
Leaky Address Masking: Exploiting Unmasked Spectre Gadgets
with Noncanonical Address Translation

Mathé Hertogh*, Sander Wiebing* and Cristiano Giuffrida*

*Vrije Universiteit Amsterdam, The Netherlands
{m.c.hertogh,s.j.wiebing,c.giuffrida}@vu.nl

Abstract—Linear Address Masking (LAM) is a recently an-
nounced Intel feature that enables the CPU to mask off some
upper bits before dereferencing a 64-bit pointer. The key idea
behind LAM (as well as the similar Upper Address Ignore or
UAI from AMD), is to allow software to efficiently make use
of untranslated bits of 64-bit linear addresses for metadata.
The assumption is that, with LAM (or UAI) features enabled,
one can implement fast security (e.g., memory safety) checks
and ultimately improve security of production systems.

In this paper, we challenge this assumption and show that
LAM features can actually degrade security in production by
dramatically increasing the Spectre attack surface. To support
this claim, we present a new Spectre covert channel based on
noncanonical address translation and address key challenges to
implement it in practice. For instance, we exploit properties of
modern TLBs to craft a reliable signal and LAM features to
(crucially) bypass canonicality checks. Moreover, we show that,
unlike classic Spectre covert channels, ours unlocks generic (or
unmasked) Spectre gadgets encoding high-entropy secrets as
dereferenced pointers. Unlike classic (or masked) gadgets, we
show the latter escape deployed mitigations and are pervasive
in high-value targets such as the Linux kernel. To showcase
the new attack surface, we present an end-to-end exploit for
Spectre based on LAM (SLAM) targeting upcoming Intel
CPUs. We specifically focus on the BHI Spectre variant and
show that, despite mitigations believed to eradicate the attack
surface, our exploit can abuse a variety of gadgets in the latest
Linux kernel and leak the root password hash within minutes
from kernel memory. We conclude by evaluating mitigations.

1. Introduction

Since the original Spectre [1] and Meltdown [2] dis-
closure in 2018, transient execution vulnerabilities have
been increasingly gaining momentum. Five years, several
disclosed variants, and even more deployed mitigations later,
a key question still troubles researchers and practitioners:
“What is the residual attack surface for last-generation sys-
tems?”. For Meltdown-like vulnerabilities (e.g., L1TF [3],
MDS [4], [5], [6], [7], [8], etc.) fully mitigated in hardware,
the answer is relatively well-understood (i.e., “none”, mod-
ulo the occasional mitigation flaws [8]). For Spectre, on the
other hand, the answer is far from trivial.

void masked_gadget(long *secret) {
array[(*secret & 0xff) * 4096];

}
void unmasked_gadget(long **secret) {
**secret;

}

Figure 1: Masked and unmasked Spectre disclosure gadgets.
The attacker controls secret during speculative execution.

Indeed, since Spectre vulnerabilities remain not fully
mitigated in hardware, the residual attack surface depends on
unintentionally exploitable code snippets (or disclosure gad-
gets) in the victim software. Typically, attackers only need to
find one gadget to disclose secret data. They can then rely on
direct/indirect branch misprediction to lure the victim into
speculatively executing the gadget, the latter accessing and
then transmitting the secret over a microarchitectural covert
channel. Figure 1 (top) exemplifies a classic (“masked” [9])
gadget, with *secret (e.g., out-of-bounds) data masked
down to 8 bits, encoded as an index of a small linear
array, transmitted when accessing the corresponding array
element’s CPU cache line, and ultimately received by the
attacker via a cache attack such as Flush+Reload [10].

With deployed mitigations reducing exploitable branch
targets (e.g., by fencing direct branches [1] or tagging/flush-
ing indirect branches [11]) as well as guarding sensi-
tive array accesses to hinder masked gadgets (e.g., ar-
ray index nospec [12]), finding classic Spectre gadgets or
variations [11], [13], [14], [15] one can exploit in practice
is a tall order. This is the case even for the large codebases
of high-value victims such as the Linux kernel. Indeed,
state-of-the-art kernel gadget scanners generally only report
potentially exploitable gadgets [9], [11], [15], [16] or find
exploitable ones that depend on other mitigated Meltdown-
like vulnerabilities such as MDS [16], [17]. Existing end-to-
end exploits, on the other hand, need to resort to software
vulnerabilities [13], language features such as (unprivileged)
eBPF [11], [15], or vulnerable older-generation microarchi-
tectures [14]. As such, common wisdom suggests that the
residual Spectre attack surface is thin in practice.

In this paper, we challenge common wisdom and un-
cover a significant new attack surface for user-to-kernel

Spectre attacks on upcoming Intel/AMD CPUs1. Specif-
ically, we move away from classic Spectre gadgets and
study “unmasked” gadgets [9], demonstrating their practical
exploitation for the first time. Figure 1 (bottom) exemplifies
an unmasked gadget, with 64-bit *secret data encoded as
a dereferenced pointer. As we will show, unmasked gadgets
originate from widespread pointer-chasing code patterns,
and, as such, are abundant in modern kernels such as Linux.

Nonetheless, exploiting unmasked gadgets is challeng-
ing, to the point that their practical relevance has been
often dismissed in the past [9]. Indeed, since these gadgets
interpret an arbitrary high-entropy secret as a pointer and use
a simple dereference for transmission, practical exploitation
is out of reach for classic cache covert channels. First, the
secret pointer may happen to encode an invalid address, such
as a noncanonical or unmapped address, whose dereference
may be unable to fill a valid cache line and transmit the
secret. Second, even if the secret happens to encode a valid
address, the pointer dereference may fill a cache line any-
where within (huge and noncontiguous) valid 64-bit virtual
address space, far exceeding the small linear array (and the
CPU cache size) required by classic cache covert channels.

To address these challenges and show unmasked gadgets
are exploitable in practice with few constraints, we devise
a new Spectre covert channel based on a number of key
insights. First, we move away from classic cache covert
channels and opt for an address translation one. To this
end, we consider different translation vectors and show
that, due to their properties, modern TLBs are the ideal
choice, simultaneously yielding the best efficiency and the
largest attack surface. Unlike prior TLB covert channels [6],
[18], [19], ours abandons the classic linear array design and
adopts an efficient Evict+Reload construction [20] for the
transmission, matching the reliability of classic cache covert
channels. Second, we extend our covert channel to support
noncanonical address translation. As we will show, this is
possible by abusing Linear Address Masking (LAM, or UAI
in AMD parlance) features [21] in upcoming Intel/AMD
CPUs, which mask off crucial upper pointer bits normally
subject to canonicality checks. We further show our covert
channel can also target older-generation AMD CPUs that
feature lazy canonicality checks. Finally, we devise a com-
bination of sliding and just-in-time remapping techniques to
reduce the entropy of our covert channel, enabling byte-by-
byte disclosure and ultimately practical exploitation.

To evaluate the new attack surface, we use our covert
channel to mount a practical user-to-kernel exploit for Spec-
tre based on LAM (SLAM) against Linux. For our analysis,
we specifically focus on the BHI Spectre variant [11],
given that (i) assessing the residual BHI attack surface post
unprivileged eBPF is an open and pressing question, having
recently persuaded Intel to conduct the first large-scale, in-
depth gadget analysis campaign from a vendor [9]; (ii) de-
spite a dedicated gadget scanner and the extensive manual
effort, said analysis found no attack surface of concern—
after focusing on classic masked Spectre gadgets. In con-

1See Section 14 for impact also on future ARM CPUs.

trast, as we will show, even the simple gadget scanner we
develop reveals hundreds of practically exploitable gadgets
(out of 16,046 potential ones) to implement BHI exploits
based on our TLB covert channel. As a concrete demonstra-
tion, we exploit 7 such gadgets in end-to-end SLAM exploit
instances able to leak arbitrary ASCII characters from Linux
kernel memory on upcoming Intel/AMD CPUs. Our exploits
can leak the root password hash on the latest Ubuntu within
minutes. We conclude by evaluating mitigations.

In summary, our contributions are:
• The first security analysis of Intel LAM / AMD UAI,

with concrete evidence upcoming LAM features can
degrade (rather than improve) security.

• An analysis of translation-based covert channels, re-
sulting in the first TLB Evict+Reload primitive able
to disclose information from a privileged victim.

• The first (noncanonical address translation) covert
channel enabling practical exploitation of unmasked
Spectre gadgets.

• The first in-depth unmasked Spectre (BHI) gadget
analysis for Linux and the resulting practical end-to-
end SLAM exploit to leak the root password hash.

• Investigation and evaluation of mitigation options.
Availability. Code and additional information about

SLAM is available at https://vusec.net/projects/slam.

2. Background

2.1. Address Translation

Memory management in modern CPUs uses a pag-
ing organization. Loads and stores operate on virtual ad-
dresses, which are translated by the Memory Management
Unit (MMU) into physical addresses (normally referenc-
ing DRAM). Software has control over such virtual-to-
physical address translation via multi-level page tables, i.e.,
a memory-resident radix tree mapping virtual to physical
addresses, at the page (e.g., 4 KB) granularity. Upon every
(virtual) memory reference, the MMU performs a page table
walk, i.e., a radix-tree lookup to find the corresponding
physical address, after which the actual data can be fetched.
Walking the page tables requires extra memory accesses,
since a page table entry (PTE) must be fetched at each page
table level. PTE fetches use the same memory subsystem
and hence the same CPU caches as normal data accesses.
As an additional optimization, both full and partial address
translations are cached in dedicated MMU caches, known
as Translation Lookaside Buffers (TLBs) and Translation
Caches (respectively). Page tables also support permission
bits in each PTE, with software able to mark pages as
user/supervisor, read/write/execute, etc. Modern operating
systems deploy SMAP [22], a hardware feature preventing
the kernel from accessing user memory.

2.2. Linear Address Masking

Modern x86 64 platforms support 48-bit or 57-bit vir-
tual addresses with 4-level or 5-level page tables (respec-

https://vusec.net/projects/slam

Reset Microarchitectural State

Mistrain Branch Predictor

Trigger Victim

 Mispredict Branch

Execute Disclosure Gadget

 Decode Microarchitectural State

1

2

3

4

5

6

Figure 2: Overview of Spectre attacks, with architectural
execution of the attacker (red) and architectural / transient
execution of the victim (green / blue).

tively). Since pointers encode 64-bit virtual addresses, the
upper (16 or 7, respectively) bits are irrelevant for address
translation and instead required to be copies of the top
translated bit (47 or 56, respectively)—conventionally set for
kernel addresses. Addresses complying to this requirement
are said to be in “canonical form”. Accessing a noncanonical
address normally results in an exception, an inconvenience
for memory sanitizers [23] and mitigations [24], [25], [26]
which tag unused upper pointer bits to store metadata.

