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Abstract—Spectre-v2 vulnerabilities have been increasingly
gaining momentum, as they enable particularly powerful cross-
domain transient execution attacks. Attackers can train the
indirect branch predictor in one protection domain (e.g., user
process) in order to speculatively hijack control flow and
disclose data in a victim domain (e.g., kernel). In response
to these attacks, vendors have deployed increasingly strong
domain isolation techniques (e.g., eIBRS and IBPB) to prevent
the predictor in one domain from being influenced by another
domain’s execution. While recent attacks such as BHI and Post-
barrier Spectre have evidenced (now patched) implementation
flaws of such techniques, the common assumption is that,
barring implementation issues, domain isolation can close the
attack surface in the practical cases of interest.

In this paper, we challenge this assumption and show
that even perfect domain isolation is insufficient to deter
practical attacks. To this end, we systematically analyze self-
training Spectre-v2 attacks, where both training and speculative
control-flow hijacking occur in the same (victim) domain.
While self-training attacks are believed to be limited to the in-
domain scenario—where attackers can run arbitrary code and
inject their own disclosure gadgets in a (default-off) sandbox
such as eBPF—our analysis shows cross-domain variants are
possible in practice. Specifically, we describe three new classes
of attacks against the Linux kernel and present two end-to-
end exploits that leak kernel memory on recent Intel CPUs at
up to 17 KB/sec. During our investigation, we also stumbled
upon two Intel issues which completely break (user, guest, and
hypervisor) isolation and re-enable classic Spectre-v2 attacks.

1. Introduction

Spectre-v2 attacks [1], [2], [3], [4], originally demon-
strated in 2018 [1], allow attackers to speculatively hijack an
indirect branch in a victim protection domain (e.g., kernel)
and redirect it to a disclosure gadget. The latter transmits
secret data back to the attacker over a covert channel such
as FLUSH+RELOAD [5]. Both in-domain and cross-domain
Spectre-v2 attacks are possible [6]. In the former scenario,
attackers can run arbitrary code in a sandbox environment
(e.g., eBPF) and speculatively execute their own injected
gadgets. In the latter scenario, attackers can only run code
in their own domain (e.g., user process) to train the indi-
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Figure 1: Cross-domain training versus self training. With
self training, an attacker (e.g., an unprivileged user) can lure
the victim (e.g., a kernel) to train itself, effectively bypassing
even perfect domain isolation implementations.

rect branch predictor and then lure the victim domain into
speculatively executing a disclosure gadget in its own code.

While clearly more constrained, cross-domain attacks
are much more powerful and have received much attention
in recent research [2], [3], [4]. This is due to their wide
applicability across arbitrary security boundaries and our
inability to mitigate them by simply forbidding untrusted
sandbox execution (e.g., disallowing privileged eBPF [4]).

In response, hardware vendors have deployed increas-
ingly sophisticated mitigations based on domain isolation,
either by means of explicit indirect branch prediction barri-
ers (e.g., IBPB) or implicit predictor mode separation (e.g.,
eIBRS) [7]. The key assumption behind these mitigations
is that, while in-domain attackers can run their own code
to directly train the predictor in the victim domain, such
self-training capabilities are not available to cross-domain
attackers, who can only run arbitrary code for training
purposes in their own domain. And that, due to domain iso-
lation, training in one domain cannot control indirect branch
prediction in another domain—barring implementation flaws
that lead to imperfect isolation of the branch history [2], [4]
or other indirect branch prediction structures [8].

In this paper, we show that this assumption is flawed
and that even a perfect implementation of domain isolation
is insufficient to deter practical attacks. More specifically,
we demonstrate that cross-domain self-training Spectre-v2
attacks (Figure 1) are feasible in practice for the very first
time. To this end, we conduct a systematic attack surface



analysis of these attacks, focusing on the user/kernel inter-
face and the Linux kernel in particular—a prime target of
state-of-the-art attacks [1], [2], [3], [4], [8].

We start our analysis by reverse engineering the be-
havior of state-of-the-art mitigations and of the indirect
branch predictor in the context of self-training Spectre-v2
attacks. Our investigation reveals several new insights across
microarchitectures, including details on the undocumented
behavior of recent mitigations such as BHI_DIS_S and
BHI_NO as well as different training strategies. Based on
such strategies, we describe three self-training Spectre-v2
attack classes affecting recent Intel CPUs—although some
classes also affect ARM, as detailed later.

The first class of attacks exploits branch history colli-
sions, similar in spirit to BHI [2] but with a cross-domain
attacker exploiting self-training and triggering branch his-
tory collisions exclusively in the victim domain for the first
time. To exploit this class, the attacker must find a code
path in the victim that gathers a desired branch history be-
fore speculatively executing the victim indirect branch. For
practical exploitation, we show the attacker can abuse Linux
kernel filters (widely used by SECCOMP [9] and socket
filtering [10]) to lure the kernel into executing a sequence
of direct branches and building up the desired history. To
demonstrate the viability of this approach, we present an
end-to-end exploit leaking arbitrary Linux kernel memory
on last-generation (Lunar Lake) Intel CPUs at 1.7 KB/sec.

The second class of attacks exploits IP-based branch
collisions in a history-agnostic indirect branch prediction
scenario. To exploit this class, the attacker must first reliably
disable the history-based kernel indirect branch predictor
from userland. We describe a number of new techniques for
this purpose, including one portable across microarchitec-
tures and mitigations. We also show collisions are scarce,
yielding a smaller attack surface than the other classes.
Nonetheless, we present evidence of potentially exploitable
(898) gadgets in large-scale attack scenarios.

The third class of attacks exploits direct-to-indirect
branch collisions. We show these collisions occur in a
history-agnostic fashion and provide a full speculation win-
dow on recent Intel CPUs, increasing the attack surface of
IP-based branch collisions. To exploit this class, the attacker
must find a direct branch in the victim colliding with the
victim indirect branch. We discovered two variants for this
class on recent Intel CPUs. The most severe variant has now
been branded as Indirect Target Selection or ITS by Intel.
For ease of exploitation, we show attackers can again abuse
Linux filters and present an end-to-end ITS exploit leaking
arbitrary Linux kernel memory on 10-11th-generation Intel
CPUs at 17 KB/sec. We also present evidence of exploitation
without Linux filters by means of gadget analysis.

Finally, we examine the broader implications of our
findings, and in particular of our third class of attacks. Since
collisions can occur between direct and indirect branches,
domain isolation techniques targeting only indirect branches
are insufficient. We experimentally confirm that indirect
branch prediction barriers such as IBPB are ineffective for
both our two variants, breaking isolation guarantees and re-

enabling traditional user-to-user or guest-to-guest Spectre-
v2 attacks (normally addressed by IBPB). We also experi-
mentally verified other mitigations guarding the user/kernel
interface such as eIBRS are not affected.

However, after disclosing our findings to vendors—
which responded by developing several industry-wide miti-
gations, including microcode updates, new instructions, and
OS/hypervisor changes—Intel eventually evidenced that ITS
does break eIBRS isolation for the guest/host interface
on certain microarchitectures. We experimentally confirmed
this behavior, with a traditional cross-training Spectre-v2
proof of concept (PoC) leaking hypervisor memory on 10th-
generation Intel CPUs at 8.5 KB/sec.

Contributions. To summarize our contributions:

1) We systematically analyze the attack surface of self-
training Spectre-V2 attacks by means of reverse engi-
neering, gadget analysis, and exploit development.

2) We describe three classes of self-training attacks, study
their exploitability, and present two end-to-end exploits
based on Linux kernel filters. All our artifacts are
available at https://github.com/vusec/training-solo, in-
cluding our test suite used for reverse engineering.

3) As a by-product of our investigation, we uncover
two new hardware issues on Intel CPUs—i.e., CVE-
2024-28956 (ITS) and CVE-2025-24495. Both issues
completely break user and guest isolation and one
(ITS) also breaks hypervisor isolation, collectively
re-enabling classic cross-training Spectre-v2 attacks
across a variety of security boundaries.

4) We discuss mitigations, some of which have been
picked up by affected vendors.

2. Background

Branch Prediction. Branch prediction, performed by the
Branch Prediction Unit (BPU), is a crucial CPU optimiza-
tion. By predicting and speculatively executing the next in-
struction block, the CPU mitigates memory latency impact.
Although direct branch targets are encoded in the instruc-
tion, the CPU stores executed targets in the Branch Target
Buffer (BTB), indexed by the instruction pointer (IP) [11],
[12], [13], [14]. The CPU uses this IP-based prediction
to fetch the next block even before decoding completes,
although speculative execution is typically prevented until
the target is validated.

This differs for indirect branches, where the target is un-
known at decode time and speculative execution is allowed
before the branch operand’s value is available. On Intel and
AMD CPUs, indirect branches also use the BTB for IP-
based prediction, but additionally use an Indirect Branch
Target Buffer (iBTB) indexed by the Branch History Buffer
(BHB) for history-based prediction [11], [12], [15]. On Intel,
the BHB is a shift register gathering specific bits of the
source and target address of a taken branch [11], [16], [17].
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Table 1: Domain isolation techniques and indirect branch prediction strategies on analyzed microarchitectures.

