
Sticky Tags: Efficient and Deterministic Spatial Memory Error Mitigation
using Persistent Memory Tags

Floris Gorter∗, Taddeus Kroes‡, Herbert Bos∗ and Cristiano Giuffrida∗
∗‡Vrije Universiteit Amsterdam

‡taddeuskroes@gmail.com
∗{f.c.gorter,h.j.bos,c.giuffrida}@vu.nl

Abstract—Spatial memory errors such as buffer overflows still
rank among the top vulnerabilities in C/C++ programs. Despite
much research in the area, the performance overhead of (even
partial) mitigations is still too high for practical adoption. To
reduce the cost, recent solutions are shifting towards hardware-
assisted techniques such as Arm’s Memory Tagging Extension
(MTE). Unfortunately, state-of-the-art MTE solutions incur
high overhead due to frequent memory (re)tagging, especially
on the stack. Moreover, they rely on the secrecy of random
memory tags and offer probabilistic security guarantees.

In this paper, we first provide evidence that random tagging
offers limited protection as attackers can deduce the mem-
ory tags by means of speculative probing. We then present
StickyTags, a deterministic MTE solution that efficiently miti-
gates bounded spatial memory errors. By organizing the stack
and heap layout into per-size-class regions, we can apply persis-
tent memory tags to each region in a predetermined pattern.
Hence, the memory tags need only be initialized once, after
which they can be reused by objects of the same size class. This
eliminates the need for costly memory retagging and allows
for a fixed, round-robin assignment of the tags, surrounding
every object with large implicit spatial guards. While the
size of such guards is bounded by the 4-bit MTE entropy
(16 tags), the protection is efficient and deterministic. Indeed,
we show StickyTags significantly outperforms existing solu-
tions with realistic runtime overheads for practical adoption
(≤ 4% on SPEC CPU2006), while fully mitigating 7 out of 8
spatial CVEs evaluated by a recent probabilistic MTE solution.

1. Introduction

Spatial memory errors remain a common and impactful
security concern. The 2023 CWE ranking lists out-of-bounds
writes as the most severe software weakness [1]. Anecdo-
tally, the GWP-ASan project has already found over thirty
buffer overflows in the live build of Google Chrome [2],
highlighting the need for exploit mitigations. While many
existing tools can detect such bugs during software test-
ing [3], [4], [5], [6], [7], [8], [9], [10], post-deployment
solutions have found little applicability in the field due to

‡Now at Google

their high overhead. Recent reports indicate that mitiga-
tions only see real-world deployment if their performance
overhead stays below 5% [11]—rendering existing bounds
checking solutions impractical [12], [13], [14], [15], [16]. In
response, contemporary memory error detection and mitiga-
tion systems are shifting towards hardware-assisted solutions
to reduce the overhead [6], [7], [17], [18], [19].

In particular, Arm’s Memory Tagging Extension (MTE)
is a strong contender to provide spatial memory error
mitigation on the cheap. MTE associates every memory
location and every pointer with a tag, with the hardware
disallowing any dereference if the pointer and memory
tags do not match. Unfortunately, even state-of-the-art MTE
solutions remain costly due to the need for frequent memory
(re)tagging: LLVM’s MemTagSanitizer [20] incurs average
and worst-case overheads on SPEC CPU2006 of 15.2% and
3.67x (respectively) for the stack alone (Section 8).

Moreover, existing MTE solutions [20], [21], [22], [23],
[24] heavily rely on random tags provided by the hard-
ware [25] (which, in turn, impose expensive retagging costs).
While such tags are not trivial to predict, at best they
offer probabilistic security guarantees with low entropy. In
particular, tag collisions between near or neighboring objects
may leave the application vulnerable to contiguous over-
flows and bounded overflows such as type confusion bugs.
Moreover, the low (4-bit) entropy of MTE tags leaves ap-
plications trivially vulnerable to brute-force attacks against
a variety of crash-resistant targets, such as servers [26], web
browsers [27], and even kernels, for instance Linux with the
default oops mechanism [28].

Unfortunately, the situation is even worse, since, as we
show, attackers can find pointer / memory tag matches
through speculative probing [29]. More specifically, we
show attackers can use a contention-based side channel to
deduce whether or not a tag check results in a violation
(i.e., tag mismatch). These results confirm, for the first time,
conjectures in the community that MTE is vulnerable to side
channels [25], [30], [31] and contradict a recent analysis by
Google [32]. The net result is that such speculative oracles
broaden the brute-force attack surface to non-crash-resistant
targets (e.g., Linux without the oops mechanism [29]).

In this paper, we present StickyTags, an efficient and
deterministic spatial memory error mitigation for the stack
and the heap. Rather than aiming for the classic random

1

(re)tagging-based design to detect generic spatial and tem-
poral errors with only probabilistic guarantees, StickyTags
focuses on mitigating a specific (but widespread) class of
vulnerabilities (bounded spatial errors) with strong perfor-
mance and security guarantees. In particular, StickyTags of-
fers production-ready overheads below 5% and deterministic
security guarantees (where all tags are public and known)
bounded by the number of MTE-provided tags.

To minimize memory tagging costs, we build on Arm’s
recommendation to limit the number of (de)allocations [33].
Rather than rewriting the application, we divide the heap
and stack in per-size-class regions—assigning objects to
predetermined slots with persistent memory tags already in
place. We make sure to initialize the tags only once, and
keep them in memory ready to be reused for objects of the
same size class. The synergy between organizing memory
into size classes and the underlying persistent tags allows
us to achieve high performance by eliminating the need
for memory retagging. This is especially beneficial on the
stack, where the allocation (and hence tagging) frequency
is high. As an added advantage and in contrast to state-of-
the-art solutions [20], our stack tagging design also offers
increased backwards compatibility with legacy (non-MTE)
devices. We detail our compatibility guarantees in Section 5.

To provide deterministic security guarantees, we assign
tags in a round-robin fashion in each region such that the
tag of any object cannot collide with that of a known
number of neighboring slots. As a result, our prototype
StickyTags effectively creates implicit spatial guards around
each object. Even with the current tag size of 4 bits, Sticky-
Tags efficiently mitigates spatial memory errors with under-
and overflow guards of 15 times the size class. Since the
smallest class contains objects of 16 bytes (the MTE tagging
granularity), each object in this class is protected by implicit
spatial guards of 240 bytes in both directions. The spatial
guards for larger size classes are proportionally larger.

Our evaluation shows that StickyTags significantly out-
performs state-of-the-art spatial memory error mitigations.
On SPEC CPU2006 and 2017, StickyTags incurs geomean
overheads of ≤ 4% measured both with MTE analogs [34]
and MTE devices, bringing spatial memory protection
within reach of production systems for the first time.
StickyTags is 12x faster on average than MemTagSanitizer
(stack tagging) and nearly 2x faster than the Scudo allocator
(heap tagging), while fully mitigating 7 out of 8 spatial
CVEs evaluated by the recent (probabilistic) MTSan [17].

Contributions. We make the following contributions:

• We present the first on-device evidence that speculative
probing can leak MTE pointer / memory tag matches,
questioning random tagging as a mitigation strategy
even for applications not prone to classic brute forcing.

• We present a design for deterministic memory tagging
for the stack and the heap that uses persistent tags
to enable efficient spatial memory guards with MTE.
We further study the applicability of persistent spatial

guards to x86 architectures, using lightweight compiler
instrumentation to compensate for the lack of MTE.

• We evaluate our StickyTags prototype and show that
StickyTags provides production-ready overheads.

Availability. https://github.com/vusec/stickytags

2. Background

Spatial memory errors. Spatial memory errors such as
buffer overflows occur when a derived pointer erroneously
accesses a different object than its base pointer. To prevent
exploitation of such bugs, bounds checkers [12], [13], [14],
[15], [16], [35] retrofit programs with checks that disallow
such illegal accesses. Unfortunately, bounds checkers have
not seen widespread adoption due to high overheads. To
lower the overhead, other solutions reduce the scope of
bounds checking and instead rely on explicit spatial guards
bracketing each memory object [2], [3], [4], [9], [36], [37].
Such guards, implemented by means of guard pages [2],
[38] or compiler-enforced redzones [3], [4], [36], [37], can
detect invalid out-of-bounds reads/writes up to the guard
size. This can mitigate contiguous overflows and bounded
non-contiguous overflows, such as off-by-N errors and type
confusion. In the latter case, unsafe type casts allow at-
tackers to replace an object pointer with a pointer to a
larger object type, yielding out-of-bounds reads/writes at a
bounded offset up to the largest difference in confusable
object sizes [39]. Unfortunately, existing guard-based solu-
tions still incur high overheads and have only found practical
adoption in offline testing [3], [37] or online sampling [40].

Memory Tagging Extension. Memory Tagging Extension
(MTE) is an Armv8.5+ feature to detect memory errors. It
introduces a ‘lock’ and ‘key’ mechanism, with the hardware
only permitting reads/writes if the pointer tag (key) matches
the memory tag (lock). Checks are supported both in syn-
chronous and asynchronous mode. Pointer tagging relies on
Arm’s TBI (Top-Byte Ignore) feature to store a tag in the
upper pointer bits. The 4-bit memory tags (16 values in
total) are stored separately from application data. Existing
MTE solutions [17], [20], [21], [22], [23], [24] often rely
on the Arm IRG instruction to assign a random tag to each
allocation/deallocation, which scales poorly due to frequent
(re)tagging and provides probabilistic security.

3. Speculatively Probing for Random Tags

For probabilistic MTE solutions based on random tag-
ging [20], [21], [22], [23], [24], the assumption is that, even
if attackers manage to hijack a tagged victim pointer (e.g.,
via a buffer overflow) to reference a target object, they
cannot predict whether the tag of the target object matches
the pointer tag—hindering reliable exploitation. However,
even without brute-forcing capabilities [26], if attackers can
deduce which tags are assigned at runtime, then the random
source of the tags has no added benefit. This is because

2

https://github.com/vusec/stickytags

Listing 1 Tested probe gadgets to leak tag matches.
1 flush(signal);
2 if (/* mispredict */) {
3 #ifdef DEP_LOAD
4 idx = *oob_ptr; // target tag check
5 *(signal+idx); // dependent load
6 #else
7 *oob_ptr; // target tag check
8 *signal; // independent load
9 #endif

10 }
11 reload(signal); // is signal cached?

attackers can massage memory [41] until the victim pointer’s
random tag happens to match the one of the target object—
and only then trigger the vulnerability to achieve reliable
exploitation in spite of random tagging.

We now show attackers can indeed deduce tag assign-
ments via side channels and bypass probabilistic MTE solu-
tions that rely on secret random tags, confirming conjectures
from the community [25], [30], [31] with the first evidence
on real MTE hardware. Specifically, we show that attackers
can leak whether the tag of a given victim pointer matches
the tag of a target object using speculative probing [29],
[42], [43]. This is possible by repeatedly probing different
pointer / (massaged) object pairs using a probe gadget until
microarchitectural side channels leak a tag match.

For our evaluation, we conducted experiments on rooted
Samsung Galaxy S22 and Google Pixel 8 Pro devices,
supporting sync/async MTE mode. Our first experiment was
on the former device in sync mode, using the standard
Spectre probe gadget in Listing 1 (DEP_LOAD case). The
gadget speculatively issues an out-of-bounds load via the
(tagged) victim pointer (oob_ptr, line 4) followed by a
load dependent on the loaded value (at signal+idx, line
5). The dependent load, if completed, fills a cache line and
transmits 1 bit of information via a classic Flush+Reload
covert channel [44] (i.e., “cache hit” as revealed by timing).

We initially expected two possible scenarios for failed
(i.e., mismatching) MTE checks on the speculative path:
(i) they are fully synchronous and prevent the victim load
from passing data to the dependent load, resulting in a 0%
cache hit rate; (ii) they are fully asynchronous and allow
data to be passed to the dependent load, resulting in a 100%
cache hit rate similar to the successful checks. The former
scenario would allow the MTE implementation to guarantee
speculative memory safety—since the checks hinder any in-
valid speculative access—but also incur tag leakage—since
the attacker can distinguish correct/incorrect tag pairs based
on the cache hit rate. The latter scenario, in turn, would
yield opposite guarantees (i.e., no tag leakage, no speculative
memory safety). However, our first experiment revealed a
high cache hit rate (suggesting checks are asynchronous),
but not as high as for successful checks. Hence, we can still
leak a tag match based on the cache hit rate.

