
Translation Leak-aside Buffer: Defeating Cache Side-channel Protections
with TLB Attacks

Ben Gras
Vrije Universiteit

Amsterdam

Kaveh Razavi
Vrije Universiteit

Amsterdam

Herbert Bos
Vrije Universiteit

Amsterdam

Cristiano Giuffrida
Vrije Universiteit

Amsterdam

Abstract

To stop side channel attacks on CPU caches that have
allowed attackers to leak secret information and break
basic security mechanisms, the security community has
developed a variety of powerful defenses that effectively
isolate the security domains. Of course, other shared
hardware resources exist, but the assumption is that un-
like cache side channels, any channel offered by these
resources is insufficiently reliable and too coarse-grained
to leak general-purpose information.

This is no longer true. In this paper, we revisit this as-
sumption and show for the first time that hardware trans-
lation lookaside buffers (TLBs) can be abused to leak
fine-grained information about a victim’s activity even
when CPU cache activity is guarded by state-of-the-art
cache side-channel protections, such as CAT and TSX.
However, exploiting the TLB channel is challenging, due
to unknown addressing functions inside the TLB and the
attacker’s limited monitoring capabilities which, at best,
cover only the victim’s coarse-grained data accesses. To
address the former, we reverse engineer the previously
unknown addressing function in recent Intel processors.
To address the latter, we devise a machine learning strat-
egy that exploits high-resolution temporal features about
a victim’s memory activity. Our prototype implementa-
tion, TLBleed, can leak a 256-bit EdDSA secret key from
a single capture after 17 seconds of computation time
with a 98% success rate, even in presence of state-of-
the-art cache isolation. Similarly, using a single capture,
TLBleed reconstructs 92% of RSA keys from an imple-
mentation that is hardened against FLUSH+RELOAD at-
tacks.

1 Introduction

Recent advances in micro-architectural side-channel at-
tacks threaten the security of our general-purpose com-
puting infrastructures from clouds to personal comput-

ers and mobile phones. These attacks allow attackers
to leak secret information in a reliable and fine-grained
way [13, 32, 36, 38, 59] as well as compromise funda-
mental security defenses such as ASLR [17, 20, 24, 28].
The most prominent class of side-channel attacks leak in-
formation via the shared CPU data or instruction caches.
Hence, the community has developed a variety of power-
ful new defenses to protect shared caches against these
attacks, either by partitioning them, carefully sharing
them between untrusted programs in the system, or san-
itizing the traces left in the cache during the execu-
tion [9, 21, 37, 52, 62].

In this paper, we argue that the problem goes much
deeper. As long as there are other shared hardware
resources, attackers can still reliably leak fine-grained,
security-sensitive information from the system. In fact,
we show this is possible even with shared resources
that only provide a coarse-grained channel of informa-
tion (whose general applicability has been questioned by
prior work [46]), broadening the attack surface of prac-
tical side-channel attacks. To demonstrate this property,
we present a practical side-channel attack that leaks in-
formation from the shared Translation Lookaside Buffers
(TLBs) even in the presence of all the state-of-the-art
cache defenses. Exploiting this channel is particularly
challenging due its coarse (page-level) spatial granular-
ity. To address this challenge, we propose a new analysis
technique based on (supervised) machine learning. Our
analysis exploits high-resolution temporal features on the
victim’s memory activity to combat side-channel coars-
ening and leak information.

Existing defenses against cache side channels The
execution of a victim program changes the state of the
shared CPU caches. In a cache side-channel attack, an at-
tacker deduces sensitive information (e.g., cryptographic
keys) by observing this change in the state. It is possi-
ble to rewrite existing software not to leave an identifi-
able trace in the cache, but manual approaches are error-

prone [16] while automated ones incur several-fold per-
formance overheads [48]. As an alternative, many pro-
posed defenses attempt to stop attackers from observ-
ing changes that an unmodified victim program makes
to the state of the CPU caches. This is done either by
stopping precise timers that attackers need to use to tell
the difference between cached or uncached memory ac-
cesses [10, 34, 40] or by partitioning shared CPU cache
between mutually distrusting programs [21, 37, 47, 52,
62]. Given that attackers can find many new sources of
timing [17, 34, 49], CPU cache partitioning is currently
the only known generic mechanism that stops existing
attacks.

Unfortunately, as we will show, protecting only the
shared data and instruction caches is insufficient. Hard-
ware threads (also known as hyperthreads) share other
hardware resources such as TLBs on top of the CPU
caches. The question we address in this paper is whether
they can abused by attackers to leak sensitive informa-
tion in a reliable and fine-grained way even in presence
of state-of-the-art cache defenses and, if so, what the im-
plications are for future attacks and defenses.

TLBleed To answer these questions, we explore the
architecture of TLBs in modern Intel processors. As
very little information on TLBs has been made avail-
able, our analysis represents the first known reverse en-
gineering effort of the TLB architecture. Similar to CPU
data and instruction caches, there are multiple levels of
TLBs. They are partitioned in sets and behave differently
based on whether they help in the translation of instruc-
tions or data. We further find that the mapping of virtual
addresses to TLB sets is a complex function in recent
micro-architectures. We describe our efforts in reverse
engineering this function, useful when conducting TLB-
based attacks and benefiting existing work [54]. Armed
with this information, we build TLBleed, a side-channel
attack over shared TLBs that can extract secret informa-
tion from a victim program protected with existing cache
defenses [9, 21, 31, 37, 52, 62] Implementing TLBleed
is challenging: due to the nature of TLB operations, we
can only leak memory accesses in the coarse granular-
ity of a memory page (4 KB on x86 systems) and due
to the TLB architecture we cannot rely on the execution
of instructions (and controlled page faults) to leak secret
information similar to previous page-level side-channel
attacks [58]. To overcome these limitations, we describe
a new machine learning-based analysis technique that ex-
ploits temporal patterns of the victim’s memory accesses
to leak information.

Contributions In summary, we make the following
contributions:

• The first detailed analysis of the architecture of the
TLB in modern processors including the previously
unknown complex function that maps virtual ad-
dresses to TLB sets.

• The design and implementation of TLBleed, a new
class of side-channel attacks that rely on the TLB to
leak information. This is made possible by a new
machine learning-based analysis technique based
on temporal information about the victim’s mem-
ory accesses. We show TLBleed breaks a 256-bit
libgcrypt EdDSA key in presence of existing de-
fenses, and a 1024-bit RSA key in an implemen-
tation that is hardened against FLUSH+RELOAD at-
tacks.

• A study of the implications of TLBleed on existing
attacks and defenses including an analysis of miti-
gations against TLBleed.

2 Background

To avoid the latency of off-chip DRAM for every
memory access, modern CPUs employ a variety of
caches [23]. With caching, copies of previously fetched
items are kept close to the CPU in Static RAM (SRAM)
modules that are organized in a hierarchy. We will fo-
cus our attention on data caches first and discuss TLBs
after. For both holds that low-latency caches are parti-
tioned into cache sets of n ways. This means is that in an
n way cache, each set contains n cachelines. Every ad-
dress in memory maps to exactly one cache set, but may
occupy any of the n cachelines in this set.

2.1 Cache side-channel attacks
As cache sets are shared by multiple processes, the activ-
ity in a cache set offers a side channel for fine-grained,
security-sensitive cache attacks. For instance, if the ad-
versary first occupies all the n ways in a cache set and
after some time observes that some of these cachelines
are no longer in the cache (since accessing the data now
takes much longer), it must mean that another program—
a victim process, VM, or the kernel—has accessed data
at addresses that also map to this cache set. Cache attacks
by now have a long history and many variants [5, 33, 38].
We now discuss the three most common ones.

In a PRIME+PROBE attack [42, 43, 45], the adversary
first collects a set of cache lines that fully evict a single
cache set. By accessing these over and over, and measur-
ing the corresponding access latency, it is possible to de-
tect activity of another program in that particular cache
set. This can be done for many cache sets. Due to the
small size of a cache line, this allows for high spatial

resolution, visualized in a memorygram in [42]. Closely
related is FLUSH+RELOAD, which relies on the victim
and the attacker physically sharing memory pages, so
that the attacker can directly control the eviction (flush-
ing) of a target memory page. Finally, an EVICT+TIME
attack [17, 43, 53] evicts a particular cache set, then in-
vokes the victim operation. The victim operation has a
slowdown that depends on the evicted cache set, which
leaks information on the activity of the victim.

2.2 Cache side-channel defenses
As a response to cache attacks, the research community
has proposed defenses that follow several different strate-
gies. We again discuss the most prominent ones here.

Isolation by partitioning sets Two processes that do
not share a cache cannot snoop on each others’ cache
activity. One approach is to assign to a sensitive opera-
tion its own cache set, and not to let any other programs
share that part. As the mapping from to a cache set in-
volves the physical memory address, this can be done
by the operating system by organizing physical mem-
ory into non-overlapping cache set groups, also called
colors, and enforcing an isolation policy. This approach
was first developed for higher predictability in real-time
systems [7, 30] and more recently also for isolation for
security [9, 31, 50, 62].