To address this problem, upcoming Intel/AMD CPUs
implement support to mask some upper pointer bits before
translation, loosening classic canonicality checks to accom-
modate software-managed tagged pointers. Such features are
branded as Linear Address Masking (LAM) on Intel [21]
and Upper Address Ignore (UAI) on AMD [27]. We elabo-
rate on LAM/UAI details as well as their ability to unlock
SLAM exploitation in Section 6.

2.3. Spectre Attacks

Spectre attacks [1] abuse modern processors’ inability
to roll back microarchitectural state modified by speculative
execution. This allows an attacker to lure the CPU into
speculatively executing code that should never run archi-
tecturally, inducing speculative accesses to secret data, and
encoding the secret into microarchitectural state which the
attacker can later decode (the covert channel). The most
common covert channel is Flush+Reload [10], which ex-
ploits CPU cache lines in a reload buffer shared between
the attacker and the victim.

Figure 2 shows an overview of Spectre attacks. Attackers
1⃝ reset the microarchitecture to some known state (e.g.,
flush their reload buffer from the cache), 2⃝ prepare their
speculative control-flow hijack by mistraining a branch pre-
dictor, and 3⃝ trigger victim execution with some malicious
input (e.g., syscall). During the execution of the victim,

the CPU mispredicts the mistrained branch 4⃝ and specula-
tively executes a Spectre disclosure gadget, using attacker-
controlled data. Traditionally, attackers target a “masked”
gadget [9], encoding the secret as an index into an accessed
array (Figure 1)—i.e., the reload buffer. In general, the
(disclosure) gadget 5⃝ encodes the secret into some microar-
chitectural state, which attackers later 6⃝ decode to leak the
secret (e.g., by timing accesses to the different cache lines
of the reload buffer to find the accessed array index).

Spectre attacks can hijack different types of branches.
For example, Spectre-v1 hijacks conditional direct branches,
while Spectre-v2 hijacks indirect branches. A recent type of
Spectre-v2 attack is Branch History Injection (BHI) [11].
BHI speculatively hijacks an indirect victim branch, by
poisoning the Branch History Buffer (BHB) with a colliding
branch history. This lures the branch predictor into incor-
rectly predicting the victim branch and transferring control
flow to the destination of another (colliding) target branch.

3. Threat Model

We consider a typical Spectre local exploitation scenario,
with an attacker controlling an unprivileged user process
on a victim machine and targeting a user-to-kernel Spectre
attack to leak secrets from kernel memory. We specifically
target the (secret) root password hash, as done in prior
work [4], [11], [13], [14]. We assume a victim machine
equipped with LAM features and running the latest Linux
kernel with all the defenses against transient execution vul-
nerabilities enabled. We also assume other (e.g., memory
safety) vulnerabilities are mitigated by orthogonal defenses.

4. SLAM

At a high-level, SLAM exploits follow the same work-
flow of classic Spectre exploits (Figure 2). The key dif-
ference is that SLAM exploits unmasked Spectre gadgets,
which encode the secret as a dereferenced pointer (i.e.,
secret pointer). As detailed later, such gadgets are abundant
as they often originate from common pointer-chasing code
patterns. A typical real-world example is the Linux kernel
gadget listed in Figure 3. As shown in the figure, similar to
classic masked gadgets, a speculative load (via the attacker-
controlled iocb argument) reads secret data on Line 4.
However, unlike classic masked gadgets, the secret is then
interpreted as a pointer (f) and directly dereferenced on
Line 5, a poor match for classic cache covert channels.

To understand the complications, let us consider a base-
line exploitation scenario. Suppose a user-to-kernel attacker
wants to craft a 1-bit information disclosure primitive to
leak whether the secret data matches a predetermined, valid
kernel pointer (Figure 4, top). For this scenario, a classic
cache covert channel is sufficient. Indeed, the attacker can
ensure the cache line backing the target kernel pointer
is nonpresent (e.g., by walking a corresponding eviction
set [28]), trigger speculative execution of the gadget, and
then probe the cache to check if the target cache line is

1 ssize_t kernfs_fop_read_iter(
2 struct kiocb *iocb,
3 struct iov_iter *iter) {
4 struct file *f = iocb->ki_filp;
5 struct seq_file *sf = f->private_data;

Figure 3: A typical SLAM disclosure gadget in the Linux
kernel, with a call to kernfs_of inlined for readability. An
attacker speculatively controlling iocb can lure the kernel
into reading (Line 4) and disclosing (Line 5) data.

now present (e.g., a la Prime+Probe [29]). However, while
this simple baseline primitive may be sufficient to break
KASLR (i.e., with the attacker repeatedly trying to guess
a target randomized kernel pointer until they see a signal
in the cache), generalizing this primitive to generic secrets
such as the root password hash is a tall order.

Indeed, without strong assumptions on the secret data,
the secret pointer may not reference valid kernel memory.
Figure 4 (bottom) shows a running example encoding for
the first few bytes (“root:y”) of the secret root password
hash in Linux’ /etc/shadow file. As the figure shows,
the secret is encoded with a user, noncanonical address. In
fact, we note that ASCII strings (i.e., our target) are always
encoded as user pointers, as their bytes always have the
uppermost bit unset, including the top translated bit (yellow
in figure). Moreover, out of the whole 64-bit virtual address
space, less than 0.01% is canonical. Since both user and
noncanonical pointer dereferences raise exceptions (i.e., due
to SMAP and canonicality checks, respectively) and do not
normally fill cache lines even on speculative paths, the secret
leakage surface of our unmasked gadget is thin for classic
cache covert channels.

Furthermore, even if the secret happened to encode a
valid pointer, the high (no less than 47-bit) entropy of the
secret pointer would pose an additional problem. While
masked gadgets typically leak 8 bits of secret data at a time,
conveniently encoded in an index of a 256-element reload
buffer, unmasked gadgets cannot easily fit the small-linear-
array model. Indeed, the distribution of valid secret pointer
values is large and highly nonlinear, also well exceeding the
occupancy of modern CPU caches.

Hence, starting from a baseline 1-bit valid kernel pointer
disclosure primitive, SLAM tackles three main challenges:

• C1 : How do we extend our disclosure primitive to
user pointers? As we shall see, SLAM addresses this
challenge with address translation covert channels.

• C2 : How do we extend our disclosure primitive
to noncanonical pointers? As we shall see, SLAM
addresses this challenge by bypassing canonicality
checks with LAM features.

• C3 : How do we generalize our disclosure primitive
to actually leak secrets? As we shall see, SLAM
addresses this challenge by a combination of sliding
and just-in-time remapping techniques.

FF FF FF FF 99 79 71 E0
081624324048 5664

1

 47

24 79 24 3A 74 6F 6F 72
08162432405664

0

$ y $: t o o r
 4748

Figure 4: A valid kernel pointer (top) vs. root password
hash bytes encoded as a pointer (bottom) on 4-level paging
systems. Bits 63:48 (red) are subject to canonicality checks.
Bit 47 (yellow) is set (unset) for kernel (user) pointers.

5. Leaked in Translation

To address C1 , we need to expand the leakage surface
of our baseline 1-bit information disclosure primitive (i.e.,
leaking whether the secret is a predetermined, valid kernel
pointer) to user pointers. To this end, we need a covert
channel capable of encoding the secret into microarchitec-
tural state upon a user pointer dereference. This is infeasible
for classic cache covert channels, since user pointer deref-
erences are invalid (and thus unable to complete and fill
cache lines) in kernel mode due to Supervisor Mode Access
Prevention (SMAP) [22]. This is the case architecturally [22]
and (although speculative SMAP behavior remains “offi-
cially” undocumented [30]) also microarchitecturally [31].

To address this challenge, the key insight is that we
need a covert channel based on microarchitectural state that
gets involved before SMAP checks kick in. And since, for
SMAP checks to kick in, the MMU needs to first determine
whether the kernel is dereferencing user memory, we turn
our attention to the address translation process. Indeed, the
MMU needs to complete address translation in order to
locate the appropriate translation entry (PTE) and check the
corresponding supervisor bit (unset for user memory).

To confirm this behavior, we set up an experiment with
the unmasked Spectre gadget in Figure 3. We speculatively
executed the gadget in the kernel while instructing it to
read and dereference a secret encoded as a (valid and
present) user address. As expected, on all of our tested
microarchitectures (detailed later), we observed the backing
user cache line not to be filled by the gadget, confirming the
infeasibility of the cache covert channel. At the same time,
using existing microarchitectural attacks [32] we clearly
observed a signal for translation-related activity, confirming
address translation completes before SMAP checks can get
a chance to dismiss the user pointer dereference as invalid.

Building on these results, our next step is to craft an
address translation covert channel for secrets encoded as
user pointers. We observe that, other than being able to
bypass SMAP checks, such covert channel has a number of
other advantages compared to classic cache covert channels.
For example, address translation is agnostic to the particu-
lar memory access type. This can increase the number of
available gadgets compared to classic cache covert channels,
which typically rely on regular load instructions and may be
impaired by store instructions [18]. Finally, since address
translation leaves persistent traces in the many microar-

00 00 24 74 6F 72
08162432405664

: t o o r
48

$
3A

:

15213033394248 24level 3
level 2

level 1
level 4

6F

Figure 5: At each page table level, 6 bits (purple) of the
virtual address can be retrieved via the corresponding PTE.

chitectural components involved in the translation process,
there are multiple options to craft our covert channel. We
consider the main options in the next subsections. For sim-
plicity, we develop our analysis along our running example
on 4-level paging systems (Figure 4), but our results directly
extend to 5-level paging systems.

5.1. PTE Probing

During address translation, the MMU walks page tables
and fetches PTEs from memory via the same data cache
hierarchy as regular memory accesses [32]. Bits 47:39 deter-
mine the PTE of the secret pointer at the (4th level) root page
table. As 8 PTEs, of 8 bytes each, fit into one 64-byte cache
line, bits 47:42 determine the PTE’s cache line. Hence, by
inferring which of the 64 cache lines constituting the root
page table gets fetched, via a set-granular cache attack such
as Prime+Probe or Evict+Time [32], an attacker can retrieve
bits 47:42 of the secret pointer. This allows the attacker
to tell whether a given secret pointer was dereferenced
(baseline 1-bit disclosure primitive) or even discriminate
between different secrets. This idea generalizes to the lower-
level page tables, provided that the PTEs of previous levels
are valid (i.e., present and with the correct permissions).
Figure 5 shows which bits can be retrieved at each level for
our (canonicalized) running example.