Our next question was why the failed check causes the
subsequent dependent load to sometimes not complete in the
speculation window. One hypothesis is that failed checks

1 2 3 4 5 6 7 8 9 10
Number of checks

0

20%

40%

60%

80%

100%

Si
gn

al
 lo

ad
 c

ac
he

 h
it

ra
te

Correct Tag (Both) Incorrect Tag S22 Incorrect Tag P8

Figure 1: Cache hit rates of a single independent load for correc-
t/incorrect tag match on the Samsung S22 and Google Pixel 8 Pro.

occasionally cut the speculation window short. Another is
that they create contention on the memory subsystem (by
having to act upon the tag violation), causing other memory
operations to occasionally stall and fail to complete within
the window. To answer this question, we designed another
experiment with the simpler probe gadget in Listing 1
(not DEP_LOAD case), which, unlike standard Spectre,
drops the second dependent load in favor of an arbitrary
(independent) one. Switching to the independent load did
not affect our original results and neither did switching to
async MTE mode (where checks are very asynchronous even
architecturally) or replacing the independent load with an
independent store. This all seems to confirm our second
hypothesis, with contention on the memory subsystem af-
fecting the cache hit rate (and allowing for tag match leaks).

Figure 1 presents our results when repeatedly triggering
the simpler probe gadget for matching/mismatching tag pairs
as we increase the number of checked out-of-bounds loads in
the gadget (by duplicating line 7 in Listing 1). As expected,
correct pointer tag / object tag pairs consistently score a
cache hit rate of 100%. Incorrect tag pairs, on the other
hand, result in an increasingly lower rate as we increase
the number of (failed) checks and thus the contention.
Moreover, one check is sufficient to leak a tag match (0.2%
cache hit rate difference). The figure also includes results
for the Pixel 8 Pro, on which we reproduced the behavior
discussed for the S22, except that contention seems lower
and our probe gadget can identify the correct tag starting
from the contention caused by two (rather than one) checks.

In summary, the contention caused by tag mismatches
provides attackers with a convenient side channel to de-
termine whether a tag mismatch occurred. Crafting probe
gadgets is relatively simple: an attacker needs to trigger
the target software vulnerability on a speculative path [29]
and, unlike standard (and mitigated) Spectre [44], observe
a microarchitectural signal from any independent memory
operation within the speculation window. On some devices
(Pixel 8), additional failed checks within the window may
be required, but, since invalid memory accesses are common

3

on speculative paths, this is a relatively minor hurdle for
attackers to overcome. Our results provide concrete evidence
that tag leakage attacks are possible with easy-to-craft probe
gadgets and question the use of probabilistic MTE-based
solutions that rely on random tagging as a mitigation—even
with lack of brute-forcing capabilities [26]. Furthermore, our
findings contradict a recent analysis on MTE by Google,
which found no side channels on their tested devices [32].

4. Threat Model

We consider an adversary seeking to exploit an existing
spatial memory error in a victim program. We assume
attackers can exhaust the tag entropy through classic brute
forcing for crash-resistant targets [26], [27], [28] or specula-
tive probing for non-crash-resistant ones [29]. For specula-
tive probing, the standard Spectre [44] threat model applies,
with a local attacker mounting cross-privilege (e.g., user-
to-kernel or guest-to-host) or in-domain (e.g., JavaScript
sandbox) attacks [45]. For the latter, attackers also need to
bypass any deployed (browser) timer mitigations [46], for
instance by crafting their own high-resolution timers [47],
[48], [49], [50] or mounting timerless attacks [51], [52].

We consider overflows (and underflows) within the size
of our spatial guards. This includes contiguous overflows
and bounded non-contiguous overflows, such as constrained
out-of-bounds accesses via type confusion, etc. Attackers
can launch their spatial memory attacks not just through
buffers on the heap, but also on the stack. In addition,
they may attack both confidentiality and integrity (reads
and writes). We consider temporal memory errors out of
scope and subject of extensive literature on orthogonal de-
fenses [53], [54], [55], [56], [57], [58], [59].

5. StickyTags

As later evidenced by our evaluation, frequent memory
tagging (normally done for every allocation/deallocation)
is a major performance bottleneck of existing MTE-based
solutions. To reduce this overhead, StickyTags decreases the
number of times it needs to tag memory, by reorganizing
memory into regions each containing objects of a particular
size class (Figure 2). It tags memory at the first use of an
object slot, allowing the tag to persist across the lifetimes
of different objects allocated in the same slot.

Our persistent memory tags follow a deterministic pat-
tern that assigns tags to slots in round-robin fashion, so
for N -bit tags, each tag repeats every 2N slots. This way,
StickyTags protects against buffer under- and overflows
bounded by the number of tags times the slot size. Con-
ceptually, each memory slot has two implicit spatial guards
consisting of the 2N − 1 surrounding objects on both sides
with different tags. The effective size of the guards depends
on the size class S: each object is protected by (2N −1)×S
guard bytes. With MTE featuring tags of N = 4 bits, this
amounts to 15×S. To quantify this: our smallest (16 bytes)
and largest (262 KB) size classes provide bi-directional
guards of 240 bytes and 3.75 MB, respectively.

HeapStack

Validate tags match on loads/stores

MTE Hardware

Userspace Program

Size Class
(16 bytes)

Size Class
(32 bytes)

Size Class
(16 bytes)

Size Class
(64 bytes)

char buf1[15];
char buf2[16];

char* ptr1 = malloc(60);

char* ptr3 = malloc(64);

0
1
2
3
4
5

Tags

...
15
0
1
...
2

0
0
1
1

0
1
2
...

...

0
0
0
0
1
1
1
1
2
2
2
2
...

Tags

char* ptr2 = malloc(10);

[... stack populated ...]

Figure 2: Memory organization in StickyTags. The tags are persis-
tent: they remain in place when new objects reuse the memory.

Within a size class the objects always use the same slot
size, hence the tag layout in a region is constant. After an
object is deallocated, a new object can reuse the slot while
the underlying memory tags remain unchanged. The tags
are repeated to match the size class, e.g., 64-byte objects
require four consecutive identical tags. On object allocation,
we tag the returned object pointer such that it matches the
persistent tag of the corresponding memory location. The
MTE hardware compares address tags with memory tags and
generates an interrupt upon accesses in case of mismatch.

While size classes are common in modern heap alloca-
tors [60], [61], and previous work has split the stack into
separate regions per variable type to combat type confu-
sions [62], [63], to the best of our knowledge the stack
has never been divided into size classes. It is precisely
this combination of a size class-based (stack and heap)
allocator and persistent memory tags that allows StickyTags
to deliver much higher performance than existing solutions.
Specifically, StickyTags eliminates the need for retagging
memory, because of which it performs well on both the
stack, where the allocation (and hence retagging) frequency
is typically high, and the heap, where large allocations are
not uncommon and hence retagging is costly.

5.1. Persistent Memory Tag Initialization

While StickyTags’ one-time tag initialization is key to
its performance, it is also challenging. A naive solution is
to maintain metadata to track whether the memory tag of a
slot has already been initialized, and check it at object allo-
cation time—initializing the tags only if needed. However,
this strategy would introduce checks and metadata tracking
on the fast path, severely impacting performance. Another
option is to immediately tag an entire memory area every
time a whole region (i.e., stack/heap chunk) is allocated.
However, doing so may result in severe overtagging for
memory that is never used, incurring both runtime and
memory overhead. This is especially likely because modern
applications and allocators tend to keep large amounts of
unused memory around for future use.

4

To avoid such shortcomings, StickyTags initializes mem-
ory tags only once the memory receives backing. In par-
ticular, StickyTags relies on user-level page fault handling
to lazily initialize memory tags: upon accessing a memory
page for the first time, the hardware triggers a page fault
that StickyTags handles by initializing the predetermined
memory tags for the page. For this purpose, it only needs to
know the base address and size class of the region containing
the page, which it obtains from per-region metadata main-
tained by the allocator. Using this information, StickyTags
determines what tags to apply to the page based on the
distance of the current page to the base of the region,
because the region always starts with tag zero and tags cycle
up deterministically (round-robin) from that point.

5.2. Size Classes

Stack. For the stack, StickyTags allocates one region per
size class of stack objects. Allocating the stack regions
using the heap allocator (described below) allows StickyTags
to deduce the size class at runtime when handling page
faults by consulting the heap metadata. StickyTags uses
stack size classes that are multiples of two, which simplifies
pointer tagging, as we will explain in the next section.
While there is at most one instance of each size class in
a single-threaded application, there can be multiple in the
case of multi-threading. StickyTags instruments each unsafe
stack allocation in the program (as determined by static
analysis [64]) to use the base pointer of the associated stack
region instead of the regular stack. The regular stack is still
used for return addresses, statically safe allocations, and
stack objects in uninstrumented libraries.

Since stack objects are allocated on each function en-
try, they require a highly efficient replacement scheme.
Therefore, StickyTags decides at compile time which stack
region pointer (or simply stack pointer) to use for each
stack object and stores the stack pointer in thread-local
storage (TLS). Note that StickyTags creates stack regions
only for the size classes that it statically determines to
be required. Dynamically-sized stack objects (e.g., calls to
alloca) cannot benefit from this scheme and, like heap
objects, require the allocator to find a region for their size
class. Since this is already done for heap objects, StickyTags
moves these objects to the heap by transforming them
into malloc calls. It inserts calls to free at the end of
the object’s lifetime, which it determines using dominance
frontiers [65]. In our evaluation we rarely observe unsafe
dynamically-sized stack objects. Therefore, moving these to
the heap incurs negligible runtime overhead.

Heap. For heap allocations, commodity high-performance
memory allocators already provide a suitable organiza-
tion with size classes. For instance, an allocator such as
TCMalloc [60] uses slab allocation to efficiently implement
per-thread caching of heap objects. StickyTags piggybacks
on these efforts and ensures the allocator uses only size
classes that are a multiple of 16 bytes—the MTE tagging
granularity. See Appendix A for the exact size classes.

Listing 2 Tagging stack pointers upon allocation.
1 // assuming: 'ptr' is target allocation
2 region_base = ptr & (˜((1 << 24)-1));
3 distance = ptr - region_base;
4 jumps = distance >> size_class_power;
5 tag = jumps & 15;
6 ptr = ptr | (tag << 56);

5.3. Tag Calculation

Whenever StickyTags allocates a memory object, it de-
termines the tag to use for the pointer (i.e., the address)
based on the location of the underlying memory. Addition-
ally, upon a page fault, StickyTags applies the appropriate
tagging pattern to the faulting page, in accordance to the
associated size class. The key insight for tagging is that
StickyTags can deterministically calculate the correct tags
for all allocation pointers and faulting pages such that both
correspond to the same tagging layout.

Stack. Since the stack is designed for frequent allocations,
it is crucial to optimize pointer tagging even with efficient
persistent memory tags. For our purposes, we considered
three possible design options. The first maintains an explicit
(per-size-class) tag pointer in TLS similar to the stack
pointer, which we forward through function calls and in-
crease/decrease accordingly, allowing StickyTags to trivially
calculate the next tag to use based on the current tag pointer
value. The second option relies instead on the stack pointer
to calculate the current (per-size-class) tag value just-in-
time. The third option is a hybrid design. Specifically, if
we ensure that all stack allocations are performed uncondi-
tionally (i.e., we perform allocation hoisting), then we can
assume complete linearity of the allocations within each size
class in a function. As a result, we do not need to recalculate
the tag for each allocation (since the tag layout is fixed), and
instead need only calculate the first tag in the function for
each size class, cache it, and offset subsequent allocations
accordingly. With this approach, we effectively calculate and
maintain an explicit function-local tag pointer.

After inspecting preliminary benchmark results, we
quickly discarded the two options based on explicit tag
pointer management, as any increased pressure on the reg-
ister allocators caused by propagating variables proved to
undermine performance. Instead, we focused on the sec-
ond option, optimizing the performance of just-in-time tag
calculations as much as possible. Listing 2 presents how
StickyTags performs just-in-time pointer tag calculations for
stack allocations based on the object address. In particular,
by computing the distance of the current address to the base
of the region, StickyTags can deduce how many tag cycles
fit in this distance, and hence determine the next tag to use.

To optimize the calculation, we align the base of each
stack region to 16 MB and limit the size of each region
to 16 MB. As a result, we can find the base of a stack
region by masking (i.e., cutting down) any arbitrary stack
object’s pointer to the 16 MB boundary, instead of having to

5

perform a memory load (line 2 of Listing 2). Next, a simple
subtraction yields the distance of the object to the base (line
3). We compute how many objects fit in this distance by
dividing it by the size class of the region (as a power of
two exponent). The computation is efficient: the size class
of the allocation (and the corresponding region) is known at
compile time, while the stack’s size classes are a multiple of
two, allowing us to use right shifts rather than divisions (line
4). By knowing how many objects fit before the current one,
StickyTags computes the next tag to use by performing a
modulo 16 (the tag cycle size) operation, which is optimized
to a bitwise AND (line 5). The last step applies the tag to
the upper bits (56-63 with Arm TBI) of the pointer (line 6).