Isolation by partitioning ways Similarly to partition-
ing the cache by sets, we can also partition it by ways.
In such a design, programs have full access to cache
sets, but each set has a smaller number of ways, non-
overlapping with other programs, if so desired. This ap-
proach requires hardware support such as Intel’s Cache
Allocation Technology (CAT) [37]. Since the number of
ways and hence security domains is strictly limited on
modern architectures, CATalyst’s design uses only two
domains and forbids accesses to the secure domain to
prevent eviction of secure memory pages [37].

Enforcing data cache quiescence Another strategy to
thwart cache attacks, while allowing sharing and hence
not incurring the performance degradation of cache par-
titioning, is to ensure the quiescence of the data cache
while a sensitive function is being executed. This pro-
tects against concurrent side channel attacks, including
PRIME+PROBE and FLUSH+RELOAD, because these rely
on evictions of the data cache in order to profile cache
activity. This approach can be assisted by the Intel Trans-
actional Synchronization Extensions (TSX) facility, as
TSX transactions abort when concurrent data cache evic-
tions occur [21].

2.3 From CPU caches to TLBs
All the existing cache side-channel attacks and defenses
focus on exploitation and hardening of shared CPU
caches, but ignore caching mechanisms used by the
Memory Management Unit (MMU).

On modern virtual memory systems, such mechanisms
play a crucial role. CPU cores primarily issue instruc-
tions that access data using their virtual addresses (VAs).
The MMU translates these VAs to physical addresses
(PAs) using a per-process data structure called the page
table. For performance reasons, the result of these trans-
lations are aggressively cached in the Translation Looka-
side Buffer (TLB). TLBs on modern Intel architectures
have a two-level hierarchy. The first level (i.e., L1), con-
sists of two parts, one that caches translations for code
pages, called L1 instruction TLB (L1 iTLB), and one that
caches translations for data pages, called L1 data TLB
(L1 dTLB). The second level TLB (L2 sTLB) is larger
and shared for translations of both code and data.

Again, the TLB at each level is typically partitioned
into sets and ways, conceptually identical to the data
cache architecture described earlier. As we will demon-
strate, whenever the TLB is shared between mutually
distrusting programs, this design provides attackers with
new avenues to mount side-channel attacks and leak in-
formation from a victim even in the presence of state-of-
the-art cache defenses.

3 Threat Model

We assume an attacker capable of executing unprivi-
leged code on the victim system. Our attack requires
monitoring the state of the TLB shared with the vic-
tim program. In native execution, this is simply possi-
ble by using CPU affinity system calls to achieve core
co-residency with the victim process. In cloud environ-
ments, previous work shows it is possible to achieve res-
idency on the same machine with a victim virtual ma-
chine [55]. Cloud providers may turn hyperthreading on
for increased utilization (e.g., on EC2 [1]) making it pos-
sible to share cores across virtual machines. Once the
attacker achieves core co-residency with the victim, she
can mount a TLBleed attack using the shared TLB. This
applies to scenarios where a victim program processing
sensitive information, such as cryptographic keys.

4 Attack Overview

Figure 1 shows how an attacker can observe the TLB
activity of a victim process running on a sibling hyper-
thread with TLBleed. Even if state-of-the-art cache side-
channel defenses [21, 37, 47, 52, 62] are deployed and
the activity of the victim process is properly isolated

Victim
HyperThread

Attacker
HyperThread

TLB

Cache

Core

Figure 1: How TLBleed observes a sibling hyperthread’s
activity through the TLB even when shared caches are
partitioned.

from the attacker with cache partitioning, TLBleed can
still leak information through the shared TLB.

Mounting TLBleed on real-world settings comes with
a number of challenges and open questions. The first set
of challenges come from the fact that the architecture of
the TLB is mostly secret. Mounting successful TLBleed,
however, requires detailed knowledge of the TLB archi-
tecture. More specifically, we need to answer two ques-
tions:

Q1 How can we monitor TLB sets? More specifically,
how do virtual addresses map to multi-level TLBs
found in modern processors?

Q2 How do sibling hyperthreads share the TLB sets for
translating their code and data addresses?

Once the attacker knows how to access the same TLB
set as a victim, the question is whether she has the ability
to observe the victim’s activity:

Q3 How can an unprivileged process (without access to
performance counters, TLB shootdown interrupts,
etc.) monitor TLB activity reliably?

Finally, once the attacker can reliably measure the
TLB activity of the victim, the question is whether she
can exploit this new channel for attractive targets:

Q4 Can the attacker use the limited granularity of 4 kB
“data” pages to mount a meaningful attack? And
how will existing defenses such as ASLR compli-
cate the attack?

We address these challenges in the following sections.

5 TLB Monitoring

To address our first challenge, Q1, we need to understand
how virtual addresses (VAs) are mapped to different sets
in the TLB. On commodity platforms, the mapping of
VAs to TLB sets is microarchitecture-specific and cur-
rently unknown. As we shall see, we found that even
on a single processor, the mapping algorithms in the dif-
ferent TLBs vary from very simple linear translations to
complex functions that use a subset of the virtual address
bits XORed together to determine the target TLB set.

To understand the details of how the TLB operates, we
need a way to reverse engineer such mapping functions
on commodity platforms, recent Intel microarchitectures
in particular. For this purpose, we use Intel Performance
Counters (PMCs) to gather fine-grained information on
TLB misses at each TLB level/type. More specifically,
we rely on the Linux perf event framework to moni-
tor certain performance events related to the operation of
the TLB, namely dtlb_load_misses.stlb_hit and
dtlb_load_misses.miss_causes_a_walk. We cre-
ate different access patterns depending on the architec-
tural property under study and use the performance coun-
ters to understand how such property is implemented on
a given microarchitecture. We now discuss our reverse
engineering efforts and the results.

Linearly-mapped TLB We refer to the function that
maps a virtual address to a TLB set as the hash function.
We first attempt to find parameters under the hypothe-
sis that the TLB is linearly-mapped, so that target set =
pageVA mod s (with s the number of sets). Only if this
strategy does not yield consistent results, we use the
more generalized approach described in the next section.

To reverse engineer the hash function and the size of
linearly-mapped TLBs, we first map a large set of testing
pages into memory. Next, we perform test iterations to
explore all the sensible combinations of two parameters:
the number of sets s and the number of ways w. As we
wish to find the smallest possible TLB eviction set, we
use w+ 1 testing pages accessed at a stride of s pages.
The stride is simply s due to the linear mapping hypoth-
esis.

At each iteration, we access our testing pages in a loop
and count the number of evictions evidenced by PMC
counters. Observing that a minimum of w+ 1 pages is
necessary to cause any evictions of previous pages, we
note that the smallest w that causes evictions across all
our iterations must be the right wayness w. Similarly,
the smallest possible corresponding s is the right num-
ber of sets. As an example on Intel Broadwell, Figure 2
shows a heatmap depicting the number of evictions for
each combination of stride s and number of pages w. The
smallest w generating evictions is 4, and the smallest cor-

0 10 20 30 40 50 60 70 80
sets

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

wa
ys

Figure 2: Linearly-mapped TLB probing on Intel Broad-
well, evidencing a 4-way, 16-set L1 dTLB.

responding s is 16—correctly probing for a 4-way 16-set
L1 dTLB on Broadwell.

Complex-mapped TLB If our results prove inconsis-
tent with the linear mapping hypothesis, we must reverse
engineer a more complex hash function to collect evic-
tion sets (Q1). This is, for instance, the case for the L2
sTLB (L2 shared TLB) on our Skylake machine. Re-
verse engineering this function is analogous to identi-
fying its counterpart for CPU caches, which decides to
which cache set a physical address maps [26, 60]. Thus,
we assume that the TLB set number can be expressed as
an XOR of a subset of bits of the virtual address, similar
to the physical hash function for CPU caches.

To reverse engineer the hash, we first collect minimal
eviction sets, following the procedure from [42]. From
a large pool of virtual addresses, this procedure gives us
minimal sets that each map to a single hash set. Sec-
ond, we observe that every address from the same evic-
tion set must map to the same hash set via the hash func-
tion, which we hypothesized to be a XOR of various bits
from the virtual address. For each eviction set and ad-
dress, this gives us many constraints that must hold. By
calculating all possible subsets of XOR-ed bit positions
that might make up this function, we arrive at a unique
solution. For instance, Figure 5 shows the hash function
for Skylake’s L2 sTLB. We refer to it as XOR-7, as it
XORs 7 consecutive virtual address bits to find the TLB
set.

Table 1 summarizes the TLB properties that our re-
verse engineering methodology identified. As shown in
the table, most TLB levels/types on recent Intel microar-
chitectures use linear mappings, but the L2 sTLB on Sky-
lake and Broadwell are exceptions with complex, XOR-
based hash functions.