An advantage of the PTE probing covert channel is that
one can retrieve (some) secret bits even for nonpresent ad-
dresses as long as partial page table (e.g., top-level) informa-
tion is present. At the same time, a disadvantage is that page
table walks require a relatively large speculation window, as
multiple cache misses need to fit in the window. In addition,
the reliance on cache set probing results in a noisy covert
channel, especially during kernel execution [13]. Finally, for
deep page table walks, it is challenging to match up signals
in multiple cache sets with the different PTE levels [32]. To
address these shortcomings, we turn to the TLB next.

5.2. TLB Probing

To build a covert channel based on the TLB, we need to
first confirm the TLB incurs microarchitectural state changes
upon a speculative load incurring an SMAP exception. On
x86, TLBs are known not to perform negative caching, i.e.,
invalid entries produced by a page table walk are not cached
in the TLB. This behavior is documented for nonpresent en-
tries [33], but not for other erroneous entries. To investigate
the behavior, we repeated the same experiment as above (i.e.,
letting the kernel speculatively dereference a user address)

multiple times for both present/nonpresent user addresses
after first flushing the backing TLB entry. With the help
of existing microarchitectural attacks [34], we confirmed
the behavior for nonpresent addresses: a load referencing
a nonpresent user address did not fill the TLB (i.e., no TLB
hit in repeated experiments). However, for the present user
address case we observed the opposite behavior, with the
speculative load filling the TLB despite the SMAP fault (i.e.,
TLB miss on the first repetition, TLB hit on the second one).

Armed with this knowledge, one can build a TLB prob-
ing covert channel for secret user pointers. Specifically,
one can rely on a set-granular TLB attack such as TLB
Prime+Probe or Evict+Time [34] to retrieve the TLB set
accessed by the Spectre gadget and the corresponding bits
of the secret pointer. In contrast to PTE probing, this covert
channel requires shorter windows—since we can control and
reduce the work done on the TLB miss encountered by the
gadget—and eliminates the need to probe multiple sets at
the time. At the same time, this covert the channel can
only operate on present user addresses and is even more
noisy—since TLB set page-granular collisions are much
more common than cache set collisions. We later detail how
to handle the former complication. We handle the latter next.

5.3. TLB Reloading

To eliminate the need for TLB set probing, the key
insight is that, since we explicitly target user addresses
accessed by the kernel (due to our ASCII string target),
the accessed TLB entry is shared between the attacker
(user) and the victim (kernel). As such, we can adapt
the Evict+Reload cache attack [20] to the TLB, directly
retrieving the TLB entry accessed by the Spectre gadget
and the corresponding bits of the secret pointer. This is
done by: (i) walking TLB eviction sets to evict the TLB
entry backing our target user address in userland [34], [35],
(ii) triggering the speculative execution of the gadget in the
kernel, and (iii) reloading the target TLB entry. To reload
the TLB entry, the attacker needs to measure the latency of
the target user address translation.

To this end, one option is to rely on the translation-
dependent timing of the prefetch instruction(s) [36], [37], al-
though we observed unreliable timings on our AMD testbed.
A more general solution is to measure the time to complete
a load referencing the target user address. However, since
such time is both translation- and data fetch-dependent, care
should be taken to properly isolate the translation latency.
For this purpose, we need to control the source of the data
fetch and select the one that maximizes the signal.

Selecting the cache level. In our experiments, we
determined L2 data fetches to be consistently optimal. In-
deed, as shown in Figure 6, the virtually indexed L1 cache
is looked up in parallel to TLB, thereby masking the TLB
signal. Higher data cache levels are physically indexed,
serializing TLB and cache access latencies and yielding a
better signal. However, the higher the selected cache level
(or in the worst case, DRAM), the higher the jitter caused

MMU Frontend

L1 Cache

VA VA

PA tag=?
data

data

L2 Cache

PA

data

data

TLBL1 TLB

L2 TLB

Figure 6: High-level overview of TLB and data caches.

by the more complex microarchitectural geometry (e.g., last-
level cache slices). As such, we found L2 to be a sweet spot.

Selecting the TLB level. As depicted in Figure 6,
modern MMUs commonly deploy two-level TLBs [35],
hence attackers can get their signal via either L2 or L1 TLB
misses. In the former scenario, one can evict both (L1 and
L2) target TLB entries and calibrate the reload step’s timings
to distinguish between a L1 TLB hit and a L2 TLB miss.
In the latter scenario, one can evict only the target L1 LTB
entry while preserving L2 and instead focus on a L1 TLB hit
versus L1 TLB miss (L2 hit) signal. Indeed, after missing
L1 and hitting L2, the Spectre gadget causes the MMU to
fill the L1 TLB entry, yielding the signal. For our purposes,
we found the latter scenario to be preferable for a variety of
reasons. First, the lack of L2 TLB misses eliminates page
table walk jitter (e.g., cached vs. uncached PTEs), improving
the signal. Second, as detailed in Section 11.2, the small L2
TLB hit latency results in short speculation windows, which
can help bypass certain mitigations [38]. Finally, as detailed
in Section 6.2, (L2) TLB hit-based gadgets extend the attack
surface to additional (existing) AMD microarchitectures.

Selecting the page size. Modern operating systems
support 4 KB, 2 MB, and 1 GB pages. Modern TLBs lay out
their entries in separate partitions accordingly [39]. As such,
by selecting a different page size for our target user address
to reload, we can use a different part of the TLB as our
covert channel. Figure 7 shows which bits can be retrieved
for our (canonicalized) running example for the different
page sizes (although 1 GB pages are often restricted in
practice). The smaller the page size, the larger the number
of secret pointer bits one can retrieve, although this is not
crucial as we shall see in Section 7. A more pressing concern
is noise isolation. One should select a page size that is
as infrequently used as possible by the kernel, in order
to minimize interference with the TLB partition used by
the covert channel and thus maximize the signal. Since the
kernel uses 2 MB pages for its own text and data sections as
well as (mostly) 1 GB pages for its direct map of physical
memory, we select 4 KB pages for our covert channel.

00 00 24 74 6F 72
08162432405664

: t o o r
48

$
3A

:
 21

00 00 24 74 6F 72
08162432405664

: t o o r
48

$
3A

:
6F

12

00 00 24 74 6F 6F 72
08162432405664

: t o o r
48

$
3A

:
 30

6F

2 MB pages

4 KB pages

1 GB pages

Figure 7: Depending on the page size, a number of virtual
address bits (purple) can be retrieved via the TLB.

5.4. Summary

We considered a number of translation covert channels
for SLAM. We focused on the main options, but variations
are possible. For instance, one could rely on other microar-
chitectural components, such as page table caches [40] to
reduce the noise on the PTE probing signal, or translation
caches [40] to extend our TLB covert channel to nonpre-
sent addresses. In practice, the microarchitectural details of
modern TLBs are well understood and we did not find any
serious limitations that deterred their use for SLAM.

C1 Solution. SLAM uses a TLB Evict+Reload covert
channel, with 4 KB TLB entries and a L1 vs. L2 hit
signal. This provides a low-noise, low-latency covert
channel to extend the leakage surface of our baseline 1-
bit pointer disclosure primitive to present user addresses.

6. Canonicalizing Secrets

To address C2 , we need to expand the leakage surface
of our existing 1-bit user pointer disclosure primitive to
noncanonical user pointers. This is important, as so far
we have only dealt with canonical user pointers, while
secret ASCII strings—barring those with NUL characters
in strategic positions—always encode to noncanonical ones.
The latter cannot be normally processed by our TLB covert
channel, as translation hinges on successful canonicality
checking. To this end, we consider different mechanisms
to “canonicalize” secrets on Intel and AMD platforms.

6.1. Intel Platforms

On upcoming Intel platforms (e.g., Sierra Forest, Grand
Ridge, Arrow Lake, and Lunar Lake [21]), we turn to LAM
for our purposes. With LAM enabled, some upper pointer
bits are “masked” upon pointer dereference. LAM has two
modes: (i) LAM48, masking 15 upper bits (62:48) for 4-
level paging systems; (ii) LAM57, masking 6 upper bits
(62:57) for 5-level paging systems. In both cases, the upper

24 79 24 3A 74 6F 6F 72
08162432405664

0

$ y $: t o o r
 4748

0

 63

Figure 8: Intel LAM masks away bits 62:48 (grey), reducing
the canonicality check to the equality of bits 47 and 63 (red).

nontranslated bits except the most-significant bit are masked,
i.e., copied from the top translated bit ([62:48] := [47], for
4-level paging), before address translation occurs [21]. Since
the masked bits are made canonical by LAM, the original
upper pointer bits are no longer subject to canonicality
checks and can thus store arbitrary values. Bit 63 is the
only special case, required to match the top translated bit to
avoid a noncanonical address exception.

Bit 63 is also used as a “supervisor” bit for LAM to
distinguish kernel from user pointers. Indeed, LAM can be
enabled separately for user and/or supervisor pointers via
control registers. Software support merged in recent Linux
kernel versions [41] enables LAM only for user pointers.
This allows user processes to enable LAM for their own
(tagged) pointers. With LAM enabled, user pointers deref-
erenced by kernel code are still masked, as LAM honors the
zero bit 63 but ignores the privilege level.

The latter property allows a LAM-enabled user process
to pass noncanonical user pointers to the kernel and the
kernel to later dereference them as part of in-kernel syscall
handling. This is important to simplify kernel support for
LAM, as user pointers can be dereferenced “as-is” by the
kernel, eliminating the need for the kernel to explicitly mask
them. However, this property is also crucial to unlock SLAM
exploitation. Indeed, as shown in Figure 8, LAM effectively
disables the canonicality check for all the upper bits but
bit 63 of the secret pointer dereferenced by the kernel. In
other words, under LAM, the canonicality requirement is
reduced to bit 63 and the top translated bit of a pointer
being equal. However, since SLAM targets secret ASCII
strings, this invariant always holds for our secret user point-
ers. We conclude that our TLB covert channel can bypass
canonicality checks with Intel LAM.