Now that StickyTags has tagged the pointers of the allo-
cations, it must ensure that the underlying memory follows
the same tagging layout. To apply these persistent memory
tags to the stack upon page faults, it uses an algorithm that
closely resembles Listing 2. Starting from a faulting address,
it obtains the corresponding region base and size class from
the heap metadata (since StickyTags allocates stack regions
using the heap allocator) and computes the first tag of the
page through the same steps as in Listing 2 (lines 3 to 5).
Finally, it applies the memory tags by repeatedly executing
the STG (store tag) MTE instruction, looping over the page
in chunks of the size class, and increasing the tag by one
for every object—wrapping around after tag 15.

It is important to note that StickyTags tags stack mem-
ory upon page faults in a runtime library and hence the
inline stack instrumentation (see Listing 2) does not require
any MTE instructions. More specifically, StickyTags’ stack
tagging instructions do not require STG to store memory
tags, which is instead done by the page fault handler, nor
LDG to load tags from storage, since the pointer tags are
computed based on the stack addresses (and applied using
TBI). This comes with the added benefit of providing back-
wards compatibility with legacy Armv8 devices (supporting
TBI, but not MTE). Indeed, if a device does not support
MTE, StickyTags can simply not register the page fault
handler, thereby making memory tagging fully conditional.
In contrast, random tagging solutions such as MemTagSan-
itizer [20] require unconditional insertion of MTE instruc-
tions on the stack, thereby breaking the application binary
interface (ABI). As acknowledged by Google, retaining ABI
compatibility is crucial to deploy stack tagging in practice—
and this is especially the case for systems targeting a wide
variety of Arm devices such as Android [66].

Heap. On the heap, StickyTags tags pointers by piggy-
backing on the existing heap metadata to retrieve the base
address and size class of the object’s region. In contrast to
the stack, the heap uses size classes that are multiples of 16
bytes to avoid excessive memory overhead as well as po-
tential performance penalties due to internal fragmentation
of power-of-two heap allocators [16]. Since the allocation
patterns on the heap are generally less intensive, we trade
off better memory locality for a slightly more expensive
tag calculation. The main complication is that some size
classes do not fit perfectly in the memory page granularity,

because dividing the page size by a size class that is not
a multiple of two results in a non-integer object distribu-
tion (e.g., 4096/48). StickyTags addresses this by offsetting
the memory tagging initialization accordingly, such that it
accounts for memory objects that are partially tagged by a
(prior or future) neighboring page fault.

The algorithm for tagging heap pointers follows the
same structure as for the stack (Listing 2), with the following
minor differences: (1) the region base and size class are
determined through a metadata lookup, and (2) the jumps
calculation (line 4) is a division instead of a right shift (as
the size classes are not always a power of two). The result
of this division is always an integer, since the offset from
the start of the allocation to the region base (distance)
is guaranteed to be a multiple of the size class.

While StickyTags’ lazy tagging strategy reduces the
tagging costs for large objects within a region, the one-
time tagging and subsequent checks still incur some residual
overhead for huge heap objects. To reduce the cost of both
memory tagging and the checks that MTE performs (only)
on tagged memory, StickyTags includes an optimization
where huge objects are allocated in separate (guarded) mem-
ory regions and remain untagged. Huge object allocations
(>262 KB) already constitute a special case in TCMalloc:
each resides in its own dedicated region (also called a
span). Since such huge objects do not have any neighboring
objects inside the region, we can simply spatially fence their
regions using inaccessible guard pages [10], [38]. Similar
optimizations are also present in modern allocators, for in-
stance in the Scudo allocator (Android), which does not tag
objects bigger than a threshold (64 KB on Android, 131 KB
by default) and instead relies on guard pages [67]. While
Scudo does this to avoid (frequently) tagging large regions
of memory [67], StickyTags primarily aims to reduce the
residual tag checking overhead, since huge objects can re-
use previously tagged memory when available.

6. Persistent Spatial Guards on x86

In this section, we show that the principle of persistent
spatial guards along with one-time initialization extrapolates
well to the x86 architecture, even though x86 does not have
memory tagging capabilities. In the absence of MTE, we
rely on providing spatial memory error mitigation through
more traditional compiler-inserted checks and (padded) ex-
plicit spatial guards, commonly called redzones. As before,
we reorganize the address space into regions containing
objects of the same size class, but now additionally we place
redzones at fixed intervals within each region (see Figure 3).
By doing so we can optimize redzone management, even
eliminating the need for out-of-bound metadata such as a
shadow memory. Compared to the implicit spatial guards
of MTE, where tags are associated separately from the
memory, in the case of x86 the persistent guards are explicit,
as they weave between objects to spatially separate them.
As a result, each object size (and hence the size class) is
inflated by including the redzone on its right side. Note that
the redzone on the left is always the right redzone of the

6

Size Class
Regions

Redzone Slot Padding

Figure 3: On x86: Memory is organized in size classes, each
containing equally sized slots of a given size class, interleaved
by redzones. Objects are padded to fit the slot.

Algorithm 1 High-level bounds check. The actual imple-
mentation reuses the loaded value for reads instead of calling
LOAD BYTE, and unrolls the loop for up to 8 fast checks.
REDZONE DISTANCE is different for the heap and the stack.

offset← 0
while offset < num accessed bytes do

if LOAD BYTE(address+ offset) = guard value then
region← GET REGION(address)
sc← GET SIZECLASS(region)
dist← REDZONE DISTANCE(region, address, sc)
if dist < 0 ∨ num accessed bytes > dist then

RAISE ERROR(out of bounds)
offset← offset+ redzone size

previous object, except for the first object, for which the left
redzone is created along with the region initialization.

Existing redzoning solutions (e.g., AddressSanitizer [3])
use a shadow memory to record which memory is accessible,
storing one bit of accessibility information for each byte
of application memory. This fine-grained metadata man-
agement is expensive in both runtime and memory usage,
but is necessary for a design in which a memory location
containing an object (or padding bytes) can later be used
to store a redzone, and vice-versa. Especially if we want
the redzones to be reasonably large (e.g., 256 bytes) to
approximate the lower-bound security guarantees of our
MTE solution, the frequent construction and destruction
of redzones is expensive. In contrast, persistent redzones
entirely eliminate the need for a shadow memory. The base
address and size class of the containing region are known
for each memory location, and can be used to determine
whether a pointer points to a redzone. Additionally, since
the redzones only need to be initialized with guard values
(see below) once, we avoid redzone creation becoming a
severe performance bottleneck.

Accessibility Checks. We insert accessibility checks before
each memory read/write. We leverage redzone-aware static
analysis at the compiler level to skip unnecessary checks and
merge checks of adjacent memory ranges, similar to state-of-
the-art compiler optimizations as seen in related work [36].
The checks consult the metadata of the region containing the
accessed memory address, and use its base and size class to
determine whether the pointer falls within a redzone. This
introduces three memory loads (metadata, region base, and

void foo () { char buf [64]; memset(buf, 0, 96); }

buf

memset

checks
Figure 4: Fast checks on a stack object with 64-byte redzones. The
access spans more than a redzone and is checked by fast-checking
every 64 bytes, failing on the second check.

size class) and some arithmetic/branching operations which
together cause high runtime overhead. We therefore use a
guard value, as done by LBC [4], to quickly filter benign
memory accesses: a single byte value that is stored in each
redzone byte. To avoid writing guard values to a redzone
twice, we lazily initialize guard values upon a page fault.

Each accessibility check first performs a “fast” check,
comparing the byte value at the accessed location to the
guard value, only resorting to a regular “slow” check based
on region metadata if the values match. Algorithm 1 shows
this in detail. Because a memory access can access more
bytes than fit in a redzone, one fast check is emitted for each
redzone size bytes of the access (see Figure 4). Otherwise,
an attacker might abuse a large memory access that starts
before the redzone and thus does not contain the guard value
in the first byte, but crosses the entire redzone to access the
next object slot. As a result, for very large memory accesses,
the performance gain of doing fast checks is overcome by
the number of fast checks that are needed. Hence, we only
emit fast checks if the required number is still beneficial for
performance (up to eight, determined experimentally). To
optimally benefit from fast checks, the guard value should
be uncommon in regular application memory.

In summary, on x86 we use explicit persistent spatial
guards (i.e., redzones) that allow us to scale to relatively
large guard sizes, since we avoid (frequent) redzone cre-
ation/destruction becoming a bottleneck by only having
to initialize the guards once. Due to a lack of hardware
assistance, we rely on compiler-inserted checks to validate
memory accesses. As we will show in our evaluation, (large)
explicit persistent spatial guards are indeed significantly
more efficient than their non-persistent counterparts. How-
ever, the use of compiler checks still results in residual
overheads unsuitable for production use.

7. Implementation

We have implemented our prototypes on Linux on top
of the LLVM [68] compiler infrastructure and the TCMal-
loc [60] memory allocator. We apply our compiler passes
after link-time optimizations. This ensures that inserted
instrumentation does not interfere with any analysis dur-
ing optimizations. Our implementations of implicit guards
(MTE tags) and explicit guards (redzones on x86) share the
memory reorganization and page fault handling logic, and
mainly differ with respect to the application of guards.

7

Size Classes. We use TCMalloc [60] as the basis for
our allocator. TCMalloc organizes objects into size classes
by default. A compiler pass, based on LLVM’s internal
SafeStack [69], creates size classes for the stack and also
applies the pointer tags. We modified the pass to support
one “unsafe” stack per size class. We rely on TCMalloc to
allocate memory areas for the stack regions and to determine
object size classes at runtime. Large stack objects that do
not fit in any of the precomputed size classes are assigned
a new, unique size class. This rarely occurs in practice.

Page Fault Handling. A dedicated poller thread catches
page faults in user mode using Linux’ userfaultfd
system call, initializing memory tags and redzones on x86
in the faulting page when it is accessed for the first time.
We derive where to apply the tags and redzones from per-
region metadata maintained by TCMalloc. Execution of the
poller/application threads is interleaved: during page fault
handling, the faulting application thread waits for the poller
thread to finish. Because only one thread runs at a time,
there is no offloaded overhead on a separate core.

8. Evaluation

In this section, we evaluate the performance and security
of StickyTags. We measure the runtime and memory over-
head using the SPEC CPU2006 and CPU2017 benchmark-
ing suites, and compare this to state-of-the-art solutions. To
quantify the security impact of StickyTags, we use the Juliet
Test Suite [70], existing CVEs [17], and a type confusion
vulnerability analysis. Additionally, we investigate the per-
formance accuracy of existing MTE analogs. For additional
information and experiments we refer to the Appendix.

8.1. Experimental Setup

For the core of our experiments we use a rooted Google
Pixel 8 Pro with MTE support. The device contains 12 GB
RAM and runs a chroot Debian 12 distribution. We further
make use of a Samsung Galaxy S22 (8 GB RAM) and a
MacBook Pro (Apple M2, 16 GB RAM, Asahi Linux 6.3,
Debian 12). All singlethreaded benchmarks are pinned to
a single core. Each measurement reported is the median
of five iterations of the same program (using the reference
workload for SPEC CPU). For the baseline, we enabled link-
time optimizations and used an unmodified TCMalloc as the
memory allocator. Note that default TCMalloc has an aver-
age speedup of 11.7% compared to the default (non-MTE)
Scudo allocator (and 8% to the default GNU heap allocator)
and up to 73% for a single benchmark (471.omnetpp), while
consuming 3% more memory on average. Unfortunately,
we have to exclude SPEC CPU2017 from most of our
experiments, because the baseline runs out of memory. The
system requirements for SPECspeed 2017 state 16 GB of
physical memory, and the Pixel 8 and S22 do not meet this.