Isolation technique Prediction
Vendor Model  Code name  pArch BHB Clr. IBPB IBRS a/eIBRS BHI_DIS_S IPRED_DIS_S BHI_NO | BTB iBTB
9900K  Coffee Lake R Coffee Lake O ()} (] - - - - X X
10700K  Comet Lake Comet Lake = () O [ J - - - v v
11700  Rocket Lake Cypress Cove' @ © O ([ - - - v v
11800H Tiger Lake Willow Cove® = © O (] - - - v v
Raptor Cove* = () O (] (] @) = v/ X
Intel R0 e el Gracemont® = © @) ® ® O = X X
Redwood Cove? - © O ® [ O - v X
155H Meteor Lake Crestmont® - © @) [ ® O - v X
Lion Cove = () @) () @) @) [ ) v
258V LunarLake  gyormont - © O ° e e ° v
AMD 7950X  Raphael Zen 4 - () O o - - X X
9950X  Granite Ridge Zen 5 - () O [ - - - X X

@ Enabled by default, © Enabled for cross-context, @ Enabled for cross-privileged, O Available, — Not available, &3 Prediction after x privileged-branches,

+ Based on Sunny Cove, f Based on Golden Cove, § Atom parch.

Spectre v2. Spectre-v2 attacks train the Indirect Branch
Predictor (IBP) to predict an attacker-chosen farget of an
indirect branch. This is to speculatively execute transient
instructions in a victim domain and transmit secrets back to
the attacker domain via a covert channel [5].

To mitigate the most serious (i.e., cross-domain) Spectre-
v2 attacks, hardware vendors have deployed a variety of
mitigations based on domain isolation, which seeks to pre-
vent training in one domain from affecting indirect branch
prediction in another domain. Some mitigations such as the
Indirect Branch Prediction Barrier (IBPB) provide software
with an explicit barrier to flush indirect branch prediction
entries [18]. This is typically done upon context switch to
address cross-process and cross-VM attacks. Other miti-
gations such as Intel enhanced Indirect Branch Restricted
Speculation (eIBRS) [18], ARM CSV2 [19], and AMD
Automatic IBRS (AutoIBRS) [20], in turn, offer implicit
predictor mode separation, preventing the predicted targets
of indirect branches from being controlled by code running
in a lower privileged mode or on another logical processor—
addressing cross-SMT, user/kernel, and guest/host attacks.

These mitigations have not been free of implementation
flaws. For instance, recent research shows Intel IBPB imple-
mentations fail to flush certain prediction entries, enabling
post-barrier Spectre attacks [8]. As a fix, Intel released a mi-
crocode update. Branch History Injection (BHI) [2], [4], in
turn, demonstrated that Intel eIBRS and ARM CSV2 do not
isolate the branch history across predictor modes, enabling
attacks based on cross-domain branch history collisions. As
a fix, vendors originally suggested explicit software- (Intel)
or hardware-based (ARM) barriers for the branch history.
On recent Intel CPUs starting with Alder Lake and Sapphire
Rapids, Intel has also released more efficient mitigations
such as BHI_DIS_S and BHI_NO, which seek to prevent
indirect branches in a privileged mode from being predicted
based on an unprivileged branch history [7].

Linux Kernel Filters. The Berkeley Packet Filter
(BPF) [21] was initially designed to efficiently filter packets
in the kernel. As part of its filtering framework, the Linux

kernel implements two variants: classic BPF (cBPF) and its
more advanced counterpart, extended BPF (eBPF) [22].
cBPF is used for both network filtering via Linux
Socket Filtering (LSF) [10] and syscall filtering via SECure
COMPuting with filters (SECCOMP) [9]. Both have seen
widespread adoption in production (e.g., in Snort, Docker,
Chrome). cBPF supports only simple filters to inspect packet
fields or syscall arguments—Ilimited to two 32-bit internal
registers, forward jumps, and no register dereferences [22].
Extended BPF (eBPF), in turn, provides a much more
powerful sandbox environment, with 10 internal 64-bit reg-
isters, access to kernel helper functions, and management
of key/value stores (maps) to persist data across syscalls.
The extended functionality allows user-level attackers to run
their own complex code in the kernel with crafted indirect
branches, disclosure gadgets, and self-training primitives.
Not surprisingly, eBPF has been previously abused to mount
in-domain Spectre-v2 exploits and disabled for unprivi-
leged users in response [2]. Outside the in-domain scenario,
(cross-domain) self-training Spectre-v2 attacks have only
been previously theorized [23] but never shown in practice.
Recent work suggests hardening eBPF programs against
Spectre to re-enable eBPF for unprivileged users [24], [25].

3. Threat Model

We consider a standard cross-domain Spectre-v2 threat
model, where an unprivileged attacker seeks to leak memory
across security boundaries. We specifically focus on (self-
training) attacks against the Linux kernel. We assume all
the Spectre-v2 mitigations (e.g., eIBRS, BHI_NO) to be en-
abled. We also assume such mitigations have no implemen-
tation flaws and provide perfect domain isolation. Finally,
we assume other vulnerabilities (e.g., memory errors) are
mitigated through appropriate defenses.

4. Analysis of Domain Isolation Techniques

We start with an analysis and reverse engineering of
domain isolation techniques through the lens of cross-
domain self-training Spectre-v2 attacks. We focus on x86
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Figure 2: Workflow followed by our analysis test suite.

mitigations for the user-kernel interface and later generalize.
Details on our tested microarchitectures are available in Ap-
pendix A. We discuss our results for the microarchitectures
in Table 1.

Intel (e)IBRS. Intel IBRS and eIBRS ensure user/kernel
predictor mode separation. To analyze their behavior in a
self-training scenario, we rely on a kernel module with
a single indirect branch and a static branch history. We
self-train the branch to jump to a target accessing a
FLUSH+RELOAD buffer, then jump to a dummy target.

On Coffee lake, which enables IBRS by default, our
experiments reveal no misprediction to the trained target.
This indicates that indirect branch prediction is disabled
altogether in kernel mode. On all the other microarchi-
tectures, which support eIBRS, our experiments do reveal
mispredictions to the trained target in all cases.

AMD Auto IBRS. AMD Auto IBRS is widely perceived
as the AMD counterpart of Intel’s eIBRS, preventing the
use of branch targets trained in a lower privilege mode.
However, repeating our eIBRS reverse engineering exper-
iments on AMD Zen4 and Zen5 microarchitectures reveals
a completely different behavior for Auto IBRS. Surprisingly,
on both microarchitectures, we only observe prefetching
of the predicted target, evidencing that AutoIBRS disables
speculative execution for kernel indirect branches altogether.

Intel BHI_DIS_S. Intel CPUs from Alder Lake and Sap-
phire Rapids onwards support the BHI_DIS_S mitigation,
which, according to Intel, prevents indirect branch targets
in privileged modes (CPL0-2) from being selected based
on a user (CPL3) branch history [7]. To understand the
implications for self-training attacks, we change our kernel
module to dynamically generate a branch history and check
for correlation between the history and the predicted target.
Surprisingly, our results reveal that the predictor fails to
capture this correlation, entirely ignoring the branch his-
tory and only relying on IP-based prediction on the tested
microarchitectures with BHI_DIS_S enabled.

BHI_NO. Recent Intel CPUs enumerate BHI_ NO, which,
according to Intel, should simply result in the behavior
of “BHI_DIS_S being enabled by default” [7]. However,
repeating our BHI_DIS_S reverse engineering experiments
on recent Lunar Lake CPUs reveals a different behavior for
BHI_NO. Specifically, our results show BHI_NO does allow

history-based prediction for the kernel. However, the predic-
tion depends on the number of preceding kernel branches.

Other mitigations. There are other x86 Spectre-v2 mitiga-
tions that are less relevant for our target scenario. Some,
such as LFENCE;JMP, CET-IBT, and FineIBT are prone
to race conditions [4], [26] and generally not deployed by
default. Other software-based mitigations, such as retpo-
line [18] and BHB clearing [7], introduce nontrivial over-
head (and sometimes other security issues [3], [7]) and have
been replaced by more modern mitigations. Other hardware-
based mitigations such as IBPB [18] are also costly when
enabled at the user/kernel boundary and are thus only used
to protect user/user or guest/guest boundaries by default.
Yet others, such as IPRED_DIS_S disable indirect branch
prediction altogether and are disabled by default [7]. As part
of our reverse engineering efforts, we also considered these
mitigations but did not found any unexpected behavior in
the context of self-training Spectre-v2 attacks.

Summary. We derive a number of new insights from our
analysis. Some CPUs such as Intel Coffee lake and last-
generation AMD CPUs with AutoIBRS completely disable
speculative execution for kernel indirect branches. As such,
we exclude these CPUs from further analysis. The other
CPUs in Table 1 may or may not use the branch history
for indirect branch prediction depending on the microarchi-
tecture and the mitigations. We use these insights to further
investigate the predictor’s behavior and analyze the attack
surface of self-training attacks in the next sections.

5. Training Solo

With the current landscape of deployed domain isolation
techniques, an attacker can pursue two possible strategies to
mount kernel self-training attacks: (i) train indirect branches
using in-kernel history and (ii) train indirect branches using
IP-based kernel branch collisions. To study the behavior
of history-based predictions, IP-based predictions, and the
interplay between the two prediction strategies, we designed
a test suite, which follows the workflow shown in Figure 2.

The core of the test suite consists of a training branch
and a victim branch, whose IPs can be both randomized
across the 48-bit address space at run time. The training
branch is trained with a chosen target 7. The victim branch
jumps to a fixed dummy target. Both branches support
different types and jump to a configurable offset. If the
victim branch type is configured as an indirect branch, the



address storing the dummy target is flushed from memory
to extend the speculation window.

As shown by prior work [8], [16], [27], branch predictors
may store different target lengths. To capture speculation to
different target lengths, the test suite monitors, in addition to
the full (48-bit) target T, its matching 32-bit target, and its
matching short target (of configurable length). The test suite
can be configured to use a classic FLUSH+RELOAD covert
channel [1], loading a unique pointer at every monitored
target, or a prefetcher-based covert channel [27] by testing
if the target code is loaded into cache.