6.2. AMD Platforms

UAI is AMD’s LAM variant on upcoming AMD plat-
forms. UAI is simpler than LAM and somewhat closer
to ARM’s Top Byte Ignore [42], with the MMU simply
ignoring the most-significant 7 bits of a virtual address
during translation. Since only 7 bits are ignored, on 4-level
paging systems 9 bits (56:48) are still affected by canonical-
ity checks. This effectively hinders SLAM exploitation—at
least for generic ASCII strings. However, on 5-level paging
systems those 9 bits are involved in address translation
(indexing the level-5 page table), allowing our TLB covert
channel to bypass canonicality checks with AMD UAI.

We also considered SLAM exploitation on existing
AMD microarchitectures vulnerable to Transient Execution
of Noncanonical Accesses (TENA) [43], [44]. Indeed, as
shown in Figure 9, such 4-level paging microarchitectures

24 79 24 3A 74 6F 6F 72
08162432405664

0

$ y $: t o o r
 4748

Canonicality
Check L1D CacheTLB

64:47
47:0 47:0

Figure 9: The canonicality check races against the TLB and
the data cache: bits 47:0 (green and yellow) get passed to the
TLB and the data cache, and in parallel bits 63:47 (yellow
and red) are passed to the canonicality checker.

parallelize translation (+ data fetch) and canonicality checks.
Specifically, the CPU uses the lower 48 bits of the virtual
address to consult the TLB and L1 data cache, as well as the
upper 17 bits to check canonicality in parallel. As a result,
the TLB and data cache ignore the upper 16 bits of the
virtual address, hence a noncanonical address can initiate
a memory access to its canonical counterpart (same lower
48 bits). Moreover, this creates a microarchitectural race
between the canonicality check and the memory access: the
target data may be transiently forwarded to later instructions
in the pipeline, despite the noncanonical target address.

Prior work has exploited the latter property to craft
Meltdown-type gadgets that speculatively load data from a
noncanonical address and then leak said data via a classic
cache covert channel [43]. According to the authors, their
analysis did not reveal exploitable instances of such gadgets
in practice. In contrast, with SLAM, we want to show that
transient noncanonical accesses do have practical impact
when used to support the address translation covert channel
of an unmasked Spectre gadget. For this to happen, we
need to ensure the requirements are satisfied. According to
the AMD documentation, transient noncanonical accesses
are possible only when address translation incurs a TLB
hit [43], but no requirements on the particular TLB level
are specified. Our proposed TLB covert channel does incur a
TLB hit, but only in L2 (and not in L1) TLB by construction.

To uncover whether L2 TLB hits are sufficient, we set
up an experiment with the unmasked Spectre gadget in
Figure 3. We speculatively executed the gadget in the kernel,
while instructing it to read and dereference a secret encoded
as a noncanonical (present) user address and performing L1
TLB Evict+Reload for the backing TLB entry. From the
affected AMD platforms [43], we tested on Ryzen 7 2700X,
available in our lab. Our results revealed a signal for the
target address, confirming the gadget performs the transient
noncanonical access upon L2 TLB hit and reinserts the
backing entry into the L1 TLB. We conclude that our TLB
covert channel can successfully support noncanonical secret
user pointer dereferences on microarchitectures affected by
TENA, even in absence of hardware masking features.

24 79 24 3A 74 6F 72
08162432405664

$ y $: t o o r
48

6F

Mask/Ignore Leak Known Page Offset

24 79 24 3A 74 72
082432405664

$ y $: t o o r
48

6F

Mask/Ignore LeakKnown Page Offset

6F
20 12

12

0x003A746F6000

0x013A746F6000

0x023A746F6000

0x233A746F6000

0x253A746F6000

0x7F3A746F6000

0x243A746F6000

0x243A74600000

0x243A746FF000

User Virtual Address Space

16

Leaking Forward

Leaking Backward

Figure 10: Left: secret leakage using forward (top) and backward (bottom) sliding. Vulnerable hardware canonicalizes the
grey bits, and translation ignores the green bits. With the blue bits known, SLAM leaks the remaining purple bits. Right:
just-in-time reload buffer for forward leakage (noncontiguous, in orange) and backward leakage (contiguous, in yellow).

6.3. Summary

We considered different mechanisms to canonicalize 64-
bit secret pointers for our TLB Evict+Reload covert channel.
On both Intel and AMD platforms, we successfully found
canonicalization strategies for our purposes.

C2 Solution. SLAM can rely on LAM / UAI features to
canonicalize noncanonical user pointers. Similar primi-
tives exist on AMD systems vulnerable to TENA. These
primitives expand the leakage surface of our 1-bit pointer
disclosure primitive to noncanonical user addresses.

7. Leaking Secrets

To address C3 , we need to generalize our 1-bit non-
canonical user pointer disclosure primitive to one able to
actually leak secrets. In other words, we need to turn our
1-bit TLB covert channel—able to test for the presence of a
predetermined secret—into a generic N-bit covert channel—
able to disclose arbitrary (ASCII) 64-bit secrets. A simple
1-bit covert channel is clearly impractical for the task (as we
would need to test all the possible secret values to leak), but
so is a high-entropy one (as we may lack microarchitectural
state to encode the possible values all at once).

To address this challenge, we first observe that the tech-
niques introduced in the previous sections already provide
significant entropy reduction for our 64-bit secret pointers.
Specifically, secret canonicalization eliminates entropy in
the upper bits, and our TLB 4 KB page-granular covert
channel eliminates entropy in the lower 12 bits. As also
shown in Figure 7, this still leaves us with 36 bits of entropy
(on 4-level paging systems). However, since we leak ASCII
data—every byte’s top bit is zero—the entropy is further
reduced to 31 bits. Such residual entropy leads to a reload

buffer of 8 TB, far exceeding the size of modern TLBs, as
well as being practically unmanageable for an attacker. We
tackle these two issues in order next.

7.1. Reducing Entropy with Sliding

To ensure the reloaded pages fit the size of modern
TLBs, we want to reduce the entropy of the secret to that
of a single byte per gadget iteration. To this end, we slide
the pointer referencing secret data byte-by-byte across iter-
ations, causing the secret retrieved by the current iteration
to contain only known bytes from the previous iterations
except one (new and unknown) byte. Figure 10 (top-left)
exemplifies an iteration of such byte-by-byte leakage strat-
egy on 4-level paging systems, with bits 39:12 (blue) known
and bits 47:40 (purple) to be leaked. Since bit 47 is always
zero due to ASCII, the entropy per iteration is reduced to
7 bits. Hence, we need a reload buffer of only 128 pages.
Similar to prior sliding techniques [4], [13], [14], [45], we
also need a way to kick start the strategy for the first iteration
with some data known a priori. While one can in principle
exploit memory massaging to colocate arbitrary secrets with
known data [45], ASCII strings typically already contain
known data in-band. This is indeed the case for our target
/etc/shadow file, which consistently interleaves known
(username) with secret (password) data.

7.2. Just-in-time Reload Buffer Remapping

Although we have reduced the number of reloaded pages
per iteration, the total possible range is still 8 TB scattered
across virtual address space. With demand paging, one could
map a single “sparse” reload buffer spanning the entire user
address space for this purpose. However, this simple strategy
incurs many (i.e., up to 128) costly page faults per iteration
and unbounded memory consumption (or costly cleanups).

To address these issues, we instead mmap only the range
sufficient to cover all 128 pages of the first-iteration and
each time mremap the reload buffer just-in-time to cover
the 128 pages needed by each subsequent iteration. Initially,
this results in a noncontiguous reload buffer, as illustrated
in orange in Figure 10 (right) for our example pointer: the
attacker already knows “oot:”, and maps the 128 orange
pages corresponding to the next 7 unknown bits just-in-
time. Evicting the TLB, triggering the unmasked Spectre
gadget, and reloading all 128 orange pages will reveal an
L1 TLB hit at 0x243a746f6000, leaking the byte “$”. Now,
with knowledge of the 4 bytes “ot:$”, the attacker can repeat
the process and leak the next byte. Nonetheless, since this
intuitive style of forward leaking requires a sparse (and
hence costly-to-remap) reload buffer, SLAM slides (and
leaks) backward (towards lower addresses) by default, as
also shown in Figure 10 (bottom-left). This strategy yields
a compact, fully paged reload buffer (yellow in figure) we
can efficiently mremap at every iteration using a single
system call. Care should be taken not to remap into our
own code/data, but this can be easily accomplished by a
linker script placing exploit code/data in a range of the user
address space encoding at least one non-ASCII character. In
practice, building a non-PIE binary is sufficient on Linux.

7.3. Summary

We have shown that, while masked Spectre gadgets
normally produce 64-bit (noncanonical) secrets, we can en-
hance our TLB Evict+Reload covert channel with entropy-
reducing techniques to leak such high-entropy secrets byte-
by-byte, similar to classic masked Spectre gadgets.

C3 Solution. SLAM relies on backward sliding and just-
in-time remapping to leak high-entropy secret pointers
byte-by-byte with a movable, 128-page reload buffer. We
need N bytes of known data for N -level paging. This
strategy generalizes our 1-bit noncanonical user pointer
disclosure primitive to arbitrary ASCII string disclosure.

8. End-to-End Covert Channel

Armed with our ASCII string disclosure primitive, we
can now build an end-to-end SLAM covert channel in
preparation for our end-to-end exploit. This is to demon-
strate a kernel-resident sender can reliably transmit data to
a userland receiver. For this purpose, we need a protocol
between sender and receiver, a way to evict (only) L1 TLB
and L1 cache, and a way to handle noise. We will later reuse
some of these building blocks for our end-to-end exploit.

8.1. Protocol

We use a simple protocol with the sender transmitting
ASCII characters by transiently executing an unmasked
gadget such as the one in Figure 1 and the receiver retrieving

them via TLB Evict+Reload. To transmit one character at the
time, the sender slides backward and the receiver remaps a
128-page reload buffer just-in-time. For synchronization, we
simply allow the receiver to send a ready for next iteration
signal via a predetermined syscall. For error correction, we
use the inherent redundancy in our TLB signal, with only 7
out 31 bits used for data—i.e., we require the remaining bits
to match the known signature. Upon mismatch (error), the
receiver requests a retransmission. We consider three covert
channel (4-level paging) variants: (i) AMD TENA (natively
bypassing canonicality checks on vulnerable microarchitec-
tures); (ii) Intel LAM (simulated by sign-extending bit 47 of
the secret pointer to bits 62:48, as described in the ISA [21]);
(iii) AMD UAI (expanding LAM’s sign extension to bit 63).