MTE Hardware. Recent work concerning MTE uses
analogs to approximate the overhead of memory tagging

0% 2% 4% 6% 8% 10% 12% 14% 16%
Runtime overhead (%)

geomean
483.xalancbmk

482.sphinx3
473.astar

471.omnetpp
470.lbm

464.h264ref
462.libquantum

458.sjeng
456.hmmer
453.povray
450.soplex
447.dealII

445.gobmk
444.namd

433.milc
429.mcf
403.gcc

401.bzip2
400.perlbench

Sized Stack
Tag Stack Ptrs

Tag Stack Mem
Tag Heap Ptrs

Tag Heap Mem
ASync Checks

Figure 5: Runtime overhead buildup of different components of
StickyTags on SPEC CPU2006 using MTE hardware (Pixel 8).

since MTE hardware was not widely available [17], [19],
[34], [71]. In our evaluation, we measured the performance
of StickyTags with actual MTE hardware. First, the Google
Pixel 8 (Tensor G3, android14-5.15) supports MTE and
allows the feature to be enabled through its developer op-
tions. Second, by rooting a Samsung S22 and deploying
a custom Exynos (Linux 5.10) kernel, we manage to acti-
vate its MTE hardware by explicitly ignoring the nomte
kernel parameter. However, on the S22 the locked-down
boot monitor does not reserve backing (physical) memory
to store the memory tags for uncached data. Consequently,
tagging memory works as expected, reading the target data
into the cache and setting the memory tags in the cache
hierarchy accordingly. However, as soon as the data leaves
the cache, the memory tags cannot be swapped to backing
memory and effectively vanish. Subsequent accesses to the
memory cause a segmentation fault by the MTE checks
(since the pointer still has the tag). While the Pixel 8 serves
as the main target for evaluation (with completely functional
MTE), the S22 nonetheless provides another data point as
MTE implementation, allowing us to gain further insights
into the performance of MTE’s memory tagging and our
design. Additionally, to paint a complete picture with respect
to existing work, we also conduct performance experiments
with the existing MTE analogs on the S22 (and Apple M2).

8.2. Performance Buildup

For our performance evaluation we configured MTE on
the Pixel 8 to perform asynchronous checks, which Arm
recommends for production usage [72]. Figure 5 displays the
runtime overhead of StickyTags on each individual bench-
mark of the SPEC CPU2006 suite. In total, StickyTags in-
curs a geomean runtime overhead of 4.0%. The figure breaks
down this overhead into six distinct components: using size
classes on the stack (1.0%), tagging stack pointers (0.1%),
tagging stack memory (0.1%), tagging heap pointers (0.8%),

8

1 10 100 1K 10K 100K 1M
Number of page faults (log scale)

geomean
483.xalancbmk

482.sphinx3
473.astar

471.omnetpp
470.lbm

464.h264ref
462.libquantum

458.sjeng
456.hmmer
453.povray
450.soplex
447.dealII

445.gobmk
444.namd

433.milc
429.mcf
403.gcc

401.bzip2
400.perlbench

Stack Heap

Figure 6: Number of (4 KB) page faults in SPEC CPU2006.

tagging heap memory (0.5%), and the asynchronous checks
(1.5%). Note that the heap and stack memory tagging com-
ponents constitute the overhead of using userfaultfd to
one-time initialize the persistent tags upon page faults.

From the overhead buildup figure we can conclude that
tagging memory is cheap (see geomean bar), which is a log-
ical consequence from our persistent tags design. Moreover,
we see that using a stack with size classes can be the largest
contributor of overhead in some benchmarks (400.perlbench,
445.gobmk), while overall the slowdown is modest. For the
CPU2006 benchmarks, we create an average (geomean) of 7
stack regions (each dedicated to a distinct size class). Then,
on average, a maximum of 4 are used per function. Note
that these numbers are statically computed, meaning that
some stack regions may be unused at runtime depending
on the execution path. Excluding the checks, the remaining
overhead originates from tagging pointers on the stack and
the heap, which correlates with the memory intensity of
the applications. For instance, 447.dealII and 483.xalancbmk
are known to be relatively heap-intensive, and hence these
accordingly experience more overhead from tagging heap
pointers. As touched upon before, we may choose to only
use size classes that are a multiple of two on the heap,
which accelerates the pointer tag calculation, but this may
come with other drawbacks such as memory fragmentation.

We observe that the overhead implications of enabling
asynchronous MTE checks are low but non-negligible. On
average, the checks comprise the most significant overhead
component, however this is not unexpected, because Sticky-
Tags focuses on eliminating tagging overhead. Moreover, the
checks clearly show up as the dominant overhead factor in
multiple programs. The 471.omnetpp benchmark stands out
the most, where the checks incur more than 11% overhead.
Upon further inspection with perf [73], we found that
for this benchmark the CPU experiences a 19% increase
in stalled cycles in the backend, which is likely the result
of the asynchronous checks creating additional contention.

To better understand the characteristics of our memory

System Heap Stack Both

StickyTags 3.1% 1.2% 4.0%
MemTagSan + Scudo 5.8% 15.2% 20.2%

TABLE 1: Runtime overhead comparison between StickyTags,
MemTagSanitizer, and Scudo using SPEC CPU2006 (Pixel 8).

tagging design, we measured the number of page faults
that occur at runtime for both the heap and the stack.
Figure 6 displays the results of this experiment. Looking
at the aggregate numbers in the figure, it is clear that the
stack experiences much fewer page faults than the heap, with
the geomeans being 20 and 83,154, respectively. Moreover,
we see a logical correlation between the overhead of tagging
heap memory being relatively expensive for 403.gcc and the
large number of heap page faults for this benchmark. In con-
trast, 401.bzip2 also experiences a relatively large number
of heap page faults, but the heap objects are effectively all
huge (>262 KB), which means our huge objects optimiza-
tion leaves them untagged. Without this optimization, the
runtime overhead of 401.bzip2 grows from 6.6% to 7.7%.
Additionally, the low number of page faults for the stack
highlights the efficacy of our persistent tagging design on the
stack. On average, only 20 memory pages need to be tagged
throughout the entire lifetime of the evaluated applications,
regardless of the intensity of their allocation patterns.

8.3. Comparison to the State of the Art

In order to put the performance of StickyTags into
perspective, we compared its overhead to state-of-the-art
systems. We measured runtime and memory overhead us-
ing the SPEC CPU2006 benchmarking suite and evaluated
against LLVM’s MemTagSanitizer (stack) and the Scudo
heap allocator. The primarily probabilistic Scudo allocator
assigns a random tag to every heap allocation and retags the
memory upon deallocation. Additionally, Scudo guarantees
neighboring objects to have different tags by employing an
odd-even tag masking pattern. MemTagSanitizer tags every
stack allocation with a “random” tag at the start of its life-
time and resets the tag at the end of it. To avoid scalability
issues with random tags requiring an extra live register for
each variable, the tags are not completely random. Instead,
MemTagSanitizer generates a random base tag for each
function, with the following stack variables receiving a tag
derived from the base tag. Note that the primary use case of
MemTagSanitizer is deployment in production binaries [20].
Unfortunately, MemTagSanitizer causes false positive tag
mismatches due to untagged pointers accessing tagged stack
memory. Therefore, for the faulting programs (400.perl-
bench and 471.omnetpp) we modified MemTagSanitizer to
only use tag zero to avoid these non-trivial crashes.

Table 1 shows the geomean runtime overhead of Sticky-
Tags, MemTagSanitizer, and Scudo on the SPEC CPU2006
suite. The table contains the isolated heap and stack over-
head, as well as the combination of both. Most notably,
we observe that MemTagSanitizer’s stack instrumentation
incurs 15.2% overhead, while StickyTags’ stack overhead is

9

more than twelve times lower at 1.2%. Moreover, we see that
StickyTags incurs 3.1% overhead for protecting the heap,
which is nearly half of the 5.8% overhead of Scudo. When
MemTagSanitizer is combined with Scudo to protect both
the stack and the heap, the overhead becomes a combined
total of 20.2%. As a result, with 4.0% overhead StickyTags
is over five times faster at protecting both the heap and stack
compared to the existing state-of-the-art solutions.

Regarding memory consumption, we measured that
StickyTags increases memory usage (i.e., the RSS–resident
set size) by 15.7%, while Scudo and MemTagSanitizer only
slightly (1%) increase memory consumption. StickyTags
raises memory consumption by creating size classes on
the stack and through internal modifications to TCMalloc,
for instance to adhere to the 16 byte MTE granularity for
object sizes and to support proper memory separation for
the huge objects optimization. While the relative memory
consumption of StickyTags is higher compared to enabling
MTE with existing allocators, the absolute peak RSS value
for StickyTags is lower for a few benchmarks, including two
heap-intensive workloads: 400.perlbench and 471.omnetpp.

Additionally, we conducted an experiment to obtain
overhead results on SPEC CPU2017, for which the Pixel
8 lacks the prerequisite physical memory. Therefore, we
make use of MTE analogs on a MacBook Pro (contain-
ing an Apple M2 CPU with Arm Top-Byte Ignore for
pointer tagging) to benchmark the memory tagging costs on
SPECspeed 2017. The details concerning this experiment
are displayed in Section A in the Appendix. The takeaway
from this experiment aligns with our results in Table 1,
where the tagging performance of StickyTags is greater than
existing non-persistent tagging techniques. For instance, us-
ing analogs on SPEC CPU2017 we measure an overhead
of 8.8% for MemTagSanitizer, and only 1.0% for the stack
instrumentation of StickyTags.

Next, we put StickyTags in perspective to related re-
search, such as software-only systems like Delta Point-
ers [12], TailCheck [10], Low Fat Pointers [14], [35], and
MEDS [74], as well as a hardware-assisted solution like
PACMem [6]. These existing techniques still report over-
heads hovering between 30% and 55% (or higher), which
leads to the conclusion that the overhead is too high to be
considered for a post-deployment mitigation. Although we
note some systems also provide temporal error protection,
their runtime overhead remains impractically high for live
deployment. Additionally, Color My World [71] is an MTE-
based solution that relies on deterministic stack tagging,
however this technique still incurs a reported runtime over-
head of 13.6% (with MTE analogs) on SPEC CPU2017
for protecting the stack, which is more than the 8.8% we
measured for MemTagSanitizer, and significantly more than
the 1.0% stack overhead of StickyTags (see Appendix A).

MemTagSanitizer Overhead Analysis. Although Mem-
TagSanitizer incurs a sizeable runtime overhead on sev-
eral CPU2006 benchmarks (41% on 453.povray, 36% on
400.perlbench, etc.), the benchmark that stands out the most
is the (chess variants playing) 458.sjeng program with an

[Type] System Stack Stack + Heap

[MTE] MemTagSanitizer + TC 22.8% 25.7%
[ANL] MemTagSanitizer + TC 14.0% 16.1%
[MTE] StickyTags 1.4% 2.7%
[ANL] StickyTags 1.4% 2.7%

TABLE 2: SPEC CPU2006 geomean runtime overhead summary
of memory tagging costs on a Samsung S22 for StickyTags and
MemTagSanitizer using MTE hardware. ANL means MTE analogs,
TC stands for TCMalloc with per-request (non-persistent) tagging.

overhead of 267% (3.67x), even with checks disabled. In
order to better understand the source of the overhead and the
potential bottlenecks surrounding MTE, we used perf [73]
to profile the 458.sjeng binary. We discovered that the
program spends almost all of its execution time inside a re-
cursive function called search. Aside from local variables
that are statically proven to be safe, this function contains
three arrays: one struct array of 512 elements, where the
size of the struct is 24 bytes (6 integers), and two 32-bit
integer arrays of 512 elements each. In total, this results
in exactly 16 KB of ‘unsafe’ stack data. As a consequence
of MemTagSanitizer’s per-request memory tagging design,
this entire region needs to be (un)tagged for every recursive
call. In contrast, when the recursive call pattern re-iterates
through previously used call depth, StickyTags only needs to
calculate which tag to assign to the pointers of the stack allo-
cations, while the underlying memory tags remain persistent.
As a result, StickyTags successfully avoids this memory
tagging bottleneck and only incurs a small runtime overhead
of 2% on 458.sjeng. Additionally, we further confirmed that
tagging memory clearly dominates the overhead of random
tagging by measuring a 14.5% geomean runtime overhead
of MemTagSanitizer on SPEC CPU2006 with the checks
disabled. Tagging memory therefore makes up 95% of the
total 15.2% (see Table 1) random tagging runtime overhead.

8.4. Memory Tagging Performance

In this section, we specifically evaluate the costs of
tagging memory, which is the bottleneck we aim to relieve
with StickyTags. Therefore, we exclude the overhead of tag
checks, since this concerns an overhead that is orthogonal to
our design. To this end, we use the Samsung S22 for these
experiments, which is capable of tagging memory (but not
performing checks; see Section 8.1), and therefore provides
another data point for tagging costs. MTE provides the Tag
Check Override instruction and we confirmed that the cost
of memory tagging remains the same even when the checks
are disabled. We also confirmed that applying tags forces the
memory into the cache, which provides further evidence that
the S22 is representative for the cost of setting tags.