Besides the two core branches, multiple evicting
branches can be configured to execute before or after the
training branch. Finally, each branch path can be configured
to execute in user/kernel mode, with a custom history and
history branch type. Our test suite allows us to perform a
systematic analysis across microarchitectures. All configu-
ration options can be specified via a single test-case file per
experiment, and the test-case files used in this section are
publicly available. We present the results and implications
of our analysis in the next sections. When not otherwise
specified, the training and victim branch are configured with
matching [39:0] IP bits and executed in user mode.

5.1. History-based Training

We start by studying in-kernel history-based collisions
in absence of BHI mitigations and for the same indirect
branch type. We repeatedly run our test suite by randomizing
the training/victim branch histories and check for evidence
of collisions, i.e., speculation to our chosen target 7. We
also run experiments with randomly different lower IP bits
for the training/victim branch. Our results in both scenarios
evidence in-kernel history collisions on Intel CPUs, con-
firming the results of prior cross-privileged analysis [7]. As
an aside, we instead found collisions on AMD CPUs with
AutoIBRS=off only with matching IP bits.

Collisions across indirect branch types. To better qualify
the possible collisions pairs, we configure the test suite to
test all the combinations of training/victim indirect branch
types while randomizing both histories. Our results reveal
that the type of the branch (jump/call/ret) is shifted into the
iBTB tag. Namely, two branches with different branch type
do not collide if both histories are equal, but randomizing
the history does yield a collision.

BHI_DIS_S. Next, we analyze the impact of the
BHI_DIS_S mitigation in more details. We first repeat
our earlier experiments on Golden Cove with BHI_DIS_S
enabled. Our results show that the CPU consistently mis-
predicts to the 32-bit target regardless of the particular
branch history. This suggests the prediction is served from
the BTB via the IP-based predictor, always predicting the
last executed target matching the necessary IP aliasing
requirements—detailed in Section 5.3. Repeating our anal-
ysis on Crestmont shows the BTB can store both 32-bit and
48-bit targets—if the source and target IP bits [47:32] differ,

the BTB stores the full target. On Gracemont, BHI_DIS_S
appear to disable speculative execution altogether.

BHI_NO. Next, we repeat our experiments on Lion Cove
(P-core of Lunar Lake), which enumerates BHI_NO. We
again observe IP-based predictions to the 32-bit target, but
only if we execute a limited number of kernel branches
before the victim branch. Specifically, we observe that the
CPU switches to history-based prediction only if execute at
least 129 preceding kernel branches. This appears to be a
crude way to ensure the kernel does not use a (potentially
malicious) user history, i.e., enabling history-based predic-
tion only when the user history is shifted out of the BHB.

To confirm this intuition, we examine the size of the
branch history (i.e., BHB) used by the predictor. To this
end, we use a deeper victim branch history and randomize
the location of each preceding branch one by one until
the predictor can distinguish between the two paths. Our
results show that the predictor uses a history of up to the
last 66 branches. Moreover, with 194 or more preceding
kernel branches, the branch history used by the predictor
increases to 194 branches. On Skymont (E-core of Lunar
Lake), our experiments reveal similar behavior but with
different BHB sizes. After the 13 kernel branches executed
by the syscall prologue, history-based prediction is already
enabled, capturing up to the last 9 branches. After executing
34 kernel branches, the branch history size increases to 34.

Userland impact. Lastly, we test the impact of the BHI
mitigations on userland. We configure our test suite to use
in-user training and victim branches with distinct branch
histories and enter/exit kernel mode before executing the
victim branch. Our results show that the predictor can still
differentiate between the two user branch paths, suggesting
the BHB is not flushed on kernel entry. Next, we test if user-
mode prediction is affected by the branch history gathered
during kernel execution. To this end, we configure our test
suite to use identical branch histories for the in-user training
and victim branches and optionally execute a kernel branch
before the victim branch. Our results show that the predictor
successfully captures the correlation with the execution of
the kernel branch, showing that the kernel branch history is
still used for user-mode prediction (but not viceversa).

Summary. A self-training attacker can exploit arbitrary
history-based collisions across matching kernel indirect
branch types. However, BHI_NO / BHI_DIS_S disables
history-based prediction for early / all branches, resort-
ing to IP-based prediction except on Gracemont.

5.2. Predictor Selection

In the previous section, we detailed different factors
that cause the CPU to use history- vs. IP-based indirect
branch prediction. In some configurations (e.g., BHI_DIS_S
enabled), the attacker can only exploit IP-based predictions.
In others (e.g., BHI_NO enabled), the attacker can target



Table 2: Update policy for the BTB and iBTB prediction
structures after executing an indirect branch.

BTB iBTB | BTB updated iBTB updated
Miss/Incorrect Miss v vIx
Miss/Incorrect  Incorrect v v

Miss Hit v

Incorrect Hit X -

Hit Incorrect v

Hit Miss - X

fUpdated roughly half of the time.

specific kernel indirect branches to force the CPU to use IP-
based (or history-based) prediction. We now want to assess
whether the attacker can implement a more portable strategy
to select IP-based predictions, regardless of the particular
configuration. In detail, we study the impact of user-mode
iBTB and BTB manipulation on predictor selection.

iBTB manipulation. Prior work [2], [16] evidenced that
Intel CPUs supporting eIBRS record privilege mode infor-
mation in the iBTB. In this section, we want to study if an
attacker can evict kernel iBTB entries from a lower privilege
mode. To this end, we disable SMAP/SMEP and configure
our test suite to execute a user training branch twice, first in
kernel mode jumping to a target K and then in user mode
jumping to a target U. Then, we execute a victim branch in
kernel mode to inspect the iBTB state. In the experiment,
we use the same history Hy for all the branch paths. Our
results show that the user-mode training branch fails to evict
the kernel-mode entry (K signal), suggesting that privilege
information is used when matching the iBTB tag or set.

Next, we replace the user-mode training branch with a
full iBTB eviction set walk in user mode. Based on the
results of recent work [16], we build an iBTB eviction set
by executing 6 indirect branches with different [15:5] IP bits
and the same history Hy . With this change, our results now
show a misprediction to the matching 32-bit target of K,
evidencing eviction of the kernel iBTB entry and the CPU
resorting to the matching BTB entry. These results indicate
the privilege level is encoded in the tag, but not used for set
indexing. We confirmed this eviction strategy is feasible on
all tested microarchitectures.

BTB manipulation. Armed with the ability to evict a kernel
iBTB entry, we now want to study whether an attacker
can force a victim kernel branch to use IP-based (rather
than history-based) prediction. We start by repeating our
last experiment—i.e., using an iBTB eviction set to evict
the Hy entry—but now with a different history Hr for the
training branch. Our results again show a misprediction to
the matching 32-bit target of K. Next, we test if we can train
across iterations, which is a more realistic attack scenario
than starting with a cold predictor state at each iteration.
This time, our results no longer reveal a misprediction to
our target, indicating that the presence of the updated BTB
entry is dependent on the predictor state. As a result, we
study in which states the predictor updates iBTB and BTB.

For both the BTB and the iBTB there are 3 possible

states post prediction: a miss, a (correct) hit, and an incorrect
hit. To simulate all the states, we need to be able to evict
the BTB entry as well. Confirming prior findings [16], we
find that we can evict the BTB entry with a single user
direct branch which aliases the victim branch. Lastly, we
need to be able to inject a BTB and iBTB target to simulate
both correct and incorrect hits. We do this by executing
the training branch with either the correct target K or an
incorrect dummy target. If we want to inject distinct BTB
and iBTB targets, we have to execute the training branch
twice and use a randomized history for the BTB injection.
Now by injecting either a correct or incorrect BTB/iBTB
entry and using the two eviction methods, we can create
all possible predictor states. For each state, we prime the
predictor, then execute the training branch. Next, we infer
the updated entries by observing the victim misprediction.
The results (Table 2) show the training branch does not
update the BTB if there is an iBTB hit and an incorrect
BTB entry is present. This clarifies why the BTB entry was
not successfully updated earlier: when executing the training
branch, the correct iBTB entry was present, preventing the
update of the existing (incorrect) BTB entry, which was, in
turn, updated by the victim branch in the previous iteration.
Hence, for self-training to reliably update a BTB entry, the
attacker needs to either evict the existing BTB entry or evict
the Hr iBTB entry before executing the training branch. Be-
sides evicting the Hy iBTB entry, we configure our test suite
to also evict either the BTB entry or the Hy iBTB entry.
This stably yields a successful victim misprediction, forcing
reliable IP-based prediction on all our microarchitectures.

Summary. A self-training attacker can exploit iBTB
and BTB evictions and force a victim kernel branch
using history-based prediction to switch to IP-based
prediction from a lower privilege mode.

5.3. IP-Based Training

In this section, we study the conditions to trigger IP-
based collisions. First, we reverse engineer BTB properties
to confirm results of prior work and disclose details for the
newer microarchitectures. Following previous analysis tech-
niques [12], [27], we configure our test suite with the same
direct branch as training/victim and enable the prefetcher-
based covert channel to detect collisions. Next, we infer the
bits used for BTB indexing/tagging by flipping one or two
bits of the victim IP and testing if we still observe the signal.