8.2. Evictions

Our signal relies on the small latency difference of L1
vs. L2 TLB hits, which we measure with the timestamp
counter and a counting thread [32], [46], [47] on Intel and
AMD (respectively). As explained in Section 5.3, to reliably
measure such difference we need to evict L1 TLB and L1
cache, while preserving their L2 counterparts, before the
transmission occurs. To this end, we use a single virtually
and physically contiguous eviction buffer, as accessing vir-
tually (physically) consecutive pages puts minimal pressure
on the L2 TLB (cache). Meanwhile, by carefully choosing at
what page offsets we access the eviction pages, we use the
same memory accesses to simultaneously evict the L1 TLB
and the first L1 cache set (used for reloading). We allocate
our eviction buffer by mapping a 2 MB huge page and then
splitting it into consecutive 4 KB pages with mprotect.

8.3. Noise

We use standard techniques to deal with noise such as
pointer chasing to implement evictions [35] and repetitions
to sample the signal. In details, we repeat every single
gadget iteration 2 ∗ 128 ∗ R times. The 2 factor ensures a
first gadget repetition speculatively loads the secret pointer
in the L1 cache, so a subsequent repetition can access it
quickly no matter how short the speculation window. The
128 factor is to distribute the reload step across 128 gadget
repetitions (one per reload entry), a simple way to combat
noise from the TLB prefetcher. Finally, R is the number of
microarchitecture-specific repetitions (or simply repetitions
hereafter) to tune the accuracy-performance trade-off.

8.4. Covert Channel Evaluation

To evaluate our three end-to-end covert channel variants,
we set up the following experiment. The sender generates
64 KB of random ASCII data and appends it with a pre-
determined magic value known to the receiver. The sender
(receiver) transmits (receives) the data backward, starting
from the magic value. To combat noise, we use R = 4
repetitions on Intel and R = 32 repetitions on AMD. We

CPU Canonicality
Bypass

Average
Bandwidth

Standard
Deviation

Retrans.
Rate

i9-13900K Intel LAM 1.37 KB/s 15.7 B/s 0.0%
Ryzen 7 2700X AMD TENA 41.5 B/s 27.6 B/s 2.7%
Ryzen 7 2700X AMD UAI 47.6 B/s 25.5 B/s 0.1%

TABLE 1: End-to-end covert channel bandwidth, standard
deviation, and retransmission rates for the different variants.

repeated our experiments 10 times and reported a number
of statistics in Table 1. As shown in the table, the selected
number of repetitions result in a high-accuracy channel,
with all the characters successfully received with a < 3%
retransmission rate. However, as evident from the differ-
ence in the number of repetitions, we experienced much
more TLB noise on AMD than on Intel. This ultimately
resulted in much lower bandwidth and fluctuations across
runs on AMD. Moreover, we observed negligible bandwidth
differences between the AMD (UAI and TENA) variants,
evidencing (i) little impact from the added UAI masking and
(ii) consistently successful TENAs. We conclude that, for
all three canonicality bypass variants, we can build reliable
end-to-end covert channels using unmasked gadgets, with
the best performance/accuracy observed on Intel.

9. BHI Gadget Analysis

Our next step to demonstrate SLAM’s capabilities is to
mount end-to-end exploits. We specifically focus on the BHI
Spectre variant [11], since previous work has hypothesized
exploitation is only feasible with special features such as
unprivileged eBPF (now disabled) [9], [14]. To this end, we
developed a simple gadget scanner based on Angr [48] to
find BHI-compliant unmasked gadgets in target software.
Our scanner takes a binary and a candidate gadget entry
point (i.e., indirect branch target for BHI) as input and sym-
bolically executes the binary from the entry point onward,
up to a maximum number of instructions or basic blocks.

We use symbolic labels to model attacker controllability
and secret accesses. To detect generic (indirect branch-
agnostic) BHI gadgets, we mark all registers with the con-
trolled label at the entry point. We also mark any 64-bit
value loaded via a controlled address with the secret label.
We propagate labels throughout instructions when the result
depends on labeled input. Finally, we detect valid secret
pointer dereferences (hence gadgets) if the address of a
load/store has the secret label. This strategy finds unmasked
gadgets that contain at least a controlled load reading a 64-
bit pointer that is later translated by another load/store.

9.1. Gadget Evaluation

We applied our gadget scanner to Linux kernel 6.3,
with the maximum number of instructions per gadget set
to 40. To collect the list of entry points, we used an LLVM
pass created by Intel researchers [9]. The pass produced
a total of 31,021 indirect branch targets in the kernel.
From this list, our gadget scanner found as many as 61,665

0 5 10 15 20 25 30 35 40
Number of Instructions

0

2000

4000

6000

8000

10000

12000

14000

16000

Nu
m

be
r o

f U
nm

as
ke

d
Ga

dg
et

s

Instructions (Total)
Instructions (Simple)

0 5 10 15 20
Number of Basic Blocks

Basic Blocks (Total)
Basic Blocks (Simple)

Figure 11: Length of the unmasked gadgets found by our
scanner, in terms of instructions and basic blocks.

secret translations across 16,046 targets—each representing
an unmasked gadget with one or more secret translations. Of
all gadgets, 4,194 are simple, i.e., consist of a single basic
block and have a trivial data flow between secret pointer
read and dereference (only additions allowed). As shown
in Figure 11, most simple gadgets are found within a few
instructions. However, other gadgets are still found after 40
instructions and > 20 basic blocks.

We also considered the characteristics of the individual
gadgets, with results summarized in Table 2. As shown in
the table, both store and load instructions contribute to secret
translations, but loads are much more common, especially
for simple gadgets. Moreover, we found gadgets matching
arbitrary controllability requirements. In other words, as
shown in the table, no matter which particular argument
register(s) the attacker controls, they will find matching
gadgets. As expected, the first (rdi) argument register (e.g.,
required to exploit the gadget in Figure 3) dominates, cover-
ing over 80% of the gadgets, but we found gadgets covering
all the other argument registers even for the simple category.

Overall, our analysis revealed thousands of gadgets with
flexible controllability requirements, even if we restrict our-
selves to the short lengths of the simple category. Separating
out statistics on simple gadgets is convenient, as such gad-
gets with straightforward data flow are a good approxima-
tion of the practically exploitable SLAM gadgets. In other
words, modulo unexpected microarchitectural constraints,
their exploitability is only subject to reachability—as the
attacker needs to lure the kernel into executing the gadget
before mounting a BHI attack. We validate this claim next.

9.2. Gadget Exploitability

To study the exploitability of simple gadgets, we first ap-
proximated “easy” reachability by means of kernel fuzzing.
Specifically, we considered all the gadgets syzkaller [49] can
reach within 24 hours. This led to a total of 1,808 gadgets,
with 633 gadgets in the simple category. To assess whether
the latter are practically exploitable, we manually analyzed
randomly sampled gadgets matching the requirements of
our end-to-end exploit (i.e., control over rdi, see later) and
stopped after finding 10 exploitable gadgets.

Gadget Translation rdi rsi rdx rcx r8 r9 >1 all
Simple load 3,313 738 69 18 3 2 2 4,105
Simple store 257 41 4 1 0 0 0 301
Simple all 3,388 753 72 18 3 2 2 4,194
Total load 13,475 2,354 427 101 30 13 349 15,640
Total store 3,864 718 116 16 10 4 88 4,734
Total all 13,821 2,428 454 103 31 13 367 16,046

TABLE 2: Number of (simple) gadgets exploitable with con-
trol over different registers, by translation type (load/store).

Our analysis ultimately led to the manual inspection of
13 gadgets, revealing only 3 gadgets that are still effectively
unreachable: 2 were only reachable by root and 1 was only
sparingly reachable—a poor match for practical exploita-
tion. We manually determined the other 10 gadgets to be
exploitable, as inspection revealed no additional constraints.
To further validate our analysis, we successfully integrated 5
of these gadgets in our end-to-end exploit chain, as detailed
later. Overall, our analysis shows that reachable gadgets in
the simple category are a good (under)approximation for
practically exploitable ones and the attack surface is at least
in the order of hundreds of gadgets for BHI alone.

10. End-to-End Exploit

Armed with exploitable BHI gadgets found by our gad-
get scanner, we now build an end-to-end SLAM exploit
for upcoming Intel CPUs with LAM support and the latest
Ubuntu (with eBPF disabled), ultimately leaking the root
password hash from Linux’ /etc/shadow file stored in
kernel memory. At a high level, our exploit follows a
workflow similar to our end-to-end covert channel, except
the kernel no longer actively cooperates in the covert trans-
mission. As result, our exploit needs to lure the victim kernel
into speculatively executing a target gadget of interest using
the Spectre BHI variant and disclose the secret data to an
unprivileged user process controlled by the attacker.

10.1. Exploit Phases

Our end-to-end exploit consists of four phases. First, we
break KASLR. Second, we find a Branch History Buffer
(BHB) collision to speculatively hijack control flow to the
target gadget, as done by BHI [11]. Third, we locate the
/etc/shadow file in the kernel’s physical memory map-
pings. Finally, we leak the ASCII content of the file and the
root password hash.

Breaking KASLR. While there are many ways to
break KASLR on commodity systems [50], our exploit relies
on an oracle able to detect valid/invalid kernel memory
addresses based on prefetch side channels [36]. We use
the oracle to detect the (randomized) location of the Linux
kernel’s direct map of physical memory.

Finding BHB collisions. Building on prior [11] and
concurrent [51] BHI work, our exploit finds BHB collisions
to speculatively hijack the syscall dispatcher (our victim
indirect branch) to a target gadget. Such indirect branch
is particularly amenable to BHI exploitation [11], as (i) it

is executed early on during the execution of a syscall and
(ii) it provides the attacker with full control over (stack)
memory referenced by the first argument register. The latter
provides support for common unmasked gadgets that first
load a (controlled) pointer via rdi, then use such pointer
to read a 64-bit secret from an arbitrary kernel address,
and then dereference that secret as a pointer (e.g., a 3-load
pointer chase). To enlarge the transient execution window,
we build L2 cache eviction sets [28] and evict from L2
the syscall table entry matching the attacker-issued syscall
number (and referenced by the hijacked indirect branch).