0 5 10 15 20
TLB working set (data pages)

0

5

10

15

20

Mi
sse

s

itlb utilization
data pagewalks

0 5 10 15 20
TLB working set (instruction pages)

0

5

10

15

20

Mi
sse

s

dtlb utilization
instruction pagewalks

Figure 3: Skylake TLBs are not inclusive.

Interaction Between TLB Caches One of the central
cache properties is inclusivity. If caches are inclusive,
lower levels are guaranteed to be subsets of higher levels.
If caches are not inclusive, cached items are guaranteed
to be in at most one of the layers. To establish this prop-
erty for TLBs, we conduct the following experiment:

1. Assemble a working set S1 that occupies part of a
L1 TLB, and then the L2 TLB, until it is eventually
too large for the L2 TLB. The pages should target
only one particular L1 TLB (i.e., code or data).

2. Assemble a working set S2 of constant size that tar-
gets the other L1 TLB.

3. We access working sets S1+S2. We gradually grow
S1 but not S2. We observe whether we see L1
misses of either type, and also whether we observe
L2 misses.

4. If caches are inclusive, L2 evictions of one type will
cause L1 evictions of the opposite type.

The result of our experiment is in Figure 3. We con-
clude TLBs on Skylake are not inclusive, as neither type
of page can evict the other type from L1. This implic-
itly means that attacks that require L1 TLB evictions are
challenging in absence of L1 TLB sharing, similar, in
spirit, to the challenges faced by cache attacks in non-
inclusive caching architectures [18].

With this analysis, we have addressed Q1. We now
have a sufficient understanding of TLB internals on com-
modity platforms to proceed with our attack.

6 Cross-hyperthread TLB Monitoring

To verify the reverse engineered TLB partitions, and to
determine how hyperthreads are exposed to each others’
activity (addressing Q2), we run the following experi-
ment for each TLB level/type:

1. Collect an eviction set that perfectly fills a TLB set.

Table 1: TLB properties per Intel microarchitecture as found by our reverse engineering methodology. hsh = hash
function. w = number of ways. pn = miss penalty in cycles, shr indicates whether the TLB is shared between threads.

L1 dTLB L1 iTLB L2 sTLB
Name year set w pn hsh shr set w pn hsh shr set w pn hsh shr
Sandybridge 2011 16 4 7.0 lin 3 16 4 50.0 lin 7 128 4 16.3 lin 3

Ivybridge 2012 16 4 7.1 lin 3 16 4 49.4 lin 7 128 4 18.0 lin 3

Haswell 2013 16 4 8.0 lin 3 8 8 27.4 lin 7 128 8 17.1 lin 3

HaswellXeon 2014 16 4 7.9 lin 3 8 8 28.5 lin 7 128 8 16.8 lin 3

Skylake 2015 16 4 9.0 lin 3 8 8 2.0 lin 7 128 12 212.0 XOR-7 3

BroadwellXeon 2016 16 4 8.0 lin 3 8 8 18.2 lin 7 256 6 272.4 XOR-8 3

Coffeelake 2017 16 4 9.1 lin 3 8 8 26.3 lin 7 128 12 230.3 XOR-7 3

2. For each pair of eviction sets, access one set on
one hyperthread and the other set on another hyper-
thread running on the same core.

3. Measure the observed evictions to determine
whether one given set interferes with the other set.

Figure 4 presents our results for Intel Skylake, with a
heatmap depicting the number of evictions for each pair
of TLB (and corresponding eviction) sets. The lighter
colors indicate a higher number of TLB miss events in
the performance counters, and so imply that the corre-
sponding set was evicted. A diagonal in the heatmap
shows interference between the hyperthreads. If thread 1
accesses a set and thread 2 accesses the same set, they
interfere and increase the miss rate. The signals in the
figure confirm our reverse engineering methodology was
able to correctly identify the TLB sets for our Skylake
testbed microarchitecture. Moreover, as shown in the fig-
ure, only the L1 dTLB and the L2 sTLB show a clear
interference between matching pairs of sets, demonstrat-
ing that such TLB levels/types are shared between hyper-
threads while the L1 iTLB does not appear to be shared.
The signal on the diagonal in the L1 dTLB shows that a
given set is shared with the exact same set on the other
hyperthread. The signal on the diagonal in the L2 sTLB
shows that sets are shared but with a 64-entry offset—the
highest set number bit is XORred with the hyperthread
ID when computing the set number. The spurious signals
in the L1 dTLB and L1 iTLB charts are sets represent-
ing data and code needed by the instrumentation and do
not reflect sharing between threads. This confirms state-
ments in [11] that, since the Nehalem microarchitecture,
“L1 iTLB page entries are statically allocated between
two logical processors’, and “DTLB0 and STLB” are a
“competitively-shared resource.” We verified that our re-
sults also extend to all other microarchitectures we con-
sidered (see Table 1).

With this analysis we have addressed Q2. We can now
use the L1 dTLB and the L2 sTLB (but not the L1 iTLB)
for our attack. In addition, we cannot easily use the L2
sTLB for code attacks, as with non-inclusive TLBs and

H =



1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1


Figure 5: Skylake L2 sTLB’s hash function (H), which
converts a virtual address VA to a L2 sTLB set with the
matrix multiplication H ·VA[26 : 12], where VA[26 : 12]
represent the next 14 lowest bits of VA after the 12 lowest
bits of VA. We call this function XOR-7, because it XORs
7 consecutive virtual address bits. We have observed a
similar XOR-8 function on Broadwell.

non-shared L1 iTLB triggering L1 evictions is challeng-
ing, as discussed earlier. This leaves us with data attacks
on the L1 dTLB or L2 sTLB.

7 Unprivileged TLB Monitoring

While performance counters can conveniently be used
to reverse engineer the properties of the TLB, accessing
them requires superuser access to the system by default
on modern Linux distributions, which is incompatible
with our unprivileged attacker model. To address Q3,
we now look at how an attacker can monitor the TLB
activity of a victim without any special privilege by just
timing memory accesses.

We use the code in Figure 6, designed to monitor a
4-way TLB set, to exemplify our approach. As shown
in the figure, the code simply measures the latency when
accessing the target eviction set. This is similar, in spirit,
to the PROBE phase of a classic PRIME+PROBE cache
attack [42, 43, 45], which, after priming the cache, times
the access to a cache eviction set to detect accesses of
the victim to the corresponding cache set. In our TLB-
based attack setting, a higher eviction set access latency

0 4 8 12 16
TLB set

0

4

8

12

16

TL
B

se
t

L1 dtlb

0 4 8 12 16
TLB set

0

4

8

12

16

TL
B

se
t

L1 itlb

0 32 64 96 128
TLB set

0

32

64

96

128

TL
B

se
t

L2 stlb

2

4

6

8

10

12

Figure 4: Interaction of TLB sets between hyperthreads on Intel Skylake. This shows that the L1 dTLB and the L2
sTLB are shared between hyperthreads, whereas this does not seem to be the case for the L1 iTLB.

Figure 6: Timed accesses used to monitor a 4-way TLB
set with pointer chasing.

uint64_t probe; /* probe addr */
uint32_t time1,time2;

asm volatile (
"lfence\n"
"rdtsc\n"
"mov %%eax, %%edi\n"
"mov (%2), %2\n"
"mov (%2), %2\n"
"mov (%2), %2\n"
"mov (%2), %2\n"
"lfence\n"
"rdtscp\n"
"mov %%edi, %0\n"
"mov %%eax, %1\n"
: "=r" (time1), "=r" (time2)
: "r" (probe)
: "rax", "rbx", "rcx",
"rdx", "rdi");

indicates a likely TLB lookup performed by the victim
on the corresponding TLB set.

To implement an efficient monitor, we time the ac-
cesses using the rdtsc and rdtscp instructions and se-
rialize each memory access with the previous one. This
is to ensure the latency is not hidden by parallelism, as
each load is dependent on the previous one, a technique
also seen in [43] and other previous efforts. This pointer
chasing strategy allows us to access a full eviction set
without requiring full serialization after every load. The
lfence instructions on either side make it unnecessary
to do a full pipeline flush with the cpuid instruction,
which makes the operation faster.

With knowledge of the TLB structure, we can design
an experiment that will tell us whether the latency reli-
ably indicates a TLB hit or miss or not. We proceed as
follows:

90 100 110 120 130 140 150 160 170 180
CPU cycles

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
eq

ue
nc

y

L1 dTLB hit
L2 TLB hit
L2 TLB miss

Figure 7: Memory access latency determining TLB hit
or misses. The mapped physical page is always the same
one, and so always in the cache, so the latency of the
memory access purely depends on TLB latency.

1. We assemble three working sets. The first stays en-
tirely within L1 dTLB. The second misses L1 par-
tially, but stays inside L2. The third set is larger than
L2 and will so force a page table walk.