To infer which bits are used for set indexing, we want to
test which IP bits we can change without indexing a different
set. Therefore, we first find a BTB eviction set (of direct
branches), which, when executed, evicts the BTB entry of
the training branch. To prevent a match on both tag and set,
we ensure the eviction branches are not a full alias of the
training branch nor of each other. With a BTB eviction set,
we can now test when victim and training branches index
different sets by flipping the IP bits of both branches one by
one. For each test, we execute the training branch, walk the



Table 3: BTB properties for the tested microarchitectures.

uArch \ Set index Tag Target length
Comet Lake | [13:5] [29:22]p[21:14] 32/ 10
Sunny Cove | [13:5] [33:24]p[23:14] 32/ 12
Golden Cove | [14:5] [23:15] 32

Lion Cove' [12:4] [21:13] 32

Gracemont [14:5] [24:15] 32

Crestmont [15:6] [25:16] 32

Skymont [15:6] [25:16] 32

"Indexing based on entry-point address

eviction set, and execute the victim branch. If we observe a
signal, and thus the eviction set fails to evict the BTB entry,
training and victim branches index different sets.

Finally, we check if the BTB supports short targets and,
if so, of which target length. To this end, we randomize the
training target offset and the number of short target bits,
while testing the signal for both short and 32-bit targets. To
be able to distinguish short targets from 32-bit targets, we
flip one or two IP bits below bit 32 of the victim branch,
while maintaining a full alias of the training branch.

Results. Table 3 presents our results. We observed the
presence of short BTB targets only on Comet Lake and
Sunny Cove. Our results also show that the likelihood of a
short entry being filled increases if the evicting branches,
with a 32-bit target, create contention on the same BTB set.
Furthermore, we observed a significant change in the
way the BTB is indexed on Lion Cove. Our experiments
show that the entry-point address (i.e., the last jump target)
rather than the branch address itself is used to index the
BTB. The branch address is only validated before specula-
tive execution. While this may seem like a subtle change,
it has substantial implications: the BPU can look up targets
earlier, and a single branch can now allocate multiple BTB
entries—one for each possible entry point. We detail our
findings on this new indexing scheme in Appendix B.

Collisions across branch types. Next, we want to analyze
collision behavior across branch types. We configure our
test suite with a training branch and a victim branch. We
randomize for both branches: the type (call/jump/ret/je and
direct/indirect), the offset, and the IP bits. To randomize the
IP bits, we alternate between randomizing (i) the lowest 35
bits, (ii) only the TAG bits, or (iii) only the SET + lower
remaining bits. We run our experiments for 48 hours on all
our microarchitectures and discuss the main findings below.

Indirect-to-indirect branch collisions. In contrast to what
we observed for history-based prediction, our results only re-
ported jump-to-jump or call-to-call collisions (i.e., success-
ful IP-based training). This suggests that the BTB maintains
a branch type field, instead of shifting the type in the tag.

Moreover, our results show that Willow Cove (based on
Sunny Cove) can fill and consume short (12-bit) BTB targets
for indirect branch prediction. We did not observe indirect
branch targets filling short entries elsewhere.

Table 4: Prediction scenarios when the direct branch BTB
entry is served as predicted target for an indirect branch.

Victim prediction State Source of predicted target

BTB iBTB Indirect BTB Indirect iBTB Direct BTB
Hit  Hit - v -

Hit Miss

Miss Hit - - v
Miss Miss

Direct-to-indirect branch collisions. Our results also re-
vealed unexpected behavior on Comet Lake, Sunny Cove
and Lion Cove. Specifically, for particular test suite config-
urations, our results reported an indirect branch prediction
to a direct branch target. We further investigate this behavior
in the next section.

Summary. A self-training attacker can exploit IP-based
collisions across matching kernel indirect branch types.
Some microarchitectures feature short-target specula-
tion or even direct-to-indirect branch collisions.

5.4. Direct-to-indirect Branch Training

A closer inspection of our results show that the direct-to-
indirect branch collisions on Comet Lake and Sunny Cove
(i.e., our 10th- and 11th-generation CPUs) occur in different
conditions compared to Lion Cove (i.e., our Ultra Series 2
last-generation CPU). We first discuss our findings on Comet
Lake and Sunny Cove and defer the Lion Cove discussion
at the end of this section.

On Comet Lake and Sunny Cove, the direct-to-indirect
branch collisions occur when the BTB entry matches the
full tag and all the set bits except bit 5. More specifically,
we only observe a collision if the victim indirect branch is
on the lower half of the cache line (i.e., IP[5] == 0) and the
training direct branch is on the upper half of the cache line.
Interestingly, this implies that the two branches occupy a
different BTB set, yet the direct branch is still used for the
indirect branch prediction. We will research this behavior
further below.

Predictor state requirements. Our results show that most
direct-to-indirect collisions result in an unstable mispre-
diction of the victim. However, the stability seems to be
dependent on the predictor state. A closer inspection reveals
that increasing the branch offset of the training branch
results in a more stable misprediction of the victim branch,
hinting that the code executed before the training branch
modifies the predictor state. We hypothesize that when the
CPU executes non-branching code on an IP that aliases
a BTB entry, the BTB entry is invalidated. As the code
executed before the training branch aliases the victim’s BTB
entry, it may evict the BTB entry of the victim.

To test this hypothesis, we repeat our experiment, but,
instead of adding an offset to the training branch, right
before the training branch we jump to a series of nop
instructions whose IP aliases the victim’s BTB entry. With
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Figure 3: The speculation window size for indirect branch
misprediction to an indirect or direct branch target. The size
is measured by the median hit rate on a L3 load chain.

the change, we now successfully observe stable mispredic-
tion to the direct branch target. Our results also show that
BTB entry invalidation due aliasing code only occurs if the
executed code is in the same privilege level as the BTB
entry. However, an attacker can evict the BTB entry via an
aliasing user branch instead, as shown earlier in Section 5.2.
Next, we want to check for additional constraints on the
prediction state. To this end, similar to the predictor-state
experiment in Section 5.2, we simulate all predictor states
and check for mispredictions to the direct target. Table 4
presents our results. Summarizing, we only observe mis-
predictions to the direct target on a BTB miss and an iBTB
hit. Interestingly, this behavior deviates from regular indirect
branch prediction, where iBTB entries take precedence.
With the new insights, we run a new experiment to test
all the IP[5:0] combinations with the correct predictor state.
Our results show that all the IP[4:0] combinations result in a
collision, as long as the indirect branch and direct branch are
on the lower and upper half of the cache line, respectively.

Speculation window size. To characterize the nature of the
collisions and for instance assess whether we are observ-
ing the effect of early-frontend speculative execution and
branch type confusion similar, in spirit, to phantom jumps
on AMD [28], we compare the speculation window size
when training with a direct vs. indirect branch. To this end,
we create a chain of dependent loads at the training target.
To limit the number of required loads, we ensure the load
addresses are evicted from L2 and thus served from L3.
Figure 3 presents our results. As shown in the figure, the
hit rate for both branch targets is close to 100% for up to
4 1.3 loads, after which it decreases to 4% at 32 L3 loads.
Our results demonstrate the window size induced by direct
branch targets matches the one of normal indirect branch
speculation, ruling out early-frontend speculation.

Branch and target types. As discussed earlier, the BTB
records a jump/call/ret branch type, preventing training
across different branch types. However, our results show
that training across branch types is possible for the direct-to-
indirect branch training scenario. For instance, we can train
an indirect call with a direct jump or an indirect jump with
a direct call. In case of a RSB underflow, we can also train
return prediction via a direct branch. Moreover, other that
than 32-bit target prediction, we also observed short target

prediction on all the tested microarchitectures—which we
previously only observed for Willow Cove’s normal training
scenario.

We also evaluate whether the conditional branch pre-
dictor (CBP) is involved when using a conditional branch
for indirect branch training. To this end, we configure our
test suite to train the conditional branch to be not-taken
with history Hy . The training branch is executed twice: the
first time by setting the BHB to Hp and taking the branch;
the second time by setting the BHB to Hy and not taking
the branch. Next, the victim branch is executed with history
Hy,. We still observe a consistent misprediction to the direct
branch, demonstrating the CBP is not involved.

Training on Lion Cove. In contrast to the variant discussed
above, Lion Cove’s direct-to-indirect collisions result in a
stable misprediction of the victim. The training is successful
when the direct and indirect branches fully alias in the BTB
and share the same branch type, similar to IP-based indirect-
to-indirect training. However, an iBTB entry is not given
precedence for direct-to-indirect training, i.e., the predictor
selects the direct target regardless of the iBTB state.

Next, we repeated the window-size experiment and again
ruled out early front-end speculation. We also run the CBP
experiment again and found that, unlike before, the CBP is
involved when we train with a conditional branch. Specif-
ically, when the training branch is executed with history
Hy and not taken—whether on the first or second training
execution— we observe no prediction for the victim branch,
indicating that the CBP predicted not-taken.

Summary. A self-training attacker can exploit direct-
to-indirect branch collisions with a full speculation
window. On Comet Lake and Sunny Cove, the direct
and indirect branches must have matching BTB tag
and set bits excluding IP[5] (which must be 0 and 1,
respectively). Lion Cove needs a full IP-based collision.

6. Self-training Attacks

Based on our analysis results, we can now derive three
self-training attack classes (Figure 4). First, our results show
that (BHI) mitigations for history-based training only pre-
vent a lower-privilege branch history from affecting higher-
privilege indirect branch prediction behavior—unless they
disable indirect branch prediction altogether. If attackers can
find a way to create iBTB collisions with solely privileged
branches, they can bypass the mitigations. We refer to this
class of attacks as self-training history-based attacks.

