.1 Engineering effort
To evaluate the engineering effort required to deploy
our techniques, we first prepared our test programs
for MCR and profiled their quiescent points. To put

together an appropriate workload for our quiescence
profiler, we used three simple test scripts. The first
script—used for the web servers—opens 10 long-lived
HTTP connections and issues one HTTP request for
a very large file in parallel. The second and third
scripts—used for OpenSSH and vsftpd, respectively—
open 10 long-lived SSH (or FTP) connections—in
authentication/post-authentication state–and, for vs-
ftpd, issue one FTP request for a very large file in
parallel. Note that our workload is not meant to
be necessarily general—Apache httpd, for instance,
supports plugins that can potentially create several
new quiescent points—but rather to cover all the qui-
escent points that we have observed being stressed by
the execution of our benchmarks. Quiescence points
not discovered by the test workload (e.g., untested
Apache httpd plugins) but covered by the real work-
load may result in deferring quiescence (and updates)
in production. In practice, our experience shows that,
with some knowledge on the tasks carried out by the
server, it is generally straightforward to put together
a suitable test workload (typically a much stripped
down version of the test suites already included in
the original programs).

Next, we considered a number of incremental
releases following our original program versions,
and prepared them for MCR. In particular, we
selected 5 updates for Apache httpd (v2.2.23-v2.3.8),
vsftpd (v1.1.0-v2.0.2), and OpenSSH (v3.5-v3.8),
and 25 updates for nginx (v0.8.54-v1.0.15)—nginx’s
tight release cycle generally produces much smaller
patches than those of all the other programs
considered. We deployed the corresponding live
updates incrementally for each program (i.e.,
updating one release into its next incremental
release and simulating periodic live update cycles in
production) and tested each update for correctness
by (i) comparing the output of our benchmarks
before and after the update and (ii) validating the
integrity of the updated program state using the
time-traveling state transfer technique3 developed in
our prior work [56]. Table 2 presents our findings,
with an overview of all the programs and updates
considered and the effort required to support MCR.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

Precise pointers Likely pointers

Total Static Dynamic Lib Total Static Dynamic Lib

Ptr Src Targ Src Targ Targ Ptr Src Targ Src Targ Targ

Apache httpd 2,373 2,272 2,151 101 219 3 16,252 185 2,050 16,067 14,201 1
nginx 1,242 1,226 1,214 16 26 2 4,049 51 293 3,998 3,755 1
nginxreg 2,049 1,226 1,455 823 592 2 3,522 51 149 3,471 3,372 1
vsftpd 149 148 131 1 4 14 6 6 0 0 6 0
OpenSSH 237 226 211 11 19 7 56 5 16 51 32 8

TABLE 3: Mutable tracing statistics aggregated after the execution of our benchmarks. PTR – total number of
pointers found, SRC – total number of pointers residing in statically or dynamically allocated memory objects,
TARG – total number of memory objects allocated statically, dynamically, or by shared library code.

The first six grouped columns summarize the
data generated by our quiescence profiler. The first
two columns detail the number of short-lived and
long-lived thread classes identified during the test
workload. The short-lived thread classes detected
derive from daemonification (all the programs
except vsftpd), initialization tasks (Apache httpd),
or executing other helper programs (OpenSSH
daemon). The long-lived thread classes detected, in
turn, originated a total of 18 quiescent points, divided
equally in persistent (Per) and volatile (Vol)—that
is, whether they are already visible or not right
after startup. OpenSSH and vsftpd’s simple process
model resulted in only one persistent quiescent
point associated to the master process. All the server
programs reported volatile quiescent points with the
exception of nginx, given its rigorous event-driven
programming model. The quiescent points reported
were used as is for our quiescence instrumentation
with no extra annotations necessary.

The second group of columns provides an overview
of the updates considered for each program and the
number of LOC changed by them. As shown in the
table, the program changes included in the 40 updates
considered account for 40,725 LOC overall. The third
group, in turn, shows the number of functions, vari-
ables, and types changed (i.e., added, deleted, or mod-
ified) by the updates, with a total of 2,739, 284, and
170 changes, respectively. The fourth group shows the
engineering effort (LOC) in terms of annotations re-
quired to prepare our programs for MCR and the extra
state transfer code required by our software updates.