2. The eviction sets are virtual addresses, which we
all map to the same physical page, thereby avoiding
noise from the CPU data cache.

3. Using the assembly code we developed, we access
these eviction sets. If the latency predicts the cate-
gory, we should see a clear separation.

We take the Skylake platform as an example. The re-
sult of our experiment can be seen in Figure 7. We see
a multi-modal distribution, clearly indicating that we can
use unprivileged instructions to profile TLB activity.

0 100 200 300 400 500 600
Event number

2

4

6

8

10

12

14

L1
T
LB

 s
e
t

Figure 8: Page-level access patterns of data of an ECC
point multiplication routine. The background is the
ground truth of the cases we wish to distinguish. The
rectangles show temporally unique patterns that make
this possible.

Our analysis here addresses Q3. We can now rely on
unprivileged memory access latency measurements to re-
liably distinguish TLB misses from TLB hits and hence
monitor the activity of the victim over shared TLBs in
practical settings.

8 Temporal Analysis

Given the monitoring logic we developed in Section 5,
we now turn to Q4—how can we leak information with
a page-granular signal for data pages only? When target-
ing sensitive cryptographic applications, previous work
on controlled channels focused on leaking the secret us-
ing code pages due to the difficulty of extracting secrets
using page-granular data accesses [58]. Data pages are
only used for synchronization purposes in the attack. In
other words, this is a non-trivial challenge, especially
given our side-channel rather than controlled-channel at-
tack scenario.

To investigate the extent of this challenge, we pick an
example target, libgcrypt, and target its elliptic curve
cryptography (ECC) multiplication function, shown in
Figure 9. This function will be used in a signing op-
eration, where scalar is a secret. We use the non-
constant-time version in this work. We instrument the
code with the Intel Pin Dynamic Binary Instrumentation
framework [39].

Figure 8 shows the observed activity in each of the
16 L1 dTLB sets over time. The two background col-
ors differentiate between data accesses of the two dif-
ferent functions, namely the function that performs a
duplication operation and one that performs an addi-

Figure 9: Elliptic curve point multiplication in libgcrypt.
We attack the non-constant-time half of the branch.

void
_gcry_mpi_ec_mul_point (mpi_point_t result,
gcry_mpi_t scalar, mpi_point_t point,
mpi_ec_t ctx)
{
gcry_mpi_t x1, y1, z1, k, h, yy;
unsigned int i, loops;
mpi_point_struct p1, p2, p1inv;
...
if (mpi_is_secure (scalar)) {
/* If SCALAR is in secure memory we assume that it

is the secret key we use constant time operation.
*/

...
} else {
for (j=nbits-1; j >= 0; j--) {
_gcry_mpi_ec_dup_point (result, result, ctx);
if (mpi_test_bit (scalar, j))
_gcry_mpi_ec_add_points(result,result,point,ctx);

}
}
}

tion operation depending on a single bit in the private
key as shown in a code snippet taken from libgcrypt.
If we can differentiate between the TLB operations of
these two functions, we can leak the secret private key.
It is clear that the same sets are always active in both
sides of the branch, making it impossible to leak bits
of the key by just monitoring which sets are active a
la PRIME+PROBE. Hence, due to (page-level) side-
channel coarsening, TLB attacks cannot easily rely on
traditional spatial access information to leak secrets in
real-world attack settings.

Looking more carefully at Figure 8, it is clear that
some sets are accessed at different times within the ex-
ecution of each side of the branch. For example, it is
clear that the data variables that map to TLB set 9 are
being accessed at different times in the different sides
of the branch. The question is whether we can use
such timings as distinguishing features for leaking bits of
data from libgcrypt’s ECC multiplication function. In
other words, we have to rely on temporal accesses to the
TLB sets instead of the commonly-used spatial accesses
for the purposes of leaking information.

To investigate this approach, we now look at signal
classification for the activity in the TLB sets. Further-
more, in the presence of address-space layout random-
ization (ASLR), target data may map to different TLB
sets. We discuss how we can detect the TLB sets of in-
terest using a similar technique.

Signal classification Assuming availability of latency
measurements from a target TLB set, we want to distin-
guish the execution of different functions that access the

target TLB set at different times. For this purpose, we
train a classifier that can distinguish which function is
being executed by the victim, as a function of observed
TLB latencies. We find that, due to the high resolution
of our channel, a simple classification and feature ex-
traction strategy is sufficient to leak our target functions’
temporal traces with a high accuracy. We discuss what
more may be possible with more advanced learning tech-
niques and the implications for future cache attacks and
defenses in Section 10. We now discuss how we trained
our classifier.

To collect the ground truth, we instrument the victim
with statements that record the state of the victim’s func-
tions, that is how the classifier should classify the current
state. This information is written to memory and shared
with our TLB monitoring code developed in Section 5.
We run the monitoring code on the sibling hyperthread
of the one that executes the instrumented victim. Our
monitoring code uses the information provided by the
instrumented victim to measure the activity of the tar-
get TLB set for each of the two functions that we wish to
differentiate.

To extract suitable features from the TLB signal, we
simply encode information about the activity in the tar-
geted TLB set using a vector of normalized latencies.
We then use a number of such feature vectors to train
a Support Vector Machine (SVM) classifier, widely used
nowadays for general-purpose classification tasks [12].
We use our SVM classifier to solve a three-class classifi-
cation problem: distinguishing accesses to two different
functions (class-1 and class-2) and other arbitrary func-
tions (class-3) based on the collected TLB signals. The
training set consists of a fixed number (300) of observed
TLB latencies starting at a function boundary (based on
the ground truth). We find the normalizing the ampli-
tude of the latencies prior to training and classification
to be critical for the performance of our classifier. For
each training sample, we normalize the latencies by sub-
tracting the mean latency and dividing by the standard
deviation of the 300 latencies in the training sample.

We use 8 executions to train our SVM classifier. On
average, this results in 249 executions of the target dupli-
cation function, and 117 executions of the target addition
function, leading to 2,928 training samples of function
boundaries. After training, the classifier can be used on
target executions to extract function signatures and re-
construct the target private key. We report on the perfor-
mance of the classifier and its effect on the end-to-end
TLBleed attack on libgcrypt in Section 9.2.

As an example of the classifier in action on the raw
signal, see Figure 10. It has been trained on the latency
values, and can reliably detect the 2 different function
boundaries. We use a peak detection algorithm to derive
the bit stream from the classification output. The mov-

0

50

100

150

cy
cle

s latency

60

80

cy
cle

s moving average

4000 4200 4400 4600 4800 5000
time

0.0

0.5

1.0

SV
M

 o
ut

pu
t

classifier output
dup detection
mul detection

Figure 10: SVM signal classification on raw latency data.
The background shade represents ground truth; either the
execution of the ‘dup’ function (0) or the ‘mul’ function
(1). The classifier properly classifies signal boundaries
from raw latency data; either the start of a dup (0), mul
(1) or not a boundary (0.5). The peak detection converts
the continuous classifications into discrete single detec-
tions.

ing average is not used by the classifier, but is shown
to make the signal discrepancy more apparent to human
inspection. The peak detection merges spurious peaks/-
valleys into one as seen in the first valley, and turns the
continuous classification into a discrete bitstream.

Identifying the Target TLB Set For the libgcrypt

target, we only need to use a single TLB set for training
and testing. For the purpose of training our classifier, we
assume that this information is known. During a real-
world attack, however, we cannot know the target TLB
set beforehand, due to virtual address randomization per-
formed by ASLR.

Nonetheless, our hypothesis is that each of the TLB
sets behave differently during the execution of our tar-
get program. Hence, we can follow the same approach
of classifying behavior based on the temporal activity of
each of the sets to distinguish the target set. In other
words, in a preliminary step, we can now use our SVM
classifier to solve a s-class classification problem, where
each class represents TLB signals for a particular TLB
set and we want to identify TLB signals that belong to
the "target" class of interest. To validate our hypothesis,
we run this step for the same period as we do for the at-
tack, when the ECC point multiplication occurs. We find
that this simple strategy already results in a classifier that
can distinguish the TLB sets. Section 9.1 evaluates the
reliability and performance of our target TLB set detec-
tion technique.

We can now mount an end-to-end attack using a sim-
ple classification and feature extraction strategy, as well
as a preliminary step to identify the victim TLB set in
spite of ASLR.

9 Evaluation

In this section we select a challenging case study, and
evaluate the reliability of TLBleed.

Testbed To gain insights on different recent micro-
architectures, we evaluated TLBleed on three different
systems: (i) a workstation with an Intel Skylake Core i7-
6700K CPU and 16 GB of DDR4 memory, (ii) a server
with an Intel Broadwell Xeon E5-2620 v4 and 16 GB of
DDR4 memory, and (iii) a workstation with an Intel Cof-
feelake Core i7-8700 and 16 GB of DDR4 memory. We
mention which system(s) we use for each experiment.

