
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 1, JANUARY-FEBRUARY 2013 1

Unprivileged Black-box Detection of
User-space Keyloggers

Stefano Ortolani, Cristiano Giuffrida, and Bruno Crispo, Senior Member, IEEE

Abstract—Software keyloggers are a fast growing class of invasive software often used to harvest confidential information. One of
the main reasons for this rapid growth is the possibility for unprivileged programs running in user space to eavesdrop and record all
the keystrokes typed by the users of a system. The ability to run in unprivileged mode facilitates their implementation and distribution,
but, at the same time, allows one to understand and model their behavior in detail. Leveraging this characteristic, we propose a new
detection technique that simulates carefully crafted keystroke sequences in input and observes the behavior of the keylogger in output
to unambiguously identify it among all the running processes. We have prototyped our technique as an unprivileged application, hence
matching the same ease of deployment of a keylogger executing in unprivileged mode. We have successfully evaluated the underlying
technique against the most common free keyloggers. This confirms the viability of our approach in practical scenarios. We have also
devised potential evasion techniques that may be adopted to circumvent our approach and proposed a heuristic to strengthen the
effectiveness of our solution against more elaborated attacks. Extensive experimental results confirm that our technique is robust to
both false positives and false negatives in realistic settings.

Index Terms—Invasive Software, Keylogger, Security, Black-box, PCC

F

1 INTRODUCTION

K EYLOGGERS are implanted on a machine to in-
tentionally monitor the user activity by logging

keystrokes and eventually delivering them to a third
party [1]. While they are seldom used for legitimate
purposes (e.g., surveillance/parental monitoring infras-
tructures), keyloggers are often maliciously exploited by
attackers to steal confidential information. Many credit
card numbers and passwords have been stolen using
keyloggers [2], [3], which makes them one of the most
dangerous types of spyware known to date.

Keyloggers can be implemented as tiny hardware de-
vices or more conveniently in software. Software-based
keyloggers can be further classified based on the privi-
leges they require to execute. Keyloggers implemented
by a kernel module run with full privileges in kernel
space. Conversely, a fully unprivileged keylogger can be
implemented by a simple user-space process. It is im-
portant to notice that a user-space keylogger can easily
rely on documented sets of unprivileged APIs commonly
available on modern operating systems. This is not the
case for a keylogger implemented as a kernel module. In
kernel space, the programmer must rely on kernel-level
facilities to intercept all the messages dispatched by the
keyboard driver, undoubtedly requiring a considerable
effort and knowledge for an effective and bug-free im-
plementation. Furthermore, a keylogger implemented as
a user-space process is much easier to deploy since no

• S. Ortolani and C. Giuffrida are with Vrije Universiteit Amsterdam,
De Boelelaan 1081, 1081HV Amsterdam, The Netherlands. E-mail:
{ortolani,giuffrida}@cs.vu.nl

• B. Crispo is with University of Trento, Via Sommarive 14, 38050 Povo,
Trento, Italy. E-mail: crispo@disi.unitn.it

special permission is required. A user can erroneously
regard the keylogger as a harmless piece of software and
being deceived in executing it. On the contrary, kernel-
space keyloggers require a user with super-user privi-
leges to consciously install and execute unsigned code
within the kernel, a practice often forbidden by modern
operating systems such Windows Vista or Windows 7.

In light of these observations, it is no surprise that
95% of the existing keyloggers run in user space [4].
Despite the rapid growth of keylogger-based frauds
(i.e., identity theft, password leakage, etc.), not many
effective and efficient solutions have been proposed to
address this problem. Traditional defense mechanisms
use fingerprinting strategies similar to those used to
detect viruses and worms. Unfortunately, this strategy
is hardly effective against the vast number of new key-
logger variants surfacing every day in the wild.

In this paper, we propose a new approach to de-
tect keyloggers running as unprivileged user-space pro-
cesses. To match the same deployment model, our
technique is entirely implemented in an unprivileged
process. As a result, our solution is portable, unintru-
sive, easy to install, and yet very effective. In addition,
the proposed detection technique is completely black-
box, i.e., based on behavioral characteristics common
to all keyloggers. In other words, our technique does
not rely on the internal structure of the keylogger or
the particular set of APIs used. For this reason, our
solution is of general applicability. We have prototyped
our approach and evaluated it against the most common
free keyloggers [5]. Our approach has proven effective
in all the cases. We have also evaluated the impact of
false positives in practical scenarios. In the final part
of this paper, we further validate our approach with

1545–5971/13/$31.00 c© 2013 IEEE Published by the IEEE Computer Society

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 1, JANUARY-FEBRUARY 2013 2

a homegrown keylogger that attempts to thwart our
detection technique. Albeit already robust against the
large majority of evasive behaviors, we also present and
evaluate a heuristic against elaborated evasion strategies.

The structure of the paper is as follows. We start with
an in-depth analysis of modern keyloggers in Section
2. We then introduce our approach in Section 3, detail
its architecture in Section 4, and evaluate the resulting
prototype in Section 5. Section 6 discusses the robustness
against evasion techniques. We conclude with related
work in Section 7 and final remarks in Section 8.

2 INTERNALS OF MODERN KEYLOGGERS

Breaching the privacy of an individual by logging his
keystrokes can be perpetrated at many different levels.
For example, an attacker with physical access to the
machine might wiretap the hardware of the keyboard. A
dishonest owner of an Internet café, in turn, may find it
more convenient to purchase a software solution, install
it on all the terminals, and have the logs dropped on his
own machine. Depending on the setting, a keylogger can
be implemented in many different ways. For instance,
external keyloggers rely on some physical property, either
the acoustic emanations produced by the user typing [6],
or the electromagnetic emanations of a wireless key-
board [7]. Hardware keyloggers are still external devices,
but are implemented as dongles placed in between key-
board and motherboard. All these strategies, however,
require physical access to the target machine.

To overcome this limitation, software approaches are
more commonly used. Hypervisor-based keyloggers (e.g.,
BluePill [8]) are the straightforward software evolution
of hardware-based keyloggers, literally performing a
man-in-the-middle attack between the hardware and the
operating system (OS). Kernel keyloggers come second
in the chain and are often implemented as part of
more complex rootkits. In contrast to hypervisor-based
approaches, hooks are directly used to intercept buffer-
processing events or other kernel messages.

Albeit effective, all these approaches require privi-
leged access to the machine. Moreover, writing a kernel
driver—hypervisor-based approaches pose even more
challenges—requires a considerable effort and knowl-
edge for an effective and bug-free implementation (even
a single bug may lead to a kernel panic). User-space
keyloggers, on the other hand, do not require any special
privilege to be deployed. They can be installed and
executed regardless of the privileges granted. This is a
feat impossible for kernel keyloggers, since they require
either super-user privileges or a vulnerability that allows
arbitrary kernel code execution. Furthermore, user-space
keylogger writers can safely rely on well-documented
sets of APIs commonly available on modern operating
systems, with no special programming skills required.

User-space keyloggers can be further classified based
on the scope of the hooked message/data structures.
Since a system hosts multiple applications, keystrokes

WINDOW MANAGER

WINDOW SYSTEM

KERNEL

KEYBOARD DRIVER

KEYBOARD HW

FOREGROUND
USER APPLICATION

U
se

r-
sp

ac
e

K
ey

lo
gg

er
(t

yp
e

I)

K
er

ne
l-s

pa
ce

K
ey

lo
gg

er
H

ar
dw

ar
e

K
ey

lo
gg

erInterrupt Requested

Scan Code Copied

Buffer Copied

Keystroke Queued

Keystroke Queued

Keystroke Translated

Internals of the keystrokes delivery system

C
om

po
ne

nt
s

po
te

nt
ia

lly
 s

ub
ve

rt
ed

 WINDOW MANAGER

WINDOW SYSTEM

KERNEL

KEYBOARD DRIVER

KEYBOARD HW

FOREGROUND
USER APPLICATION

U
se

r-
sp

ac
e

K
ey

lo
gg

er
(t

yp
e

II)

Fig. 1. The delivery phases of a keystroke, and the
components potentially subverted (we omit hypervisor-
based approaches for the sake of clarity).

can be intercepted either globally (i.e., for all the appli-
cations) or locally (i.e., within the application). We term
these two classes of user-space keyloggers type I and type
II. Figure 1 shows the proposed classification: the left
pane shows the process of delivering a keystroke to the
intended application, whereas the right pane highlights
the particular component subverted by each type of
keylogger. Both types can be easily implemented in Win-
dows, while the facilities available in Unix-like OSes—
X11 and GTK required—allow for a straightforward im-
plementation of the more invasive type I keyloggers.

