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Abstract

Cloud computing is rapidly reshaping the server adminis-
tration landscape. The widespread use of virtualization and
the increasingly high server consolidation ratios, in partic-
ular, have introduced unprecedented security challenges for
users, increasing the exposure to intrusions and opening up
new opportunities for attacks. Deploying security mech-
anisms in the hypervisor to detect and stop intrusion at-
tempts is a promising strategy to address this problem. Ex-
isting hypervisor-based solutions, however, are typically lim-
ited to very specific classes of attacks and introduce exceed-
ingly high performance overhead for production use.

In this paper, we present Slick (Storage-Level Intrusion
ChecKer), an intrusion detection system (IDS) for virtual-
ized storage devices. Slick detects intrusion attempts by
efficiently and transparently monitoring write accesses to
critical regions on storage devices. The low-overhead mon-
itoring component operates entirely inside the hypervisor,
with no introspection or modifications required in the guest
VMs. Using Slick, users can deploy generic IDS rules to
detect a broad range of real-world intrusions in a flexible
and practical way. Experimental results confirm that Slick
is effective at enhancing the security of virtualized servers,
while imposing less than 5% overhead in production.

1. INTRODUCTION
Server virtualization is the key enabling technology of mod-
ern cloud computing platforms. Not surprisingly, recent
studies demonstrate that the number of virtualized server
workloads is on the rise—already surpassing 70% on com-
mon x86 platforms [25]—and so is the server consolidation
ratio—with a steady increase of the number of VMs deployed
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per physical host over recent years [3]. The ever-growing
number of virtualized server platforms is crucial to imple-
ment efficient resource management strategies and increas-
ingly lower infrastructure costs, but, at the same time, also
introduces new unprecedented security challenges for users.

First, the growing number of virtualized server platforms
under control of the same organization naturally increases
the exposure to intrusions. Second, deploying security hard-
ening and/or monitoring mechanisms inside the guest VMs
is difficult or impossible since the administrator may not
have access to them (e.g., in public Infrastructure as a ser-
vice (IaaS) environments). Even in cases where the guest
platform is prepared in advance (e.g., in Platform as a ser-
vice (PaaS) environments), the administrator may still have
no control over the actual software and security configura-
tion deployed inside the VM during its execution. Finally,
as consolidation ratios increase, malware implanted by in-
trusions inside a VM may have access to more precious re-
sources shared with other colocated VMs. For example, an
infected cloud VM may become part of a botnet involved
in a DDoS attack [24], subtracting precious bandwidth to
colocated VMs. Even worse, an implanted piece of malware
may rely on sophisticated cross-VM side-channel attacks to
steal confidential data from other colocated VMs [33].

Despite the challenges, virtualization also offers new oppor-
tunities to deploy effective IDS capabilities on server plat-
forms. Since the hypervisor is not freely accessible from
the guest VM, even sophisticated malware that can subvert
security solutions deployed in the guest (like OS-level protec-
tion or antivirus products) cannot easily bypass a hypervisor-
hosted IDS. Existing hypervisor-based solutions leverage this
intuition, but typically target very specific classes of attacks.
For example, a number of solutions specifically focus on ker-
nel rootkit detection [11, 26, 28, 31], which can, however, be
easily bypassed by modern bootkits [7]. In addition, these
solutions typically incur nontrivial overhead, limiting their
applicability in production.

In this paper, we present Slick, a lightweight storage-level
intrusion detection system for virtualized environments. Slick
monitors low-level I/O operations on virtualized storage de-
vices and alerts users of an intrusion when policy violations
are detected. The policies consist of simple IDS rules that
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apply to low-level I/O operations, similar, in spirit, to fire-
wall rules that users frequently configure for infrastructure
equipment. For example, a user can easily configure Slick

rules to be alerted whenever the startup code (MBR or boot-
loader) of a guest VM is modified. Slick’s monitoring and
intrusion detection components run entirely sandboxed in-
side the hypervisor and operate with no interference from
and to the guest VMs. This prevents malware with unre-
stricted access to a guest VM from subverting Slick, but
also allows the user to deploy fully guest-agnostic IDS capa-
bilities when a guest VM is not under their control or not
accessible at all. For example, in public cloud environments,
deploying an intrusive guest-aware introspection component
might raise privacy concerns or even be illegal.