Overview of the results We first target libgcrypt’s
Curve 25519 EdDSA signature implementation. We use
a version of the code that is not written to be constant-
time. We first show that our classifier can successfully
distinguish the TLB set of interest from other TLB sets
(Section 9.1). We then evaluate the reliability of the
TLBleed attack (Section 9.2). On average, TLBleed can
reconstruct the private key in 97% of the case using only
a single signature generation capture and in only 17
seconds. In the remaining cases, TLBleed significantly
compromises the private key. Next we perform a simi-
lar evaluation on RSA code implemented in libgcrypt,
that was written to be constant-time in order to mitigate
FLUSH+RELOAD [59], but nevertheless leaves a secret-
dependent data trace. The implementation has since been
improved, already before our work. We then evaluate
the security of state-of-the-art cache defenses in face of
TLBleed. We find that TLBleed is able to leak informa-
tion even in presence of strong, hardware-based cache
defenses (Section 9.5 and Section 9.6). Finally, we con-
struct a covert channel using the TLB, to evaluate the
resistance of TLBleed to noise (Section 9.7).

9.1 TLB set identification

To show all TLB sets behave in a sufficiently unique way
for TLBleed to reliably differentiate them, we show our
classifier trained on all the different TLB sets recogniz-
ing test samples near-perfectly. After training a classifier
on samples from each of the 16 L1 dTLB access pat-
terns in libgcrypt, we are able to distinguish all TLB sets
from each other with an F1-score of 0.54, as shown in
a reliability matrix in Figure 11. We observe no false
positives or false negatives to find the desired TLB set
across repeated runs. We hence conclude that TLBleed
is effective against ASLR in our target application. We
further discuss the implications of TLB set identification
on weakening ASLR in Section 10.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Predicted label

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

T
ru

e
 l
a
b
e
l

0.0

0.2

0.4

0.6

0.8

1.0

Figure 11: Classification reliability for distinguishing
TLB sets using temporal access patterns. For all active
TLB sets during our target operation, we can reliably
determine where they are mapped in the virtual address
space.

9.2 Compromising EdDSA
Curve 25519 EdDSA signature algorithm in libgcrypt
v1.6.3 is a high-performance elliptic curve algorithm [6].
To demonstrate TLBleed determining a key by just mon-
itoring the TLB, we attack the non-constant-time version
of this code. This would still be safe when cache isola-
tion is deployed.

As shown previously in Figure 9, we are in-
terested in distinguishing between the duplication
(i.e., _gcry_mpi_ec_dup_point) and addition (i.e.,
_gcry_mpi_ec_add_points) operations, so that we
can distinguish key bits in the secret used in the signa-
ture. There will always be a dup invocation for every bit
position in the execution trace, plus an average of 128
add invocations somewhere for every ’1’ bit in the secret
value. As keys are 256 bits in Curve 25519, on average
we observe 384 of these operations.

Hence, we must be able to distinguish the two oper-
ations with high reliability. Errors in the classification
require additional bruteforcing on the attacker’s side to
compensate. As misclassification errors translate to ar-
bitrary bit edit operations in the secret key, bruteforcing
quickly becomes intractable with insufficient reliability.

We follow a two step approach in evaluating TLBleed
on libgcrypt. We first collect the activities in the TLB
for only 2 ms during a single signing operation. Our clas-
sifier then uses the information in this trace to find the
TLB set of interest and to classify the duplication and
addition operations for leaking the private key. In the
second step, we try to compensate for classification er-
rors using a number of heuristics to guide bruteforcing
in exhausting the residual entropy. We first discuss the

Table 2: Success rate of TLBleed on various microar-
chitectures. The success rate is a count of the number of
successful full key recoveries, with some brute forcing
(BF) attempts. Unsuccessful cases were out of reach of
bruteforcing.

Micro-architecture Trials Success Median BF

Skylake 500 0.998 21.6

Broadwell 500 0.982 23.0

Coffeelake 500 0.998 22.6

Total 1500 0.993

0 5 10 15 20 25 30 35
log2 brute force attempts

0

50

100

150

200

250

Fr
e
q
u
e
n
cy

broadwell
kabylake
skylake

Figure 12: Required number of bruteforcing attempts
for compromising 256-bit EdDSA encryption keys with
TLBleed.

results and then elaborate on the bruteforcing heuristics
that we use.

Table 2 shows the results of our attack on all testbeds.
With a small number of measurements-guided bruteforc-
ing, TLBleed can successfully leak the key in 99.8% of
the cases in the Skylake system, in 98.2% of the cases on
the Broadwell system, and 99.8% on Coffeelake. In the
remaining cases, while the key is significantly compro-
mised, bruteforcing was still out of reach with our avail-
able computing resources. The end-to-end attack time is
composed of: 2 ms of capture time; 17 seconds of sig-
nals analysis with the trained classifier; and a variable
amount of brute-force guessing with a negligible median
work factor of 23 at worst, taking a fraction of a second.
Thus, in the most common case, the end-to-end attack
time is dominated by the signals analysis phase of 17
seconds and can be trivially reduced with more comput-
ing resources. Given that TLBleed requires a very small
capture time, existing re-randomization techniques (e.g.,
Shuffler [57]) do not provide adequate protection against
TLBleed, even if they re-randomized both code and data.

Figure 13: Sketched representation of SIM-
PLE_EXPONENTIATION variant of modular ex-
ponentiation in libgcrypt, in an older version.

void
_gcry_mpi_powm (gcry_mpi_t res,

gcry_mpi_t base, gcry_mpi_t expo, gcry_mpi_t mod)
{

mpi_ptr_t rp, xp; /* pointers to MPI data */
mpi_ptr_t tp;
...
for(;;) {
...
/* For every exponent bit in expo: */
_gcry_mpih_sqr_n_basecase(xp, rp);
if(secret_exponent || e_bit_is1) {
/* Unconditional multiply if exponent is
* secret to mitigate FLUSH+RELOAD.
*/
_gcry_mpih_mul (xp, rp);
}
if(e_bit_is1) {
/* e bit is 1, use the result */
tp = rp; rp = xp; xp = tp;
rsize = xsize;

}
}

}

Figure 12 provides further information on the fre-
quency of bruteforcing attempts required after classifi-
cation. We rely on two heuristics based on the classifi-
cation results to guide our bruteforcing attempts. Due to
the streaming nature of our classifier, sometimes it does
not properly recognize a 1 or a 0, leaving a blank (i.e.,
skipping), and sometimes it classifies two 1s or two 0s
instead of only one (i.e., duplicating). By looking at the
length of periods in which the classifier makes decision,
we can find cases where the period is too long for a sin-
gle classification (skipping) and cases where the period
is too short for two classifications (duplicating). In the
case of skipping, we try to insert a guess bit and in the
case of duplicating, we try to remove the duplicate. As
evidenced by our experimental results, these heuristics
work quite well for dealing with misclassifications in the
case of the TLBleed attack.

9.3 Compromising RSA

We next show that an RSA implemenetation, written
to mitigate FLUSH+RELOAD [59], nevertheless leaves
a secret-dependent data trace in the TLB that TLBleed
can detect. This finding is not new to our work and
this version has since been improved. Nevertheless we
show TLBleed can detect secret key bits from such an
RSA implementation, even when protected with cache
isolations deployed, as well as code hardening against
FLUSH+RELOAD.

Listing 13 shows our target RSA implemenatation.

0 20 40 60 80 100
edit distance

0

2

4

6

8

10

12

14

16

fre
qu

en
cy

Figure 14: TLBleed accuracy in computing RSA 1024-
bit secret exponent bits. Shown is the histogram of the
number of errors the reconstructed RSA exponent con-
tained from a single capture, expressed as the Leven-
shtein edit distance.

The code maintains pointers to the result data (rp) and
working data (xp). This is a schematic representation of
modular exponentiation code as it existed in older ver-
sions of libgcrypt, following a familiar square-and-
multiply algorithm to compute the modular exponenti-
ation. The multiplication should only be done if the cor-
responding exponent bit is 1. Conditionally executing
this code leaks information about the secret exponent, as
shown in [59]. To mitigate this, the code uncondition-
ally executes the multiplication but conditionally uses the
result, by swapping the rp and xp pointers if the bit is
1. Whenever these pointers fall in different TLB sets,
TLBleed can detect whether or not this swapping opera-
tion has happened, by distinguishing the access activity
in the swapped and unswapped cases, directly leaking in-
formation about the secret exponent.

We summarize the accuracy of our key reconstruction
results in Figure 14, a histogram of the edit distance of
the reconstructed RSA keys showing that on average we
recover more than 92% of RSA keys with a single cap-
ture. While we have not upgraded these measurements
to a full key recovery, prior work [61] has shown that it
is trivial to reconstruct the full key from 60% of the re-
covered key by exploiting redundancies in the storage of
RSA public keys [22].