Table 1 presents a list of all the APIs that can be used
to implement a user-space keylogger. In brief, the Set-
WindowsHookEx() and gdk_window_add_filter()
APIs are used to interpose the keylogging procedure
before a keystroke is effectively delivered to the target
process. For SetWindowsHookEx(), this is possible by
setting the last parameter (thread_id) to 0 (which
subscribes to any keyboard event). For gdk_win-
dow_add_filter(), it is sufficient to set the han-
dler of the monitored window to NULL. The class
of functions Get*State(), XQueryKeymap(), and
inb(0x60) query the state of the keyboard and return
a vector with the state of all (one in case of GetKey-
State()) the keystrokes. When using these functions,
the keylogger must continuously poll the keyboard in
order to intercept all the keystrokes. The functions of the
last class apply only to Windows and are typically used
to overwrite the default address of keystroke-related
functions in all the Win32 graphical applications. We
have not found any example of this particular class of
keyloggers in Unix-like OSes.

Since some of the APIs have just local scope, Type
II keyloggers need to inject part of their code in a
shared portion of the address space to have all the
processes execute the provided callback. The only ex-
ception is with a Type II keylogger that uses either
GetKeyState() or GetKeyboardState(). In these

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 1, JANUARY-FEBRUARY 2013 3

TABLE 1
If the scope of the API is local, the keylogger must inject portions of its code in each application, e.g., using a library.

Type API Comments
Windows APIs

Type I
SetWindowsHookEx(WH_KEYBOARD_LL, ..., 0) The keylogging procedure is given as an argument.
GetAsyncKeyState() Poll-based.

Type II

SetWindowsHookEx(WH_KEYBOARD, ..., 0) The keylogging procedure is given as an argument.
GetKeyboardState() Poll-based.
GetKeyState() Poll-based.
SetWindowLong(..., GWL_WNDPROC, ...) Overwrites the default procedure that deals with application messages.
Intercepting {Dispatch,Get,Translate}Message() Manual instrumentation of Win32 APIs.

Unix-like APIs

Type I
gdk_window_add_filter(NULL, ...) The keylogging procedure is given as argument. GTK API.
inb(0x60) Poll-based and available only to the super-user.
XQueryKeymap() Poll-based. X11 API.

cases, the keylogging process can attach its input queue
(i.e., the queue of events used to control a graphical
user application) to other threads by using the procedure
AttachtreadInput(). As a tentative countermeasure,
Windows Vista recently eliminated the ability to share
the same input queue for processes running in two
different integrity levels. Unfortunately, since higher
integrity levels are assigned only to known processes
(e.g., Internet Explorer), common applications are still
vulnerable to these interception strategies.

We can draw three important conclusions from our
analysis. First, all user-space keyloggers are imple-
mented by either hook-based or polling mechanisms.
Second, all APIs are legitimate and well-documented.
Third, all modern operating systems offer (a flavor
of) these APIs. In particular, they always provide the
ability to intercept keystrokes regardless of the appli-
cation on focus. This design choice is dictated by the
necessity to support such functionalities for legitimate
applications. The following are three simple scenarios
in which the ability to intercept arbitrary keystrokes
is a functional requirement: (1) keyboards with addi-
tional special-purpose keys; (2) window managers with
system-defined shortcuts; (3) background user appli-
cations whose execution is triggered by user-defined
shortcuts (for instance, an application handling multiple
virtual workspaces requires hot keys that must not be
overridden by other applications). All these functionali-
ties can be implemented with all the APIs we presented
so far (with the exception of inb(0x60), which is re-
served to the super user and tailored to low-level tasks).
As shown earlier, the interception facilities can be easily
subverted, allowing the keyloggers to benefit from all the
features normally reserved to legitimate applications:

• Ease of implementation. A minimal yet functional
keylogger can be implemented in less than 100 lines
of C# code. Due to the low complexity, it is also easy
to enforce polymorphic or metamorphic behavior to
thwart signature-based countermeasures.

• Cross-version. By relying on documented and stable

APIs, a particular keylogger can be easily deployed on
multiple versions of the same operating system.

• Unprivileged installation. No privilege is required to
install a keylogger. There is no need to look for rather
specific exploits to execute arbitrary privileged code.

• Unprivileged execution. The keylogger is hardly no-
ticeable at all during normal execution. The executable
does not need to acquire privileged rights.

3 OUR APPROACH

Our approach is explicitly focused on designing a detec-
tion technique for unprivileged user-space keyloggers.
Unlike other classes of keyloggers, a user-space keylog-
ger is a background process which registers operating-
system- supported hooks to surreptitiously eavesdrop
(and log) every keystroke issued by the user into the
current foreground application. Our goal is to prevent
user-space keyloggers from stealing confidential data
originally intended for a (trusted) legitimate foreground
application. Malicious foreground applications surrep-
titiously logging user-issued keystrokes (e.g., a key-
logger spoofing a trusted word processor application)
and application-specific keyloggers (e.g., browser plug-
ins surreptitiously performing keylogging activities) are
outside our threat model and cannot be identified using
our detection technique. Also note that a background
keylogger cannot spawn a foreground application and
steal the current application focus on demand without
the user immediately noticing.

Our model is based on these observations and explores
the possibility of isolating the keylogger in a controlled
environment, where its behavior is directly exposed to
the detection system. Our technique involves controlling
the keystroke events that the keylogger receives in input,
and constantly monitoring the I/O activity generated by
the keylogger in output. To assert detection, we leverage
the intuition that the relationship between the input and
output of the controlled environment can be modeled
for most keyloggers with very good approximation. Re-
gardless of the transformations the keylogger performs,

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 1, JANUARY-FEBRUARY 2013 4

a characteristic pattern observed in the keystroke events
in input shall somehow be reproduced in the I/O ac-
tivity in output. When the input and the output are
controlled, we can identify common I/O patterns and
flag detection. Moreover, preselecting the input pattern
can better avoid spurious detections and evasion at-
tempts. To detect background keylogging behavior our
technique comprises a preprocessing step to forcefully
move the focus to the background. This strategy is also
necessary to avoid flagging foreground applications that
legitimately react to user-issued keystrokes (e.g., word
processors) as keyloggers.

The key advantage of our approach is that it is cen-
tered around a black-box model that completely ignores
the keylogger internals. Also, I/O monitoring is a non-
intrusive procedure and can be performed on multiple
processes simultaneously. As a result, our technique can
deal with a large number of keyloggers transparently
and enables a fully-unprivileged detection system able
to vet all the processes running on a particular system
in a single run. Our approach completely ignores the
content of the input and the output data, and focuses
exclusively on their distribution. Limiting the approach
to a quantitative analysis enables the ability to imple-
ment the detection technique with only unprivileged
mechanisms, as we will better illustrate later. The un-
derlying model adopted, however, presents additional
challenges. First, we must carefully deal with possible
data transformations that may introduce quantitative
differences between the input and the output patterns.
Second, the technique should be robust with respect to
quantitative similarities identified in the output patterns
of other legitimate system processes. In the following, we
discuss how our approach deals with these challenges.

4 ARCHITECTURE

Our design is based on five different components as
depicted in Figure 2: injector, monitor, pattern translator,
detector, pattern generator. The operating system at the
bottom deals with the details of I/O and event handling.
The OS Domain does not expose all the details to the
upper levels without using privileged API calls. As a
result, the injector and the monitor operate at another
level of abstraction, the Stream Domain. At this level,
keystroke events and the bytes output by a process
appear as a stream emitted at a particular rate.

The task of the injector is to inject a keystroke stream
to simulate the behavior of a user typing at the key-
board. Similarly, the monitor records a stream of bytes
to constantly capture the output behavior of a particular
process. A stream representation is only concerned with
the distribution of keystrokes or bytes emitted over a
given window of observation, without entailing any
additional qualitative information. The injector receives
the input stream from the pattern translator, which acts
as bridge between the Stream Domain and the Pattern
Domain. Similarly, the monitor delivers the output stream

Fig. 2. The different components of our architecture.

recorded to the pattern translator for further analysis.
In the Pattern Domain, the input stream and the output
stream are both represented in a more abstract form,
termed Abstract Keystroke Pattern (AKP). A pattern in
the AKP form is a discretized and normalized repre-
sentation of a stream. Adopting a compact and uniform
representation is advantageous for several reasons. First,
this allows the pattern generator to exclusively focus on
generating an input pattern that follows a desired dis-
tribution of values. Details on how to inject a particular
distribution of keystrokes into the system are offloaded
to the pattern translator and the injector. Second, the
same input pattern can be reused to produce and in-
ject several input streams with different properties but
following the same underlying distribution. Finally, the
ability to reason over abstract representations simplifies
the role of the detector that only receives an input pattern
and an output pattern and makes the final decision on
whether detection should or should not be triggered.