Contributions. We make the following contributions:

• We present Slick, a hypervisor-based IDS for virtual-
ized storage devices. Slick incurs low overhead and
supports flexible and easy-to-use rules to detect a broad
range of real-world intrusions.

• We present a Slick implementation for kvm [15] and
QEMU [6] environments. Our implementation is fully
guest-agnostic and requires minimal and isolated mod-
ifications to commodity hypervisors.

• We evaluate Slick on common server workloads and
demonstrate that our solution enhances system secu-
rity, while incurring low overhead even for heavily con-
solidated production servers.

Though we integrated our implementation with kvm/QEMU,
it should be straightforward to port Slick to other virtual-
ization platforms. To facilitate this and make Slick imme-
diately available, we will open source our current prototype.

2. THREAT MODEL
We consider powerful attackers who are capable of compro-
mising any part of a guest environment and obtain root
privileges. We do assume the integrity of the isolation of-
fered by the virtualization technology itself. In other words,
while malicious code may compromise all components of the
guest’s software stack, including the kernel, it cannot escape
the virtual environment itself. In addition, we assume that
the attacker uses persistent storage to ensure the system
remains compromised. For instance, to survive reboots the
attack may compromise the virtual environment’s bootstrap
code directly (e.g., by rewriting the bootloader), or create an
additional account in the /etc/passwd file. Both scenarios
are listed in Figure 2 which we will use as running examples.

3. MONITORING STORAGE DEVICES
In this section, we first motivate why monitoring storage
devices is important (Section 3.1) and then describe how
such monitoring can be done (Section 3.2).

3.1 Malware and storage
Data in computer systems is kept on storage devices man-
aged by the operating system using abstractions known as
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Figure 1: Typical disk layouts for virtualized guests

files that are managed by filesystems. However, filesystems
do not occupy all sectors of a storage device. For instance,
some sectors may contain startup code or other metadata.
We refer to all sectors that are inside a filesystem as light
regions, and to sectors outside any filesystem as dark regions.

Dark regions. In a non-virtualized BIOS-based system, the
CPU boots in real mode and executes the BIOS1. The BIOS
reads and passes control to the code of the Master Boot
Record (MBR) located within the first 512 bytes of the sys-
tem’s hard disk. The MBR code parses the partition ta-
ble (PT) to find a “bootable” partition (containing the OS)
and typically hands over control to the Volume Boot Record
(VBR). The VBR resides within the bootable partition’s
first 512 bytes and contains further information necessary
for booting such as the filesystem parameters and the boot-
loader’s disk location. The VBR code then loads the boot-
loader’s first stage into memory and passes control to it.
From the filesystem’s perspective, all of these disk regions
are dark. Finally, the bootloader loads further code from the
disk, switches to protected mode, and executes the kernel.

In a virtualized environment, each guest has its own MBR,
bootloader, and filesystem(s). For instance, Figure 1 shows
typical disk layouts in virtualized guests. At the top (a), we
see an MBR (Master Boot Record) partitioning scheme with
two partitions, each containing a filesystem. For example, a
guest runningWindows 7 with one system partition, plus the
Windows 7 hidden partition which is not visible to the user;
or a guest running Linux with root and swap partitions.
Below that (b), we see an MBR partitioning scheme with
a single partition containing a filesystem. Finally, at the
bottom (c), we see an MBR partitioning scheme with an
LVM [17] volume group that contains two LVM partitions.
The dark regions denoted as ‘gaps’ in the figure are mainly
created by the convention to align the data on the physical
disk, as implemented in most partitioning tools. The disk
layouts in Figure 1 are deliberately not at scale to emphasize
the existence of disk regions that are located outside the
filesystems maintained by the OS and thus inaccessible by
regular users during normal operations.