Second, our results show that attackers can piggyback
on mitigations such as BHI_DIS_S and BHI_NO or, more
portably, rely on iBTB and BTB evictions to force IP-
based predictions for a target privileged indirect branch. If
attackers can also find a way to trigger an aliasing privileged
indirect branch with a matching disclosure gadget, they can
speculatively hijack control flow and leak information. We
refer to this class of attacks as self-training IP-based attacks.
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Figure 4: Self-training attack classes. The history-based
attack creates an iBTB collision via a history-crafting gadget
(HG), the IP-based attack creates a BTB collision with an
aliasing victim branch, and the direct-to-indirect attack uses
direct branches to train indirect branch prediction.

Finally, our results uncovered two variants of direct-
to-indirect training attacks. This behavior extends the self-
training IP-based attack surface to disclosure gadgets at
direct branch targets. The first variant, found on our Comet
Lake and Sunny Cove CPUs (10th and 11th generations),
can train across branch types with loose IP collision re-
quirements. Following Intel’s brand name for this issue after
our disclosure—Indirect Target Selection (ITS)—we refer
to attacks for this variant as self-training ITS attacks. The
second variant, found on our Lion Cove CPU (Ultra Series
2), requires a full IP-based collision—similar to indirect-
to-indirect training. We refer to attacks for this variant as
self-training direct-to-indirect attacks on Lion Cove.

7. History-Based Exploitation

In response to BHI [2], the Linux kernel has disabled
unprivileged eBPF [29], which would otherwise allow in-
domain attackers to run code in the kernel with arbitrary
history randomization, indirect branches, and disclosure
gadgets. In this section, we investigate whether a cross-
domain self-training attacker can craft similar primitives
without eBPF for successful history-based exploitation. For
our analysis, we consider all the microarchitectures with
history-based prediction enabled in kernel mode and use the
default (pre-compiled) Ubuntu kernel version 6.8.0-38.

Controlling the branch history. The first primitive the
attacker needs to craft is a way to control the kernel branch
history. While one can in principle look for gadgets in
arbitrary kernel code paths, our initial analysis in this di-
rection did not lead to actionable results. As such, to ease
exploitation, we turn our attention to cBPF filters, which
an unprivileged attacker can freely install in the kernel by
means of SECCOMP [9] or LSF [10]. Although crafting
indirect branches and disclosure gadgets is no longer an
option with cBPF, attackers can specify simple filter con-
ditions, which are lowered to direct branches and hence
provide attackers with control over the branch history.
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Figure 5: CDF (a) and scatter plot (b) of # taken branches
and controlled registers for the indirect branches found.

# Taken Branches

For simplicity, we focus on SECCOMP, which executes
cBPF filters right after entering the kernel to handle a
syscall. As such, the filter-generated kernel branch history
is not affected by mitigations such as BHB clearing or
BHI_NO. To confirm this behavior, we craft a filter which
compares each bit of the syscall arguments and takes a
branch if the corresponding bit is 1. Next, we create a
custom syscall containing a training and a victim indirect
branch and attempt to mispredict the victim branch to the
training target. This is done by merely randomizing the
syscall arguments in search for history collisions. Our ex-
periments show we can successfully mispredict the victim
branch to the training target on all our machines.

Victim branches. With the Linux syscall-dispatch indirect
branch hardened in response to Native BHI [4], [30], we
look for victim indirect branches in syscall-handling func-
tions. To this end, we use InSpectre Gadget, a state-of-the-art
Spectre scanner using symbolic execution [4]. We start our
analysis at each syscall function entry point and repurpose
the InSpectre’s dispatch gadget detection to detect victim
branches. We adapt the scanner to hook common Linux
kernel functions in order to reduce the number of states (e.g.,
locks) and propagate user control at copy_from_user
and similar. In addition, to increase the scanning depth, we
help the scanner resolve indirect branches with a list of
targets derived by offline dynamic analysis. We create the
list by hooking indirect branches with kprobes and executing
a workload based on the Syzkaller corpus [31].

As shown in Figure 5, we found 149 indirect branches
with at least one register “sufficiently” controlled, i.e., able
to point to the kernel address space. For Comet Lake and
Sunny Cove, which have a BHB size of 29 and 66, the



Table 5: Branches in the kernel text and module region.

Source \ # Indirect branches # Direct branches
Kernel text 11,250 882,457
Module region 8,955 339,011
Total \ 20,205 1,221,468

attacker needs to control at least 9 and 8 branches, respec-
tively. Depending on the syscall, it can take from 10 up to
18 taken branches before entering the syscall function entry
point. Even assuming 18 taken branches, we still found 6
and 138 unique indirect branches with at least 1 sufficiently
controlled register, reachable by 6 and 70 different syscalls,
for Comet Lake and Sunny Cove, respectively.

End-to-end exploit. As victim, we select the
security_task_prctl indirect branch, which allows
the attacker to control 7 registers. As gadget, we rely on
the dispatch gadget unix_poll, used by Native BHI [4].
This is to jump to an attacker-chosen location where we can
load a secret value and encode it into an attacker-controlled
buffer. To get a shared buffer with the kernel, we first break
KASLR via the prefetch side channel [32] and use the
huge-page finding technique from Native BHI. We tested
our end-to-end exploit on the Tiger Lake and Lunar Lake
CPUs and successfully leak kernel memory at 1.7 KB/sec.

8. IP-Based Exploitation

We now investigate whether a self-training attacker forc-
ing IP-based kernel predictions (by means of BHI mitiga-
tions or iBTB/BTB evictions) can exploit such predictions
to mount attacks. We focus here on out-of-place (different
training/victim indirect branch) IP-based attacks and refer
the reader to Appendix E for an analysis of in-place (same-
branch) attacks—for which we found no exploitable gadgets.

To perform an out-of-place IP-based attack, the attacker
needs to find two indirect branches with BTB-aliased IPs.
Moreover, the training branch needs to architecturally target
an entry point that can serve as a disclosure gadget. Finally,
the victim branch must grant the attacker sufficient control
over registers/memory matching the disclosure gadget. We
now investigate the prevalence of such IP collisions on
Linux and analyze their exploitability. We consider two
collision scenarios, text collisions (i.e., within kernel text)
and module collisions (i.e., between text and module region).

Collision frequency. Our Ubuntu kernel image has a kernel
text size of 22 MB (covering 25 IP bits), and, as shown in
Table 5, contains around 11,000 indirect branches. Looking
at Table 3, kernel collisions may occur on all our microarchi-
tectures except Crestmont and Skymont, whose BTB tag in-
cludes bits up to 26. Moreover, since Kernel Address Space
Layout Randomization (KASLR) randomizes the kernel text
base with a 2 MB alignment, collisions on Comet Lake and
Sunny Cove are also KASLR entropy-dependent.
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In addition to indirect branches in the kernel text, an
attacker can exploit user-reachable indirect branches in the
kernel modules (e.g., device drivers) to train an indirect
branch in the text. On Linux, kernel modules are allocated
by vmalloc in the module region, which follows the text
region in the address space and thus can cause indirect
branch collisions on all our microarchitectures. A kernel
module is mapped to a page-aligned address, whose entropy
is subject to the start of the module region (and thus to
KASLR) as well as previous module allocations. To get an
indication of the number of loaded modules for a default
Ubuntu boot, we booted the Raptor Lake CPU and found
149 modules loaded after boot. We observed similar num-
bers on the other machines, with variations explained by the
different device drivers loaded across configurations.

To investigate the collision frequency of indirect
branches for both text and module collisions, while ac-
counting for KASLR and allocator entropy, we analyzed
snapshots (memory dumps) for different (100) kernel boots.
For every snapshot, we boot a VM, load the modules present
on bare metal, note the text start/end address of each module,
and create a memory dump of the VM. Next, we extract
the indirect branch locations from the dump and calculate
the collision pairs for each microarchitecture. For mod-
ule collisions, we exclude (very high entropy) module-to-
module collisions and only report text-to-module collisions.
For Lion Cove, which uses the entry-point address for BTB
indexing, we constructed a CFG for every kernel and module
function and extracted the entry points per branch (ignoring
indirect branches in the CFG).

To analyze the stability of the collisions, we counted the
number of occurrences of each unique collision pair across
the snapshots. As shown in Figure 6, module collisions are
much more frequent than text collisions. Nevertheless, we
still found 90 unique text collision pairs on Comet Lake
that are mostly unstable across snapshots due to KASLR.
For module collisions, Comet Lake and Lion Cove incur
the lowest and largest number of collisions (i.e., 86 and
2,199, respectively). Given the multiple sources of entropy,
the collision pairs and the colliding branches are mostly
unique. For example, the 2,199 unique collision pairs on
Comet Lake cover 2,074 different text branches. In other
words, a large-scale attacker can exploit KASLR and allo-
cator entropy to, in principle, generate near-arbitrary module
collisions with user-reachable branches. The only constraint
is that the lower 12 bits of the branches must match due to
page alignment, but a large-scale attacker can also exploit
entropy across kernel versions, configurations, etc. to lift
this constraint.

Gadget analysis. To evaluate the attack surface of the text
and module collisions found, we instruct InSpectre Gadget
to analyze the corresponding targets for exploitable gadgets
up to a depth of 8 basic blocks. InSpectre Gadget supports
two types of gadgets: disclosure gadgets based on the cache
covert channel, which encode the secret via a store or load,
and dispatch gadgets, which allow the attacker to specula-
tively hijack control flow to an arbitrary target. To better
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reflect available techniques, we also implemented support
for the BTB covert channel [33], [34], with conditional
branches comparing a secret against a controlled value.

To analyze the gadgets for text collisions, we rely on the
results of our dynamic analysis (Section 7) to get targets
and controllability requirements for InSpectre. Out of the
resulting 112 targets, we found 26 exploitable gadgets.
However, none of these gadgets match the controllability
requirements on our particular kernel build.