As shown in the table, the annotation effort
required by MCR is relatively low. Adding
annotations was also greatly simplified by the
conflicts flagged by mutable reinitialization and
mutable tracing. In all the cases we examined,
resolving conflicts was possible with simple

3. The system applies the update, and then, before releasing
control to the new version, runs a “reverse-update” on the new
process, “updating” it with the old binary. The memory regions
of the process resulting from this reverse-update operation are
then compared naively (i.e., with the equivalent of memcmp) to the
original process, and if any discrepancies are found, the update is
aborted and control is rolled back to the first version.

annotations. In the general case, the annotation
effort to resolve conflicts grows with the complexity
of the target program and of the updates. While this
may sound intimidating, we believe that the in-depth
knowledge of the program acquired by MCR can also
be used to suggest the developer common annotations
(e.g., a global variable changing its name prefix) to
semi-automate the annotation process. We have not,
however, attempted this approach given that we
found the annotation process relatively streamlined
for the programs and updates we considered.

When supporting only persistent quiescent points—
corresponding to stable thread configurations auto-
matically reconstructed by mutable reinitialization—
in particular, Apache httpd required only 8 LOC to
prevent the server from aborting prematurely after
actively detecting its own running instance and 10
LOC to ensure deterministic custom allocation behav-
ior. Both changes were necessary to allow mutable
reinitialization to complete correctly. Further, nginx
required 22 LOC to annotate a number of global point-
ers using special data encoding—storing metadata in
the two least significant bits. The latter is necessary
for mutable tracing to interpret pointer values cor-
rectly. Extending mutable reinitialization to all the
other nonpersistent quiescent points profiled, on the
other hand, required an extra 82 LOC for vsftpd,
49 LOC for OpenSSH, and 163 LOC for Apache httpd.
In addition, we had to manually write 793 LOC to
allow state transfer to complete correctly across all
the updates considered. The extra code was necessary
to implement complex semantic state transformations
that could not be automatically remapped by MCR.
Moreover, two of our test programs rely on custom
allocation schemes: nginx uses slabs and regions [55],
Apache httpd uses nested regions [55]. Extending al-
locator instrumentation to custom allocation schemes
increases updatability, but also introduces extra com-
plexity and overhead on allocator operations. To an-
alyze the tradeoff, we allowed MCR to instrument
only nginx’s region allocator—precise tracing for slab
and nested region allocators is not yet supported in
our current MCR prototype—and instructed mutable
tracing to produce quiescent-time statistics—for both

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

precisely and conservatively identified pointers—after
the execution of our benchmarks (see Table 3).

In the two cases, the table reports the total number
of pointers detected (Ptr), per-region source pointers
(Src), and per-region pointed target objects (Targ).
Objects are classified into Static (e.g., global vari-
ables, but also strings, which attracted the majority
of likely pointers into static objects), Dynamic (e.g.,
heap objects), Lib (i.e., static/dynamic shared library
objects). We draw three main conclusions from our
analysis. First, there are many (23,885) legitimate cases
of likely pointers—we sampled a number of cases to
check for accuracy—which cannot be ignored at state
transfer time. Prior whole-program strategies would
delegate the nontrivial effort of handling such cases
to the developer. In MCR, such pointers result in
a fraction of target objects marked as immutable—
0.7%-31.9% for our programs, but heavily program
and allocator dependent in general—which MCR can
automatically handle with no developer annotations
as long as the corresponding data structures are not
affected by the update. Second, we note a number
of program pointers into shared library state (28+11).
This confirms the importance of marking shared li-
brary objects as immutable if library state transfer
is desired. Finally, our results confirm the impact of
allocator instrumentation. Apache httpd’s uninstru-
mented allocations produce the highest number of
likely pointers (16,067), with nginx following with
3,998. Our (partial) allocator instrumentation on nginx
(nginxreg) can mitigate, but not eliminate this problem
(3,471 likely pointers). Further, even in the case of a
fully instrumented allocator (vsftpd and OpenSSH),
we still note a number of likely pointers originating
from legitimate type-unsafe idioms (6 and 56, respec-
tively), which suggests annotations in prior solutions
can hardly be eliminated even in the optimistic cases.