Even though these regions are small in size, it is precisely
because they provide storage beyond the reach of the filesys-
tem (and all software on top of it) that they are attractive
to malware authors. For instance, malicious code frequently

1The process is conceptually similar for UEFI systems.



Scenario 1: Compromising dark regions. A web
server in a Windows guest is compromised. After tak-
ing control over the server’s execution and elevating its
privileges, the malicious code downloads more malicious
code (a bootkit) and writes it into the MBR and other
dark regions. The malicious code restarts the guest VM
to activate the bootkit and join a botnet. Assuming the
disk layout of the guest VM is similar to Figure 1(a),
the layout after the infection may be the one shown in
Figure 3 (malicious code in red).

Scenario 2: Compromising light regions. This time,
after compromising a Linux server and elevating its priv-
ileges, the malicious code creates an additional entry in
/etc/passwd with root privileges and no password. Do-
ing so, allows the attacker to enter the system at will at
some later time. In addition, we assume that the attacker
modifies a user’s private key.

Figure 2: Attacks compromising different regions

uses them to save itself and survive across system reboots.
In a healthy systems, the regions that are ‘dark’ from a
filesystem perspective (the MBR, the gaps, and so on) ei-
ther contain startup code, or are empty. In a compromised
system, however, these regions often contain malicious code
or data. Bootkit infections, in particular, store malicious
code in the disk regions that contain the MBR, VBR, or
bootloader. Such malware seizes control even before the OS
kernel executes, permitting it to hook interrupts and sub-
vert later kernel activities. Scenario 1 in Figure 2 describes
such an attack, while a possible disk layout of an TDL4 [29]
infected system is shown in Figure 3 (malicious data in red).

The layout of a storage device is determined when a user
employs a partitioning tool that makes low-level changes to
the disk. This typically happens before the creation of high-
level OS data structures such as filesystems. Of course, the
disk layout may legitimately change due to repartitioning,
just like the content of the bootsectors may change when the
user updates the bootstrap code, but these are rare events.

Light regions. Light regions consist of all regular filesys-
tems’ blocks. These blocks are either free or used to store
file contents, inodes, and/or other filesystem metadata. It
is important to note that free blocks are not ‘dark’ as they
are still for the filesystem to manage. Some files are se-
curity sensitive and should only be written by authorized
users. Well-known examples include a user’s SSH keys, a
UNIX system’s /etc/passwd and /etc/shadow files, and ex-
ecutable programs.

The frequency of updates to security-sensitives files varies
more than the disk layout and boot records, although some
files, like SSH keys, are essentially write-once and never
change. Others, like /etc/passwd do change, but rarely.
Executables may change whenever the user applies an up-
date. In all of these cases, users may want to log the change
events. However, since malicious code may be controlling
the virtualized environment, it is not safe to do so inside
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Figure 3: Disk layout of a kvm guest after infection

the environment itself. Scenario 2 of Figure 2 describes an
attack that compromises light regions.

3.2 Detecting intrusions via disk accesses
What the example scenarios of Figure 2 have in common is
that they deal with (relatively) rare events that are highly
relevant from a security perspective. The modification of
the startup code or of the layout of the disk indicates ei-
ther a reinstallation or major upgrade of the guest VM, or
a bootkit infection that modifies the startup code to gain
control early during system startup. Likewise, an update of
certain sensitive files is something that a user might want to
hear about also. By monitoring changes to virtual storage
devices, we can detect such events and alert the user.

Monitoring disk activity at a low level should not be done
from within the guest VM as the malware may already be
in control by the time the operating system gets to run. All
checks that rely on OS-level services are therefore powerless
to detect such attacks. Antivirus (AV) solutions running
inside the guest VM are a case in point. They rely on the
operating system to scan the storage devices, as well as to
provide the semantic knowledge to distinguish malicious ac-
tivities from benign ones. None of this can be relied upon
in case of an intrusion.