To generalize, we configured the scanner to analyze all
the targets profiled by our dynamic analysis. Our results
show that, out of the 1,338 indirect branches dynamically
reached by our analysis, 823 branches have a target con-
taining an exploitable gadget matching the controllability
requirements of at least one of our 149 victims branches.
On average, a single victim branch has 39 indirect branches
that yield matching exploitable gadgets upon collision. In
other words, a kernel build is exploitable if any of the
149 % 39 = 5,811 collisions pairs happen to collide.

Next, we calculated the probability of such collisions,
assuming indirect branch locations are randomly distributed
throughout kernel text. For a BTB algorithm entropy of 22
bits (Comet Lake), the probability of a collision between two
fixed indirect branches is 2.4 x 10~7. However, assuming
an average of 149 victim and 39 matching branches, the
chance of an exploitable collision increases to 0.14% (i.e.,
a probability of 0.0014). For the other microarchitectures
except Lion Cove (where entry-point matching complicates
estimation), with an entropy of 24, 25, and 26 bits, the
chance is slightly lower (i.e., 0.04%, 0.02%, and 0.01%,
respectively). These results indicate that, while the prob-
ability of an IP-based collision on a single given kernel
build is low, a large-scale attacker targeting thousands of
machines is likely to find exploitable collisions, assuming
sufficient entropy is introduced by different kernel versions,
kernel configurations, or randomization features such as
FGKASLR [35].

For module collisions, considering the high volatility
of the collision pairs observed in our experiments and the
challenges to operate dynamic analysis of device drivers, we
instead opt for a static analysis approach. Specifically, we
use Clang-CFI’s type analysis [36] to find all valid targets
for all the module indirect branches, resulting in total of
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Figure 7: Gadgets at kernel module targets.

8,803 unique targets. We used again InSpectre Gadget to
analyze all targets for gadgets. As shown in Figure 7a, we
found 2,063 gadgets that are marked as exploitable, across
1,938 unique targets. Next, for each gadget, we verified
if there is a potential victim with matching controllability
requirements, resulting in 898 gadgets (see Figure 7a) that
an attacker may be able to abuse in a large-scale attack.
These gadgets are targeted by 1,238 distinct module indirect
branches. On average, a single victim branch has 59 indi-
rect branches that yield matching exploitable gadgets upon
collision. Repeating the probability calculation from earlier
reveals a chance of finding an exploitable module collision
of 0.21%, 0.05%, 0.03%, and 0.01% for 22, 24, 25, and
26 bits of entropy, respectively. Again, this shows a large-
scale attacker is likely to find exploitable collisions. Note
that, compared to text collisions, module collisions incur
additional (module allocation) entropy.

9. Direct-to-indirect Exploitation

We now investigate whether a self-training attacker can
exploit direct-to-indirect training to leak kernel memory. We
will first discuss ITS exploitation with or without cBPF.
Next, we briefly discuss the harder-to-exploit direct-to-
indirect training on Lion Cove.

9.1. ITS Exploitation With cBPF

As shown in Section 7, attackers can abuse c¢BPF to
inject taken/not-taken conditional kernel branches. We now
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Figure 8: CDF of # instructions for exploitable gadgets
found near victim indirect branches for cBPF ITS exploits,
all gadgets in (a) and gadgets with a matching victim in (b).

show attackers can also abuse cBPF to train a kernel indirect
branch via ITS. This is challenging, as the victim branch has
to alias with the cBPF-injected direct branch.

Victim branch and disclosure gadget. A cBPF-injected
branch can only forward-jump within the filter, but an
attacker cannot inject a disclosure gadget in the same filter.
To address this challenge, we exploit short branch targets,
which cause the predictor to compute the final target by
combining the branch IP with the stored short target offset.
This allows an attacker to speculatively hijack the victim
indirect branch to a nearby location—i.e., a forward 10- or
12-bit offset on Comet Lake and Sunny Cove (respectively).

To find a disclosure gadget and a matching victim
branch, we configure InSpectre Gadget to analyze all the
addresses within the short-branch offset from the victim
indirect branches reported by our dynamic analysis (Sec-
tion 7). We scan with a max depth of 5 basic blocks. Figure 8
presents our results. We found 846 unique exploitable gad-
gets, of which 85 have controllability requirements matching
a victim indirect branch. From the results, we select a
dispatch gadget in security_mmap_addr and a match-
ing victim indirect branch in security_mmap_file,
with one of the controlled registers being rbx. As the
offset between the victim and gadget is only 138 bytes,
i.e., within the 10-bit target offset, we can use the gadget
on both Comet Lake and Sunny Cove. We configure the
dispatch gadget to jump to an out-of-band disclosure gadget
in cmp_entries_key, which requires a controlled rbx.
Listing 1 in Appendix C shows the complete gadget chain.

cBPF memory massaging. Our next step is to massage
the cBPF memory allocator to predictably allocate a cBPF
filter in a target page which contains the IP we want our
victim indirect branch to alias. To this end, we first use
the prefetch side channel [32] to break KASLR and leak
the start/end address of the module region (where cBPF
filters are allocated). Next, we request many 4 KB dummy
cBPF filters to fill any gaps in the module region and
force the allocator to start allocating filters consecutively
in (new) memory. We detect this behavior by scanning the
module region with the prefetch side channel and looking
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for evidence of a new huge page (2MB), which the allocator
creates to store a new filter when there are no gaps left [37].
As a result, we leak the location of the huge page and
thereby the base address of the next cBPF filter (4 KB higher
in memory). Having forced predictable allocation behavior,
we keep requesting dummy filters until we know the next
filter will land on the target page. To bypass the limit on
the number of filters per process [10], we distribute the
workload across as many child processes as necessary.

Breaking cBPF randomization. By now, we know the
address of the next cBPF filter in memory and, since cBPF
instruction generation is deterministic, we could easily craft
a filter with the training direct branch at the right offset
to match the target IP. However, Linux adds a randomized
offset (hole) filled with illegal instructions [38] at the start
of each filter, resulting in a nondeterministic direct branch
address. Nonetheless, we can again exploit predictable al-
locator (memory reuse) behavior to brute-force the right
offset. To this end, we spawn a child process and have the
child request the target cBPF filter, check for evidence of
successful training, and exit (deallocating the filter) upon
failure. We repeat the process until we observe evidence of
successful training, which we can gather by loading data
into the cache on the speculative path. For this purpose, we
rely on a FLUSH+RELOAD covert channel and brute-force
the alias of the user reload buffer in the kernel direct map
at 2 MB granularity, as done in prior work [4]. However,
we do so while also brute-forcing the target cBPF filter
placement. Despite the two sources of entropy, we observe a
signal within 45 seconds on both tested CPUs. By creating
contention on the direct branch 32-bit BTB set, we can
reliably fill a short BTB entry (as shown in Section 5.3).

Leaking kernel memory. We now have the target cBPF
filter (and training direct branch) in the right location and
know the kernel location of our reload buffer. Hence, we can
set up the gadget chain to jump to our disclosure gadget,
load the secret, and transmit it with FLUSH+RELOAD. As
our gadget uses a 32-bit secret, we rely on the known-
prefix technique to leak arbitrary secrets [3], [4], [39], [40].
Specifically, our exploit leaks the root password hash from
memory. We do so by calling passwd -s (which stores the
hash into memory) and searching for the “root:” prefix, as
done in prior work [39]. Our end-to-end exploit successfully
leaks the hash from memory in 60s on average. The leakage
rate, after initialization, is 15 KB/sec and 17 KB/sec on the
Comet Lake and Rocket Lake CPUs (respectively).
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9.2. ITS Exploitation Beyond cBPF

Rather than using cBPF, an attacker may use a direct
branch present in kernel text to train the victim indirect
branch. In this section, we study the feasibility of ITS
exploitation beyond cBPF.

Collision frequency. To analyze the frequency and stability
of the collisions, we again create 100 snapshots after boot
and calculate the collision pairs across the snapshots. As
shown in Figure 9, we found significantly more ITS colli-
sions pairs compared to indirect-to-indirect collisions—and,
for this reason, we only consider text rather than also module
collisions. First, there are more direct branches in the kernel
text (see Table 5). Moreover, ITS does not require a match
on the lower 5 IP bits. Nevertheless, roughly half of the
direct and indirect branches are ruled out, as they reside on
the wrong half of the cache line. The lower 6 bits are not
subject to KASLR, but are likely affected by even minor
changes to the kernel version, configuration, compiler, etc.
Therefore, we expect collision pairs to generally fluctuate
across kernel versions or builds.

Gadget analysis. Next, we want to analyze the (colliding)
targets of the victim indirect branches we found, in order
to locate exploitable Spectre gadgets. Since direct branches
can insert a short BTB target if the branch offset is within
the short bits, we also include the short targets computed by
combining the victim branch IP with the short-target bits of
the direct branch. This results in 4,611 distinct targets across
the 149 victim branches.

Figure 10 presents our results. The scanner found 1,130
and 62 exploitable gadgets on Comet Lake and Sunny Cove,
respectively. Of those gadgets, a total of 59 gadgets (58 and
1 for Comet Lake and Sunny cove, respectively) match the
controllability requirements of their corresponding victim.
Finally, the attacker also needs to be able to trigger the
direct branch to inject the BTB entry. To have an indica-
tion of how many direct branches are reachable, we cross-
reference the DWARF symbols with the coverage report
from Syzkaller [31]. As a result, we ultimately found 16
gadgets for Comet Lake and 1 gadget for Sunny Cove with
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training branch and matching victim reached by Syzkaller.
We manually analyzed the collision and the resulting dis-
patch gadget we found for Sunny Cove, which happens to
also be present on Comet Lake, and confirmed it to be end-
to-end exploitable (see Appendix D for more details).