We now directly compare our results with prior live
solutions, when possible. Ginseng [5], Upstare [24],
and Kitsune [9] have also updated similar versions of
vsftpd. Kitsune [9] can support the largest number
of quiescent points (6 manually annotated points)
with the lowest state transfer engineering effort (101
LOC over 13 updates). MCR, in turn, can support
5 automatically discovered quiescent points (the dif-
ference may stem from the different configurations
used) with generally lower state transfer effort (21
LOC over 5 updates). Ginseng requires the lowest
one-time annotation effort (50 LOC), but much higher
state transfer effort (1092 LOC over 12 updates). MCR,
in turn, requires higher one-time annotation effort
(82 LOC), but lower than similar whole-program live
update solutions such as Kitsune (113 LOC).

Ginseng has also updated similar versions of
OpenSSH, with support for only 1 manually
annotated quiescent point (compared to MCR’s 3
automatically discovered points), comparable one-
time annotation effort (50 LOC, compared to MCR’s

Unblock +SInstr +DInstr +QDet

Apache httpd 0.977 1.040 1.043 1.047
nginx 1.000 1.000 1.000 1.000
nginxreg 1.000 1.175 1.192 1.186
vsftpd 1.024 1.027 1.028 1.028
OpenSSH 0.999 0.999 1.001 1.001

TABLE 4: Run time normalized against the baseline.
From left to right, the times reported in each column
are cumulative (e.g., the Quiescence Detection column
also includes the Unblockification, Static Instrumentation
and Dynamic Instrumentation times).

49 LOC), and higher state transfer effort (784 LOC
over 10 updates, compared to MCR’s 135 LOC over
5 updates). Kitsune has also analyzed the quiescent
behavior of Apache httpd, manually annotating
5 quiescent points. MCR, in contrast, was able to
automatically discover 8 quiescent points, providing
evidence that our profiling strategy, other than being
a fundamental building block for our quiescence
detection protocol, can be more effective than
manual inspection in identifying quiescent points
for complex programs. We cannot directly compare
our live update results on Apache httpd and nginx
with prior solutions, since deploying updates on
such servers has not been attempted before. We can
speculate, however, that the extensive use of global
pointers, type-unsafe idioms, and application-specific
allocators in these servers would be challenging
to handle in prior solutions without the help of
techniques similar to those supported by MCR.

Overall, we regard MCR as an important step
forward over prior solutions [5], [9], [10], [24]: (i)
much less annotation effort is required to deploy
MCR and support updates; (ii) much less inspection
effort is required to identify issues with pointers,
allocators, and shared libraries.

9.2 Performance
To evaluate the run-time overhead imposed by MCR,
we measured the time to complete the execution of
our benchmarks compared to the baseline. We config-
ured the Apache benchmark to issue 100,000 requests
and retrieve a 1 KB HTML file. We configured the
pyftpdlib benchmark to allow 100 users and retrieve
a 1 MB file. In all the experiments, we observed
marginal CPU utilization increase (< 3%). Run-time
overhead results, in turn, are shown in Table 4. We
comment on the results for uninstrumented region
allocators first. As expected, unblockification alone
(Unblock) introduces marginal run-time overhead
(2.4% in the worst case for vsftpd). The reported
speedups are well within the noise caused by
memory layout changes [57]. When unblockification
is combined with our static instrumentation (+SInstr),
the run-time overhead is somewhat more visible (4%
worst-case overhead for Apache httpd). The latter

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

 0

 100

 200

 300

 400

 500

 10 20 30 40 50 60 70 80 90 100

Q
ui

es
ce

nc
e

tim
e

(m
s)

Number of worker threads

 Apache benchmark
 Idle

Fig. 5: Quiescence time vs. number of worker threads.