Since we are interested in quantifying the performance
of persistent memory tags, we conducted the following
experiments using SPEC CPU2006. For our main configura-
tion we measured the stack tagging overhead of StickyTags
and MemTagSanitizer, because the stack concerns relatively
frequent tagging behavior, and hence should reveal potential

10

tagging bottlenecks. Next, we measured the performance
difference between persistent and non-persistent tagging on
the heap by evaluating against the TCMalloc heap allocator
with a similar tagging pattern but with no one-time memory
tag initialization. We assign matching pointer and memory
tags upon each heap allocation and cycle through the tags
deterministically in a round-robin fashion. Lastly, we inves-
tigated the overhead accuracy of existing MTE analogs by
repeating both of these experiments using analogs.

Table 2 displays the geomean runtime overhead of
MemTagSanitizer and StickyTags on SPEC CPU2006. From
these results we conclude that StickyTags provides signif-
icantly higher tagging performance than MemTagSanitizer.
Specifically, StickyTags incurs a runtime overhead of 1.4%
for tagging the stack, while MemTagSanitizer is over 16
times slower with 22.8% overhead. MemTagSanitizer is
still heavily impacted by the 458.sjeng binary, incurring
a slowdown of over 6x on the S22. Next, we consider
the additional runtime overhead when including persistent
and non-persistent tagging on the heap. For StickyTags, we
measure a 2.7% overhead for tagging both the stack and the
heap, attributing 1.3% to the heap. Note that this corresponds
to the tagging overhead we measured on the Pixel 8 (see
Figure 5). For the non-persistent tagging design (Mem-
TagSanitizer + TCMalloc), the combined overhead is 25.7%,
with an increase of 2.9% caused by the heap. These results
indicate that persistent tagging is approximately twice as
fast on the heap compared to its non-persistent counterpart.

Next, we examined how representative MTE analogs
are for the overhead of memory tagging through a direct
comparison. We first point out that both tagging systems
are nearly twice as slow on MTE hardware compared to
the MTE analogs on the Apple M2 (see Table 4 in the
Appendix). However, we measure that the overhead of
MemTagSanitizer (plus the heap) using MTE analogs is
nearly equivalent across the two devices: 16.1% on the
S22 vs. 15.8% on the M2. Since the overhead we measure
with MTE hardware (25.7%) is notably higher, our results
suggest that the overhead approximation of the MTE analogs
is too optimistic for this particular MTE implementation.
We also point out that the MTE analogs currently do not
incorporate the overhead of checks, which we measured are
non-negligible (see Figure 5). For StickyTags the overhead
with MTE hardware and analogs is equivalent on the S22,
but this is not unexpected since most of StickyTags’ over-
head originates from sources that are not tagging memory
(Figure 5), hence switching to analogs has a smaller impact.

In conclusion, StickyTags can successfully provide per-
formance that is suitable for deployment on live systems.
On the Samsung S22 StickyTags introduces an average
memory tagging overhead of 2.7% for the stack and the heap
combined. When including the tag checks, we measured a
4.0% overhead on the Pixel 8. Our evaluation shows that
StickyTags improves tagging performance both on the heap
and the stack, with the stack being the more significant
component. It is expected that the stack is the most sus-
ceptible to MTE overhead [33] and therefore also permits
the most room for improvement, due to the inherently high

0%

25%

50%

75%

100%

Ru
nt

im
e

Ov
er

he
ad Traditional Redzones Persistent Redzones

16 32 64 128 256 512 768
Redzone Size (bytes)

0%

25%

50%

75%

100%

M
em

or
y

Ov
er

he
ad

Figure 7: Geomean overhead on SPEC CPU2006 of increasing
redzone size for traditional and persistent (one-time) initialization.

allocation frequency. Furthermore, since memory tagging
does not require explicit interleaving to introduce spatial
guards, the memory overhead of StickyTags, but also of
MTE solutions in general, is modest overall.

8.5. Generalizability to x86

In this section, we evaluate the overhead of our design
generalized to x86. Recall this involves a software-only
design that relies on compiler-based checks and explicit
spatial guards. For our experiments, we make use of an Intel
Xeon E5-2630v3 machine with 16 cores running CentOS
7.4.1708. We select the guard value 223 to fill the redzone
bytes for performing fast checks. We find this value to be
suitable by analyzing SPEC CPU2006’s memory accesses,
and determine it consistently occurs sparsely across the
different programs. Reasons for this include: it is not a
printable ASCII character, it is not a power of two, and
it is a prime number. We refer to Figure 9 in the Appendix
for more details on the prevalence of different guard values.

Since we are interested in to what degree we can scale
redzones to match the implicit spatial guards of MTE, we
evaluate our design with different redzone size configura-
tions. For reference, the first three size classes of StickyTags
on the heap (16, 32, and 48 bytes) result in implicit guards
of 240, 480, and 720 bytes. Additionally, we also investigate
to what extent our design of persistent guards provides
performance benefits, compared to the traditional method of
initializing redzones upon each allocation. We optimize this
traditional method by only initializing the right redzone of
each object, since the left redzone is also the right redzone of
the preceding slot and is therefore already initialized (in our
memory layout) when the current slot is allocated. Note that
for the traditional redzones we do not incorporate the costs
of destructing redzones upon deallocation (to derive the
most efficient baseline for comparison), which is normally
necessary for non-persistent redzones, for example in ASan.

Figure 7 displays the geomean runtime and memory
overhead of our design on SPEC CPU2006 for an increasing
redzone size, both with and without persistent redzones. For
a redzone size of 16 bytes, we reach a runtime overhead as

11

low as 25%, for both redzone initialization types. Although
this overhead may appear relatively high, especially com-
pared to StickyTags with MTE, this is a significant speedup
compared to ASan, for which we measured an 86% runtime
overhead when configured to detect only spatial memory
errors. Considering other state-of-the-art spatial memory er-
ror mitigation techniques, we measured an overhead of 67%
for Low-Fat Pointers [14], and 35% for Delta Pointers [12]
(which is limited to protecting only upper bounds).

Regarding scalability, we observe that for 16-byte red-
zones, runtime performance does not benefit from persistent
redzones because repeatedly initializing a redzone is very
efficient—, requiring a single instruction that writes a 128-
bit value from an SSE register. As the redzone size increases,
however, the runtime overhead increases significantly less
with persistent redzones. Indeed, up to 64 bytes, the over-
head does not increase at all. Even at 768 bytes, the runtime
overhead is only 47%—versus 84% with lazy initialization
disabled, an improvement of 44%, as seen in Figure 7.

Naturally, the memory overhead of explicit guards is
more pronounced than implicit guards. Starting with a red-
zone size of 16 bytes, we observe a memory overhead of
18% when using persistent redzones and 3% using tradi-
tional redzones. The memory overhead then scales upward
with the increase in redzone size, up to 113% and 93% when
using redzones of 768 bytes. The memory overhead for
persistent redzones is raised due to the potential overprovi-
sioning of redzones at the page granularity. Additionally, the
instrumentation also protects global variables, which further
increases the overall memory footprint of the redzones.

In conclusion, we show that our design of persistent
spatial guards can translate from implicit guards with a
memory tagging backend to explicit guards through more
traditional redzones and compiler-based checks. The re-
sulting runtime overhead is significantly lower than ASan
and other existing compiler-based techniques, and we also
highlight the performance gain with respect to traditional
redzone initialization. Furthermore, we show that this design
can scale towards large redzone sizes and does so more
efficiently than traditional redzone initialization, by nearly
halving the runtime overhead when using redzones of size
768. Unfortunately, unlike our MTE solution, the residual
runtime overheads are still too high for practical adoption.

8.6. Security

The spatial security guarantees of StickyTags are gener-
ally comparable to those of redzoning solutions [3], [4], [36]
for a given spatial guard size. Both techniques mitigate all
contiguous buffer overflows (and underflows) and bounded
non-contiguous out-of-bounds accesses up to the guard size.
The main difference is that typical detection systems such as
ASan [3] detect (non-exploitable) accesses to padding bytes
within the object memory slot, while StickyTags’ mitigation-
focused checks do not. Furthermore, our tagging layout is
deterministic and therefore fully predictable. For protection,
we do not rely on the attacker being unbeknownst to the tag

Description (CWE) Total Detected Mitigated

Stack buffer overflow (121) 69 56 (81%) 69 (100%)
Heap buffer overflow (122) 69 56 (81%) 69 (100%)
Buffer underwrite (124) 21 21 (100%) 21 (100%)
Buffer overread (126) 13 12 (92%) 13 (100%)
Buffer underread (127) 21 21 (100%) 21 (100%)

TABLE 3: Juliet Test Suite detection and mitigation results.

used (prone to tag leakage attacks), but instead on the rela-
tively large spatial guards. Whereas in probabilistic solutions
neighboring objects may share the same tag (sometimes one
neighbor is guaranteed to have a different tag), we guarantee
that the next fifteen objects cannot be accessed using the
tagged pointer of the current object.

Juliet Test Suite. We use the NIST Juliet Test Suite
(v1.3) [70] to show the vulnerability detection and miti-
gation efficacy of StickyTags. This test suite consists of a
large number of programs containing memory safety issues.
We limit ourselves to the bug categories concerning spatial
errors. Furthermore, we deduplicate the test cases (since
many are equivalent at runtime), and we omit test cases that
do not (deterministically) contain an error, such as bugs that
rely on rand or 32-bit systems.

Table 3 displays the total number of test cases for each
category along with the number of bugs detected and mit-
igated by StickyTags. Overall, we observe that StickyTags
can detect most of the bugs and mitigate all of them. The
cases that go undetected all display the same erroneous
behavior: they contain a bounded overflow that lands in the
padding bytes as a result of StickyTags respecting the 16-
byte MTE granularity for object sizes. For instance, one
bug concerns a 10 bytes allocation followed by an off-by-1
access. Since StickyTags allocates and tags 16 bytes of
memory for this object, the out-of-bounds access lands in the
padding bytes, thereby mitigating (although not detecting)
the overflow since it cannot corrupt a neighboring object.

CVE Analysis. To further evaluate the real-world security
guarantees of StickyTags, we gathered the CVEs used in
the security evaluation of MTSan [17]—a recently pub-
lished MTE-based sanitizer—and show that StickyTags can
mitigate these test cases. We selected all relevant (and
reproducible) cases: heap and stack buffer overflows, re-
sulting in a total of eight distinct CVEs (see Table 5 in
the Appendix for details). When executing the test cases on
the Pixel 8, StickyTags successfully detects (i.e., observes
a tag mismatch and causes a segmentation fault) the spatial
errors in all eight CVEs, which we confirm by obtaining
a bug stacktrace that is identical to the ground truth pro-
vided by ASan [3]. To assess whether StickyTags also fully
mitigates the exploitation of the CVEs (i.e., can detect the
underlying vulnerability no matter what out-of-bounds offset
the attacker can force the program to use), we resorted to
manual code inspection. Our analysis revealed that five of
the bugs concern linear overflows, and two are bounded non-
linear overflows with a constant offset on an uncontrollable
pointer—all of which StickyTags completely neutralizes. We

12

16 32 64 128 256 512 1024
struct type size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
til

e

52%
75% 86% 94% 97%

Figure 8: Distribution of struct type sizes in SPEC CPU2006
rounded up to the nearest power of two (on a log scale). Part
of the graph is omitted for readability on the right side, containing
a small number of very large object sizes up to 100 KB.

could not easily ascertain the set of possible out-of-bounds
offsets for the remaining CVE. Hence, we conservatively
ascribe it to the non-linear, unbounded overflow category,
which StickyTags cannot deterministically mitigate.

Type Confusion Vulnerabilities. Recall StickyTags intro-
duces spatial guards of size (2N − 1) × S bytes. To fur-
ther quantify the effectiveness of StickyTags’ protection,
we consider bounded non-contiguous overflows caused by
type confusion bugs. StickyTags can protect against non-
contiguous bugs caused by type confusion as long as the
guard size is at least as big as the size difference between
the confused structure types. When this is the case, any
member of the larger object type will either reside in the
smaller object type (i.e., no out-of-bounds primitive) or in
a neighboring mismatched tag.

Figure 8 shows the sizes of all structure types in SPEC
CPU2006 rounded up to the next multiple of two. To easily
reason over the attack surface reduction, we focus on the
worst-case scenario: an object of the smallest size class (16
bytes) being confused with larger object types. As shown in
the figure, even by focusing only on the smallest size class
with guards of 240 bytes, StickyTags protects against type
confusion for 94% of all object sizes (i.e., those up to 256
bytes). In comparison, ASan’s default configuration of 32-
byte redzones handles around 52% of object sizes. Unlike
ASan, our design on x86 can also scalably support large
(e.g., 240-byte) redzones with realistic overheads.