Instead, we opt for monitoring at the lowest possible level—
the emulated hardware beyond the reach of the guest VM.
This has the benefit that malware cannot hide its malicious
activity unless an attack manages to escape the virtual en-
vironment (which we consider out of scope for this paper).
The downside of low-level monitoring is that only transfers
of chunks of data are visible, lacking all forms of higher level
semantics (like files). This forces us to model virtual storage
devices as black boxes which interface with the rest of the
guest VM via low-level I/O transfers of chunks of data with
no particular semantics. Despite the little or no semantics
available on the transferred data, this interface can still be
policed to detect even sophisticated intrusions in dark and
light regions. In the next section, we will revisit the two ex-
amples presented earlier to further substantiate this claim.

4. OVERVIEW
In this section, we present a high-level overview of Slick

by outlining the steps a user needs to configure and deploy
our storage-level intrusion detection system. We exemplify
the workflow with the examples considered in the previous
section. For both examples, we assume the disk layout pre-
sented in Figure 1(a).

In Slick, an intrusion is an I/O (read or write) operation
to any region of a monitored virtual storage that violates a
predetermined policy. A policy consists of a rule set defined
by the user and is enforced throughout the execution of the
guest VMs. The rules resemble simple firewall rules that
users already employ on commodity platforms. We describe
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the detection rules syntax in more detail in Section 6.2.

Figure 4 depicts the general steps necessary to configure
and run Slick. The process consists of two phases: policy
definition and policy enforcement.

Policy definition. During the policy definition phase, the
guest VM is stopped. The user inspects the disk layout, se-
lects the sector ranges of interest, and writes the detection
rules to configure Slick. For ease of use (and to avoid hu-
man errors), the user only provides file names. All the steps
mentioned above are automated by Slick.

In Scenario 1, the guest VM runs a Windows 7 installation
with the disk layout from Figure 1(a):

Device Boot Start End Sectors Size Id Type
disk.img1 * 2048 718847 716800 350M 7 NTFS
disk.img2 718848 41940991 41222144 19.7G 7 NTFS

The virtual server user wants to configure Slick to detect a
potential bootkit installation inside the guest VM. For this
purpose, the user defines the following rule set:

w 0-0 disk.img
w 1-2047 disk.img
w 2048-2048 disk.img
w 2049-2065 disk.img

Applying it, Slick monitors the sectors involved in the boot
process: the MBR (sector 0), the gap used for alignment
(sectors 1-2047), the VBR (sector 2048, i.e. the first sector
of the bootable partition) and the bootloader (the first 16
sectors of the bootable partition after the VBR).

In Scenario 2, the guest VM runs a Linux installation. The
virtual server user wants to configure Slick to detect mod-
ifications to a particular file in the guest VM. To select the
relevant sector range, the user must inspect the filesystem
data from the guest VM. This operation may require an ex-
plicit agreement with the guest users for privacy reasons.
Note, however, that the user does not need to access file
data, but only the location (sectors) of the file on persistent
storage. For example, to monitor a guest’s /etc/passwd file ,
the user can simply monitor its inode for modifications. Not
all changes result in new accounts, but Slick can easily dis-
tinguish between, say, new values for the “last access time”,
and a modification or addition of a datablock. To monitor
the SSH private key of some guest user jdoe the user speci-
fies the filename which Slick automatically matches to the
corresponding physical sectors using the SleuthKit tools.

The disk layout is the following (each row is 1 partition):

Device Boot Start End Sectors Size Id Type
disk.img1 * 2048 16601087 16599040 7.9G 83 EXT4
disk.img2 16601088 16775167 174080 85M 82 swap

and Slick is configured with a simple rule which corresponds
to the file /home/jdoe/.ssh/id_rsa:

w 292856-292863 disk.img

Policy enforcement. During the policy enforcement phase,
the guest VM is running, while Slick enforces the policies
defined previously. For every run-time I/O operation Slick

checks against the policy rules and for every match an alert
is generated.

Let us now consider the examples introduced earlier. For
Scenario 1, the report file is structured as follows:

DR: 4 -W 2049 2065 disk.img
DR: 3 -W 2048 2048 disk.img
DR: 2 -W 1 2047 disk.img
DR: 1 -W 0 0 disk.img

W 1 0 0
W 4 2051 2054

In the excerpt above, the report file starts with a list of the
relevant disk regions corresponding to the policy rules de-
fined by the user. Each region has a given ID, I/O flags (W to
specify a write operation, in our example), a physical sector
range, and the owning storage device. The subsequent lines
refer to alerts generated by Slick. Two intrusions are exem-
plified above (both for region 1), with policy-violating write
operations to sector 0 and sectors 2051-2054 (respectively).