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70 80 90 100

S
ta

te
 tr

an
sf

er
 ti

m
e

(m
s)

Number of open connections

 Apache httpd
 nginx

 vsftpd
 OpenSSH

Fig. 6: State transfer time vs. open connections.

originates from our allocator instrumentation, which
maintains in-band metadata for mutable tracing. The
overhead is fairly stable when adding our dynamic
instrumentation (+DInstr)—which also tracks all
the allocations from shared libraries, other than
maintaining process and thread metadata. Finally,
our quiescence detection instrumentation (+QDet)
introduces, as expected, marginal overhead. This
translates to the final 4.7% worst-case overhead
(Apache httpd) for the entire MCR solution.

To further investigate the overhead on allocator
operations, we instrumented all the SPEC CPU2006
benchmarks with our static and dynamic allocator
instrumentation. We reported a 5% worst-case over-
head across all the benchmarks, with the exception
of perlbench (36%), a memory-intensive benchmark
which essentially provides a microbenchmark for our
instrumentation. Our results confirm the performance
impact of allocator instrumentation. This is also ev-
idenced by the cost of our region instrumentation
on nginx, which incurs 19.2% worst-case overhead
(nginxreg in Table 4). While our implementation may
be poorly optimized for nginx’s allocation behavior,
this extra cost does evidence the tradeoff between the
precision of our mutable tracing strategy and run-
time performance, which MCR users should take into
account when deploying our solution.

Our results show that MCR overhead is generally
lower [18] or comparable [1], [5], [9] to prior solutions.
The extra costs (unblockification and allocator instru-
mentation) provide support for automated quiescence
detection and simplify state transfer. For example,

Idle 100 connections

Objects Dirty Objects Dirty

Apache httpd 31,494 0.025 36,182 0.151
nginx 5,357 0.076 5,757 0.139
vsftpd 787 0.297 89,487 0.323
OpenSSH 2,525 0.025 269,225 0.198

TABLE 5: Dirty memory objects after our benchmarks.

the tag-free heap traversal strategy proposed in Kit-
sune [9] would eliminate the overhead on allocator
operations, but at the cost of no support for interior
or void* pointers without extensive annotations.

9.3 Update time

To evaluate the update time—the time the program
is unavailable during the update, and thus a measure
of the client-perceived latency—we analyzed its
3 main components in detail: (i) quiescence time;
(ii) control migration time; (iii) state transfer time. To
evaluate quiescence time, we allowed our quiescence
detection protocol to complete during the execution
of our benchmarks or during idle time. We found that
programs with only external quiescent points—vsftpd
and OpenSSH—or rarely activated internal points—
nginx, whose master process is only activated for
recovery purposes—always converge in comparable
time in a workload-independent way (around 125
ms, with the first 100 ms attributable to our default
unblockification latency), given that our protocol is
essentially reduced to barrier synchronization.

Apache httpd is more interesting, with several live
internal points interacting across its worker threads.
Figure 5 depicts the time Apache httpd requires to
quiesce for an increasing number of worker threads,
resulting in a maximum quiescent time of 184 ms with
25 threads (default value) and 427 ms with 100 threads
(Apache httpd’s recommended maximum value). The
figure confirms our protocol scales well with the
number of threads and converges quickly even under
heavy load once external events are blocked. Both
properties stem from our RCU-based design.

To evaluate control migration time, we measured
the time to complete mutable reinitialization across
versions. We found that both the record and replay
phase complete in comparable time (less than 50
ms), with modest overhead (1-45%) compared to the
original startup time across all our test programs and
configurations. Finally, to evaluate state transfer time,
we allowed a number of users to connect to our
test programs after completing the execution of our
benchmarks and measured the time to transfer the
state between versions using mutable tracing. Figure 6
depicts the resulting time as a function of the number
of open connections at live update time.