9.4 Compromising Software Defenses

Software-implemented cache defenses all seek to prevent
an attacker to operate cache evictions for the victim’s
cachelines. Since TLBleed only relies on TLB evictions
and is completely oblivious to cache activity, our attack

0 25 50 75 100
Victim work size (iterations)

0

500

1000

1500

2000

2500

LL
C

m
iss

es

baseline
TLBleed

0 25 50 75 100
Victim work size (iterations)

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

L1
dT

LB
 m

iss
es

baseline
TLBleed

Figure 15: TLBleed compromising software defenses, as
demonstrated by the substantial number of TLB rather
than cache misses required by our libgcrypt attack.

Table 3: TLBleed compromising Intel CAT.
Microarchitecture Trials Success Median BF

Broadwell (CAT) 500 0.960 22.6

Broadwell 500 0.982 23.0

strategy trivially bypasses such defenses. To confirm this
assumption, we repeat our libgcrypt attack for an in-
creasing number of iterations to study the dependency
between victim activity and cache vs. TLB misses.

Figure 15 presents our results. As shown in the fig-
ure, the TLBleed has no impact on the cache behavior
of the victim (LLC shown in figure, but we observed
similar trends for the other CPU caches). The only
slight increase in the number of cache misses is a by-
product of the fast-growing number of TLB misses re-
quired by TLBleed and hence the MMU’s page table
walker more frequently accessing the cache. Somewhat
counter-intuitively, the increase in the number of cache
misses in Figure 15 is still constant regardless of the
number of TLB misses reported. This is due to high vir-
tual address locality in the victim, which translates to a
small, constant cache working set for the MMU when
handling TLB misses. This experiment confirms our as-
sumption that TLBleed is oblivious to the cache activity
of the victim and can trivially leak information in pres-
ence of state-of-the-art software-implemented cache de-
fenses.

9.5 Compromising Intel CAT

We now want to assess whether TLBleed can compro-
mise strong, hardware-based cache defenses based on
hardware cache partitioning. Our hypothesis is that such

0 200 400 600 800 1000
Victim work size (memory accesses)

3200

3400

3600

3800

4000

4200

4400

L1
dT

LB
 m

iss
es

baseline
TLBleed

Figure 16: TLBleed detects TLB activity of a victim pro-
cess running inside an Intel TSX transaction by stealthily
measuring TLB misses.

hardware mechanisms do not extend their partitioning
to the TLB. Our Broadwell processor, for example, is
equipped with the Intel CAT extension, which can parti-
tion the shared cache between distrusting processes [37].
To validate our hypothesis, our goal is to show that
TLBleed can still leak information even when Intel CAT
is in effect.

We repeat the same experiment we used to attack
libgcrypt, but this time with Intel CAT enabled. We
isolate the victim libgcrypt process from the TLBleed
process using Intel rdtset tool by perfectly partition-
ing the cache between the two processes (using the 0xf0
mask for the victim, and 0x0f for TLBleed). Table 3
shows that the hardware cache partitioning strategy im-
plemented by Intel CAT does not stop TLBleed, validat-
ing our hypothesis. This demonstrates TLBleed can by-
pass state-of-art defenses that rely on Intel CAT (or sim-
ilar mechanisms) [37].

9.6 Compromising Intel TSX

We now want to assess whether TLBleed can compro-
mise strong, hardware-based cache defenses that pro-
tect the cache activity of the victim with hardware trans-
actional memory features such as Intel TSX. In such
defenses, attacker-induced cache evictions induce Intel
TSX capacity aborts, detecting the attack [21]. Our hy-
pothesis is that such hardware mechanisms do not extend
their abort strategy to TLB evictions. To validate our hy-
pothesis, our goal is to show that TLBleed can still detect
the victim’s activity with successful transactions and leak
information even when Intel TSX is in effect.

Porting libgcrypt’s EdDSA algorithm to run inside
a TSX transaction requires major source changes since

0 2 4 6 8 10
bandwidth (kBit)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

fre
qu

en
cy

quiescent
heavy interference

Figure 17: TLB covert channel bandwidth without and
with a heavy interference load. The undetected frame
error rate is low in both cases: 2.0 · 10−5 and 3.2 · 10−4

respectively.

its working set does not fit inside the CPU cache. We
instead experiment with a synthetic but representative
example, where a victim process accesses a number of
memory addresses in a loop for a given number of times
inside a transaction.

Figure 16 shows the number of TLB misses with and
without TLBleed. Increasing the duration of victim’s ex-
ecution allows TLBleed to detect more and more TLB
miss due to the victim’s activity. Each additional miss
provides TLBleed with information about the secret op-
eration of a victim without aborting the transaction, val-
idating our hypothesis. This demonstrates TLBleed can
also bypass recent defenses that rely on Intel TSX (or
similar mechanisms) [21] and, ultimately, all the state-
of-the-art cache defenses.

9.7 TLB Covert Channel

To further prove the correct reverse engineering of TLB
properties, and to do a basic quantification of the noise
resistance properties of this channel, we use our new
TLB architecture knowledge to construct a covert chan-
nel. This allows communication between mutually co-
operating parties that are not authorized to communicate,
e.g. to exfiltrate data. We exclusively use the TLB and no
other micro-architectural state for this channel. For the
purposes of this design, TLB sets and cache sets serve
the same purpose: accessing the set gives the other party
a higher latency in the same set, which we use as a com-
munication primitive. We borrow design ideas from [41].

We implement this covert channel and do two exper-
iments. The first we run the protocol with a transmitter
and receiver on two co-resident hyperthreads on an other-

wise quiescent machine. The second we do the same, but
generate two heavy sources of interference: one, we run
the libgcrypt signing binary target in a tight loop on the
same core; and two, we run stress -m 5 to generate a
high rate of memory activity throughout the machine.

We find the usable bandwidth under intense load is
roughly halved, and the rate of errors that was not caught
by the framing protocol does increase, but remains low.
We see an undetected frame error rate of 2.0 ·10−5 for a
quiescent machine, and 3.2 ·10−4 for the heavily loaded
machine. These results are summarized in Figure 17 and
show robust behaviour in the presence of heavy interfer-
ence. We believe that, given the raw single TLB set probe
rate of roughly 30 · 107, with additional engineering ef-
fort the bandwidth of this channel could be significantly
improved.

10 Discussion

Leaking cryptographic keys and bypassing cache side-
channel defenses are not the only possible targets for
TLBleed. Moreover, mitigating TLBleed without sup-
port from future hardware is challenging. We discuss
these topics in this section.

10.1 Other targets
TLBleed can potentially leak other information when-
ever TLBs are shared with a victim process. We ex-
pect that our TLB set classification technique can very
quickly reduce the entropy of ASLR, either that of the
browser [8, 17] or kernel [20, 24, 29]. The L2 TLB in
our Broadwell system has 256 sets, allowing us to re-
duce up to 8 bits of entropy. Note that since the TLB
is shared, separating address spaces [19] will not protect
against TLBleed.

Other situations where TLBleed may leak information
stealthily are from Intel SGX enclaves or ARM Trust-
Zone processes. We intend to pursue this avenue of re-
search in the future.

10.2 Mitigating TLBleed
The simplest way to mitigate TLBleed is by disabling
hyperthreads or by ensuring in the operating system that
sensitive processes execute in isolation on a core. How-
ever, this strategy inevitably wastes resources. Further-
more, in cloud environments, customers cannot trust that
their cloud provider’s hardware or hypervisor has de-
ployed a (wasteful) mitigation. Hence, it is important
to explore other mitigation strategies against TLBleed.

In software, it may be possible to partition the TLB be-
tween distrusting processes by partitioning the virtual ad-
dress space. This is, however, challenging since almost

all applications rely on contiguous virtual addresses for
correct operations, which is no longer possible if certain
TLB sets are not accessible due to partitioning.

It is easier to provide adequate protection against
TLBleed in hardware. Intel CAT, for example, can be
extended to provide partitioning of TLB ways on top
of partitioning cache ways. Existing defenses such as
CATalyst [37] can protect themselves against TLBleed
by partitioning the TLB in hardware. Another option is
to extend hardware transactional memory features such
as Intel TSX to cause capacity aborts if a protected trans-
action observes unexpected TLB misses similar to CPU
caches. Existing defenses such as Cloak [21] can then
protect themselves against TLBleed, since an ongoing
TLBleed attack will cause unexpected aborts.

11 Related Work

We focus on closely related work on TLB manipulation
and side-channel exploitation over shared resources.

11.1 TLB manipulation

There is literature on controlling TLB behavior in both
benign and adversarial settings. In benign settings, con-
trolling the impact of the TLB is particularly relevant in
real-time systems [27, 44]. This is to make the execu-
tion time more predictable while keeping the benefits of
a TLB. In adversarial settings, the TLB has been pre-
viously used to facilitate exploitation of SGX enclaves.
In particular, Wang et al. [56] showed that it is possi-
ble to bypass existing defenses [51] against controlled
channel attacks [58] by flushing the TLB to force page
table walks without trapping SGX enclaves. In contrast,
TLBleed leaks information by directly observing activity
in the TLB sets.