For Scenario 2, the report file exemplifies a single alert for
a policy violating write operation to sector 292856— thus
illegally modifying the private SSH key:

DR: 1 -W 292856 292863 disk.img

W 1 292856 292856

5. A SLICK DESIGN
Figure 5 presents the high-level architecture of Slick. Ini-
tially, the virtualization manager creates a guest. The host
schedules the guest as a regular process, while the guest
makes use of the services offered by the hypervisor.

As in most virtualization solutions, the hypervisor together
with a privileged user space process are responsible for em-
ulating a full virtual machine, including all the emulated
devices. For isolation, the guest and its controling process
have separate address spaces, but the user process has full
control over the guest’s address space. A single thread of
execution of this userspace process runs the guest code in
guest mode, while all other threads (also known as worker
threads) are responsible for the emulation of devices. In ad-
dition, the privileged user process maps regions of memory
of the guest address space into its own address space for ef-
ficient communication between the guest sandbox and the
emulated devices.

Without Slick, the execution flow for I/O operations pro-
ceeds as follows. 1© The execution thread executes guest
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Figure 5: Slick’s high-level architecture

code. 2© When the guest vcpu (virtual CPU) that executes
code wants to perform I/O with the disk, it writes to the
mapped buffer that it shares with the privileged user pro-
cess. 3© It then notifies the worker thread responsible for
emulation of the device that there is I/O pending by per-
forming an exit from guest mode. Control then passes to the
worker thread which executes the request. 4© The worker
thread completes the I/O request by calling the read or write
system call using the file descriptor that corresponds to the
destination file. Upon completion of the I/O request the
user process resumes the execution of the guest(1) which
executes more guest code until another external event needs
handling. Upon completion of the I/O request the user pro-
cess resumes the execution of the guest at step 1©, to execute
more guest code until another external event needs handling.

To police the I/O requests, Slick interposes its checks at
this step (as indicated by 3©). The reason is twofold. First,
the code here runs isolated from the possibly compromised
guest. Second, this is the earliest point at which we know all
the necessary information about the I/O to check against the
detection rules. For example, prior to this step the existence
of I/O requests is known in the guest sandbox by the execu-
tion thread, but not in sufficient detail to fully describe the
I/O request event. Specifically, while we know the direction
and the location (from the point of view of the guest), Slick
and the IO worker thread also needs to know which the des-
tination file in the host that contains the emulated device
data. This information is available only in the userspace
process. Since the I/O thread needs to have all information
about the source buffer and destination of the I/O, we per-
form our checks before the worker thread performs the I/O.
For Slick, the intention to do I/O to a disk region is enough
to detect an intrusion attempt and there is no need to wait
for the successful completion of the I/O operation.

6. A SLICK IMPLEMENTATION
In this section we detail our Slick prototype implemented
on top of kvm/QEMU [6] version 2.2.0.

6.1 Kvm/QEMU modifications
QEMU and kvm closely follow the general I/O virtualization
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Figure 6: kvm/QEMU guest execution loop [15]

model discussed in Section 5, with all the I/O operations
issued by the guest handled by a dedicated user-space I/O
thread on the host. Figure 6 depicts the guest execution
loop enforced by kvm/QEMU. To issue an I/O operation, a
guest kernel thread writes the necessary I/O arguments to
a shared buffer and traps into the hypervisor to notify the
dedicated I/O thread running in userland.