Our results acknowledge the impact of the number
of open connections on state transfer time, due to

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

Static Run-time Update-time

Apache httpd 2.187 2.100 7.685
nginx 2.358 4.111 4.656
nginxreg 2.358 4.330 4.829
vsftpd 3.352 5.836 14.170
OpenSSH 2.480 3.047 11.814

TABLE 6: Normalized physical memory usage.

a generally larger heap state and more processes to
transfer for programs handling each connection in a
separate process—vsftpd and OpenSSH. Compared to
recent program-level solutions such as Kitsune [9]—
which only evaluated the impact of a single client
on the update time—however, Figure 6 shows that
MCR scales fairly well with the number of open
connections, with an average state transfer time
increase of 371 ms at 100 connections, compared to a
baseline of between 28-187 ms with no connections.
This behavior stems from our parallel state
transfer strategy—which operates concurrent state
transformations throughout the process hierarchy—
and our dirty object tracking strategy—which
drastically reduces the amount of state to transfer
with essentially no impact on the execution (we
observed no steady-state overhead on long-running
server programs). Table 5 evaluates the impact of the
latter, reporting the total number of memory objects as
well as the fraction of dirty objects actually considered
for state transfer after executing our benchmarks.
As shown in the table, our dirty object tracking
strategy is very effective in reducing the number of
objects to transfer, with only 2.5%-29.7% of the objects
considered in the idle configuration. The effectiveness
of our strategy is marginally affected when increasing
the number of connections, with 13.9%-32.3% of the
objects considered for state transfer with 100
connections.Overall, while generally higher than
prior in-place solutions [1], [5]—but comparable and
more scalable than prior program-level solutions [9],
[24]—we believe our update times to be sustainable
for most programs. The benefit is full-coverage
(and reversible) multiprocess state transfer able to
automatically handle C’s ambiguous type semantics.

9.4 Memory usage
MCR instrumentation leads to larger memory
footprints. This stems from mutable tracing metadata,
process hierarchy metadata, the in-memory startup
log, and the required MCR libraries. Table 6 evaluates
the MCR impact on our test programs. The static
memory overhead (235.2% worst-case overhead for
vsftpd) measures the impact of our instrumentation
on the original binary size. The run-time overhead
(483.6% worst-case overhead for vsftpd), in turn,
measures the impact of our instrumentation on the
resident set size (RSS) observed at runtime, after
startup—we found the overhead to be comparable

during the execution of our benchmarks. The update-
time overhead, finally, shows the maximum RSS
overhead we observed at update time, accounting
for an extra running instance of the program and
auxiliary data structures allocated for mutable tracing
(1,317.0% worst-case overhead for vsftpd).

As expected, MCR requires more memory than
prior in-place live update solutions, while being,
at the same time, comparable to other whole-
program solutions that rely on data type tags such
as PROTEOS [10]. A tag-free tracing implementation
such as the one adopted in Kitsune [9] would help
reduce the overhead in this case as well, but also
impose the limitations already discussed earlier.
MCR favors annotationless semantics over memory
usage, given the increasingly low cost of RAM in
these days. Also note that we have not attempted
to optimize the occupancy of our tags, which are
extremely space-inefficient given that our code is
shared across several projects with orthogonal goals.
With space optimizations, we believe the nontrivial
memory overhead currently incurred by MCR can be
significantly reduced and come much closer to that
introduced by standard (malloc) memory allocators.

10 CONCLUSION

This paper presented Mutable Checkpoint-Restart
(MCR), a new live update solution for generic server
programs written in C. MCR’s design goals dictate
support for arbitrary software updates and minimal
annotation effort for real-world multiprocess and mul-
tithreaded server programs. To achieve these ambi-
tious goals, the MCR model carefully decomposes the
live update problem into three well-defined tasks: (i)
checkpoint the running version; (ii) restart the new
version from scratch; (iii) restore the checkpointed
execution state in the new version. For each of these
tasks, MCR introduces novel techniques to signifi-
cantly reduce the number of annotations and provide
solutions to previously deemed difficult problems.

To quiesce all the long-lived program threads at
checkpointing time, MCR relies on profile-guided
quiescence, a new technique which leverages offline
profiling information to implement an efficient, time-
bound, and deadlock-free quiescence detection strat-
egy at runtime. To implement control migration at
restart time, MCR relies on mutable reinitialization to
record-replay startup-time operations and create the
illusion that the new version is starting up as similarly
to a fresh program initialization as possible. This
strategy is also crucial to reinitialize a relevant portion
of the program state and thus drastically reduce the
state transfer surface, resulting in shorter update times
and reduced annotation effort to handle complex state
transformations. To implement state transfer for the
remaining state objects, finally, MCR relies on mutable
tracing to traverse global data structures even with

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

partial type and pointer information, thanks to a
carefully balanced combination of precise and con-
servative GC-style tracing techniques. Our experience
with real-world server programs demonstrates that
our techniques are practical, efficient, and raise the
bar in terms of deployability and maintenance effort
over prior solutions.