8.7. Beyond Spatial Memory Errors

Finally, we also briefly study more holistic designs that
include use-after-free (UAF) protection. One option is to
enable orthogonal measures for UAF, such as MarkUs [75],
DangZero [54], or FFmalloc [57]. Alternatively, in more
favorable threat models, where brute forcing and speculative
probing capabilities are unavailable, defenders may wish to
switch to random tagging on the heap. In such a scenario,
combining StickyTags on the stack with random tagging on
the heap can provide a balance between runtime overhead
and (limited) temporal security guarantees. We implemented
this strategy by combining StickyTags’ stack tagging with
random tagging support in TCMalloc. To implement the

latter, we inserted a random tag on every heap allocation
and changed the tag to another (distinct) random tag upon
deallocation (for UAF). For this hybrid deterministic/random
tagging design, we measured a geomean runtime overhead
of 7.5% on SPEC CPU2006. We also confirmed this setup
successfully detects the UAF test cases of the Juliet Test
Suite (CWE416). Compared to the performance results pre-
sented in Table 1, we observe that, thanks to StickyTags’ ef-
ficient stack tagging strategy, the hybrid design remains sig-
nificantly faster than Scudo with MemTagSanitizer (20.2%),
but it is also notably slower than default StickyTags (4.0%).

9. Limitations

Currently, neither MemTagSanitizer nor StickyTags im-
plements tagging for global variables, although this is not
a fundamental limitation. Engineering efforts in this direc-
tion have already been discussed concerning MemTagSan-
itizer [76]. For a direct comparison between the two solu-
tions, we decided against implementing support for globals
for StickyTags. Nonetheless, to show it is feasible to support
globals in a persistent guard design, we did implement
support for globals variables in our x86 implementation—
which introduced no noticeable performance overhead. This
is done at compile time by moving each variable into a
newly inserted global array containing slots for its size class.

In addition, StickyTags uses all the MTE tags for spatial
memory error mitigation and spares no tags for temporal
errors. This is to maximize the size of our guards, but also
because the potential temporal guarantees are not strong
to begin with, as memory massaging allows attackers to
exhaust the tag entropy through repeated memory reuse—
dashing any hope to use tags for deterministic temporal mit-
igations. As discussed earlier, even random tags are insuffi-
cient as attackers can probe for matching pointer / memory
tags using classic brute forcing or speculative probing. To
overcome this limitation, one can complement StickyTags
with temporal error mitigations [54], [56], [57], [58], [75].
Alternatively, for weaker threat models (i.e., no tag entropy
exhaustion possible), one can consider a hybrid determinis-
tic/random tagging solution that enhances StickyTags with
(some) heap use-after-free protection (Section 8.7).

Finally, StickyTags also shares all the limitations of
MTE-based and SafeStack-based solutions. For instance, for
MTE we need to reserve the upper pointer bits for the
pointer tag. This may introduce compatibility problems with
MTE-unaware applications that implement their own custom
pointer tagging. On the SafeStack side, known compatibil-
ity limitations are with applications relying on low-level
stack manipulations. Moreover, compiling dynamic libraries
with SafeStack is still not supported [69]. None of these
limitations are fundamental, but addressing them requires
engineering effort and/or application code changes.

10. Related work

Existing MTE Solutions. Most existing MTE solutions rely
on randomly generated tags for their inner workings. The

13

main exception is Color My World [71], which performs
extensive static analysis to deterministically protect the stack
through tag forgery prevention. However, this design results
in a reported overhead that is higher even than what we
measured for MemTagSanitizer and is hence unsuitable for
production use. MemTagSanitizer [20] also features a deter-
ministic component, in that it generates a base tag for every
stack frame and then cycles upwards deterministically from
that point. Since the base tag is random, MemTagSanitizer
attains only deterministic intra-stack frame protection. The
security guarantees remain probabilistic across frames and
can be breached by an attacker armed with stack massaging.

The remaining MTE solutions rely largely on ran-
dom tagging. More specifically, the SLUB allocator in
KASAN [22], glibc’s allocator [21], and PartitionAlloc [24]
are all completely probabilistic. Nonetheless, other solutions
feature partially deterministic behavior. Scudo [23] places
16 bytes of tag zero (reserved) before and after allocations,
covering determinism up to off-by-16 bytes, and also fea-
tures an odd-even tag masking mode to ensure that adjacent
objects have different tags, hence providing deterministic
off-by-1 object detection. Similarly, MTSan [17] ensures
that neighboring objects have different tags. In StickyTags,
we provide completely deterministic tag assignment, thereby
creating large implicit spatial guards bounded only by the
MTE tag entropy. The resulting design incurs low runtime
overhead, therefore making it suitable for production use.

Spatial Memory Errors. Over the past decades, many dif-
ferent solutions have been studied to address spatial memory
errors, including sanitizers [3], [8], [9], [10], [36], [37] and
bounds checkers [4], [12], [13], [14], [15], [16], [35], [77].
The former are mostly employed in offline testing scenarios,
while the latter have been proposed as a mitigation. While
existing bounds checkers can completely protect against spa-
tial memory errors, they unfortunately remain impractically
expensive on commodity hardware, with the lowest reported
overhead being Delta Pointers [12] with a slowdown of 35%.

In contrast, with StickyTags, we focus on the opposite
design point: an efficient mitigation that offers protection
bounded by the MTE tag entropy. Historically, mitigations
that found production deployment mostly focused on cheap
methods to reduce the attack surface, since providing full
protection was too costly. Examples include: Address Space
Layout Randomization (ASLR), No-EXecute (NX), Posi-
tion Independent Executables (PIE), Read-only relocation
(RELRO), and stack canaries.

11. Conclusion

Spatial memory errors remain a major vulnerability class
in C and C++ programs. Despite decades of research, pro-
posed mitigations are still not considered for production
use due to the impractical overheads they introduce. In
this paper, we argued Arm’s Memory Tagging Extension
(MTE) is a strong contender for production-ready mitigation
against spatial memory errors. We first showed that existing
probabilistic MTE solutions incur important limitations in

performance (i.e., due to frequent memory retagging) and
security (i.e., due to random tagging being vulnerable to
tag leakage attacks). Then, we presented StickyTags and
demonstrated that persistent memory tags can provide de-
terministic protection against spatial memory errors with
high performance. Our evaluation shows that StickyTags is
efficient with both MTE hardware and analogs, incurring a
low overhead of ≤ 4% to protect the stack and the heap.

Disclosure. We disclosed speculative probing of random
tags to Arm, which further disclosed to affected licensees. In
response, Arm published an advisory [78] to offer guidance
on the impact of speculative oracles on memory tagging.

Acknowledgments

We would like to thank the anonymous reviewers for
their feedback. Special thanks to Jakob Koschel and Niko-
laos Chalkiadakis (MTE on the S22), Raphael Isemann
(LTO magic), Johannes Blaser (LLVM guidance), Mathé
Hertogh (Spectre hacking), and Chris Ouwehand (early x86
prototyping). This work was supported by Intel Corpora-
tion through the “Allocamelus” project, by NWO through
project “INTERSECT” and “Theseus”, and by the European
Union’s Horizon Europe programme under grant agreement
No. 101120962 (“Rescale”).

References

[1] CWE, “2023 CWE Top 25 Most Dangerous Software Weaknesses,”
https://cwe.mitre.org/top25/archive/2023/2023 top25 list.html, 2023.

[2] V. Tsyrklevich, “GWP-ASan: Sampling heap memory error
detection in-the-wild,” Online, https://www.chromium.org/Home/
chromium-security/articles/gwp-asan/.

[3] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Ad-
dressSanitizer: A Fast Address Sanity Checker,” in USENIX ATC,
2012.

[4] N. Hasabnis, A. Misra, and R. Sekar, “Light-weight Bounds Check-
ing,” in Code Generation and Optimization (CGO), 2012.

[5] T. Kroes, K. Koning, C. Giuffrida, H. Bos, and E. van der Kouwe,
“Fast and generic metadata management with mid-fat pointers,” in
10th European Workshop on Systems Security (EuroSec), 2017.

[6] Y. Li, W. Tan, Z. Lv, S. Yang, M. Payer, Y. Liu, and C. Zhang,
“PACMem: Enforcing Spatial and Temporal Memory Safety via ARM
Pointer Authentication,” in ACM CCS, 2022.

[7] K. Serebryany, E. Stepanov, A. Shlyapnikov, V. Tsyrklevich, and
D. Vyukov, “Memory Tagging and how it improves C/C++ memory
safety,” 2018.

[8] J. Ba, G. J. Duck, and A. Roychoudhury, “Efficient Greybox Fuzzing
to Detect Memory Errors,” in IEEE/ACM ASE, 2022.

[9] F. Gorter, E. Barberis, R. Isemann, E. Van Der Kouwe, C. Giuffrida,
and H. Bos, “FloatZone: Accelerating Memory Error Detection using
the Floating Point Unit,” in USENIX Security, 2023.

[10] A. U. S. Gopal, R. Soori, M. Ferdman, and D. Lee, “TAILCHECK:
A Lightweight Heap Overflow Detection Mechanism with Page Pro-
tection and Tagged Pointers,” in OSDI, 2023.

[11] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen,
and M. Franz, “SoK: Sanitizing for security,” in IEEE S&P, 2019.

14

https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://www.chromium.org/Home/chromium-security/articles/gwp-asan/
https://www.chromium.org/Home/chromium-security/articles/gwp-asan/

[12] T. Kroes, K. Koning, E. van der Kouwe, H. Bos, and C. Giuffrida,
“Delta pointers: Buffer overflow checks without the checks,” in
Thirteenth EuroSys Conference, 2018, pp. 1–14.

[13] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Soft-
Bound: Highly compatible and complete spatial memory safety for
C,” in PLDI, 2009.

[14] G. J. Duck, R. H. Yap, and L. Cavallaro, “Stack Bounds Protection
with Low Fat Pointers,” in NDSS Symposium, 2017, pp. 1–15.

[15] N. Burow, D. McKee, S. A. Carr, and M. Payer, “Cup: Comprehensive
user-space protection for c/c++,” in ASIA CCS, 2018.

[16] P. Akritidis, M. Costa, M. Castro, and S. Hand, “Baggy bounds
checking: An efficient and backwards-compatible defense against out-
of-bounds errors.” in USENIX Security Symposium, vol. 10, 2009.

[17] X. Chen, Y. Shi, Z. Jiang, Y. Li, R. Wang, H. Duan, H. Wang, and
C. Zhang, “MTSan: A Feasible and Practical Memory Sanitizer for
Fuzzing COTS Binaries,” in USENIX Security Symposium, 2023.

[18] K. Hohentanner, P. Zieris, and J. Horsch, “Cryptsan: Leveraging arm
pointer authentication for memory safety in c/c++,” in SAC, 2023.

[19] J. Seo, J. You, D. Kwon, Y. Cho, and Y. Paek, “Zometag: Zone-based
memory tagging for fast, deterministic detection of spatial memory
violations on arm,” IEEE TIFS, 2023.

[20] LLVM, “MemTagSanitizer,” Online, https://llvm.org/docs/
MemTagSanitizer.html.

[21] G. glibc, “38.7 Memory Related Tunables,” Online, https://www.
gnu.org/software/libc/manual/html node/Memory-Related-Tunables.
html.

[22] Linux, “The Kernel Address Sanitizer (KASAN),” Online, https://
docs.kernel.org/dev-tools/kasan.html.

[23] pcc, “scudo: Add initial memory tagging support,” Online, https://
reviews.llvm.org/D70762.

[24] R. Townsend, “feat: basic MTE support for the partition alloca-
tor,” Online, https://chromium-review.googlesource.com/c/chromium/
src/+/2695355.

[25] A. Partap and D. Boneh, “Memory tagging: A memory efficient
design,” arXiv preprint arXiv:2209.00307, 2022.

[26] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh,
“Hacking blind,” in IEEE S&P, 2014.

[27] R. Gawlik, B. Kollenda, P. Koppe, B. Garmany, and T. Holz, “En-
abling client-side crash-resistance to overcome diversification and
information hiding.” in NDSS, vol. 16, 2016, pp. 21–24.

[28] LWN.net, “Averting excessive oopses,” Online, https://lwn.net/
Articles/914878/.

[29] E. Göktas, K. Razavi, G. Portokalidis, H. Bos, and C. Giuffrida,
“Speculative probing: Hacking blind in the Spectre era,” in CCS,
2020.