4.1 Injector

The role of the injector is to inject the input stream into
the system, simulating the behavior of a user at the
keyboard. By design, the injector must satisfy several
requirements. First, it should only rely on unprivileged
API calls. Second, it should be capable of injecting
keystrokes at variable rates to match the distribution of
the input stream. Finally, the resulting series of keystroke
events produced should be no different than those gen-
erated by a real user. In other words, no user-space key-
logger should be somehow able to distinguish the two
types of events. To address all these issues, we leverage
the same technique employed in automated testing. On
Windows-based operating systems this functionality is
provided by the API call keybd_event. In all Unix-like
OSes supporting X11 the same functionality is available
via the API call XTestFakeKeyEvent.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 1, JANUARY-FEBRUARY 2013 5

4.2 Monitor
The monitor is responsible to record the output stream
of all the running processes. As done for the injector,
we allow only unprivileged API calls. In addition, we
favor strategies to perform realtime monitoring with
minimal overhead and the best level of resolution possi-
ble. Finally, we are interested in application-level statis-
tics of I/O activities, to avoid dealing with filesystem-
level caching or other potential nuisances. Fortunately,
most modern operating systems provide unprivileged
API calls to access performance counters on a per-
process basis. On all the versions of Windows since
Windows NT 4.0, this functionality is provided by the
Windows Management Instrumentation (WMI). In par-
ticular, the performance counters of each process are
made available via the class Win32_Process, which
supports an efficient query-based interface. The counter
WriteTransferCount contains the total number of
bytes written by the process since its creation. Note
that monitoring the network activity is also possible, al-
though it requires a more recent version of Windows, i.e.,
at least Vista. To construct the output stream of a given
process, the monitor queries this piece of information at
regular time intervals, and records the number of bytes
written since the last query every time. The proposed
technique is obviously tailored to Windows-based op-
erating systems. Nonetheless, we point out that similar
strategies can be realized in other OSes; both Linux and
OSX, in fact, support analogous performance counters
which can be accessed in an unprivileged manner; the
reader may refer to the iotop utility for usage examples.

4.3 Pattern Translator
The role of the pattern translator is to transform an AKP
into a stream and vice-versa, given a set of configuration
parameters. A pattern in the AKP form can be modeled
as a sequence of samples originated from a stream
sampled with a uniform time interval. A sample Pi of
a pattern P is an abstract representation of the number
of keystrokes emitted during the time interval i. Each
sample is stored in a normalized form in the interval
[0, 1], where 0 and 1 reflect the predefined minimum
and maximum number of keystrokes in a given time
interval. To transform an input pattern into a keystroke
stream, the pattern translator considers the following
configuration parameters: N , the number of samples in
the pattern; T , the constant time interval between any
two successive samples; Kmin, the minimum number of
keystrokes per sample allowed; and Kmax, the maximum
number of keystrokes per sample allowed.

When transforming an input pattern in the AKP form
into an input stream, the pattern translator generates,
for each time interval i, a keystroke stream with an
average keystroke rate R̄i = Pi·(Kmax−Kmin)+Kmin

T . The
iteration is repeated N times to cover all the samples in
the original pattern. A similar strategy is adopted when
transforming an output byte stream into a pattern in

the AKP form. The pattern translator reuses the same
parameters employed in the generation phase and sim-
ilarly assigns Pi = R̄i·T−Kmin

Kmax−Kmin
where R̄i is the average

keystroke rate measured in the time interval i. The
translator assumes a correspondence between keystrokes
and bytes and treats them equally as base units of the
input and output stream, respectively. This assumption
does not always hold in practice and the detection algo-
rithm has to consider any possible scale transformation
between the input and the output pattern. We discuss
this and other potential transformations in Section 4.4.

4.4 Detector
The success of our detection algorithm lies in the ability
to infer a cause-effect relationship between the keystroke
stream injected in the system and the I/O behavior
of a keylogger process, or, more specifically, between
the respective patterns in AKP form. While one must
examine every candidate process in the system, the de-
tection algorithm operates on a single process at a time,
identifying whether there is a strong similarity between
the input pattern and the output pattern obtained from
the analysis of the I/O behavior of the target process.
Specifically, given a predefined input pattern and an
output pattern of a particular process, the goal of the
detection algorithm is to determine whether there is a
match in the patterns and the target process can be
identified as a keylogger with good probability.

The first step in the construction of a detection al-
gorithm comes down to the adoption of a suitable
metric to measure the similarity between two given
patterns. In principle, the AKP representation allows for
several possible measures of dependence that compare
two discrete sequences and quantify their relationship.
In practice, we rely on a single correlation measure
motivated by the properties of the two patterns. The
proposed detection algorithm is based on the Pearson
product-moment correlation coefficient (PCC), one of the
most widely used correlation measures [9]. Given two
discrete sequences described by two patterns P and Q
with N samples, the PCC is defined as [9]:

r =
cov (P,Q)

σPσQ
=

∑N
i=1

(
Pi − P̄

) (
Qi − Q̄

)√∑N
i=1

(
Pi − P̄

)2√∑N
i=1

(
Qi − Q̄

)2 , (1)

where cov(P,Q) is the sample covariance, σP and σQ are
sample standard deviations, and P̄ and Q̄ are sample
means. The PCC has been widely used as an index to
measure bivariate association for different distributions
in several applications including pattern recognition,
data analysis, and signal processing [10]. The values
given by the PCC are always symmetric and ranging
between −1 and 1, with 0 indicating no correlation and
1 or −1 indicating complete direct (or inverse) correla-
tion. To measure the degree of association between two
given patterns we are here only interested in positive
values of correlation. Hereafter, we will always refer to

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 1, JANUARY-FEBRUARY 2013 6

its absolute value. Our interest in the PCC lies in its
appealing mathematical properties. In contrast to other
correlation metrics, the PCC measures the strength of
a linear relationship between two series of samples, ig-
noring any non-linear association. In our setting, a linear
dependence well approximates the relationship between
the input pattern and an output pattern produced by
a keylogger. The intuition is that a keylogger can only
make local decisions on a per-keystroke basis with no
knowledge about the global distribution. Thus, in prin-
ciple, the resulting behavior will linearly approximate
the original input stream injected into the system.

In detail, the PCC is resilient to any change in location
and scale, namely no difference can be observed in the
correlation coefficient if every sample Pi of any of the
two patterns is transformed into a · Pi + b, where a
and b are arbitrary constants. This is important for a
number of reasons. Ideally, the input pattern and an
output pattern will be an exact copy of each other if
every keystroke injected is replicated as it is in the
output of a keylogger process. In practice, different data
transformations performed by the keylogger can alter
the original structure in several ways. First, a keylogger
may encode each keystroke in a sequence of one or more
bytes. Consider, for example, a keylogger encoding each
keystroke using 8-bit ASCII codes. The output pattern
will be generated examining a stream of raw bytes pro-
duced by the keylogger as it stores keystrokes one byte
at a time. Now consider the exact same case but with
keystrokes stored using a different encoding, e.g. 2 bytes
per keystroke. In the latter case, the pattern will have
the same shape as the former one, but its scale will be
twice as much. As explained earlier, the transformation
in scale will not affect the correlation coefficient and the
PCC will report the same value in both cases. Similar
arguments are valid for keyloggers using a variable-
length representation to store keystrokes or encrypting
keystrokes with a variable number of bytes.