To find BHB collisions and lure the indirect branch
predictor into speculatively jumping to a target gadget, we
use BHI’s brute-force strategy [11], repeatedly generating a
random branch history and issuing the victim syscall. This
strategy requires an oracle to detect a successful collision,
i.e., gadget speculatively reached by the victim syscall. For
this purpose, we use a 2-step oracle. In Step 1, we pass
a pointer into our reload buffer to the victim syscall and
ultimately to the memory location that would be accessed by
our gadget via rdi. If we reach the gadget, then the (second)
load that would normally read the secret will instead attempt
to read from our reload buffer, giving us a measurable TLB
signal. This fast-path strategy is prone to false positives, as
any mispredicted path performing a rdi-based pointer chase
may inadvertently give us a signal. To address this problem,
Step 2’s slow-path strategy swaps our reload buffer pointer
with a pointer to known kernel data, which the third gadget
load will in turn attempt to dereference giving us a TLB
signal. To inject known data into the kernel, we allocate a
huge user page with a known magic value and repeatedly
invoke Step 2 a sufficient number of times for the 2 MB-
aligned kernel pointer to eventually land on the magic value
somewhere in the kernel’s direct map.

Locating the secret. Armed with a reliable BHI
information disclosure primitive (i.e., via speculative control
flow hijack to a target gadget), we need to locate the secret
data, i.e., the /etc/shadow file. First, we make sure the
data resides in physical memory by executing the passwd
program. Next, we locate the shadow file by repeatedly
effecting our primitive to scan physical memory via Linux’
direct map for a 4 KB page that starts with “root:$”.

Leaking the secret. The “root:$” prefix we used
to locate the shadow file is unsuitable to kick-start our
default byte-by-byte leakage strategy, as we leak backward.
To address this problem, we simply start leaking from a
known suffix. The suffix of choice is “deamon”, the second
user entry in the file. After locating the “deamon” signature,
we leak backward byte-by-byte until we obtain the full root
password hash. In case the exploit fails at any of the phases
above (e.g., no BHB collision found), we simply restart from
the first phase until we eventually leak the secret.

10.2. Exploit Evaluation

We evaluated our end-to-end SLAM exploit on Ubuntu
22.04 (Linux kernel 6.3) running on an Intel i9-13900K with
64 GB of RAM. As even such latest-generation Intel CPU

Gadget Gadget
size

Leakage
rate

End-to-end
run time

shmem_statfs 13 instr 345.4B/s 0.5m
sel_read_mls 14 instr 18.4B/s 0.6m
kernfs_seq_show 4 instr 376.9B/s 1.0m
raw_seq_start 8 instr 21.7B/s 1.7m
cgroup_seqfile_show 7 instr 363.0B/s 2.1m
kernfs_fop_read_iter 12 instr 56.3B/s 4.2m
proc_single_show 11 instr 6.3B/s 8.9m

TABLE 3: Exploitation results for different gadgets.

does not yet support LAM, we simulated LAM in software,
as described in Section 8.

We instantiated our end-to-end SLAM exploit using 7
different unmasked gadgets: 5 from our manual analysis’
random sample (cf. Section 9) and 2 more we had hand-
picked earlier to develop SLAM. Figure 3 lists one of the
gadgets we exploit. We ran each instance 10 times and
report average statistics in Table 3. As shown in the table,
our exploits do not appear bottlenecked by the speculation
window size, with no correlation between size and leakage
rates. Nonetheless, although all the 7 exploits leak the root
password hash within minutes, we observed differences in
leakage rates and end-to-end run times. In both dimensions,
they boil down to the different gadgets being subject to
different microarchitectural effects, e.g., aliasing. While it
is hard to isolate all such effects, one factor that stood
out for the “slowest” gadget (proc_single_show) was
the unreliability of the BHB collisions (< 60% accuracy)
compared to all the others (> 95% accuracy), harming
leakage performance.

However, we note that, as we leak the root password
hash (98 bytes), leakage rate variations affect the end-to-end
run times only slightly. Figure 12 provides a more detailed
breakdown. As shown in the figure, the run times are largely
dominated by the time to find BHB collisions for BHI and
the time to find the /etc/shadow file. In general, the BHI
setup seems to impact the exploits the most, dominating
their run time and with much larger fluctuations across
exploit attempts compared to the other phases (stddev:
37%−114% vs. < 4%). Overall, our analysis shows end-to-
end SLAM exploits are practical and can exploit a variety
of unmasked gadgets on vulnerable microarchitectures.

11. Mitigations

To mitigate SLAM attacks, one can either hinder its
covert channel or the exploitation of its gadgets.

11.1. Hindering the Covert Channel

To hinder SLAM’s covert channel, the most natural so-
lution is to extend SMAP semantics to address translation—
i.e., preventing user address translation from the kernel.
Although this strategy cannot stop SLAM-style exploits that
target secret kernel pointers, such exploits are restricted to
secrets that happen to encode valid kernel addresses (e.g.,
no ASCII strings). In short, their residual attack surface is

0 1 2 3 4 5 6 7 8 9
Duration by Attack Phase (minutes)

proc_single_show
kernfs_fop_read_iter
cgroup_seqfile_show

raw_seq_start
kernfs_seq_show

sel_read_mls
shmem_statfs KASLR Break

BHI Setup
Find /etc/shadow
Leak /etc/shadow

Figure 12: Exploit run time breakdown for different gadgets.

significantly smaller. While this solution generally requires
hardware extensions, one can repurpose an upcoming Intel
feature, LASS [21], to implement the proposed semantics.

With LASS enabled, user and kernel execution can only
access virtual addresses with their highest order bit set to 0
and 1 respectively. All the (speculative) accesses that violate
this requirement are explicitly documented not to access
any paging structures, including TLBs—thereby mitigating
SLAM. LASS was originally designed to mitigate zero-day
Meltdown-type attacks, with user execution attempting to
perform a secret access on kernel memory. With SLAM, we
show LASS plays an important role to mitigate Spectre-type
attacks as well, in that it also hinders powerful translation
covert channels other than the secret access.

LASS has however been added to Intel’s ISA two years
later than LAM [21]. On Intel platforms equipped with LAM
but not LASS, as well as on AMD (which has not announced
any LASS-like features), software-based alternatives are
needed. A simple solution is to have the kernel disallow
Intel LAM / AMD UAI features for unprivileged processes,
restoring canonicality checks and hindering SLAM’s non-
canonical address translation covert channel. However, this
simple option may limit the applicability of LAM / UAI
in both mitigation and testing scenarios. A more principled
mitigation is to let the kernel disable LAM / UAI on
kernel entry and re-enable it when returning to userland (as
needed), preserving canonicality checks in kernel execution.

To estimate lower-bound performance overhead of such
mitigation, we ran the LMbench benchmark suite [52] and
measured the cost of issuing (no-op) CR3 and EFER register
updates—as required by LAM and UAI (respectively)—on
our Intel and AMD machines (respectively). Specifically,
we measured the run-time overhead for Linux kernel 6.3
patched with the mitigation compared to the baseline. Ta-
ble 4 presents our results. While some (syscall-less) bench-
marks are unaffected (Pagefaults), the average overhead is
nontrivial (> 25%) and the worst-case (Simple syscall) is
> 3×. Although only processes using LAM / UAI are af-
fected, the cost is significant for syscall-intensive programs.
Furthermore, our results only provide a lower bound for
the overheads, as upcoming CPUs would have to issue a
meaningful (rather than no-op) update to the registers, other
than software-masking user pointers in the kernel. Finally,
such mitigation (similar to LASS) cannot stop any potential
user-to-user attacks or protect (AMD) microarchitectures
that are vulnerable to TENA [43], [44].

Benchmark Intel i9-13900K AMD Ryzen 7 2700X
Baseline Overhead Baseline Overhead

Simple syscall 0.046µs 258.7% 0.078µs 213.2%
Simple read 0.069µs 194.6% 0.168µs 100.5%
Simple write 0.054µs 225.2% 0.121µs 140.7%
Simple stat 0.242µs 63.3% 0.573µs 30.1%
Simple fstat 0.172µs 75.9% 0.455µs 38.4%
Simple open/close 0.561µs 50.9% 1.297µs 26.5%
Select on 10 fd’s 0.123µs 101.1% 0.344µs 48.8%
Select on 100 fd’s 0.373µs 42.6% 1.158µs 14.8%
Select on 250 fd’s 0.793µs 19.9% 2.474µs 7.1%
Select on 500 fd’s 1.516µs 10.1% 4.754µs 4.1%
Select on 10 tcp fd’s 0.135µs 95.7% 0.420µs 40.2%
Select on 100 tcp fd’s 0.821µs 20.0% 4.068µs 4.4%
Select on 250 tcp fd’s 1.988µs 7.4% 10.179µs 2.1%
Select on 500 tcp fd’s 3.967µs 3.5% 20.442µs 1.0%
Signal handler install 0.078µs 163.5% 0.187µs 90.2%
Signal handler 0.527µs 25.6% 1.367µs 12.3%
Protection fault 0.263µs 4.1% 0.238µs 2.0%
Pipe latency 2.032µs 8.2% 5.926µs 5.8%
Unix socket stream 3.163µs 23.4% 5.278µs 20.8%
Process fork+exit 51.740µs -1.9% 111.373µs 0.5%
Process fork+execve 136.171µs 2.6% 292.526µs 1.7%
Process fork+/bin/sh 297.737µs 2.7% 644.444µs 3.0%
Pagefaults 0.092µs -1.6% 0.154µs -7.8%
Geometric mean - 46.8% - 27.5%

TABLE 4: Run-time LMBench performance overhead of the
Intel LAM- or AMD UAI-switching mitigation compared
to the baseline on Linux kernel 6.3. We performed 11
repetitions per benchmark and report median results.

11.2. Hindering Gadget Exploitation

As SLAM can in principle abuse any Spectre variant
(not just BHI), one can turn to generic Spectre gadget mit-
igations. A Spectre variant-agnostic solution is to annotate
exploitable unmasked gadgets with fencing operations such
as the lfence instruction or more efficient embodiments
such as SLH [53]. However, as we showed, unmasked
gadgets are pervasive in the kernel and precisely pinpointing
all the practically exploitable ones is difficult. On the other
hand, fencing all such (pointer-chasing) gadgets is likely to
incur significant overheads [54].