[30] J. Bialek, K. Johnson, M. Miller, and T. Chen, “Security
analysis of memory tagging,” Online, https://github.com/microsoft/
MSRC-Security-Research/blob/master/papers/2020/Security%
20analysis%20of%20memory%20tagging.pdf.

[31] S. Jero, N. Burow, B. Ward, R. Skowyra, R. Khazan, H. Shrobe,
and H. Okhravi, “Tag: Tagged architecture guide,” ACM Computing
Surveys, vol. 55, no. 6, pp. 1–34, 2022.

[32] M. Brand, “MTE As Implemented, Part 1: Implementation
Testing,” Online, https://googleprojectzero.blogspot.com/2023/08/
mte-as-implemented-part-1.html.

[33] Arm, “Armv8.5-A Memory Tagging Extension,” Online, https:
//developer.arm.com/-/media/Arm%20Developer%20Community/
PDF/Arm Memory Tagging Extension Whitepaper.pdf.

[34] D. McKee, Y. Giannaris, C. O. Perez, H. Shrobe, M. Payer,
H. Okhravi, and N. Burow, “Preventing kernel hacks with HAKC,” in
Network and Distributed System Security Symposium (NDSS), 2022.

[35] A. Kwon, U. Dhawan, J. M. Smith, T. F. K. Jr, and A. DeHon, “Low-
fat pointers: compact encoding and efficient gate-level implementation
of fat pointers for spatial safety and capability-based security,” in
ACM CCS, 2013.

[36] Y. Zhang, C. Pang, G. Portokalidis, N. Triandopoulos, and J. Xu,
“Debloating Address Sanitizer,” in USENIX Security, 2022.

[37] Y. Jeon, W. Han, N. Burow, and M. Payer, “FuZZan: Efficient
Sanitizer Metadata Design for Fuzzing,” in USENIX ATC, 2020.

[38] B. Perens, “Electric Fence,” 1987, https://elinux.org/Electric Fence.

[39] M. Labs, “Pwn2own 2013 write-up: We-
bkit exploit,” https://labs.mwrinfosecurity.com/blog/
mwr-labs-pwn2own-2013-write-up-webkit-exploit, 2013.

[40] K. Serebryany et al., “GWP-ASan: Sampling-Based Detection of
Memory-Safety Bugs in Production,” arXiv:2311.09394, 2023.

[41] A. Sotirov, “Heap Feng Shui in JavaScript,” Black Hat Europe, 2007.

[42] A. Mambretti, A. Sandulescu, A. Sorniotti, W. Robertson, E. Kirda,
and A. Kurmus, “Bypassing memory safety mechanisms through
speculative control flow hijacks,” in EuroS&P, 2021.

[43] J. Ravichandran, W. T. Na, J. Lang, and M. Yan, “Pacman: attacking
arm pointer authentication with speculative execution,” in ISCA, 2022.

[44] P. Kocher et al., “Spectre attacks: Exploiting speculative execution,”
in S&P, 2019.

[45] Intel, “Refined speculative execution terminology,”
https://www.intel.com/content/www/us/en/developer/
articles/technical/software-security-guidance/best-practices/
refined-speculative-execution-terminology.html.

[46] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren,
and Y. Yarom, “Robust website fingerprinting through the cache
occupancy channel,” in USENIX Security, 2019.

[47] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “ASLR on
the line: Practical cache attacks on the MMU,” in NDSS, 2017.

[48] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic timers
and where to find them: High-resolution microarchitectural attacks in
JavaScript,” in Financial Crypto, 2017.

[49] D. Kohlbrenner and H. Shacham, “Trusted browsers for uncertain
times,” in USENIX Security, 2016.

[50] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand pwning unit:
Accelerating microarchitectural attacks with the GPU,” in S&P, 2018.

[51] J. Kim, S. van Schaik, D. Genkin, and Y. Yarom, “iLeakage: Browser-
based timerless speculative execution attacks on Apple devices,” in
CCS, 2023.

[52] A. Shusterman, A. Agarwal, S. O’Connell, D. Genkin, Y. Oren, and
Y. Yarom, “Prime+Probe 1, JavaScript 0: Overcoming browser-based
side-channel defenses,” in USENIX Security, 2021.

[53] H.-J. Boehm, “Bounding space usage of conservative garbage collec-
tors,” in POPL, 2002.

[54] F. Gorter, K. Koning, H. Bos, and C. Giuffrida, “DangZero: Efficient
Use-After-Free Detection via Direct Page Table Access,” in CCS,
2022.

[55] P. Akritidis, “Cling: A memory allocator to mitigate dangling point-
ers,” in USENIX Security, 2010.

[56] T. H. Dang, P. Maniatis, and D. Wagner, “Oscar: A Practical Page-
Permissions-Based Scheme for Thwarting Dangling Pointers,” in
USENIX Security Symposium, 2017, pp. 815–832.

[57] B. Wickman, H. Hu, I. Yun, D. Jang, J. Lim, S. Kashyap, and T. Kim,
“Preventing Use-After-Free Attacks with Fast Forward Allocation,” in
30th USENIX Security Symposium (USENIX Security 21), 2021.

[58] R. M. Farkhani, M. Ahmadi, and L. Lu, “PTAuth: Temporal Memory
Safety via Robust Points-to Authentication,” in USENIX Security,
2021.

15

https://llvm.org/docs/MemTagSanitizer.html
https://llvm.org/docs/MemTagSanitizer.html
https://www.gnu.org/software/libc/manual/html_node/Memory-Related-Tunables.html
https://www.gnu.org/software/libc/manual/html_node/Memory-Related-Tunables.html
https://www.gnu.org/software/libc/manual/html_node/Memory-Related-Tunables.html
https://docs.kernel.org/dev-tools/kasan.html
https://docs.kernel.org/dev-tools/kasan.html
https://reviews.llvm.org/D70762
https://reviews.llvm.org/D70762
https://chromium-review.googlesource.com/c/chromium/src/+/2695355
https://chromium-review.googlesource.com/c/chromium/src/+/2695355
https://lwn.net/Articles/914878/
https://lwn.net/Articles/914878/
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf
https://googleprojectzero.blogspot.com/2023/08/mte-as-implemented-part-1.html
https://googleprojectzero.blogspot.com/2023/08/mte-as-implemented-part-1.html
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://elinux.org/Electric_Fence
https://labs.mwrinfosecurity.com/blog/mwr-labs-pwn2own-2013-write-up-webkit-exploit
https://labs.mwrinfosecurity.com/blog/mwr-labs-pwn2own-2013-write-up-webkit-exploit
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/refined-speculative-execution-terminology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/refined-speculative-execution-terminology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/refined-speculative-execution-terminology.html

[59] M. Erdős, S. Ainsworth, and T. M. Jones, “Minesweeper: a “clean
sweep” for drop-in use-after-free prevention,” in ASPLOS, 2022.

[60] S. Ghemawat and P. Menage, “TCMalloc: Thread-caching malloc,”
2009.

[61] D. Leijen, B. Zorn, and L. de Moura, “Mimalloc: Free list sharding
in action,” in APLAS. Springer, 2019.

[62] A. Milburn, E. Van Der Kouwe, and C. Giuffrida, “Mitigating in-
formation leakage vulnerabilities with type-based data isolation,” in
2022 IEEE Symposium on Security and Privacy (S&P). IEEE, 2022.

[63] E. Van Der Kouwe, T. Kroes, C. Ouwehand, H. Bos, and C. Giuffrida,
“Type-after-type: Practical and complete type-safe memory reuse,” in
ACSAC, 2018, pp. 17–27.

[64] LLVM, “Stack Safety Analysis,” Online, https://llvm.org/docs/
StackSafetyAnalysis.html.

[65] S. Muchnick, Advanced Compiler Design and Implementation, 1997.

[66] “Private email communication with Google (MTE) engineers.”

[67] LLVM, “Scudo source,” https://llvm.googlesource.com/scudo/+/
966620155350ba9e3d09b6bc70b9babc4d222027/combined.h#388.

[68] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in CGO, 2004.

[69] “Safestack,” https://clang.llvm.org/docs/SafeStack.html.

[70] F. B. Jr. and P. Black, “Juliet 1.1 C/C++ and Java Test Suite,” in IEEE
Computer, 2012, pp. 88–90.

[71] H. Liljestrand, C. Chinea, R. Denis-Courmont, J.-E. Ekberg, and
N. Asokan, “Color My World: Deterministic Tagging for Memory
Safety,” arXiv preprint arXiv:2204.03781, 2022.

[72] Arm, “Arm Memory Tagging Extension,” Online, https://source.
android.com/docs/security/test/memory-safety/arm-mte#async-mode.

[73] Linux, “Profiling with performance counters.”

[74] W. Han, B. Joe, B. Lee, C. Song, and I. Shin, “Enhancing mem-
ory error detection for large-scale applications and fuzz testing,” in
Network and Distributed Systems Security (NDSS) Symposium, 2018.

[75] S. Ainsworth and T. M. Jones, “Markus: Drop-in use-after-free pre-
vention for low-level languages,” in S&P, 2020.

[76] M. Phillips, “Globals Tagging - Discussion,” Online, https://groups.
google.com/g/llvm-dev/c/FAR7zKNkWh4/m/FIddvBRQAgAJ.

[77] J. Devietti, C. Blundell, M. M. Martin, and S. Zdancewic, “Hard-
bound: Architectural support for spatial safety of the c programming
language,” ACM SIGOPS Operating Systems Review, 2008.

[78] Arm, “Arm Memory Tagging Extension: Security Update,” Online,
https://developer.arm.com/Arm%20Security%20Center/Arm%
20Memory%20Tagging%20Extension.

[79] S. Singh and M. Awasthi, “Memory centric characterization and
analysis of spec cpu2017 suite,” in ICPE, 2019.

Appendix

Apple M2: StickyTags with MTE Analogs

System SPEC CPU2006 SPEC CPU2017

StickyTags-stack 0.7% 1.0%
MemTagSan-stack 14.2% 8.8%

StickyTags-heap 0.5% 0.7%
Non-persistent-heap 1.6% 1.4%

StickyTags-both 1.2% 1.9%
MemTagSan + TC 15.8% 10.4%

TABLE 4: SPEC CPU runtime overhead summary using MTE
analogs for StickyTags, TCMalloc with non-persistent tagging, and
MemTagSanitizer.

Comparison to the state-of-the-art. In this section, we
compare the overhead of StickyTags, TCMalloc with a
non-persistent deterministic tagging scheme (described in
Section 8.4), and MemTagSanitizer. We make use of MTE
analogs on the Apple M2 and the SPEC CPU2006 and 2017
benchmarking suites. Note that the M2 uses pages of size
16 KB, which reduces the number of page faults StickyTags
has to handle compared to a 4 KB page size. Unfortunately,
the 657.xz s benchmark is known to exhibit an extremely
large memory footprint [79], and we have to omit it because
the M2 runs out of memory (16 GB). Although the system
requirements for SPECspeed 2017 state 16 GB of physical
memory, this is insufficient on our machine.

Table 4 showcases the geomean runtime overhead we
measured. The table contains the isolated heap and stack
overhead, as well as the combination of both. Most notably,
we observe that MemTagSanitizer’s stack instrumentation
incurs 14.2% and 8.8% runtime overhead on CPU2006
and 2017, respectively, while StickyTags’ stack overhead
is significantly lower at 0.7% and 1.0%. Moreover, for
the heap we measure a runtime overhead of 1.6% and
1.4% on CPU2006 and 2017 for the non-persistent tagging
design, while StickyTags manages to (more than) halve this
overhead to 0.5% and 0.7%. With the stack and heap com-
bined, StickyTags incurs a low overhead of 1.2% and 1.9%,
compared to existing techniques with 15.8% and 10.4%, for
SPEC CPU2006 and 2017, respectively. These data points
for both the stack and the heap highlight the benefit of our
design for persistent memory tags, with which we manage
to relieve the pressure of frequent memory tagging.

Listing 3 MTE analog for setting and clearing memory tags.
The analog is adapted from the original [34] to be inlined.