An interesting application of the location invariance
property is the ability to mitigate the effect of buffering.
When the keylogger uses a fixed-size buffer whose size
is comparable to the number of keystrokes injected at
each time interval, it is easy to show that the PCC
is not significantly affected. Consider, for example, the
case when the buffer size is smaller than the minimum
number of keystrokes Kmin. Under this assumption, the
buffer is flushed out at least once per time interval. The
number of keystrokes left in the buffer at each time
interval determines the number of keystrokes missing
in the output pattern. Depending on the distribution of
samples in the input pattern, this number would be cen-
tered around a particular value z. The statistical meaning
of the value z is the average number of keystrokes
dropped per time interval. This transformation can be
again approximated by a location transformation of the
original pattern by a factor of −z, which again does not
affect the value of the PCC. The last example shows
the importance of choosing an appropriate Kmin when

the effect of fixed-size buffers must also be taken into
account. As evident from the examples discussed, the
PCC is robust to several possible data transformations.

A fundamental factor to consider is, however, the
number of samples collected. While we would like to
shorten the duration of the detection algorithm, there is
a clear tension between the length of the patterns and
the reliability of the resulting value of the PCC. A very
small number of samples can lead to unstable results.
A larger number of samples is beneficial especially in
case of disturbing factors. As reported in [11], selecting
a larger number of samples could, for example, reduce
the adverse effect of outliers or measurement errors. The
detection algorithm we have implemented in our detec-
tor, relies entirely on the PCC to estimate the correlation
between an input and an output pattern. To determine
whether a given PCC value should trigger a detection,
a thresholding mechanism is used. We discuss how to
select a suitable threshold in Section 5. Our detection
algorithm is conceived to infer a causal relationship
between two patterns by analyzing their correlation.
Admittedly, experience shows that correlation cannot be
used to imply causation in the general case, unless valid
assumptions are made on the context under investiga-
tion [12]. In other words, to avoid false positives, strong
evidence shall be collected to infer with good probability
that a given process is a keylogger. The next section
discusses in detail how to select a robust input pattern
and minimize the probability of false detections.

4.5 Pattern Generator

Our pattern generator is designed to support several pat-
tern generation algorithms. More specifically, the pattern
generator can leverage any algorithm producing a valid
pattern in AKP form. We now present a number of pat-
tern generation algorithms and discuss their properties.

The first important issue to consider is the effect
of variability in the input pattern. Experience shows
that correlations tend to be stronger when samples are
distributed over a wider range of values [11]. In other
words, the more the variability in the given distributions,
the more stable and accurate the resulting PCC com-
puted. This suggests that a robust input pattern should
contain samples spanning the entire target interval [0, 1].
The level of variability in the resulting input stream is
also similarly influenced by the range of keystroke rates
used in the pattern translation process. The higher the
range delimited by the minimum keystroke rate and
maximum keystroke rate, the more reliable the results.

The adverse effect of low variability in the input pat-
tern can be best understood when analyzing the mathe-
matical properties of the PCC. The correlation coefficient
reports high values when the two patterns tend to grow
apart from their respective means. As a consequence, the
more closely to their respective means the patterns are
distributed, the less accurate the resulting PCC. In the
extreme case of no variability, the standard deviation is 0

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 1, JANUARY-FEBRUARY 2013 7

and the PCC is not even defined. This suggests that a ro-
bust pattern generation algorithm should never consider
constant or low-variability patterns. Moreover, when a
constant pattern is generated from the output stream,
our detection algorithm assigns an arbitrary correlation
score of 0. This is coherent under the assumption that
the selected input pattern presents a reasonable level
of variability, and poor correlation should naturally be
expected against other low-variability patterns.

A robust pattern generation algorithm should allow
for a minimum number of false positive. When the
chosen input pattern happens to closely resemble the
I/O behavior of some benign process, the PCC may
report a high value of correlation for that process and
trigger a false detection. For this reason, it is important to
focus on input patterns that have little chances of being
confused with output patterns generated by legitimate
processes. Fortunately, studies show that the correlation
between realistic I/O workloads for PC users is generally
considerably low over small time intervals. The results
presented in [13] are derived from 14 traces collected
over a number of months in realistic environments used
by different categories of users. The authors show that
the value of correlation given by the PCC over 1 minute
of I/O activity is only 0.046 on average and never
exceeds 0.070 for any two given traces. This suggests that
the I/O behavior of one or more processes is in general
very poorly correlated with other I/O distributions.

The problem of designing a pattern generation al-
gorithm that minimizes false positives under a given
known workload can be modeled as follows. We assume
that traces for the target workload can be collected and
converted into a series of patterns (one for each process
running on the system) of the same length N . All the
patterns are generated to build a valid training set for
the algorithm. Under the assumption that the traces col-
lected are representative of the real workload available
at detection time, our goal is to design an algorithm that
learns the characteristics of the training data and gener-
ates a maximally uncorrelated input pattern. Concretely,
the goal of our algorithm is to produce an input pattern
of length N that minimizes the PCC measured against
all the patterns in the training set. Without any further
constraints on the samples of the target input pattern,
it can be shown that this problem is a non-trivial non-
linear optimization problem. In practice, we can relax the
original problem by leveraging some of the assumptions
discussed earlier. As motivated before, a robust input
pattern should present samples distributed over a wide
range of values. To assume the widest range possible,
we can arbitrarily constrain the series of samples to be
uniformly distributed over the target interval [0, 1]. This
is equivalent to consider a set of N samples of the form:

S =

{
0,

1

N − 1
,

2

N − 1
, . . . ,

N − 2

N − 1
, 1

}
. (2)

When the N samples are constrained to assume all the
values from the set S, the optimization problem comes

down to finding the particular permutation of values
that minimizes the PCC considering all the patterns in
the training set. This problem is a variant of the standard
assignment problem, where each particular pairwise as-
signment yields a known cost and the ultimate goal is
to minimize the sum of all the costs involved [14].

In our scenario, the objects are the samples in the
target set S, and the tasks reflect the N slots available
in the input pattern. In addition, the cost of assigning a
sample Si from the set S to a particular slot j is:

c (i, j) =
∑
t

(
Si − S̄

) (
P t
j − P̄ t

)
σSσP t

, (3)

where P t are the patterns in the training set, and S̄ and
σS are the constant mean and standard distribution of
the samples in S, respectively. The cost value c(i, j) re-
flects the value of a single addendum in the expression of
the overall PCC we want to minimize. Note that the cost
value is calculated against all the patterns in the training
set. The formulation of the cost value has been simplified
assuming constant number of samples N and constant
number of patterns in the training set. Unfortunately,
this problem cannot be addressed by leveraging well-
known algorithms that solve the assignment problem in
polynomial time [14]. In contrast to the standard for-
mulation, we are not interested in the global minimum
of the sum of the cost values. Such an approach would
attempt to find a pattern with a PCC maximally close
to −1. In contrast, our goal is to produce a maximally
uncorrelated pattern, thereby aiming at a PCC as close
to 0 as possible. This problem can be modeled as an
assignment problem with side constraints.

Prior research has shown how to transform this par-
ticular problem into an equivalent quadratic assignment
problem (QAP) that can be very efficiently solved with
a standard QAP solver when the global minimum is
known in advance [15]. In our solution, we have im-
plemented a similar approach limiting the approach to
a maximum number of iterations to guarantee conver-
gence since the minimum value of the PCC is not known
in advance. In practice, for a reasonable number of
samples N and a modest training set, we found that this
is rarely a concern. The algorithm can usually identify
the optimal pattern in a bearable amount of time.

To conclude, we now more formally propose two
classes of pattern generation algorithms for our gener-
ator. First, we are interested in workload-aware gener-
ation algorithms. For this class, we focus on the opti-
mization algorithm we have just introduced—we refer to
this pattern generation algorithm with the term WLD—,
assuming a number of representative traces have been
made available for the target workload. Moreover, we
are interested in workload-agnostic pattern generation
algorithms. With no assumption made on the nature of
the workload, they are more generic and easier to imple-
ment. In this class, we propose the following algorithms:
• Random (RND). Each sample is generated at random.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 1, JANUARY-FEBRUARY 2013 8

• Random with fixed range (RFR). The pattern is a
random permutation of a series of samples uniformly
distributed over the interval [0, 1]. This is to maximize
the amount of variability in the input pattern.

• Impulse (IMP). Every sample 2i is assigned the value
of 0 and every sample 2i+1 is assigned the value of 1.
This algorithm attempts to produce an input pattern
with maximum variance and idle periods at minimum.

• Sine Wave (SIN). The pattern generated is a discrete
sine wave distribution oscillating between 0 and 1. The
sine wave grows or drops with a fixed step of 0.1. This
algorithm explores the effect of constant increments
and decrements in the input pattern.