9.3. Lion Cove Exploitation

Direct-to-indirect training on Lion Cove is subject to
stricter collision requirements compared to ITS, requiring a
matching IP and branch type. Moreover, Lion Cove’s BTB
does not support short target predictions. In this section, we
discuss Lion Cove exploitation with and without cBPF.

Exploitation with cBPF. Direct branches injected via cBPF
can only jump to addresses within a cBPF program. As such,
and since there are no short targets, speculative redirection
is constrained to the address range of the cBPF program.
Nonetheless, as shown in prior work [41], an attacker can
exploit the 4-byte controllable intermediate to inject instruc-
tions that are interpreted as such if the program is executed
unaligned. To trigger unaligned speculative execution, the
attacker first trains the victim by executing the cBPF pro-
gram, then re-inserts the cBPF program with crafted gadgets
that probabilistically fall unaligned at the predicted target.
A greater challenge is to find a suitable victim indirect
branch. Because the training and victim branches must
share the same branch type —and only direct branches can
be injected via cBPF—the attacker must rely on a victim
indirect jump. Our analysis found only six indirect jumps
in the Linux kernel image, none of which appear to offer
attacker control. However, the kernel features thousands of
switch statements, which may be lowered to indirect jumps
depending on the compiler configuration. In other words,
the attack surface appears slim on our system, but other
real-world configurations may prove more vulnerable.

Exploitation without cBPF. To evaluate the impact of
direct-to-indirect training for text and module collisions,
we repeated our collision frequency experiment. We found
22 stable text collisions across 100 snapshots (75-100%
category) and 2,296 module collisions, most of which were



unique (0-25% category). Compared to indirect-to-indirect
collisions on Lion Cove, the number is significantly larger
given that direct branches are much more common. How-
ever, collisions remain far less frequent than for ITS (which
has less strict collision requirements), limiting exploitation
opportunities to large-scale attack scenarios.

10. Breaking Isolation

In the previous sections, we introduced direct-to-indirect
training attacks, and, in particular, showed ITS can be
abused to mount end-to-end self-training kernel exploits.
We now discuss how this class of attacks can also break
deployed domain isolation techniques in a classic cross-
training scenario.

Cross-context. To protect against user-to-user or guest-
to-guest Spectre-v2 attacks, the kernel/hypervisor executes
IBPB upon context switch to flush indirect branch prediction
entries [18], [42]. However, direct branch entries may not
be flushed. To confirm this intuition, we first test ITS by
configuring our test suite with a user-mode ITS training
scenario and execute IBRS between the training and victim
branch. Our results on our Comet Lake and (both) Sunny
Cove machines show that the 32-bit direct branch targets
are flushed but the short targets are not, affecting victim
prediction. This shows ITS breaks IBPB isolation and allows
cross-context attackers to mispredict any victim indirect
branch on the lower-half of a cache line to an attacker-
chosen victim target a short offset away from the branch.

Next, we ran the same experiment for Lion Cove direct-
to-indirect training. Our results shows the 32-bit direct-
branch targets also bypass IBPB on Lion Cove. This con-
trasts with the results on our ITS-vulnerable machines,
where we observed IBPB flushing all 32-bit targets. We
hypothesize that IBPB has become more fine-grained on
newer CPUs, flushing only indirect targets for performance
reasons. As a result, direct-to-indirect training on Lion Cove
breaks IBPB isolation with even fewer constraints than ITS:
a cross-context attacker can train any victim branch to an
attacker-chosen 32-bit target. Overall, both variants break
the IBPB mitigation and re-enable classic user-to-user or
guest-to-guest Spectre-v2 attacks.

Cross-privilege. Next, we evaluate whether ITS or the Lion
Cove issue can also break user-kernel isolation enforced
by eIBRS [18]. We configure our test suite with a user-
mode training branch and a kernel-mode victim branch. Our
results show eIBRS still guarantees isolation on vulnerable
microarchitectures, including for short direct branch targets.
To our surprise, after disclosing our findings to affected
vendors, Intel eventually informed us ITS does break eIBRS
isolation, but only in a guest-host scenario. To confirm
this behavior, we configure our test suite to use a user
or supervisor direct branch in the guest and a user or
supervisor victim indirect branch in the (KVM) host. Our
results show ITS cannot bypass eIBRS isolation on our
Sunny Cove machines, but does break isolation (for short
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Table 6: Guest/host training results on Comet Lake.

Training and victim branch location Training
guest-user guest-supervisor host-supervisor | Successful
Training Victim - X
Training - Victim v
- Training Victim 4

targets) on Comet Lake between guest and host (Table 6).
To showcase the resulting attack, we created a PoC with a
custom hypercall containing a victim indirect branch and a
disclosure gadget located a 10-bit short target offset away
from the branch. Our results show we can successfully train
the victim branch from our VM, leaking hypervisor memory
at 8.5 KB/sec.

11. Mitigations and Disclosure

We consider both hardware and software mitigations.
On the hardware side, vendors may: (i) change the history-
based predictor to match BHB and IP constraints separately
(addressing our history-based collisions); (ii)) maximize the
BTB tag entropy (minimizing our IP-based collisions);
(iii) forbid training/prediction across branch types. On the
software side, history-based collisions can be mitigated by
performing a BHB-clearance operation after the execution
of each history-crafting gadget (and cBPF filter in partic-
ular). Disabling unprivileged cBPF is not an option, due
to its widespread use (e.g., Docker) through the ecosystem.
Regular IP-based text/module collisions, in turn, could be
mitigated (or at least minimized) by rearranging the kernel
address space layout. ITS collisions are much harder to
mitigate in software and one option is to resort to more
costly mitigations such as retpoline [43], [44] (when safe to
do so) or the more recent IPRED_DIS controls [7].

Disclosure. We disclosed our main findings to vendors in
March 2024. Intel confirmed our (history-based, IP-based,
and direct-to-indirect) findings, issued two CVEs (CVE-
2024-28956 for ITS and CVE-2025-24495 for the Lion
Cove issue), and published two advisories (Intel-SA-01153
for ITS and Intel-SA-01322 for the Lion Cove issue). AMD
confirmed their existing mitigations are sufficient. ARM
confirmed our history-based findings also apply to ARM
and published a security update on their developer website.

Regarding history-based training, Intel recommends ap-
plying a BHB clearance operation after each cBPF pro-
gram and any other future history-crafting gadget. Intel also
created a new instruction, Indirect Branch History Fence
(IBHF), to enforce a history barrier. This instruction is
available with a microcode update from Alder Lake and
Sapphire Rapids CPUs onwards. Older CPUs instead need
to rely on the software BHB-clearance sequence.

To mitigate cross-context ITS, Intel published a mi-
crocode update to fix IBPB isolation. To mitigate both
user/kernel and guest/host ITS, Intel recommends placing
all privileged indirect branches (including returns) on the
upper half of the cache line to prevent direct-to-indirect



branch training. To mitigate direct-to-indirect training on the
Lion Cove, Intel published another microcode update, which
completely removes the direct-to-indirect training capability.

Intel and ARM engineers have developed patches to
incorporate their recommended mitigations into the Linux
Kernel. For ITS, the mitigation allocates a memory region
containing a separate indirect thunk for each indirect branch
on the lower half of the cache line. This approach can also be
used to reduce (or eliminate) text and module collisions for
IP-based exploitation in general. Indeed, with one thunk per
indirect branch allocated after another in a small text region,
IP-based collisions are drastically reduced (if possible at
all). At the time of writing, vendors do not recommend any
additional mitigations for IP-based exploitation.

12. Related Work

There is extensive literature on reverse engineering
branch predictors and hardware mitigations in modern
CPUs [12], [13], [16], [17], [27], [28], [33], [45], [46],
[47]. A number of recent efforts focus on demonstrating
implementation flaws in domain isolation techniques against
Spectre v2 [2], [3], [8]. We similarly show that cross-training
ITS and the Lion Cove issue break isolation, but also study
the broader scope of self-training attacks bypassing perfect
isolation. BHI [2] demonstrates that an in-domain attacker
can rely on eBPF to bypass Spectre-v2 domain isolation.
For the first time, we show that this goal is attainable even
for cross-domain attackers, despite their limited (e.g., cBPF)
capabilities.

Indirector [16] reverse engineers the behavior of the in-
direct branch predictor to mount high-precision BTI attacks.
In contrast, we focus on reverse engineering properties (e.g.,
branch type collisions) useful to analyze the attack surface
of self-training attacks. IP-based predictor selection has pre-
viously been demonstrated in a same-privilege scenario by
randomizing the victim’s branch history [8] or using a same-
privilege aliasing direct branch [47]—methods unavailable
in our self-training scenario. In contrast, we show how to
precisely fill and use a BTB entry in a cross-privilege setting.

Zhang et al. [47] abuse IP-based collisions to construct
transient trojans (i.e., malicious software hiding their activ-
ity), i.e., transferring data across the user/kernel boundary
via the microarchitectural state. To this end, they studied
[P-based collisions and also observed direct-to-indirect colli-
sions on Haswell, Skylake, and Kaby Lake Intel CPUs (4th,
6th, and 8th generations). They reported stable collisions
when both branches fully alias in the BTB. They also
reported early-frontend branch collisions if IP bit 5 (bit
4 on Haswell) was set to 0 and 1 for the indirect and
direct branch, respectively. With ITS, we observed similar
IP-aliasing conditions on Comet Lake and Sunny Cove
(10th and 11th generation). However, we observed a full
speculation window suitable for ITS exploitation, rather than
early-frontend branch collisions.