For Spectre-v2/v5 attacks [11], [14], an option is to rely
on hardware support to restrict indirect branch handling, as
done in some upcoming processors [11]. On contemporary
processors, researchers have also suggested the FineIBT
mitigation (available only on Intel) [38] as a way to raise the
bar for gadget exploitation. Specifically, FineIBT attempts to
enforce fine-grained CFI in the speculative domain. Due to
its low-latency CFI check, the net effect of the mitigation is
to constraint gadget execution to a very short speculation
window. Indeed, based on a minimalistic masked gadget
filling a cache line (and no SMT contention to enlarge the
speculation window [55]), the FineIBT authors measured a
faint signal of only 17 out of 10M executions.

However, SLAM shows that unmasked gadgets can be
exploited with a low-latency TLB covert channel (requir-
ing only an L2 → L1 TLB fill, as opposed to a cache
fill), reducing the speculation window size requirements. To
evaluate FineIBT’s effectiveness against SLAM, we inserted
FineIBT-protected gadgets of different lengths (i.e., number

1 2 3 4 5
Number of Dependent Loads

0%

10%

20%

30%

40%

Su
cc

es
sf

ul
 L

ea
ka

ge
 R

at
e

Figure 13: Successful leakage rate under mistrained FineIBT
and SMT contention vs. number of dependent gadget loads.

of dependent loads including secret translation) into the
kernel. By mistraining FineIBT’s check and creating SMT
contention [55] to delay its resolution, we set out to leak
kernel data from a user process with SLAM. Figure 13
presents our 5-run results on Intel i9-13900K. Despite hav-
ing observed noisy and system state-dependent behavior, our
results show we can fit up to three dependent loads—the
first two hitting the L1 cache and the last one hitting the L2
TLB—inside a FineIBT-protected speculation window with
a reasonable signal. This is sufficient to exploit common
SLAM gadgets such as the 7 used in our end-to-end exploit.
Hence, our experiments show that, while FineIBT does raise
the bar for exploitation, it is insufficient to mitigate SLAM.

12. Related Work

We briefly survey closely related work on MMU (mi-
croarchitectural) attacks and on Spectre covert channels.

MMU attacks. There is much prior work on exploit-
ing the MMU’s address translation for microarchitectural
attacks. Some efforts target the MMU as a confused deputy
to mount Rowhammer [35], [56] or cache attacks [57] on
the attacker’s behalf and bypass certain mitigations. Other
efforts target the MMU as a victim of a side-channel attack
to break ASLR [32], KASLR [36], [58], [59], [60], or purely
for reverse engineering [34], [35], [40]. Yet other efforts
target the MMU as an attack vector to mount covert- or side-
channel attacks on victim software, abusing the TLB [34],
[35] or the page table walks [61]. In contrast to these efforts,
SLAM exploits the MMU to craft a Spectre covert channel.

Spectre covert channels. Since the original Spec-
tre disclosure [1], there has been much work on studying
Spectre covert channels, including classic array-based vari-
ations [1], [6], [9], [13], [14], [18], direct [62], [63], [64]
or indirect [64] branches, MDS [16], [17], AVX instruc-
tions [65], and Rowhammer [66], [67]. All these covert
channels (including existing TLB-based ones [6], [18]) oper-
ate with variations of masked Spectre gadgets, transmitting
low-entropy secrets over microarchitectural state. In contrast
to these efforts, SLAM exploits unmasked high-entropy
gadgets for the first time, uncovering a new significant attack
surface in modern kernel/hypervisors such as Linux.

13. Conclusion

We presented SLAM, a new Spectre attack based on
a noncanonical address translation covert channel. To craft
such covert channel in practice, SLAM relies on L1 TLB
Evict+Reload combined with canonicality check bypassing
and entropy-reducing techniques. Specifically, to bypass
canonicality checks, SLAM can exploit hardware masking
features in upcoming Intel/AMD CPUs or the TENA vul-
nerability in existing AMD CPUs. The impact of SLAM’s
new covert channel is significant, unlocking the vast attack
surface of unmasked Spectre gadgets in modern kernels. Our
experimental results show that such gadgets are abundant
and, as a demonstration, we achieved a Grand SLAM of 7
end-to-end Intel/BHI exploit instances leaking the root pass-
word hash on the latest Linux kernel with eBPF disabled.

14. Disclosure

We disclosed SLAM to affected parties, specifically
Intel, AMD, Arm, and Linux. Intel further notified other
potentially affected software vendors. In response to SLAM,
Intel made plans to provide software guidance prior to the
future release of Intel processors which support LAM. Linux
engineers developed patches to disable LAM by default
until further guidance is available. ARM published an advi-
sory [68] to provide guidance on future TBI-enabled CPUs.
AMD did not implement guidance updates and pointed to
existing Spectre v2 mitigations to address the SLAM exploit
described in the paper.

Acknowledgments

We would like to thank the anonymous reviewers for
their feedback. This work was supported by Intel Cor-
poration through the “Allocamelus” project, by the Dutch
Research Council (NWO) through project “INTERSECT”,
and by the European Union’s Horizon Europe programme
under grant agreement No. 101120962 (“Rescale”).

References

[1] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in IEEE S&P,
2019. 1, 1, 2.3, 12

[2] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin et al., “Meltdown: reading
kernel memory from user space,” in USENIX Security, 2018. 1

[3] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the keys to the Intel SGX kingdom with
transient out-of-order execution,” in USENIX Security, 2018. 1

[4] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “Ridl: Rogue in-flight data load,”
in IEEE S&P, 2019. 1, 3, 7.1

[5] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “Zombieload: Cross-privilege-boundary
data sampling,” in CCS, 2019. 1

[6] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck, and
Y. Yarom, “Fallout: Leaking data on Meltdown-resistant CPUs,” in
CCS, 2019. 1, 1, 12

[7] H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuffrida,
“Crosstalk: Speculative data leaks across cores are real,” in IEEE
S&P, 2021. 1

[8] S. Van Schaik, M. Minkin, A. Kwong, D. Genkin, and Y. Yarom,
“Cacheout: Leaking data on Intel CPUs via cache evictions,” in IEEE
S&P, 2021. 1

[9] Intel, “Disclosure gadgets at indirect branch targets in the Linux
kernel,” https://www.intel.com/content/www/us/en/developer/articles/
news/update-to-research-on-disclosure-gadgets-in-linux.html. 1, 1,
2.3, 9, 9.1, 12

[10] Y. Yarom and K. Falkner, “FLUSH+ RELOAD: A high resolution,
low noise, L3 cache side-channel attack,” in USENIX Security, 2014.
1, 2.3

[11] E. Barberis, P. Frigo, M. Muench, H. Bos, and C. Giuffrida, “Branch
history injection: On the effectiveness of hardware mitigations against
cross-privilege Spectre-v2 attacks,” in USENIX Security, 2022. 1, 2.3,
3, 9, 10.1, 10.1, 11.2

[12] “Mitigating speculation side-channels in the Linux kernel,” https://
www.kernel.org/doc/Documentation/speculation.txt. 1

[13] E. Göktas, K. Razavi, G. Portokalidis, H. Bos, and C. Giuffrida,
“Speculative probing: Hacking blind in the Spectre era,” in CCS,
2020. 1, 3, 5.1, 7.1, 12

[14] J. Wikner and K. Razavi, “Retbleed: Arbitrary speculative code
execution with return instructions,” in USENIX Security, 2022. 1,
3, 7.1, 9, 11.2, 12

[15] O. Kirzner and A. Morrison, “An analysis of speculative type confu-
sion vulnerabilities in the wild,” in USENIX Security, 2021. 1

[16] B. Johannesmeyer, J. Koschel, K. Razavi, H. Bos, and C. Giuffrida,
“Kasper: scanning for generalized transient execution gadgets in the
Linux kernel,” in NDSS, 2022. 1, 12

[17] A. S. Jordy Zomer, “Finding gadgets for CPU side-channels with
static analysis tools,” https://github.com/google/security-research/
blob/master/pocs/cpus/spectre-gadgets/README.md. 1, 12

[18] K. Loughlin, I. Neal, and J. Ma, “DOLMA: Securing speculation
with the principle of transient non-observability,” in USENIX Security,
2021. 1, 5, 12

[19] J. Ravichandran, W. T. Na, J. Lang, and M. Yan, “PACMAN: attack-
ing ARM pointer authentication with speculative execution,” in ISCA,
2022. 1

[20] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive Last-Level Caches,” in USENIX
Security, 2015. 1, 5.3

[21] Intel, Intel® Architecture Instruction Set Extensions and Future Fea-
tures Programming Reference, 6 2023. 1, 2.2, 6.1, 8.1, 11.1

[22] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis, “ret2dir:
Rethinking kernel isolation,” in USENIX Security, 2014. 2.1, 5

[23] “Hardware-assisted AddressSanitizer design documentation,” https:
//clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html.
2.2

[24] T. Kroes, K. Koning, E. van der Kouwe, H. Bos, and C. Giuffrida,
“Delta pointers: Buffer overflow checks without the checks,” in
EuroSys, 2018. 2.2

[25] D. Kuvaiskii, O. Oleksenko, S. Arnautov, B. Trach, P. Bhatotia,
P. Felber, and C. Fetzer, “SGXBOUNDS: Memory safety for shielded
execution,” in EuroSys, 2017. 2.2

[26] N. Burow, D. McKee, S. A. Carr, and M. Payer, “CUP: Comprehen-
sive user-space protection for C/C++,” in AsiaCCS, 2018. 2.2

[27] AMD, AMD Upper Address Ignore, 2023. 2.2

https://www.intel.com/content/www/us/en/developer/articles/news/update-to-research-on-disclosure-gadgets-in-linux.html
https://www.intel.com/content/www/us/en/developer/articles/news/update-to-research-on-disclosure-gadgets-in-linux.html
https://www.kernel.org/doc/Documentation/speculation.txt
https://www.kernel.org/doc/Documentation/speculation.txt
https://github.com/google/security-research/blob/master/pocs/cpus/spectre-gadgets/README.md
https://github.com/google/security-research/blob/master/pocs/cpus/spectre-gadgets/README.md
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html

[28] P. Vila, B. Köpf, and J. F. Morales, “Theory and practice of finding
eviction sets,” in IEEE S&P, 2019. 4, 10.1

[29] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in IEEE S&P, 2015. 4

[30] “SMAP effects on exploitation,” https://github.com/google/
security-research/security/advisories/GHSA-m7j5-797w-vmrh.
5