5 EVALUATION

To evaluate the proposed detection technique, we im-
plemented a prototype based on the ideas described in
the paper. Written in C# in 7000 LoC, it runs as an
unprivileged application for the Windows OS. It also
collects simultaneously all the processes’ I/O patterns,
thus allowing us to analyze the whole system in a
single run. Although the proposed design can easily be
extended to other OSes, we explicitly focus on Windows
for the significant number of keyloggers available. In the
following, we present several experiments to evaluate
our approach. The ultimate goal is to understand the
effectiveness of our technique and its applicability to
realistic settings. For this purpose, we evaluated our
prototype against many publicly available keyloggers.
We also developed our own keylogger to evaluate the
effect of particular conditions more thoroughly. Finally,
we collected traces for different realistic PC workloads
to evaluate the effectiveness of our approach in real-
life scenarios. We ran all of our experiments on PCs
with a 2.53Ghz Core 2 Duo processor, 4GB memory,
and 7200 rpm SATA II hard drives. Every test was
performed under Windows 7 Professional SP1, while
the workload traces were gathered from a number of
PCs running several different versions of Windows.
Since the performance counters are part of the default
accounting infrastructure, monitoring the processes’ I/O
came at negligible cost: for reasonable values of T , i.e.,
> 100ms, the load imposed on the CPU by the monitor-
ing phase was less than 2%. On the other hand, injecting
high keystroke rates introduced additional processing
overhead throughout the system. Experimental results
showed that the overhead grows approximately linearly
with the number of keystrokes injected per sample.
In particular, the CPU load imposed by our prototype
reaches 25% around 15000 keystrokes per sample and
75% around 47000. Note that these values only refer to
detection-time overhead. No run-time overhead is im-
posed by our technique when no detection is in progress.

5.1 Keylogger detection
To evaluate the ability to detect real-world keyloggers,
we experimented with all the keyloggers from the top

monitoring free software list [5], an online repository
continuously updated with reviews and latest develop-
ments in the area. To carry out the experiments, we man-
ually installed each keylogger, launched our detection
system for N ·T ms, and recorded the results; we asserted
successful detection for PCC ≥ 0.7. In the experiments,
we found that arbitrary choices of N , T , Kmin, and
Kmax were possible; the reason is that we observed the
same results for several reasonable combinations of the
parameters. We also selected the RFR algorithm as the
pattern generation algorithm for the experiments. More
details on how to tune the parameters in the general case
are given in Section 5.2 and Section 5.3.

TABLE 2
Detection results.

Keylogger Detection Notes
Refog Keylogger Free 5.4.1 4 focus-based buffering
Best Free Keylogger 1.1 4 -
Iwantsoft Free Keylogger 3.0 4 -
Actual Keylogger 2.3 4 focus-based buffering
Revealer Keylogger Free 1.4 4 focus-based buffering
Virtuoza Free Keylogger 2.0 4 time-based buffering
Quick Keylogger 3.0.031 4 -
Tesline KidLogger 1.4 4 -

Table 2 shows the keyloggers used in the evaluation
and summarizes the detection results. All the keyloggers
were detected within a few seconds without generating
any false positives; in particular, no legitimate process
scored PCC values ≥ 0.3. Virtuoza Free Keylogger required
a longer window of observation to be detected; this sam-
ple was indeed the only keylogger to store keystrokes in
memory and flush out to disk at regular time intervals.
Nevertheless, we were still able to collect consistent
samples from flush events and report high PCC values.

In a few other cases, keystrokes were kept in memory
but flushed out to disk as soon as the keylogger detected
a change of focus. This was the case for Actual Keylogger,
Revealer Keylogger Free, and Refog Keylogger Free. To deal
with this common strategy, our detection system en-
forces a change of focus every time a sample is injected.
In addition, some of the keyloggers examined included
support for encryption and most of them used variable-
length encoding to store special keys. As Section 5.2
demonstrates, our approach deal with these nuisances
transparently with no effect on the resulting PCC.

Another potential issue arises from keyloggers dump-
ing a fixed-format header on the disk every time a
change of focus is detected. The header typically con-
tains the date and the name of the target application.
Nonetheless, as we designed our detection system to
change focus at every sample, the header is flushed out
to disk at each time interval along with all the keystrokes
injected. As a result, the output pattern monitored is
simply a location transformation of the original, with
the shift given by size of the header itself. Thanks to the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 1, JANUARY-FEBRUARY 2013 9

location invariance property, our detection algorithm is
naturally resilient to this transformation.

5.2 False negatives

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

P
C

C

(a)

N (T=1000)

Random
Random Fixed Range

Impulse
Sinusoid

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

P
C

C

(b)

T (N=30)

Random
Random Fixed Range

Impulse
Sinusoid

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960

P
C

C

(c)

Kmin (N=30, T=1000)

Random
Random Fixed Range

Impulse
Sinusoid

Fig. 3. Impact of N , T , and Kmin on the PCC.

In our approach, false negatives may occur when the
output pattern of a keylogger scores an unexpectedly
low PCC value. To test the robustness of our approach
against false negatives, we made several experiments
with our own artificial keylogger. Our evaluation starts
by analyzing the impact of the number of samples N
and the time interval T on the final PCC value. For
each pattern generation algorithm, we plot the PCC
measured with our prototype keylogger which we con-
figured so that no buffering or data transformation was
taking place. Figure 3a and 3b depict our findings with
Kmin = 1 and Kmax = 1000. We observe that when the
keylogger logs each keystroke without introducing delay
or additional noise, the number of samples N does not
affect the PCC value. This behavior should not suggest
that N has no effect on the production of false negatives.
When noise in the output stream is to be expected,
higher values of N are indeed desirable to produce more
stable PCC values and avoid false negatives.

In contrast, Figure 3b shows that the PCC is sensitive
to low values of the time interval T . The effect observed
is due to the inability of the system to absorb all the
injected keystrokes for time intervals shorter than 450ms.
Figure 3c, in turn, shows the impact of Kmin on the
PCC (with Kmax still constant). The results confirm our
observations in Section 4.4, i.e., that patterns character-
ized by a low variance hinder the PCC, and thus a high
variability in the injection pattern is desirable.

We now analyze the impact of the maximum number
of keystrokes per time interval Kmax. High Kmax values

 1024 5120
 10240

 15360
 20480

 25600
 30720

 35840
 40960

 46080
 51200

 1000

 1500

 2000

 2500

 3000

 3500

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

P
C

C

Kmax

T

P
C

C

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Fig. 4. Impact of Kmax and T on the PCC.

are expected to increase the level of variability, reduce
the amount of noise, and induce a more distinct distribu-
tion in the output stream of the keylogger. The keystroke
rate, however, is clearly bound by the length of the time
interval T . Figure 4 depicts the PCC measured with our
prototype keylogger for N = 30, Kmin = 1, and RND
pattern generation algorithm. The figure reports very
high PCC values for Kmax < 20480 and T = 1000ms.
This behavior reflects the inability of the system to
absorb more than Kmax ≈ 20480 in the given time
interval. Increasing T is, however, sufficient to allow
higher Kmax values without significantly impacting the
PCC. For example, with T = 3500ms we can double
Kmax without sensibly degrading the final PCC value.

In a more advanced version of our keylogger, we
also simulated the effect of several possible input-
output transformations. First, we experimented with a
keylogger using a nontrivial fixed-length encoding for
keystrokes. Figure 5a depicts the results for different
values of padding p with N = 30, Kmin = 1, and
Kmax = 1024. A value of p = 1024 simulates a keylogger
writing 1024 bytes on the disk for each eavesdropped
keystroke. As discussed in Section 4.4, the PCC should be
unaffected in this case and presumably exhibit a constant
behavior. The figure confirms this intuition, but shows
the PCC decreasing linearly after p ≈ 10000 bytes. This
behavior is due to the limited I/O throughput that can
be achieved within a single time interval. We previously
encountered similar problems when choosing suitable
values for Kmax. Note that in this scenario both Kmin

and Kmax are affected by the padding introduced, thus
yielding a more significant impact on the PCC.