To intercept I/O thread operations for all the supported
storage devices, Slick implements its interposition mecha-
nism in kvm/QEMU’s block driver. In detail, Slick places
hooks in the existing bdrv_open_common and bdrv_close

functions to perform initialization and cleanup operations
when a device is connected and disconnected (respectively).
Further, Slick places its detection hooks in all relevant syn-
chronous (bdrv_rw_co) and asynchronous (bdrv_aio_readv,
bdrv_aio_writev, and bdrv_aio_write_zeroes) I/O func-
tions. No other modification to kvm/QEMU is necessary for
Slick to correctly implement its intrusion detection capa-
bilities. Furthermore, the previously documented modifica-
tions are fairly small and isolated, ensuring maintainability
and encouraging adoption. Slick’s policy enforcement core
is implemented in C in only 34 lines of code (LOC), with
an additional 1966 lines of code to support helpers to ease
policy management, disk layout management, memory man-
agement, parsing, and reporting.

6.2 Detection rules
Slick’s detection rules follow a simple syntax which resem-
bles, e.g., the one in use by common packet filters:



<direction> <start sector>-<end sector> <device name>

Each rule defines an illegal I/O operation which Slick should
immediately report upon detection. A rule consists of the
direction of the I/O operation (i.e., r or R for read, w or W for
write, and a or A for all the I/O operations) a target sector
range (i.e., start and end physical sectors in the valid range
for the virtual device file), and a device name (e.g., the path
to the virtual device file on the filesystem). Slick’s detec-
tion rules can, in principle, support an arbitrary number of
virtual storage devices.

7. EVALUATION
We evaluated our prototype on a Debian Linux 8.0 system
running a modified version of kvm/QEMU 2.2.0 (official De-
bian repositories) with Slick support. We allowed each
guest VM to allocate 2 GB of RAM and use a disk in raw
format. We experimented with two different guest OS, De-
bian Linux 7.0 and Windows 7, both 32 bit—with their disk
layouts reflecting the ones in Figure1(b) and (a), respec-
tively. We repeated all experiments 5 times and reported
the median.

Our evaluation answers 3 key questions: (i) Performance:
Does Slick yield low overhead in production? (ii) Scalabil-
ity : Does Slick scale efficiently with the number of detec-
tion policies? (iii) Effectiveness: How effective is Slick in
detecting intrusions for well-known malicious attacks?

7.1 Performance
To assess Slick’s performance overhead, we first extensively
evaluated our prototype against common server workloads
used in production. Our preliminary experiments reported
no measurable overhead. This is expected, given that Slick
adds relatively inexpensive checks (range checking) to rela-
tively expensive operations (I/O operations). To highlight
the performance overhead, we used PostMark [14] (version
1.51), a I/O-intensive microbenchmark to stress-test the I/O
subsystem while simulating email and web services work-
loads. We configured PostMark to generate 50000 files with
1000-10000 bytes of data and issue 50000-400000 transac-
tions. We cleared all the caches on the host and disallowed
the guest VM to use the host’s page cache—using kvm’s
cache=none option.

To establish a throughput baseline (transactions per sec-
ond), we first ran the PostMark benchmark inside a guest
VM with Slick disabled. Next, we enabled Slick with a
policy to track all non filesystem disk regions that resulted
in the following detection rules:

w 0-0 disk.img
w 1-2047 disk.img
w 16775168-16777216 disk.img

Using the Slick configuration above, we repeated the same
test, measured the resulting throughput, and compared our
performance results against baseline. Table 1 reports the
resulting throughput degradation induced by Slick in our
experiments. Our results show that the performance over-
head introduced by Slick is low even for I/O-intensive mi-
crobenchmarks (4.32% in the worst case), which suggests
that Slick can effectively be deployed in production with a

Transactions Degradation (%)
50000 1.92
100000 3.40
200000 4.32
400000 3.95

Table 1: Slick-induced throughput degradation
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Figure 7: Slick overhead vs. number of rules

negligible performance impact across several possible real-
world workloads.