11 AVAILABILITY

To foster further research in the field, we have open-
sourced our core state transfer framework as part
of the mainstream release of the MINIX 3 operating
system (http://www.minix3.org), with support for
OS-level live update. An open-source implementation
of application-level MCR is underway.

ACKNOWLEDGMENTS

This work was supported by European Research
Council under ERC Advanced Grant 227874.

REFERENCES

[1] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol, “Practical
dynamic software updating for C,” in PLDI, 2006.

[2] T. Dumitras and P. Narasimhan, “Why do upgrades fail and
what can we do about it?: Toward dependable, online up-
grades in enterprise system,” in Middleware, 2009.

[3] J. Arnold and M. F. Kaashoek, “Ksplice: Automatic rebootless
kernel updates,” in EuroSys, 2009.

[4] R. S. Fabry, “How to design a system in which modules can
be changed on the fly,” in ICSE, 1976.

[5] I. Neamtiu and M. Hicks, “Safe and timely updates to multi-
threaded programs,” in PLDI, 2009.

[6] G. Altekar, I. Bagrak, P. Burstein, and A. Schultz, “OPUS:
Online patches and updates for security,” in USENIX SEC,
2005.

[7] H. Chen, J. Yu, R. Chen, B. Zang, and P.-C. Yew, “POLUS: A
powerful live updating system,” in ICSE, 2007.

[8] “Ksplice performance record,” http://www.ksplice.com/
cve-evaluation.

[9] C. M. Hayden, K. Saur, E. K. Smith, M. Hicks, and J. S.
Foster, “Kitsune: Efficient, general-purpose dynamic software
updating for C,” ACM TOPLAS, vol. 36, no. 4, Oct. 2014.

[10] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Safe and
automatic live update for operating systems,” in ASPLOS,
2013.

[11] “CRIU,” http://criu.org.
[12] C. Hayden, K. Saur, M. Hicks, and J. Foster, “A study of

dynamic software update quiescence for multithreaded pro-
grams,” in HotSwUp, 2012.

[13] D. Gupta, P. Jalote, and G. Barua, “A formal framework for on-
line software version change,” IEEE Trans. Softw. Eng., vol. 22,
no. 2, 1996.

[14] N. Viennot, S. Nair, and J. Nieh, “Transparent mutable replay
for multicore debugging and patch validation,” in ASPLOS,
2013.

[15] J. Rafkind, A. Wick, J. Regehr, and M. Flatt, “Precise garbage
collection for C,” in ISMM, 2009.

[16] H.-J. Boehm, “Bounding space usage of conservative garbage
collectors,” in POPL, 2002.

[17] H.-J. Boehm, “Space efficient conservative garbage collection,”
in PLDI, 1993.

[18] K. Makris and K. D. Ryu, “Dynamic and adaptive updates
of non-quiescent subsystems in commodity operating system
kernels,” in EuroSys, 2007.

[19] H. Chen, R. Chen, F. Zhang, B. Zang, and P.-C. Yew, “Live
updating operating systems using virtualization,” in VEE,
2006.

[20] O. Frieder and M. E. Segal, “On dynamically updating a
computer program: From concept to prototype,” J. Syst. Softw.,
vol. 14, no. 2, 1991.

[21] D. Gupta and P. Jalote, “On-line software version change using
state transfer between processes,” Softw. Pract. and Exper.,
vol. 23, no. 9, 1993.

[22] A. Baumann, J. Appavoo, R. W. Wisniewski, D. D. Silva,
O. Krieger, and G. Heiser, “Reboots are for hardware: Chal-
lenges and solutions to updating an operating system on the
fly,” in USENIX ATC, 2007.

[23] M. Siniavine and A. Goel, “Seamless kernel updates,” in DSN,
2013.