11.2 Exploiting shared resources

Aside from the cache attacks and defenses extensively
discussed in Section 2.1, there is literature on other
microarchitectural attacks exploiting shared resources.
Most recently, Spectre [32] exploits shared Branch Tar-
get Buffers (BTBs) to mount "speculative" control-flow
hijacking attacks and control the speculative execution of
the victim to leak information. Previously, branch pre-
diction has been attacked to leak data or ASLR informa-
tion [2, 3, 14, 35]. In [4], microarchitectural properties
of execution unit sharing between hyperthreads is ana-
lyzed. Finally, DRAMA exploits the DRAM row buffer
to mount (coarse-grained) cross-CPU side-channel at-
tacks [46].

11.3 Temporal side-channel analysis

A number of previous efforts have observed that tempo-
ral information can be used to mount side-channel at-
tacks over shared caches or similar fine-grained chan-
nels [4, 15, 25, 38, 45, 61]. With TLBleed, we intro-
duce a machine learning-based analysis framework that
exploits (only) high-resolution temporal features to leak
information even in (page-level) side-channel coarsen-
ing scenarios. Nonetheless, our approach is generic and
hence applicable to other attack settings, where an at-
tacker targets either fine-grained (e.g., cache) or even
more coarse-grained (e.g., DRAM) channels.

12 Conclusion

TLBleed, a powerful and fundamentally new side chan-
nel attack via the TLB, shows that the problem of mi-
croarchitectural side channels goes much deeper than
previously assumed. So far, much of the community
has implicitly assumed that practical, fine-grained side-
channel attacks are limited to the CPU data and instruc-
tion caches, leaving most other shared resources out of
the threat model. In this paper, we have shown that
TLB activity monitoring not only offers a practical new
side channel, but also that it bypasses all the state-of-
the-art cache side-channel defenses. Since the operation
of the TLB is a fundamental hardware property, mit-
igating TLBleed is challenging. It requires novel re-
search to design efficient yet flexible mechanisms that
isolate TLB partitions based on the corresponding se-
curity domains. However, it is not unlikely that as new
mitigations are developed, new side channels amenable
to practical attacks emerge. As a more general lesson,
TLBleed demonstrates that comprehensive side-channel
protection should carefully consider all shared resources.

Acknowledgements

The authors would like to thank the anonymous review-
ers for their thoughtful feedback. We would also like
to thank Colin Percival, Yuval Yarom, and Taylor ‘Ri-
astradh’ Campbell for feedback on early versions of
this paper. This project has received funding from the
European Union’s Horizon 2020 research and innova-
tion programme under grant agreement No. 786669
(ReAct) and was supported by the MALPAY project
and by the Netherlands Organisation for Scientific Re-
search through grants NWO 639.023.309 VICI “Dows-
ing”, NWO 639.021.753 VENI “PantaRhei”, and NWO
629.002.204 “Parallax”. This paper reflects only the au-
thors’ view. The funding agencies are not responsible for
any use that may be made of the information it contains.

References

[1] Amazon ec2 instance types: Each vcpu is a hyper-
thread of an intel xeon core except for t2. https:

//aws.amazon.com/ec2/instance-types/,
Accessed on 28.06.2018., 2016.

[2] Onur Acıiçmez, Shay Gueron, and Jean-Pierre
Seifert. New branch prediction vulnerabilities in
openssl and necessary software countermeasures.
In IMA International Conference on Cryptography
and Coding, pages 185–203. Springer, 2007.

[3] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre
Seifert. Predicting secret keys via branch predic-
tion. In Cryptographers’ Track at the RSA Confer-
ence, pages 225–242. Springer, 2007.

[4] Onur Acıiçmez and Jean-Pierre Seifert. Cheap
hardware parallelism implies cheap security. In
Fault Diagnosis and Tolerance in Cryptography,
2007. FDTC 2007. Workshop on, pages 80–91.
IEEE, 2007.

[5] Daniel J Bernstein. Cache-timing attacks on aes.
2005.

[6] Daniel J Bernstein. Curve25519: new diffie-
hellman speed records. In International Work-
shop on Public Key Cryptography, pages 207–228.
Springer, 2006.

[7] Brian N Bershad, Dennis Lee, Theodore H Romer,
and J Bradley Chen. Avoiding conflict misses
dynamically in large direct-mapped caches. In
ACM SIGPLAN Notices, volume 29, pages 158–
170. ACM, 1994.

[8] Erik Bosman, Kaveh Razavi, Herbert Bos, and
Cristiano Giuffrida. Dedup est machina: Memory
deduplication as an advanced exploitation vector.
S&P (May. 2016), 2016.

[9] Benjamin A Braun, Suman Jana, and Dan
Boneh. Robust and efficient elimination of
cache and timing side channels. arXiv preprint
arXiv:1506.00189, 2015.

[10] Yinzhi Cao, Zhanhao Chen, Song Li, and Shujiang
Wu. Deterministic browser. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 163–178. ACM,
2017.

[11] Intel Coorporation. Intel 64 and ia-32 architectures
optimization reference manual, 2016.

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

[12] Corinna Cortes and Vladimir Vapnik. Support-
vector networks. Machine learning, 20(3):273–
297, 1995.

[13] Craig Disselkoen, David Kohlbrenner, Leo Porter,
and Dean Tullsen. Prime+ abort: A timer-free high-
precision l3 cache attack using intel tsx. 2017.

[14] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael
Abu-Ghazaleh. Jump over aslr: Attacking branch
predictors to bypass aslr. In Microarchitecture (MI-
CRO), 2016 49th Annual IEEE/ACM International
Symposium on, pages 1–13. IEEE, 2016.

[15] Daniel Genkin, Lev Pachmanov, Eran Tromer, and
Yuval Yarom. Drive-by key-extraction cache at-
tacks from portable code. In International Confer-
ence on Applied Cryptography and Network Secu-
rity, pages 83–102. Springer, 2018.

[16] Daniel Genkin, Luke Valenta, and Yuval Yarom.
May the fourth be with you: A microarchitectural
side channel attack on several real-world applica-
tions of curve25519. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Com-
munications Security, pages 845–858. ACM, 2017.

[17] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert
Bos, and Cristiano Giuffrida. Aslr on the line: Prac-
tical cache attacks on the mmu. NDSS (Feb. 2017),
2017.

[18] Marc Green, Leandro Rodrigues-Lima, Andreas
Zankl, Gorka Irazoqui, Johann Heyszl, and Thomas
Eisenbarth. AutoLock: Why Cache Attacks on
ARM Are Harder Than You Think. In USENIX Se-
curity Symposium, 2017.

[19] Daniel Gruss, Moritz Lipp, Michael Schwarz,
Richard Fellner, Clémentine Maurice, and Stefan
Mangard. Kaslr is dead: Long live kaslr. In Engi-
neering Secure Software and Systems, pages 161–
176, 2017.

[20] Daniel Gruss, Clémentine Maurice, Anders Fogh,
Moritz Lipp, and Stefan Mangard. Prefetch side-
channel attacks: Bypassing smap and kernel aslr. In
Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages
368–379. ACM, 2016.

[21] Daniel Gruss, Felix Schuster, Olya Ohrimenko,
Istvan Haller, Julian Lettner, and Manuel Costa.
Strong and efficient cache side-channel protection
using hardware transactional memory. 2017.

[22] Nadia Heninger and Hovav Shacham. Reconstruct-
ing RSA private keys from random key bits. In Shai
Halevi, editor, Proceedings of Crypto 2009, volume
5677 of LNCS, pages 1–17. Springer-Verlag, Au-
gust 2009.

[23] Glenn Hinton, Dave Sager, Mike Upton, Dar-
rell Boggs, et al. The microarchitecture of the
pentium R© 4 processor. In Intel Technology Jour-
nal. Citeseer, 2001.

[24] Ralf Hund, Carsten Willems, and Thorsten Holz.
Practical timing side channel attacks against kernel
space aslr. In Security and Privacy (SP), 2013 IEEE
Symposium on, pages 191–205. IEEE, 2013.

[25] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Ira-
zoqui, Thomas Eisenbarth, and Berk Sunar. Cache
attacks enable bulk key recovery on the cloud. In
International Conference on Cryptographic Hard-
ware and Embedded Systems, pages 368–388.
Springer, 2016.

[26] Gorka Irazoqui, Thomas Eisenbarth, and Berk
Sunar. Systematic reverse engineering of cache
slice selection in intel processors. In Digital Sys-
tem Design (DSD), 2015 Euromicro Conference on,
pages 629–636. IEEE, 2015.

[27] Takuya Ishikawa, Toshikazu Kato, Shinya Honda,
and Hiroaki Takada. Investigation and improve-
ment on the impact of tlb misses in real-time sys-
tems. Proc. of OSPERT, 2013.