For completeness, we repeated our experiments on our
9th-generation Intel Coffee Lake CPU (previously excluded
due to IBRS). Our results show that, in addition to the
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collisions on the lower/upper half of the cache line, direct-
to-indirect collisions occur if both branches fully alias in
the BTB, with a full speculation window in both cases.
Moreover, repeating our IBPB isolation experiment shows
that IBPB correctly flushes both short and 32-bit BTB
targets. This means that the direct-to-indirect collisions do
not break domain isolation on our Coffee Lake CPU. Despite
the difference in behavior compared to our ITS findings,
Zhang et al. may have observed a predecessor of the ITS
issue. Finally, in contrast to their efforts, we assume a threat
model involving an unprivileged attacker seeking to leak
privileged data via self-training attacks and present several
gadget scanning campaigns and end-to-end exploits to study
the resulting attack surface.

13. Conclusion

In this paper, we showed self-training Spectre-v2 at-
tacks are not limited to in-domain scenarios with powerful
sandbox environments, but also extend to the more serious
cross-domain scenario. To support this claim, we presented
three different classes of attacks exploiting history-based,
IP-based, and direct-to-indirect branch collisions as well as
two end-to-end exploits against the Linux kernel.

The impact of our findings is significant. First, deployed
domain isolation techniques are still plagued by serious
flaws, as evidenced by the two new hardware issues on
Intel CPUs we uncovered. Both issues completely break
user and guest isolation. One issue (Indirect Target Selection
or ITS) also breaks hypervisor isolation, re-enabling classic
guest-to-host Spectre v2 attacks in the cloud. Second, even
perfect domain isolation is insufficient to address cross-
domain Spectre-v2 attacks. In response to our findings,
vendors have deployed a number of mitigations, including
the new Indirect Branch History Fence instruction, which
effectively transitions Spectre v2 to the gadget-oriented mit-
igation era—similar in spirit to Spectre v1.
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Appendix A.
Tested microarchitectures

Table 7: Details for the tested microarchitectures.

Vendor Model CPUID Microcode
Core 19-9900K 906EC  0xf8
Core i7-10700K A0655 Oxfc
Core i7-11700 A0671  0x62
Intel Core %7—1 1800H 806D1 0x52
Core 19-14900K B0671  0x12b
Core Ultra 7 155H A06A4  OxIf
Core Ultra 7 258V B0O6D1  0x111
AMD Ryzen 9 7950X A60F12 0xa601209
Ryzen 9 9950X B40F40 0xb404022

Appendix B.
Lion Cove BTB Indexing

While running our test suite on Lion Cove to study
BTB properties, we noticed that the entry-point address
(i.e., the last branch target prior to the branch), influenced
BTB collisions. To understand the behavior of the new BTB
scheme, we created additional experiments in our test suite
specifically for Lion Cove. In this section, we discuss our
results.

Indexing scheme. The additional experiments revealed that
the BTB on Lion Cove is indexed using the entry-point of
the branch, rather than the branch address itself. To assess
if the branch address is still involved, we configured the test
suite with a training and victim branch having an aliasing
entry-point but a mismatching branch address while evicting
the iBTB. Results show that the injected target is still
prefetched but not speculatively executed—indicating that
(partial) branch address information is stored in a separate
BTB field which is validated before speculative execution.
From a predictor’s point of view, it is natural to include
information on the branch address location inside the BTB
entry, since the prefetcher needs this information to know
until which address it should prefetch before redirecting to
the next target.

Implications. As the indexing is performed with the entry-
point address, we hypothesize that one single branch now
can occupy multiple BTB entries. We configure our test
suite with two training direct branches having distinct entry
points. Next, we execute the victim matching the entry point
of either one of the branches. The results show that the
prefetcher successfully captures the correlation between the
entry point and the target to prefetch, confirming a single
branch can use multiple BTB entries. As a result, this design
may also reduce the impact of the BHI_NO mitigation.
Namely, while BHI_NO forces the first few branches in
a privileged domain to only use the BTB for prediction,
the BTB can now store a target for each entry point of the
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indirect branch. Moreover, performance-wise, the BPU may
resolve branch targets earlier as the lookup only requires
the previous BTB entry. As a side effect, there is likely a
higher pressure on the BTB as branches can have multiple
BTB entries.

Appendix C.
ITS cBPF Gadget Chain

Listing 1: Gadget chain used in the ITS cBPF exploit.

security_mmap_addr+37:

mov rax, QWORD PTR [rbx+0x18], load target
mov rdi, rl2
call rax , call attacker-controlled target
cmp_entries_key+23:
mov rbx, QWORD PTR [rdx] ; load secret addr
mov rsi, QWORD PTR [rcx+0x20]
mov eax,DWORD PTR [rbx+0Oxac] ; load secret
shl rax, 0x4
add rax, QWORD PTR [rdx+0x8] ;
mov edi,DWORD PTR [rax+0x8] ;
Appendix D.
Native ITS Case Study

As a case study, we discuss a native (no cBPF) ITS
collision resulting in a dispatch gadget where both the
training (direct) branch, the victim (indirect) branch as well
as the dispatch gadget are present in the same function
do_vfs_ioct. Listing 2 presents the assembly code of the
gadget, including both the training and victim branch. The
collision is present on both Comet Lake and Sunny Cove.
Moreover, since both branches are within the same page, the
collisions is KASLR-invariant. We manually verified what
the attacker controls at the victim branch and the reachability
of both the training and victim branch.

An attacker can train the victim branch (Line 15) by
taking the conditional branch (Line 22) which fills a BTB
entry to the dispatch gadget (Line 2). Upon execution of
the victim, the CPU mispredicts to the dispatch gadget
and, as rbx is attacker-controlled at the victim branch, the
attacker can speculatively jump to an arbitrary location (Line
4). Although the victim allows the attacker to control 4
registers, they originate from the same register and are thus
not independently controllable. For exploitation, the attacker
can first train the dispatch gadget in transient execution
and then jump to a matching disclosure gadget in the next
iteration [48]. Alternatively, they can also resort to loading
data from the stack (e.g., the pointer to the pt_reg struct).

Appendix E.
In-place IP-based attacks

An in-place IP-based attack confuses valid targets for a
given indirect branch. This can potentially allow an attacker
to exploit speculative type confusion, perform out-of-bounds



Listing 2: Assembly of the dispatch gadget
do_vfs_ioctl, suitable for native ITS exploitation.

1 do_vfs_ioctl+1754:

2 mov esi,0x2 ; dispatch gadget start

3 mov rdi, rbx

4 call rdx ; call attacker—-chosen target

5 nop DWORD PTR [rax]

6 mov rl2d,eax

7 Jmp <do_vfs_ioctl+129>

8 mov rax,QWORD PTR [rbx+0xb0]

9 mov rax,QWORD PTR [rax+0x48]

10 test rax, rax

11 je <do_vfs_ioctl+1422>

12 mov rdx, rcx

13 mov esi, 0x541b

14 mov rdi, rbx

15 call rax ; victim branch:
— present on the lower half of the cache line.
— If trained via ITS, it mispredicts to +1754

16 nop DWORD PTR [rax]

17 mov rl2d,eax

18 cmp eax, Oxfffffdfd

19 jne <do_vfs_ioctl+129>

20 Jmp <do_vfs_ioctl+1422>

21 test rdx, rdx

22 jne <do_vfs_ioctl+1754>; training branch:
— present on the upper half of the cache line.
— If taken, it fills the BTB entry to the

— dispatch gadget

transient loads, etc. To investigate this attack surface, we
considered the victim branches as well as their possible valid
targets from the dynamic analysis of Section 7. For each
victim branch, our dynamic analysis evidenced different in-
stances (i.e., from different kernel paths) with a different set
of controlled registers. For each indirect branch instance, we
instruct InSpectre Gadget to model the controlled registers
and run on all the possible valid targets. Our results reported
no exploitable gadgets across indirect branches.

While our analysis is simple and based on a dynamic
analysis underapproximation, our results suggest kernel in-
direct branches exhibit limited type-polymorphic behavior
across valid targets. To confirm this intuition, we created
a LLVM pass to compare function signatures (number
and types of arguments) across the valid targets of the
branches we considered. Our results evidenced only one
case of a signature mismatch across valid targets—i.e.,
functions uevent_show and type_show with different
types for one argument (struct kobject vs. struct
device)—confirming a limited degree of polymorphism.
We leave a more detailed analysis of this issue to future
work.
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Appendix F.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

F.1. Summary

The paper presents three new Spectre attack variants that
can bypass existing domain isolation defenses. The authors
demonstrate that in-domain training can be leveraged to
bypass speculative execution mitigations without requiring
cross-domain interference.

F.2. Scientific Contributions

« Identifies an Impactful Vulnerability

e Provides a Valuable Step Forward in an Established
Field

o Addresses a Long-Known Issue

F.3

Reasons for Acceptance

The paper identifies an impactful vulnerability by
demonstrating that domain isolation techniques fail to
prevent speculative execution attacks, highlighting a
fundamental gap in existing defenses.

The paper provides a valuable step forward in an
established field by reverse engineering CPU branch
prediction structures and mitigations, providing valu-
able insights and allowing a deeper understanding of
speculative execution vulnerabilities across multiple ar-
chitectures.

The paper addresses a long-known issue where it builds
on prior work on transient execution attacks, extending
the attack surface by showing how in-domain training
can circumvent existing protections, making this a sig-
nificant contribution to Spectre research.

1)

2)

3
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