[24] K. Makris and R. Bazzi, “Immediate multi-threaded dynamic
software updates using stack reconstruction,” in USENIX ATC,
2009.

[25] S. Ajmani, B. Liskov, L. Shrira, and D. Thomas, “Modular
software upgrades for distributed systems,” in ECOOP, 2006.

[26] Y. Vandewoude, P. Ebraert, Y. Berbers, and T. D’Hondt, “Tran-
quility: A low disruptive alternative to quiescence for ensuring
safe dynamic updates,” IEEE TSE, vol. 33, no. 12, 2007.

[27] J. Kramer and J. Magee, “The evolving philosophers problem:
Dynamic change management,” IEEE TSE, vol. 16, no. 11,
1990.

[28] A. Baumann, G. Heiser, J. Appavoo, D. Da Silva, O. Krieger,
R. W. Wisniewski, and J. Kerr, “Providing dynamic update in
an operating system,” in USENIX ATC, 2005.

[29] C. Hayden, E. Smith, E. Hardisty, M. Hicks, and J. Foster,
“Evaluating dynamic software update safety using systematic
testing,” IEEE TSE, vol. 38, no. 6, 2012.

[30] C. Giuffrida, C. Iorgulescu, and A. S. Tanenbaum, “Mutable
checkpoint-restart: Automating live update for generic server
programs,” in Middleware, 2014.

[31] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in CGO, 2004.

[32] C. Giuffrida and A. Tanenbaum, “Safe and automated state
transfer for secure and reliable live update,” in HotSwUp, 2012.

[33] C. Kolbitsch, E. Kirda, and C. Kruegel, “The power of pro-
crastination: Detection and mitigation of execution-stalling
malicious code,” in CCS, 2011.

[34] T. Moseley, D. Grunwald, D. A. Connors, R. Ramanujam,
V. Tovinkere, and R. Peri, “Loopprof: Dynamic techniques for
loop detection and profiling,” in WBIA, 2006.

[35] “Poor man’s profiler,” http://poormansprofiler.org/.
[36] R. F. DeMara, Y. Tseng, and A. Ejnioui, “Tiered algorithm

for distributed process quiescence and termination detection,”
IEEE TPDS, vol. 18, no. 11, 2007.

[37] N. Mittal, S. Venkatesan, and S. Peri, “A family of optimal ter-
mination detection algorithms,” Distributed Computing, vol. 20,
no. 2, 2007.

[38] P. Johnson and N. Mittal, “A distributed termination detection
algorithm for dynamic asynchronous systems,” in ICDCS,
2009.

[39] P. E. McKenney and J. D. Slingwine, “Read-copy update: Using
execution history to solve concurrency problems,” in PDCS,
1998.

[40] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenais, and
J. Walpole, “User-level implementations of read-copy update,”
IEEE TPDS, vol. 23, no. 2, 2012.

[41] P. E. McKenney and J. Walpole, “What is RCU, fundamen-
tally?” http://lwn.net/Articles/262464.

[42] G. Altekar and I. Stoica, “ODR: Output-deterministic replay
for multicore debugging,” in SOSP, 2009.

[43] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and
S. Lu, “PRES: Probabilistic replay with execution sketching on
multiprocessors,” in SOSP, 2009.

[44] D. Subhraveti and J. Nieh, “Record and transplay: Partial
checkpointing for replay debugging across heterogeneous sys-
tems,” in SIGMETRICS, 2011.

[45] O. Laadan, N. Viennot, and J. Nieh, “Transparent, lightweight
application execution replay on commodity multiprocessor
operating systems,” in SIGMETRICS, 2010.

[46] I. Kravets and D. Tsafrir, “Feasibility of mutable replay for au-
tomated regression testing of security updates,” in RESoLVE,
2012.

[47] S. Subramanian, M. Hicks, and K. S. McKinley, “Dynamic
software updates: a VM-centric approach,” in PLDI, 2009.

http://www.minix3.org
http://www.ksplice.com/cve-evaluation
http://www.ksplice.com/cve-evaluation
http://criu.org
http://poormansprofiler.org/
http://lwn.net/Articles/262464

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 21

[48] F. Henderson, “Accurate garbage collection in an uncoopera-
tive environment,” in ISMM, 2002.