Let us now consider the case of a keylogger logging
an additional random number of characters r ∈ [0; rmax]
each time a keystroke is eavesdropped. This evaluates
the impact of several conditions. First, the experiment
simulates a keylogger randomly dropping keystrokes
with a certain probability. Second, it simulates a key-
logger encoding a number of keystrokes with special
sequences, e.g. CTRL logged as [Ctrl]. Finally, this
is useful to investigate the impact of a keylogger per-
forming variable-length encryption or other variable-
length transformations such as data compression. In the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 1, JANUARY-FEBRUARY 2013 10

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

512 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

P
C

C

(a)

p

Random
Random Fixed Range

Impulse
Sinusoid

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

512 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

P
C

C

(b)

x

Uniform min=1, max=x
Poisson λ=x

Gaussian µ=1000, σ=x
Exponential γ=1.0/x

Fig. 5. Impact of different classes of noise on the PCC.

latter scenario, different keystroke scancodes may be
encoded with strings of different length. This source
of non-linearity has potential to break the correlation
and thus hinder detection. However, since we control
the injection pattern, we can make each keystroke scan-
code equiprobable, thus forcing any content-dependent
transformation to encode each keystroke with a data
string of comparable size. The result is that each of these
transformations can be always approximated by a linear
transformation with constant scaling.

To generate r we considered different probability dis-
tributions: uniform, poisson, gaussian, and exponential.
For each distribution we repeated the experiment in-
creasing the value of a characteristic parameter (reported
on the x-axis). Results are depicted in Figure 5b. As
observed in Figure 5a, the PCC only drops at saturation,
i.e., when the average number of keystrokes written to
the disk is around 10000 bytes. The figure also shows
that choosing either a uniform or gaussian distribution
results in more stable PCC values. These distributions,
unlike the poisson and exponential, do not preclude low-
valued samples, and are thus less likely to saturate the
system in a particular configuration. Again, as Figure 4
suggested, obtaining more stable values for the PCC is
still possible if we increase the time interval T . If the
number of samples N is however kept constant, the user
shall expect a proportionally longer detection time.

 1
 1024

 2048
 3072

 4096
 5120

 6144
 7168

 8192 2048

 4096

 6144

 8192

 10240

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

P
C

C

buffer size (bytes)

Kmax

P
C

C

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Fig. 6. Detection of a keylogger buffering its output.

We conclude our analysis by verifying the impact
of a keylogger buffering the eavesdropped data before
leaking it to the disk. Although we have not found many
real-world examples of this behavior in our evaluation,
our technique can still handle this class of keyloggers
correctly for reasonable buffer sizes. Figure 6 depicts our
detection results against a keylogger buffering its output
through a fixed-size buffer. The figure shows the impact
of several possible choices of the buffer size on the final
PCC value. We can observe the pivotal role of Kmax in
successfully asserting detection. For example, increasing
Kmax to 10240 is necessary to achieve sufficiently high
PCC values for the largest buffer size proposed. This
experiment demonstrates once again that the key to
detection is inducing the pattern to distinctly emerge in
the output distribution, a feat that can be easily obtained
by choosing a highly-variable injection pattern with low
values for Kmin and high values for Kmax. We believe
these results are encouraging to acknowledge the robust-
ness of our detection technique against false negatives,
even in presence of complex data transformations.

5.3 False positives
In our approach, false positives may occur when the out-
put pattern of some benign process accidentally scores
a significant PCC value. If the value happens to be
greater than the selected threshold, a false detection is
flagged. This section evaluates our prototype keylogger
to investigate the likelihood of this scenario in practice.

To generate representative synthetic workloads for the
PC user, we adopted the widely-used SYSmark 2004
SE suite [16]. The suite leverages common Windows
interactive applications to generate realistic workloads
that mimic common user scenarios with input and think
time. In its 2004 SE version, SYSmark supports two
workload scenarios: Internet Content Creation (Internet
workload from now on), and Office Productivity (Office
workload from now on). In addition to the workload
scenarios supported by SYSmark, we also experimented
with another workload simulating an idle Windows
system with common user applications 1 running in the
background, and no input allowed by the user.

For each scenario, we repeatedly reproduced the syn-
thetic workloads on a number of different machines and
collected I/O traces of all the running processes for
several possible sampling intervals T . Each trace was
stored as a set of output patterns and broken down into
k consecutive chunks of N samples. Every experiment
was repeated over k/2 rounds, once for each pair of
consecutive chunks. At each round, the output patterns
from the first chunk were used to train our workload-
aware pattern generation algorithm, while the second
chunk was used for testing. In the testing phase, we
measured the maximum PCC between every generated
input pattern of length N and every output pattern

1. Skype 4, Pidgin 2.6.3, Dropbox 0.6, Firefox 3.5.7, Google Chrome 5,
Avira Antivir Personal 9, Comodo Firewall 3.13, and VideoLAN 1.0.5.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 1, JANUARY-FEBRUARY 2013 11

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

50 250 500 750 1000 1250 1500 1750 2000 2250 2500

P
C

C

T

Random
Random Fixed Range

Impulse
Sinusoid

Workload Aware

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

2 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

P
C

C

N

Random
Random Fixed Range

Impulse
Sinusoid

Workload Aware

(a) Idle workload.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

50 250 500 750 1000 1250 1500 1750 2000 2250 2500

P
C

C

T

Random
Random Fixed Range

Impulse
Sinusoid

Workload Aware

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

2 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

P
C

C

N

Random
Random Fixed Range

Impulse
Sinusoid

Workload Aware

(b) Internet workload.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

50 250 500 750 1000 1250 1500 1750 2000 2250 2500

P
C

C

T

Random
Random Fixed Range

Impulse
Sinusoid

Workload Aware

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

2 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

P
C

C

N

Random
Random Fixed Range

Impulse
Sinusoid

Workload Aware

(c) Office workload.

Fig. 7. Impact of N and T on the PCC measured with our prototype keylogger against different workloads.

in the testing set. At the end of each experiment, we
averaged all the results. We also tested all the workload-
agnostic pattern generation algorithms introduced ear-
lier, in which case we just relied on an instrumented
version of our prototype to measure the maximum PCC
in all the depicted scenarios for all the k chunks.

We start with an analysis of the pattern length N ,
evaluating its effect with T = 1000ms. Similar results
can be obtained with other values of T . Figure 7 (top
row) depicts the results of the experiments for the Idle,
Internet, and Office workload. The behavior observed
is very similar in all the workload scenarios examined.
The only noticeable difference is that the Office workload
presents a slightly more unstable PCC distribution. This
is probably due to the more irregular I/O workload
monitored. As shown in the figures, the maximum
PCC value decreases exponentially as N increases. This
confirms the intuition that for small N , the PCC may
yield unstable and inaccurate results, possibly assigning
very high correlation values to regular system processes.
Fortunately, the maximum PCC decreases very rapidly
and, for example, for N > 30, its value is constantly
below 0.35. As far as the pattern generation algorithms
are concerned, they all behave very similarly. Notably,
RFR yields the most stable PCC distribution. This is
especially evident for the Office workload. In addition,
our workload-aware algorithm WLD does not perform
significantly better than any other workload-agnostic
pattern generation algorithm. This strongly suggests
that, independently of the value of N , the output pat-
tern of a process at any given time is not in general
a good predictor of the output pattern that will be
monitored next. This observation reflects the low level
of predictability in the I/O behavior of a process.

From the same figures we can observe the effect of
the parameter T on input patterns generated by the
IMP algorithm (with N = 50). For small values of T ,
IMP outperforms all the other algorithms by producing
extremely anomalous I/O patterns in any workload
scenario. As T increases, the irregularity becomes less
evident and IMP matches the behavior of the other

algorithms more closely. In general, for reasonable values
of T , all the pattern generation algorithms reveal a
constant PCC distribution. This confirms the property of
self-similarity of the I/O traffic [13]. Notably, RFR and
WLD reveal a more steady distribution of the PCC. This
is due to the use of a fixed range of values in both cases,
and confirms the intuition that more variability in the
input pattern leads to more accurate results.

For very small values of T , we note that WLD per-
forms significantly better than the average. This is a hint
that predicting the I/O behavior of a generic process in
a fairly accurate way is only realistic for small windows
of observation. In all the other cases, we believe that
the complexity of implementing a workload-aware al-
gorithm largely outweighs its benefits. In our analysis,
we found that similar PCC distributions can be obtained
with very different types of workload, suggesting that it
is possible to select the same threshold for many different
settings. For reasonable values of N and T , we found
that a threshold of ≈ 0.5 is usually sufficient to rule
out the possibility of false positives, while being able to
detect most keyloggers effectively. In addition, the use
of a stable pattern generation algorithm like RFR could
also help minimize the level of unpredictability across
many different settings.

6 EVASION AND COUNTERMEASURES

In this section, we speculate on the possible evasion
techniques a keylogger may employ once our detection
strategy is deployed on real systems.