1 #define MTE_SET_TAG_INLINE(ptr, size) asm volatile (\
2 "mov x2, %0 \n"\
3 "mov x3, %1 \n"\
4 "mov x17, %0 \n"\
5 "cbz %1, 2f \n"\
6 "1: \n"\
7 "mov x16, %0 \n"\
8 "lsr x16, x16, #56 \n"\
9 "and x16, x16, #0xFUL \n"\

10 "strb w16, [x17, #0x0] \n"\
11 "add %0, %0, #16 \n"\
12 "sub %1, %1, #16 \n"\
13 "add x17, x17, 1 \n"\
14 "cbnz %1, 1b \n"\
15 "2: \n"\
16 "mov %0, x2 \n"\
17 "mov %1, x3 \n"\
18 :: "r"(ptr),"r"(size) : "x16","x17","x2","x3","memory")

Vulnerability Type Project Program Version

CVE-2016-10270 heap libtiff tiffcp 4.0.1
CVE-2016-10271 heap libtiff tiffcrop 4.0.1
CVE-2017-8786 heap pcre2 pcre2test 10.23

CVE-2017-14408 stack mp3gain mp3gain 1.5.2
CVE-2018-20004 stack mxml testmxml 2.12
CVE-2020-21675 stack fig2dev fig2dev 93795dd
CVE-2020-21050 stack libsixel img2sixel 2df6437
CVE-2021-20294 stack binutils readelf 2.35

TABLE 5: Program details of the CVE analysis.

16

https://llvm.org/docs/StackSafetyAnalysis.html
https://llvm.org/docs/StackSafetyAnalysis.html
https://llvm.googlesource.com/scudo/+/966620155350ba9e3d09b6bc70b9babc4d222027/combined.h#388
https://llvm.googlesource.com/scudo/+/966620155350ba9e3d09b6bc70b9babc4d222027/combined.h#388
https://clang.llvm.org/docs/SafeStack.html
https://source.android.com/docs/security/test/memory-safety/arm-mte#async-mode
https://source.android.com/docs/security/test/memory-safety/arm-mte#async-mode
https://groups.google.com/g/llvm-dev/c/FAR7zKNkWh4/m/FIddvBRQAgAJ
https://groups.google.com/g/llvm-dev/c/FAR7zKNkWh4/m/FIddvBRQAgAJ
https://developer.arm.com/Arm%20Security%20Center/Arm%20Memory%20Tagging%20Extension
https://developer.arm.com/Arm%20Security%20Center/Arm%20Memory%20Tagging%20Extension

Heap and stack size classes

For the stack we use a total of 15 size classes, all of them
being a multiple of two, and the smallest being the MTE
tagging granularity. The list of classes consists of: 2N with
N = {4...18}, making the largest class 262144 bytes. For
the heap we use a total of 76 size classes, all of them being
a multiple of 16, and the smallest being the MTE tagging
granularity. These are the default size classes in TCMalloc,
with the exception of the first class being 16 instead of 8.

Redzone guard value on x86

0 50 100 150 200 250
value of first byte

0

2

4

%
 o

f a
dd

re
ss

es

20.7% for byte 0 (outside graph)

Figure 9: Byte values at dereferenced addresses in SPEC CPU2006.
Bin i shows what percentage of dereferenced addresses contains
value i in the first byte. Highlighted bin: 223 (default guard value).

Occurrences of the guard value in application memory out-
side a redzone cause a slow check when dereferenced. To
achieve high efficiency, it is important to limit the number of
slow checks by choosing a guard value that occurs sparsely
consistently across different types of programs. To find such
values, we instrumented SPEC to log the first byte at the
location of each memory access, as seen in Figure 9.

• Values 0 and 1 are (unsurprisingly) the most common—
as these are default initializers. This extends to a lesser
degree to low values under 20. Similarly, the value 255
(used in bitmasks) is best avoided.

• Text-processing applications such as 483.xalancbmk,
400.perlbench and 401.bzip show spikes in the range of
printable ASCII characters (up to 127) and in particular
alphabetic characters (65-90 and 97-122).

• Powers of 2 and their multiples are prevalent.
• Some benchmarks show recurring spikes at the multi-

ples of some application-specific number.

Webservers on x86

Saturation
connections

Throughput
degradation

Latency increase
50p 75p 90p 99p

Nginx 250 7% 8% 7% 6% 5%
Apache 350 8% 9% 10% 11% 15%
Lighttpd 500 10% 14% 9% 11% 13%

TABLE 6: Web server overhead at saturation: throughput degrada-
tion and increase in 50/75/90/99 percentile latency.

We have benchmarked both our LTO-enabled TCMalloc
baseline and our x86 design (configured to use explicit

158k

409k
437k

 200 400 600 800 1000 1200 14000%

100%

Nginx

baseline

x86 guards

74k

141k
153k

 100 200 300 400 500 600 7000%

100%

th
ro

u
g
h

p
u

t
(r

e
q

s
/s

)

C
P

U
 u

ti
liz

a
ti
o

n

Apache

214k

527k
588k

 0 200 400 600 800 1000 1200 14000%

100%

concurrent connections

Lighttpd

Figure 10: Web server throughput with increasing client connec-
tions. E.g., the Nginx baseline achieves its maximum throughput
at saturation (100% CPU) at 250 connections, at which point the
throughput degradation is 7% from our x86 persistent guards.

persistent spatial guard of 64 bytes) on three major web
servers: Nginx 1.17.4, Apache 2.4.41 and Lighttpd 1.4.54.
We instrumented loadable modules and non-system libraries
(including APR and APR-Util) for all servers. We used two
Intel Xeon Silver 4110 machines—server and client—each
with 8 hyper-threaded cores at 2.10 GHz and 32 GB of
memory, connected by a dedicated 100 Gbit/s network link.
We used a Linux 4.15 kernel with sendfile enabled
and used a large number of keepalive connections with
a short timeout. We ran our experiments with 16 worker
processes, requesting 64-byte pages for 30 seconds using the
wrk benchmark with an increasing number of concurrent
connections. We repeated each experiment 11 times and
report the medians here. All standard deviations are less than
1% except for 99-percentile latency for which it goes up to
2.6%. Figure 10 illustrates how we determined saturation
points, i.e., the number of connections with the highest
throughput at 100% CPU utilization. Table 6 details the
throughput and latency impact on x86 for all servers: at
saturation, throughput degrades by only 7-10% and 99-
percentile latency increases by 5-15%.

17

Benchmark ST-heap ST-stack ST-both MTS Scudo Scudo+MTS

400.perlbench 1.02 1.09 1.11 1.36 1.29 1.54
401.bzip2 1.03 1.03 1.07 1.07 1.00 1.08
403.gcc 1.08 1.02 1.10 1.12 1.26 1.36
429.mcf 0.99 1.00 1.00 1.00 1.00 1.01
433.milc 1.01 1.01 1.01 1.02 0.99 1.01
444.namd 1.00 0.98 0.99 1.01 1.01 1.01
445.gobmk 1.00 1.04 1.05 1.25 1.00 1.25
447.dealII 1.06 0.97 1.06 1.02 1.09 1.09
450.soplex 1.01 1.01 1.00 1.00 1.01 1.03
453.povray 1.05 1.04 1.11 1.41 1.04 1.46
456.hmmer 1.01 1.01 0.99 1.01 1.00 1.01
458.sjeng 1.01 1.01 1.02 3.67 1.00 3.69
462.libquantum 1.03 1.00 1.00 1.02 1.01 1.00
464.h264ref 1.01 1.00 1.01 1.01 1.00 1.01
470.lbm 1.02 1.00 1.01 1.01 1.00 1.01
471.omnetpp 1.17 1.01 1.14 1.02 1.20 1.23
473.astar 1.03 0.99 1.02 1.01 1.03 1.03
482.sphinx3 1.02 1.00 1.01 1.00 1.00 1.01
483.xalancbmk 1.06 1.03 1.08 1.23 1.26 1.43

geomean 1.031 1.012 1.040 1.152 1.058 1.202

TABLE 7: Google Pixel 8 Pro SPEC CPU2006 MTE results. MTS=MemTagSanitizer, ST=StickyTags, both=heap+stack.

MTE Analogs MTE Hardware
Benchmark MTS MTS+heap ST-stack ST-both MTS MTS+heap ST-stack ST-both

400.perlbench 1.22 1.20 1.07 1.09 1.14 1.17 1.07 1.10
401.bzip2 1.10 1.10 1.03 1.04 1.17 1.17 1.03 1.04
403.gcc 1.07 1.17 1.00 1.07 1.11 1.41 1.00 1.08
429.mcf 1.03 1.03 0.99 1.00 1.00 1.01 0.99 1.01
433.milc 1.01 1.01 1.00 1.03 0.99 0.99 0.99 1.01
444.namd 0.98 0.98 0.97 0.97 1.01 1.01 0.97 0.97
445.gobmk 1.48 1.48 1.03 1.03 1.78 1.73 1.03 1.03
447.dealII 0.85 0.99 0.99 1.00 1.00 0.93 0.99 0.99
450.soplex 1.00 1.00 1.00 1.00 1.00 1.03 1.00 1.01
453.povray 1.14 1.14 1.05 1.05 1.39 1.30 1.05 1.05
456.hmmer 0.99 1.00 1.01 1.02 0.99 1.01 1.01 1.02
458.sjeng 4.19 4.20 1.04 1.04 7.33 6.01 1.04 1.04
462.libquantum 1.06 1.07 1.04 1.03 1.10 1.08 1.02 1.02
464.h264ref 1.01 1.01 1.00 1.00 1.02 1.02 1.01 1.01
470.lbm 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04
471.omnetpp 0.97 1.01 1.00 1.03 1.01 1.17 1.01 1.04
473.astar 0.99 1.00 1.00 1.01 1.00 1.01 1.00 1.00
482.sphinx3 1.00 1.01 1.00 1.00 0.99 1.01 1.00 1.00
483.xalancbmk 1.28 1.37 1.02 1.07 1.59 2.23 1.02 1.07

geomean 1.140 1.161 1.014 1.027 1.228 1.257 1.014 1.027

TABLE 8: Samsung Galaxy S22 SPEC CPU2006 MTE results. MTS=MemTagSanitizer, ST=StickyTags, both=heap+stack.

Benchmark MTS TC-NP MTS+TC ST-stack ST-heap ST-both

600.perlbench s 1.06 1.01 1.07 1.04 1.00 1.05
602.gcc s 1.05 1.06 1.12 1.01 1.02 1.03
605.mcf s 1.00 1.00 1.00 1.00 1.00 1.00
619.lbm s 1.02 1.04 1.06 1.03 1.03 1.06
620.omnetpp s 1.22 1.05 1.27 1.00 1.02 1.03
623.xalancbmk s 1.26 1.00 1.26 1.01 1.00 1.01
625.x264 s 1.41 0.99 1.41 1.01 1.00 1.01
631.deepsjeng s 1.04 1.01 1.05 1.02 1.00 1.02
638.imagick s 1.00 1.00 1.00 1.00 1.00 1.00
641.leela s 1.00 1.00 1.00 1.00 1.00 1.00
644.nab s 1.00 1.00 1.00 1.00 1.00 1.00
657.xz s - - - - - -

geomean 1.088 1.014 1.104 1.010 1.007 1.019

TABLE 9: MacBook M2 SPEC CPU2017 analogs results. MTS=MemTagSanitizer, ST=StickyTags, TC=TCMalloc, NP=non-persistent.

18

Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

This paper details a speculative attack to leak MTE
tags on real hardware. To mitigate the attack, the authors
propose a reorganization of heap and unsafe stack objects
that provides deterministic, bounded spatial memory safety.

A.2. Scientific Contributions

• Addresses a Long-Known Issue
• Provides a Valuable Step Forward in an Established

Field
• Identifies an Impactful Vulnerability

A.3. Reasons for Acceptance

1) The authors detail a new MTE tag leak side-channel
attack.

2) The authors implement a new heap layout to provide
deterministic, bounded spatial safety that mitigates the
new side-channel attack.

3) The authors provide evaluation on performance and
security benefits.

A.4. Noteworthy Concerns

1) The memory overhead of 15% is non-trivial for many
real world scenarios.

2) Exclusive use of StickyTags as a protection mechanism
without an additional Use-After-Free (UaF) mitigation
makes exploiting UaF easier, and makes detecting UaF
exploits difficult. This is due to the reuse of object
classes key to the design of StickyTags. However, the
authors note that UaF protections can be deployed, and
show this in an evaluation on UaF Juliet testcases.

19

	Introduction
	Background
	Speculatively Probing for Random Tags
	Threat Model
	StickyTags
	Persistent Memory Tag Initialization
	Size Classes
	Tag Calculation

	Persistent Spatial Guards on x86
	Implementation
	Evaluation
	Experimental Setup
	Performance Buildup
	Comparison to the State of the Art
	Memory Tagging Performance
	Generalizability to x86
	Security
	Beyond Spatial Memory Errors

	Limitations
	Related work
	Conclusion
	References
	Appendix
	Appendix A: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