[49] J. Baker, A. Cunei, T. Kalibera, F. Pizlo, and J. Vitek, “Accurate
garbage collection in uncooperative environments revisited,”
Concurr. Comput.: Pract. Exper., vol. 21, no. 12, 2009.

[50] M. Hirzel and A. Diwan, “On the type accuracy of garbage
collection,” in ISMM, 2000.

[51] M. Hirzel, A. Diwan, and J. Henkel, “On the usefulness of
type and liveness accuracy for garbage collection and leak
detection,” ACM TOPLAS, vol. 24, no. 6, 2002.

[52] E. W. Biederman, “Multiple instances of the global Linux
namespaces,” in Linux Symposium, 2006.

[53] “Prelink,” http://people.redhat.com/jakub/prelink.pdf.
[54] “ptmalloc,” http://www.malloc.de/en.
[55] E. D. Berger, B. G. Zorn, and K. S. McKinley, “Reconsidering

custom memory allocation,” in OOPSLA, 2002.
[56] A. K. Cristiano Giuffrida, Calin Iorgulescu and A. S. Tanen-

baum, “Back to the future: Fault-tolerant live update with
time-traveling state transfer,” in USENIX LISA, 2013.

[57] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney,
“Producing wrong data without doing anything obviously
wrong!” in ASPLOS, 2009.

Cristiano Giuffrida is an assistant profes-
sor in the Computer Systems Group at the
Vrije Universiteit Amsterdam. His research
interests include operating systems, systems
security, and systems reliability. Giuffrida re-
ceived a PhD from the Vrije Universiteit Am-
sterdam. He was awarded the Roger Need-
ham Award and the Dennis M. Ritchie Award
for the best PhD thesis in Computer Systems
(Europe and worldwide) in 2015. Contact him
at giuffrida@cs.vu.nl.

Călin Iorgulescu is a PhD student in the
Operating Systems Laboratory of the De-
partment of Computer Science at École
Polytechnique Fédérale de Lausanne. His
research interests include operating sys-
tems, distributed systems, and systems se-
curity. Iorgulescu received an MSc in Parallel
and Distributed Computer Systems from the
Vrije Universiteit Amsterdam. Contact him at
calin.iorgulescu@epfl.ch.

Giordano. Tamburrelli is currently an assis-
tant professor at the Vrije Universiteit Ams-
terdam. Previously he has been Marie Curie
Fellow at the USI University in Lugano. He
received his PhD from Politecnico di Milano
and his M.Sc. degree both from the Univer-
sity of Illinois at Chicago and Politecnico di
Milano in a joint degree program. He has ac-
tive research interests in the areas of model-
ing and verification of systems and software.
Contact him at g.tamburrelli@cs.vu.nl.

Andrew S. Tanenbaum is a professor of
computer science at the Vrije Universiteit
Amsterdam. His research interests focus on
operating systems and computer security.
Tanenbaum received a BS from MIT and a
PhD from the University of California, Berke-
ley. He is a Fellow of the IEEE and the ACM.
He was awarded the USENIX Flame Award
in 2008. Contact him at ast@cs.vu.nl.

http://people.redhat.com/jakub/prelink.pdf
http://www.malloc.de/en

	Introduction
	Related Work
	Quiescence detection
	Control migration
	State transfer

	MCR Overview
	A simplified example

	Profile-guided Quiescence
	Quiescent point identification
	Quiescence detection protocol
	A simplified example

	Mutable Reinitialization
	Handling immutable state objects
	Matching operations

	Mutable Tracing
	Precise tracing
	Conservative tracing
	A simplified example

	Implementation
	Profile-guided quiescence
	Mutable reinitialization
	Mutable tracing

	Violating Assumptions
	Evaluation
	Engineering effort
	Performance
	Update time
	Memory usage

	Conclusion
	Availability
	References
	Biographies
	Cristiano Giuffrida
	Calin Iorgulescu
	Giordano. Tamburrelli
	Andrew S. Tanenbaum