6.1 Aggressive Buffering

A keylogger may rely on some forms of aggressive
buffering, for example flushing a very large buffer ev-
ery time interval t, with t being possibly hours. While
our model can potentially address this scenario, the
extremely large window of observation required to col-
lect a sufficient number of samples would make the
resulting detection technique impractical. It is important

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 1, JANUARY-FEBRUARY 2013 12

to point out that such a limitation stems from the im-
plementation of the technique and not from a design
flaw in our detection model. For example, our model
could be applied to memory access patterns instead of
I/O patterns to make the resulting detection technique
immune to aggressive buffering. This strategy, however,
would require a heavyweight infrastructure (e.g., virtual-
ized environment) to monitor the memory accesses, thus
hindering the benefits of a fully unprivileged solution.

6.2 Trigger-based Behavior
A keylogger may trigger the keylogging activity only
in face of particular events, for example when the user
launches a particular application. Unfortunately, this
trigger-based behavior may successfully evade our de-
tection technique. This is not, however, a shortcoming
specific to our approach, but rather a more fundamental
limitation common to all the existing detection tech-
niques based on dynamic analysis [17]. While we believe
that the problem of triggering a specific behavior is
orthogonal to our work and already focus of much
ongoing research, we point out that the user can still
mitigate this threat by periodically reissuing detection
runs when necessary (e.g., every time a new particularly
sensitive context is accessed). Since our technique can vet
all the processes in a single detection run, we believe this
strategy can be realistically used in real-world scenarios.

6.3 Discrimination Attacks
Mimicking the user’s behavior may expose our approach
to keyloggers able to tell artificial and real keystrokes
apart. A keylogger may, for instance, ignore any input
failing to display known statistical properties—e.g., not
akin to the English language—. However, since we
control the input pattern, we can carefully generate
keystroke scancode sequences displaying the same sta-
tistical properties (e.g., English text) expected by the
keylogger, and therewith perform a separate detection
run thwarting this evasion technique. About the case of
a keylogger ignoring keystrokes when detecting a high
(nonhuman) injection rate. This strategy, however, would
make the keylogger prone to denial of service: a system
persistently generating and exfiltrating bogus keystrokes
would induce this type of keylogger to permanently dis-
able the keylogging activity. Recent work demonstrates
that building such a system is feasible in practice (with
reasonable overhead) using standard operating system
facilities [18].

6.4 Decorrelation Attacks
Decorrelation attacks attempt at breaking the correlation
metric our approach relies on. Since of all the attacks this
is specifically tailored to thwarting our technique, we
hereby propose a heuristic intended to vet the system
in case of negative detection results. This is the case,
for instance, of a keylogger trying to generate I/O noise

in the background and lowering the correlation that is
bound to exist between the pattern of keystrokes injected
I and its own output pattern O. In the attacker’s ideal
case, this translates to PCC(I,O) ≈ 0. To approximate
this result in the general case, however, the attacker
must adapt its disguisement strategy to the pattern
generation algorithm in use, i.e., when switching to a
new injection I ′ 6= I , the output pattern should reflect
a new distribution O′ 6= O. The attacker could, for
example, enforce this property by adapting the noise
generation to some input distribution-specific variable
(e.g., the current keystroke rate). Failure to do so will
result in random noise uncorrelated with the injection,
a scenario which is already handled by our PCC-based
detection technique. At the same time, we expect any
legitimate process to maintain a sufficiently stable I/O
behavior regardless of the particular injection chosen.

Leveraging this intuition, we now introduce a two-
step heuristic which flags a process as legitimate only
when a change in the input pattern generation algorithm
does not translate to a change in the I/O behavior
of the process. Detection is flagged otherwise. In the
first step, we adopt a nonrandom pattern generation
algorithm (e.g., SIN) to monitor all the running processes
for N · T seconds. This allows us to collect a number
of characteristic output patterns Oi. In the second step,
we adopt the RND pattern generation algorithm and
monitor the system again for N ·T seconds. Each output
pattern O′i obtained is tested for similarity against the
corresponding pattern Oi monitored in the first step. At
the end of this phase, a process i is flagged as detected
only when the similarity computed fails to exceed a
certain threshold. To compare the output patterns we
adopt the Dynamic Time Warping (DTW) algorithm as a
distance metric [19]. This technique, often used to com-
pare time series, warps sequences in the time dimension
to determine a measure of similarity independent of non-
linear variations in the time dimensions.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

 38

 40

 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

D
T

W

N

K-EXP.exe:6445
K-PERF.exe:3227

firefox.exe:7392
System:4

UNS.exe:5960
LMS.exe:2332

svchost.exe:172
svchost.exe:744

svchost.exe:1588

Fig. 8. Impact of N on the DTW.

To evaluate our heuristic, we implemented two dif-
ferent keyloggers attempting to evade our detection
technique. The first one, K-EXP, uses a parallel thread
to write a random amount of bytes which increases

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 1, JANUARY-FEBRUARY 2013 13

exponentially with the number of keystrokes already
logged to the disk. Since the transformation is nonlinear,
we expect heavily perturbed PCC values. The second
one, K-PERF, uses a parallel thread to simulate a single
fixed-rate byte stream being written to the disk. In this
scenario, the amount of random bytes written to the
disk is dynamically adjusted basing on the keystroke rate
eavesdropped. This is arguably one of the most effective
countermeasures a keylogger may attempt to employ.

Figure 8 depicts the DTW computed by our two-step
heuristic for different processes and increasing values of
N . We can observe that our artificial keyloggers both
score very high DTW values with the pattern genera-
tion algorithms adopted in the two steps (i.e., SIN and
RND). The reason why K-PERF is also easily detected
is that even small variations produced by continuously
adjusting the output pattern introduce some amount of
variability which is correlated with the input pattern.
This behavior immediately translates to non negligible
DTW values. Note that the attacker may attempt to
decrease the amount variability by using a periodically-
flushed buffer to shape the observed output distribution.
A possible way to address this type of attack is to
apply our detection model to memory access patterns, a
strategy that we are investigating as part of our ongoing
work [20]. The intuition is that memory access patterns
can be used to infer the keylogging behavior directly
from the memory activity, making the resulting detection
technique independent of the particular flushing strategy
adopted by the keylogger. In the figure we can also
observe that all the legitimate processes analyzed score
very low DTW values. This result confirms that their
I/O behavior is completely uncorrelated with the input
pattern chosen for injection. We observed similar results
for other settings and applications; we omit results for
brevity. Finally, Figure 8 shows also that our artificial
keyloggers both score increasingly higher DTW values
for larger number of samples N . We previously observed
similar behavior for the PCC, for which more stable
results could be obtained for increasing values of N . The
conclusion is that analyzing a sufficiently large number
of samples is crucial to obtain accurate results when
estimating the similarity between different distributions.

7 RELATED WORK

While ours is the first technique to solely rely on un-
privileged mechanisms, several approaches have been
recently proposed to detect privacy-breaching malware,
including keyloggers. Behavior-based spyware detection
has been first introduced by Kirda et al. in [21]. Their ap-
proach is tailored to malicious Internet Explorer loadable
modules. In particular, modules monitoring the user’s
activity and disclosing private data to third parties are
flagged as malware. Their analysis models malicious
behavior in terms of API calls invoked in response to
browser events. Those used by keyloggers, however,
are also commonly used by legitimate programs. Their

approach is therefore prone to false positives, which can
only be mitigated with continuously updated whitelists.

Other keylogger-specific approaches have suggested
detecting the use of well-known keystroke interception
APIs. Aslam et al. [22] propose binary static analysis to
locate the intended API calls. Unfortunately, all these
calls are also used by legitimate applications (e.g., short-
cut managers) and this approach is again prone to false
positives. Xu et al. [23] push this technique further,
specifically targeting Windows-based operating systems.
They rely on the very same hooks used by keyloggers to
alter the message type from WM_KEYDOWN to WM_CHAR.
A keylogger aware of this countermeasure, however,
can easily evade detection by also switching to a new
message type or periodically registering a new hook to
obtain the highest priority in the hook chain.