7.2 Scalability
To assess Slick’s scalability properties, we first evaluated
the impact of the number of configured rules on run-time
performance. For this purpose, we ran PostMark multiple
times (using the same configuration as before) while varying
the number of detection rules configured in Slick. We used
detection rules of the form ’a n-n disk.img’, allowing both
read and write operations to a single sector. Figure 7 depicts
the resulting throughput degradation for an increasing num-
ber of policies. Slick performance is relatively stable for an
increasing number of policies (in the range of 6-9%), yielding
a more noticeable increase only for very large rule set sizes.
Since we expect a small number of rules in practice (e.g., less
than 10 rules typically in use to monitor dark regions with
the most common disk layouts, according to Figure 1), we
can easily conclude that Slick scales efficiently to a large
number of policies for the practical cases of interest. For
Windows 7, a policy covering all exe and dll files contains
9974 rules. At runtime Slick merges rules which have adja-
cent locations and the policy has less than 2000 rules. Next,
we evaluated Slick scalability across VMs. We used the
configuration from subsection 7.1 with 50000 transactions
and ran 2,4 and 8 VMs in parallel on the same host with
and without Slick enabled. Our results show a degradation
of 1.91% for 2 VMs, 1.07% for 4 VMs and 2.5% for 8 VMs.

7.3 Effectiveness
To assess the effectiveness of Slick’s intrusion detection
strategy, we evaluated our prototype system against a num-
ber of well-known malware infections. For our evaluation,
we gathered 2400 Windows-based malware samples which
emerged between 2010 and 2014. Each sample incorporates
a different malware family (TDL4, Sinowal, Carberp, Pihar,
and Trup) and installs a bootkit to achieve persistence and
stealthiness on the system. To detect bootkit-like behavior,
we configured Slick with the following policy:



Malware
family

Short description Writes to dark
regions (id)

Detected
by policy

Trup clickjacking trojan DR1, DR2 Yes
TDL4 considered the most DR1, DR5 Yes

advanced bootkit
Pihar financial data stealer, DR1, DR5 Yes

related to TDL4
Carberp banking trojan, DR2, DR4 Yes

source leaked in 2014
Sinowal partially taken over by DR1, DR5 Yes

researchers in 2009 [30]

Table 2: utilized malware families and example de-
tection results out of the 2400 detected samples

w 0-0 disk.img # dark region 1 (DR1)
w 1-2047 disk.img # dark region 2 (DR2)
w 2048-2048 disk.img # dark region 3 (DR3)
w 2049-2065 disk.img # dark region 4 (DR4)
w 41940991-41943040 disk.img # dark region 5 (DR5)

To detect modern bootkits modifying code residing within
the MBR, VBR, or bootloader, the policy above instructs
Slick to detect all the hard disk changes outside the filesys-
tem regions. DR1 represents the MBR, DR2 the space be-
tween the MBR and VBR, DR3 the VBR, DR4 the boot-
loader, and DR5 the free space beyond the last partition.
While Slick was able to successfully detect all our malware
samples, for sake of brevity, we only report statistics for the
first detection result for each malware family here. Table 2
presents our results, with the Writes to dark regions (id)
column describing the particular dark regions modified by
the malware sample, e.g. DR2 indicates a modification to
dark region 2, located between disk sectors 1 and 2047 (the
space between the MBR and VBR).

Table 2 provides concrete insights into the effectiveness of
our policies. For example, the Sinowal malware sample
modifies dark region 1 and 5 (DR1, DR5 )—MBR—and un-
occupied space beyond the last partition. Since the pol-
icy allows Slick to detect arbitrary modifications to dark
regions, Slick can accurately detect this and many other
malware samples that exhibit similar bootkit-like behavior.

8. RELATED WORK
Intrusion detection systems (IDS) span a range of domains
from network based (NIDS) [1,19,27] to host based (HIDS)
[2, 23]. HIDS typically use introspection techniques to de-
tect and better describe intrusions. Many HIDS that use
heavyweight introspection are used as honeypots or malware
analysis platforms [5, 9, 22,32].

A common technique used by HIDS is system call monitor-
ing of the guest environment [18, 23]. It uses the sequences
of system calls of previous application executions to detect
anomalies when new executions diverge from the known se-
quences. Slick handles every I/O operation individually
without considering sequences of operations or any other
dependencies between them.