[28] Yeongjin Jang, Sangho Lee, and Taesoo Kim.
Breaking kernel address space layout randomiza-
tion with intel tsx. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communi-
cations Security, pages 380–392. ACM, 2016.

[29] Yeongjin Jang, Sangho Lee, and Taesoo Kim.
Breaking kernel address space layout randomiza-
tion with intel tsx. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communi-
cations Security, CCS ’16, pages 380–392, 2016.

[30] Richard E Kessler and Mark D Hill. Page place-
ment algorithms for large real-indexed caches.
ACM Transactions on Computer Systems (TOCS),
10(4):338–359, 1992.

[31] Taesoo Kim, Marcus Peinado, and Gloria Mainar-
Ruiz. Stealthmem: System-level protection against
cache-based side channel attacks in the cloud.
In USENIX Security symposium, pages 189–204,
2012.

[32] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Man-
gard, Thomas Prescher, Michael Schwarz, and Yu-
val Yarom. Spectre attacks: Exploiting speculative
execution. arXiv preprint arXiv:1801.01203, 2018.

[33] Paul C Kocher. Timing attacks on implementa-
tions of diffie-hellman, rsa, dss, and other sys-
tems. In Annual International Cryptology Confer-
ence, pages 104–113. Springer, 1996.

[34] David Kohlbrenner and Hovav Shacham. Trusted
browsers for uncertain times. In USENIX Security
Symposium, pages 463–480, 2016.

[35] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo
Kim, Hyesoon Kim, and Marcus Peinado. Infer-
ring fine-grained control flow inside sgx enclaves
with branch shadowing. In 26th USENIX Security
Symposium, USENIX Security, pages 16–18, 2017.

[36] Moritz Lipp, Michael Schwarz, Daniel Gruss,
Thomas Prescher, Werner Haas, Stefan Mangard,
Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. Meltdown. arXiv preprint
arXiv:1801.01207, 2018.

[37] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mck-
een, Carlos Rozas, Gernot Heiser, and Ruby B Lee.
Catalyst: Defeating last-level cache side channel at-
tacks in cloud computing. In High Performance
Computer Architecture (HPCA), 2016 IEEE In-
ternational Symposium on, pages 406–418. IEEE,
2016.

[38] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser,
and Ruby B Lee. Last-level cache side-channel at-
tacks are practical. In Security and Privacy (SP),
2015 IEEE Symposium on, pages 605–622. IEEE,
2015.

[39] Chi-Keung Luk, Robert Cohn, Robert Muth, Har-
ish Patil, Artur Klauser, Geoff Lowney, Steven Wal-
lace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
building customized program analysis tools with
dynamic instrumentation. In Acm sigplan notices,
volume 40, pages 190–200. ACM, 2005.

[40] Robert Martin, John Demme, and Simha Sethu-
madhavan. Timewarp: rethinking timekeeping and
performance monitoring mechanisms to mitigate
side-channel attacks. ACM SIGARCH Computer
Architecture News, 40(3):118–129, 2012.

[41] Clémentine Maurice, Manuel Weber, Michael
Schwarz, Lukas Giner, Daniel Gruss, Carlo Alberto
Boano, Stefan Mangard, and Kay Römer. Hello

from the other side: Ssh over robust cache covert
channels in the cloud. NDSS, San Diego, CA, US,
2017.

[42] Yossef Oren, Vasileios P Kemerlis, Simha Sethu-
madhavan, and Angelos D Keromytis. The spy in
the sandbox: Practical cache attacks in javascript
and their implications. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1406–1418. ACM,
2015.

[43] Dag Arne Osvik, Adi Shamir, and Eran Tromer.
Cache attacks and countermeasures: the case of
aes. In Cryptographers’ Track at the RSA Confer-
ence, pages 1–20. Springer, 2006.

[44] Shrinivas Anand Panchamukhi and Frank Mueller.
Providing task isolation via tlb coloring. In Real-
Time and Embedded Technology and Applications
Symposium (RTAS), 2015 IEEE, pages 3–13. IEEE,
2015.

[45] Colin Percival. Cache missing for fun and profit,
2005.

[46] Peter Pessl, Daniel Gruss, Clémentine Maurice,
Michael Schwarz, and Stefan Mangard. Drama:
Exploiting dram addressing for cross-cpu attacks.
In USENIX Security Symposium.

[47] Himanshu Raj, Ripal Nathuji, Abhishek Singh, and
Paul England. Resource management for isolation
enhanced cloud services. In Proceedings of the
2009 ACM workshop on Cloud computing security,
pages 77–84. ACM, 2009.

[48] Ashay Rane, Calvin Lin, and Mohit Tiwari. Rac-
coon: Closing digital side-channels through obfus-
cated execution. In USENIX Security Symposium,
pages 431–446, 2015.

[49] Michael Schwarz, Clémentine Maurice, Daniel
Gruss, and Stefan Mangard. Fantastic timers and
where to find them: high-resolution microarchitec-
tural attacks in javascript. In International Con-
ference on Financial Cryptography and Data Secu-
rity, pages 247–267. Springer, 2017.

[50] Jicheng Shi, Xiang Song, Haibo Chen, and Binyu
Zang. Limiting cache-based side-channel in multi-
tenant cloud using dynamic page coloring. In De-
pendable Systems and Networks Workshops (DSN-
W), 2011 IEEE/IFIP 41st International Conference
on, pages 194–199. IEEE, 2011.

[51] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and
Marcus Peinado. T-SGX: Eradicating Controlled-
Channel Attacks Against Enclave Programs. NDSS
(Feb. 2017), 2017.

[52] Read Sprabery, Konstantin Evchenko, Abhilash
Raj, Rakesh B Bobba, Sibin Mohan, and Roy H
Campbell. A novel scheduling framework lever-
aging hardware cache partitioning for cache-side-
channel elimination in clouds. arXiv preprint
arXiv:1708.09538, 2017.

[53] Raphael Spreitzer and Thomas Plos. Cache-
access pattern attack on disaligned aes t-tables.
In International Workshop on Constructive Side-
Channel Analysis and Secure Design, pages 200–
214. Springer, 2013.

[54] Raoul Strackx and Frank Piessens. The heisen-
berg defense: Proactively defending sgx en-
claves against page-table-based side-channel at-
tacks. arXiv preprint arXiv:1712.08519, 2017.

[55] Venkatanathan Varadarajan and Yinqian Zhang. A
placement vulnerability study in multi-tenant pub-
lic clouds. In Proceedings of the 24th USENIX Se-
curity Symposium.

[56] Wenhao Wang, Guoxing Chen, Xiaorui Pan,
Yinqian Zhang, XiaoFeng Wang, Vincent Bind-
schaedler, Haixu Tang, and Carl A Gunter. Leaky
cauldron on the dark land: Understanding mem-
ory side-channel hazards in sgx. arXiv preprint
arXiv:1705.07289, 2017.

[57] David Williams-King, Graham Gobieski, Kent
Williams-King, James P. Blake, Xinhao Yuan,
Patrick Colp, Michelle Zheng, Vasileios P. Ke-
merlis, Junfeng Yang, and William Aiello. Shuf-
fler: Fast and deployable continuous code re-
randomization. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Im-
plementation, pages 367–382, 2016.

[58] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side
channels for untrusted operating systems. In Secu-
rity and Privacy (SP), 2015 IEEE Symposium on,
pages 640–656. IEEE, 2015.

[59] Yuval Yarom and Katrina Falkner. Flush+ reload: A
high resolution, low noise, l3 cache side-channel at-
tack. In USENIX Security Symposium, pages 719–
732, 2014.

[60] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B Lee,
and Gernot Heiser. Mapping the intel last-level

cache. IACR Cryptology ePrint Archive, 2015:905,
2015.

[61] Yuval Yarom, Daniel Genkin, and Nadia Heninger.
Cachebleed: a timing attack on openssl constant-
time rsa. Journal of Cryptographic Engineering,
7(2):99–112, 2017.

[62] Ziqiao Zhou, Michael K Reiter, and Yinqian Zhang.
A software approach to defeating side channels in
last-level caches. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communi-
cations Security, pages 871–882. ACM, 2016.

	Introduction
	Background
	Cache side-channel attacks
	Cache side-channel defenses
	From CPU caches to TLBs

	Threat Model
	Attack Overview
	TLB Monitoring
	Cross-hyperthread TLB Monitoring
	Unprivileged TLB Monitoring
	Temporal Analysis
	Evaluation
	TLB set identification
	Compromising EdDSA
	Compromising RSA
	Compromising Software Defenses
	Compromising Intel CAT
	Compromising Intel TSX
	TLB Covert Channel

	Discussion
	Other targets
	Mitigating TLBleed

	Related Work
	TLB manipulation
	Exploiting shared resources
	Temporal side-channel analysis

	Conclusion