[31] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg,
P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic
evaluation of transient execution attacks and defenses,” in USENIX
Security, 2019. 5

[32] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “ASLR
on the line: Practical cache attacks on the MMU,” in NDSS, 2017. 5,
5.1, 5.1, 8.2, 12

[33] “TLBs, paging-structure caches, and their invalidation,” https://github.
com/Nils-TUD/Escape/blob/master/doc. 5.2

[34] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation leak-aside
buffer: Defeating cache side-channel protections with TLB attacks,”
in USENIX Security, 2018. 5.2, 5.3, 12

[35] A. Tatar, D. Trujillo, C. Giuffrida, and H. Bos, “TLB;DR: Enhancing
TLB-based attacks with TLB desynchronized reverse engineering,”
in USENIX Security, 2022. 5.3, 5.3, 8.3, 12

[36] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch
side-channel attacks: Bypassing SMAP and kernel ASLR,” in CCS,
2016. 5.3, 10.1, 12

[37] M. Lipp, D. Gruss, and M. Schwarz, “AMD prefetch attacks through
power and time,” in USENIX Security, 2022. 5.3

[38] A. J. Gaidis, J. Moreira, K. Sun, A. Milburn, V. Atlidakis, and
V. P. Kemerlis, “FineIBT: Fine-grained control-flow enforcement with
indirect branch tracking,” arXiv preprint arXiv:2303.16353, 2023.
5.3, 11.2

[39] A. Tatar, D. Trujillo, C. Giuffrida, and H. Bos, “TLB; DR: Enhancing
TLB-based attacks with TLB desynchronized reverse engineering,” in
USENIX Security, 2022. 5.3

[40] S. van Schaik, K. Razavi, B. Gras, H. Bos, and C. Giuffrida, “Re-
vAnC: A framework for reverse engineering hardware page table
caches,” in EuroSec, 2017. 5.4, 12

[41] M. Larabel, “Intel linear address masking ”LAM” merged into Linux
6.4,” https://www.phoronix.com/news/Intel-LAM-Merged-Linux-6.4,
2023. 6.1

[42] A. C.-A. Series, ARM Cortex-A Series: Programmer’s Guide for
ARMv8-A, 2023. 6.2

[43] C. Musaev, Saidgani {and} Fetzer, “Transient execution of non-
canonical accesses,” https://arxiv.org/pdf/2108.10771.pdf, 2021. 6.2,
11.1

[44] AMD, “Transient execution of non-canonical accesses,” https://www.
amd.com/en/resources/product-security/bulletin/amd-sb-1010.html.
6.2, 11.1

[45] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup est machina:
Memory deduplication as an advanced exploitation vector,” in IEEE
S&P, 2016. 7.1

[46] D. Kohlbrenner and H. Shacham, “Trusted browsers for uncertain
times,” in USENIX Security, 2016. 8.2

[47] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic timers
and where to find them: High-resolution microarchitectural attacks in
JavaScript,” in Financial Crypto, 2017. 8.2

[48] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in IEEE S&P, 2016. 9

[49] Google, “Syzkaller,” https://github.com/google/syzkaller. 9.2

[50] “Kernel address space layout derandomization,” https://github.com/
bcoles/kasld. 10.1

[51] “Anonymized.” 10.1

[52] L. W. McVoy, C. Staelin et al., “lmbench: Portable tools for perfor-
mance analysis.” in USENIX ATC, 1996. 11.1

[53] Z. Zhang, G. Barthe, C. Chuengsatiansup, P. Schwabe, and Y. Yarom,
“Ultimate SLH: Taking speculative load hardening to the next level,”
in USENIX Security, 2023. 11.2

[54] M. Larabel, “The brutal performance impact from mitigating the
LVI vulnerability,” https://www.phoronix.com/review/lvi-attack-perf,
2020. 11.2

[55] A. Milburn, K. Sun, and H. Kawakami, “You cannot always win the
race: Analyzing the lfence/jmp mitigation for branch target injection,”
arXiv preprint arXiv:2203.04277, 2022. 11.2

[56] Z. Zhang, Y. Cheng, D. Liu, S. Nepal, Z. Wang, and Y. Yarom,
“PTHammer: Cross-user-kernel-boundary Rowhammer through im-
plicit accesses,” in MICRO, 2020. 12

[57] S. Van Schaik, C. Giuffrida, H. Bos, and K. Razavi, “Malicious
management unit: Why stopping cache attacks in software is harder
than you think,” in USENIX Security, 2018. 12

[58] J. Koschel, C. Giuffrida, H. Bos, and K. Razavi, “TagBleed: Breaking
KASLR on the isolated kernel address space using tagged TLBs,” in
EuroS&P, 2020. 12

[59] Y. Jang, S. Lee, and T. Kim, “Breaking kernel address space layout
randomization with Intel TSX,” in CCS, 2016. 12

[60] R. Hund, C. Willems, and T. Holz, “Practical timing side channel
attacks against kernel space ASLR,” in IEEE S&P, 2013. 12

[61] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx,
“Telling your secrets without page faults: Stealthy page table-based
attacks on enclaved execution,” in USENIX Security, 2017. 12

[62] J. Fustos, M. Bechtel, and H. Yun, “SpectreRewind: Leaking secrets
to past instructions,” in ASHES, 2020. 12

[63] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “SMoTherSpectre: exploiting
speculative execution through port contention,” in CCS, 2019. 12

[64] X. Ren, L. Moody, M. Taram, M. Jordan, D. M. Tullsen, and
A. Venkat, “I see dead micro-ops: Leaking secrets via Intel/AMD
micro-op caches,” in ISCA, 2021. 12

[65] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss,
“NetSpectre: Read arbitrary memory over network,” in ESORICS,
2019. 12

[66] Y. Tobah, A. Kwong, I. Kang, D. Genkin, and K. G. Shin, “SpecHam-
mer: Combining Spectre and Rowhammer for new speculative at-
tacks,” in IEEE S&P, 2022. 12

[67] Y. Cohen, K. S. Tharayil, A. Haenel, D. Genkin, A. D. Keromytis,
Y. Oren, and Y. Yarom, “Hammerscope: observing DRAM power
consumption using Rowhammer,” in CCS, 2022. 12

[68] ARM, “TLB channels, SLAM-like attacks, and transient translation
of non-canonical addresses,” https://developer.arm.com/Arm%
20Security%20Center/TLB-Based%20Side%20Channel%20Attack.
14

https://github.com/google/security-research/security/advisories/GHSA-m7j5-797w-vmrh
https://github.com/google/security-research/security/advisories/GHSA-m7j5-797w-vmrh
https://github.com/Nils-TUD/Escape/blob/master/doc
https://github.com/Nils-TUD/Escape/blob/master/doc
https://www.phoronix.com/news/Intel-LAM-Merged-Linux-6.4
https://arxiv.org/pdf/2108.10771.pdf
https://www.amd.com/en/resources/product-security/bulletin/amd-sb-1010.html
https://www.amd.com/en/resources/product-security/bulletin/amd-sb-1010.html
https://github.com/google/syzkaller
https://github.com/bcoles/kasld
https://github.com/bcoles/kasld
https://www.phoronix.com/review/lvi-attack-perf
https://developer.arm.com/Arm%20Security%20Center/TLB-Based%20Side%20Channel%20Attack
https://developer.arm.com/Arm%20Security%20Center/TLB-Based%20Side%20Channel%20Attack

Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

This paper deals with Spectre-like vulnerabilities. More
specifically, the authors present a new (family of) attack(s),
dubbed SLAM, which takes advantage of a new, upcoming
feature in Intel and AMD CPUs, called LAM/UAI (linear
address masking/upper address ignore), in order to turn un-
masked Spectre gadgets into exploitable memory disclosure
primitives. Unmasked Spectre gadgets typically result in
non-canonical address translation, and they are currently
considered a non-issue – from a security/exploitation per-
spective. The paper discusses how LAM/UAI, which is
basically the equivalent of ARM’s TBI (top-byte ignore)
on Intel/AMD CPUs, can effectively act as a “mask” during
pointer dereferencing, thereby facilitating the exploitation
of unmasked Spectre disclose gadgets. LAM/UAI canoni-
calizes pointers and ignores privilege level checks – e.g.,
SMAP. Building on this observation, the paper further dis-
cusses ways of (ab)using (a) page-table translations and (b)
the TLB for constructing a low-noise, low-latency covert
channel for disclosing secret information. Lastly, the authors
proceed with introducing two novel techniques, namely
sliding and just-in-time reload buffer remapping, to facilitate
the end-to-end exploitation of unmasked gadgets. The paper
demonstrates SLAM by breaking KASLR and leaking the
root password from kernel memory.

A.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Identifies an Impactful Vulnerability
• Provides a Valuable Step Forward in an Established

Field
• Establishes a New Research Direction

A.3. Reasons for Acceptance

1) The result(s) presented in this paper are both im-
portant and timely, as the exploitation of unmasked
Spectre gadgets is currently considered a non-issue,
and such gadgets are mostly ignored from analysis
tools, hardening frameworks, etc.

2) The security analysis of LAM/UAI is novel and
insightful, while the techniques for canonicaliz-
ing addresses using LAM/UAI and constructing
a disclosure primitive by abusing MMU elements
are advancing our current knowledge re: Spectre
attacks and improve the state-of-the-art in terms of
low-noise, low-latency covert channel construction.

A.4. Noteworthy Concerns

LAM/UAI was emulated in software and hence the end-
to-end effectiveness experiment(s) performed used that soft-
ware analogue. Nevertheless, Intel, AMD, and ARM have
acknowledged that the issue is real.

	Introduction
	Background
	Address Translation
	Linear Address Masking
	Spectre Attacks

	Threat Model
	SLAM
	Leaked in Translation
	PTE Probing
	TLB Probing
	TLB Reloading
	Summary

	Canonicalizing Secrets
	Intel Platforms
	AMD Platforms
	Summary

	Leaking Secrets
	Reducing Entropy with Sliding
	Just-in-time Reload Buffer Remapping
	Summary

	End-to-End Covert Channel
	Protocol
	Evictions
	Noise
	Covert Channel Evaluation

	BHI Gadget Analysis
	Gadget Evaluation
	Gadget Exploitability

	End-to-End Exploit
	Exploit Phases
	Exploit Evaluation

	Mitigations
	Hindering the Covert Channel
	Hindering Gadget Exploitation

	Related Work
	Conclusion
	Disclosure
	References
	Appendix A: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