Closer to our approach is the solution proposed by
AlHammadi et al. in [24]. Their strategy is to model
the keylogging behavior in terms of the number of API
calls issued in the window of observation. To be more
precise, they observe the frequency of API calls invoked
to (i) intercept keystrokes, (ii) writing to a file, and (iii)
sending bytes over the network. A keylogger is detected
when two of these frequencies are found to be highly
correlated. Since no bogus events are issued to the sys-
tem (no injection of crafted input), the correlation may
not be as strong as expected. The resulting value would
be even more impaired in case of any delay introduced
by the keylogger. Moreover, since their analysis is solely
focused on a specific bot, it lacks a proper discussion on
both false positives and false negatives. In contrast to
their approach, our quantitative analysis is performed at
the byte granularity and our correlation metric (PCC) is
rigorously linear. As shown earlier, linearity makes our
technique completely resilient to several common data
transformations performed by keyloggers.

A similar quantitative and privileged technique is
sketched by Han et al. in [25]. Unlike the solution pre-
sented in [24], their technique does include an injection
phase. Their detection strategy, however, still models the
keylogging behavior in terms of API calls. In practice, the
assumption that a certain number of keystrokes results in
a predictable number of API calls is fragile and heavily
implementation-dependent. In contrast, our byte-level
analysis relies on finer grained measurements and can
identify all the information required for the detection in a
fully unprivileged way. Complementary to our work, re-
cent approaches have proposed automatic identification
of trigger-based behavior, which can potentially thwart
any detection technique based on dynamic analysis. In
particular, in [17], [26] the authors propose a combination
of concrete and symbolic execution for the task. Their
strategy aims to explore all the possible execution paths
that a malware can possibly exhibit during execution.
As the authors in [17] admit, however, automating the
detection of trigger-based behavior is an extremely chal-
lenging task which requires advanced privileged tools.
The problem is also undecidable in the general case.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 1, JANUARY-FEBRUARY 2013 14

8 CONCLUSIONS
In this paper, we presented an unprivileged black-box
approach for accurate detection of the most common
keyloggers, i.e., user-space keyloggers. We modeled the
behavior of a keylogger by surgically correlating the
input (i.e., the keystrokes) with the output (i.e., the I/O
patterns produced by the keylogger). In addition, we
augmented our model with the ability to artificially inject
carefully crafted keystroke patterns. We then discussed
the problem of choosing the best input pattern to im-
prove our detection rate. Subsequently, we presented
an implementation of our detection technique on Win-
dows, arguably the most vulnerable OS to the threat of
keyloggers. To establish an OS-independent architecture,
we also gave implementation details for other operat-
ing systems. We successfully evaluated our prototype
system against the most common free keyloggers [5],
with no false positives and no false negatives reported.
Other experimental results with a homegrown keylogger
demonstrated the effectiveness of our technique in the
general case. While attacks to our detection technique are
possible and have been discussed at length in Section 6,
we believe our approach considerably raises the bar for
protecting the user against the threat of keyloggers.

REFERENCES
[1] T. Holz, M. Engelberth, and F. Freiling, “Learning more about

the underground economy: A case-study of keyloggers and
dropzones,” Proc. of the 14th European Symposium on Research in
Computer Security, pp. 1–18, 2009.

[2] San Jose Mercury News, “Kinkois spyware case highlights risk of
public internet terminals,” http://www.siliconvalley.com/mld/
siliconvalley/news/6359407.htm.

[3] N. Strahija, “Student charged after college computers hacked,”
http://www.xatrix.org/article2641.html.

[4] N. Grebennikov, “Keyloggers: How they work and how
to detect them,” http://www.viruslist.com/en/analysis?pubid=
204791931.

[5] Security Technology Ltd., “Testing and reviews of keyloggers,
monitoring products and spyware,” http://www.keylogger.org.

[6] L. Zhuang, F. Zhou, and J. D. Tygar, “Keyboard acoustic emana-
tions revisited,” ACM Trans. on Information and System Security,
vol. 13, no. 1, pp. 1–26, 2009.

[7] M. Vuagnoux and S. Pasini, “Compromising electromagnetic
emanations of wired and wireless keyboards,” Proc. of the 18th
USENIX Security Symposium, pp. 1–16, 2009.

[8] J. Rutkowska, “Subverting vista kernel for fun and profit,” Black
Hat Briefings, 2007.

[9] J. L. Rodgers and W. A. Nicewander, “Thirteen ways to look at
the correlation coefficient,” The American Statistician, vol. 42, no. 1,
pp. 59–66, feb 1988.

[10] J. Benesty, J. Chen, and Y. Huang, “On the importance of the
pearson correlation coefficient in noise reduction,” IEEE Trans. on
Audio, Speech, and Language Processing, vol. 16, no. 4, p. 757, 2008.

[11] L. Goodwin and N. Leech, “Understanding correlation: Factors
that affect the size of r,” Experimental Education, vol. 74, no. 3, pp.
249–266, 2006.

[12] J. Aldrich, “Correlations genuine and spurious in pearson and
yule,” Statistical Science, vol. 10, no. 4, pp. 364–376, 1995.

[13] W. Hsu and A. Smith, “Characteristics of I/O traffic in personal
computer and server workloads,” IBM System Journal, vol. 42,
no. 2, pp. 347–372, 2003.

[14] H. W. Kuhn, “The hungarian method for the assignment prob-
lem,” Naval Research Logistics Quarterly, vol. 2, pp. 83–97, 1955.

[15] G. Kochenberger, F. Glover, and B. Alidaee, “An effective ap-
proach for solving the binary assignment problem with side
constraints,” Information Technology and Decision Making, vol. 1,
pp. 121–129, May 2002.

[16] BAPCO, “SYSmark 2004 SE,” http://www.bapco.com.
[17] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution

paths for malware analysis,” Proc. of the 28th IEEE Symposium on
Security and Privacy, pp. 231–245, May 2007.

[18] S. Ortolani and B. Crispo, “Noisykey: Tolerating keyloggers via
keystrokes hiding,” Proc. of the 7th USENIX Workshop on Hot Topics
in Security, p. to appear, 2012.

[19] H. Sakoe and S. Chiba, Readings in speech recognition, A. Waibel
and K.-F. Lee, Eds. Morgan Kaufmann Publishers Inc., 1990.

[20] S. Ortolani, C. Giuffrida, and B. Crispo, “Klimax: Profiling mem-
ory write patterns to detect keystroke-harvesting malware,” Proc.
of the 14th Intl. Symposium on Recent Advances in Intrusion Detection,
pp. 81–100, 2011.

[21] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. Kemmerer,
“Behavior-based spyware detection,” Proc. of the 15th USENIX
Security Symposium, pp. 273–288, 2006.

[22] M. Aslam, R. Idrees, M. Baig, and M. Arshad, “Anti-Hook Shield
against the Software Key Loggers,” Proc. of the National Conference
on Emerging Technologies, p. 189, 2004.

[23] M. Xu, B. Salami, and C. Obimbo, “How to protect personal
information against keyloggers,” Proc. of the 9th Intl. Conf. on
Internet and Multimedia Systems and Applications, 2005.

[24] Y. Al-Hammadi and U. Aickelin, “Detecting bots based on key-
logging activities,” Proc. of the Third International Conference on
Availability, Reliability and Security, pp. 896–902, 2008.

[25] J. Han, J. Kwon, and H. Lee, “Honeyid: Unveiling hidden spy-
wares by generating bogus events,” Proc. of the IFIP 23rd Intl.
Information Security Conference, pp. 669–673, 2008.

[26] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and
H. Yin, “Automatically identifying trigger-based behavior in mal-
ware,” Advances in Information Security, vol. 36, pp. 65–88, 2008.

Stefano Ortolani is a PhD student in the Com-
puter Systems Section of the Department of
Computer Science at the Vrije Universiteit, Ams-
terdam. His research covers security in comput-
ers and networks, privacy-enhancing technolo-
gies, and intrusion detection. Ortolani received a
MSc in Computer Science from the Ca’ Foscari
University, Venice, Italy.

Cristiano Giuffrida is a PhD student in the
Computer Systems Section of the Department
of Computer Science at the Vrije Universiteit,
Amsterdam. His research focuses on the design
and implementation of secure and reliable sys-
tems. Giuffrida received a MEng in Computer
Engineering from the University of Rome “Tor
Vergata”, Italy.

Bruno Crispo is an associate professor in the
Department of Computer Science at Vrije Uni-
versiteit and at the University of Trento, Italy.
His research interests are networks, distributed
systems, cryptography, and security protocols.
Crispo received a PhD in computer science from
the University of Cambridge, United Kingdom.
He is a senior member of the IEEE.