Storage based IDS [2, 20, 21] examine the I/O requests for
suspicious behavior. Tripwire [2] uses cryptographic hashes
to protect filesystem objects which it scans at different mo-
ments in time. In [20, 21] the checks are made inside an

NFS server which monitors the requests made to the filesys-
tem. These systems are located at the filesystem level and
do not consider storage regions outside filesystems thus pos-
sibly missing bootkit infections altogether. Slick on the
other hand checks all areas of the disk defined in the poli-
cies including non filesystem areas.

Banikazemi [4] presents an storage based IDS implemented
in a storage area network (SAN) controller. Similar to Slick

it checks for intrusions at block level rather than at filesys-
tem level and requires a mapping between filesystem objects
and occupied blocks. Other systems aim to secure the in-
tegrity of major OS components or executed applications
via hypervisor technology. Systems like SecVisor [28], [13],
[31], [11] exploit the separation supplied by a trusted virtual
machine to protect the guest operating system.

9. DISCUSSION

Guest escapes. Slick relies on the fact that an attack may
compromise the guest but cannot escape the virtual environ-
ment. Guest escapes were demonstrated in [8, 10, 16]. The
attacks assume a more powerful threat model where the at-
tacker is fully aware of the underlying hypervisor and its vul-
nerabilities. Cloudburst [16] exploits bugs in the VMWare
video device emulation that leak host memory to the guest
and permit arbitrary host memory write from the guest. Vir-
tunoid [8] exploits a bug in the implementation of KVM PCI
device hotplugging that allows unplug requests from devices
that do not support it (the Intel PIIX4). This leaves behind
dangling pointers that can be exploited by use after free.
Venom [10] exploits a buffer overflow in the emulated floppy
drive controller and achieves code execution in the context of
the host hypervisor process. In the above examples the at-
tack surface consists of the memory mappings from guest to
host that emulate port I/O and memory mapped I/O. Even
though the guest memory is mapped as non executable in the
host address space, [8] shows a way to use mprotect to obtain
executable pages and inject payloads from guest to host. A
strategy to reduce the attack surface of the KVM hypervisor
is to move hypervisor functionality to userspace [12].

Detection policies. Slick allows for different detection poli-
cies: log I/O requests, deny policy-violating I/O requests,
read decoy data, redirect writes to shadow blocks, etc. Cur-
rently Slick implements the non-intrusive detection policy
that only logs policy violations. However, it is easy to add
intrusion prevention capabilities, e.g., redirecting write op-
erations to shadow blocks or replacing the write length with
0. For read operations, Slick can either serve shadow block
or random decoy data.

Light region detection. Slick, due to its non intrusive
and semantics-agnostic nature cannot distinguish between
benign and malicious accesses. Still, it provides a audit
log beyond the reach of malware that is crucial for detec-
tion/analysis of malware behavior a posteriori. Further-
more, in PaaS or SaaS environments, many sensitive files
never change without the user’s explicit permission, effec-
tively removing such false positives. Slick can detect using
its policies backdoor insertions (by modifying configuration



files of services, new user creation), infectors of executable
files or libraries. Slick cannot detect, without adding costly
introspection, malicious drive-by downloads which drop new
executable files that are executed later.

10. CONCLUSION
Most malware persists across reboots by writing code and
data on the system’s storage devices. The disk blocks used
by such malware may reside in regular file-system space, but
could also be outside any file system whatsoever. Example
of the latter include malware that modifies the MBR, the
bootloader, or even the inter-partition gaps. Detecting such
malware from inside the OS is typically not possible, because
by the time it runs, the malware is already in control. A
much better place for such a storage-level intrusion detector
is outside the OS altogether, for instance in the hypervisor.

In this paper, we discuss Slick, an intrusion detection tool
that operates outside the guest VMs and allows a user to
specify exactly which blocks to monitor for changes. Slick

is versatile enough to detect intrusion inside the file system
as well as outside it. Moreover, it has friendly, yet powerful
configuration and incures virtually no overhead in practice.
Slick helps users track many kinds of unwanted modifica-
tion to the file system, but it is especially useful for detecting
stealthy bootkits and other malware like TDL4 and Sinowal.
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