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ABSTRACT

Recent hardware-based attacks that compromise systems
with Rowhammer or bypass address-space layout random-
ization rely on how the processor’s memory management
unit (MMU) interacts with page tables. These attacks often
need to reload page tables repeatedly in order to observe
changes in the target system’s behavior. To speed up the
MMU'’s page table lookups, modern processors make use of
multiple levels of caches such as translation lookaside buffers
(TLBs), special-purpose page table caches and even general
data caches. A successful attack needs to flush these caches
reliably before accessing page tables. To flush these caches
from an unprivileged process, the attacker needs to create
specialized memory access patterns based on the internal
architecture and size of these caches as well as how they in-
teract with each other. While information about TLBs and
data caches are often reported in processor manuals released
by the vendors, there is typically little or no information
about the properties of page table caches on different pro-
cessors. In this paper, we describe RevAnC, an open-source
framework for reverse engineering internal architecture, size
and the behavior these page table caches by retrofitting a
recently proposed EVICT+TIME attack on the MMU. RevAnC
can automatically reverse engineer page table caches on new
architectures while providing a convenient interface for flush-
ing these caches on 23 different microarchitectures that we
evaluated from Intel, ARM and AMD.

1. INTRODUCTION

As software is becoming harder to compromise due to the
plethora of advanced defenses |1} |7, |11} (18] [19], attacks on
hardware are instead becoming an attractive alternative.
These attacks range from compromising the system using
the Rowhammer vulnerability |4} 24} 25| |26] and using side
channels for breaking address space layout randomization
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(ASLR) |10} |12} |13] [14] 17] leaking cryptographic keys [27}
6] and even tracking mouse movements |21].

Many of these attacks abuse how modern processors in-
teract with memory. At the core of any processor today is a
memory management unit (MMU) that simplifies the man-
agement of the available physical memory by virtualizing it
between multiple processes. The MMU uses a data struc-
ture called the page table to perform the translation between
virtual memory to physical memory. Page tables are an at-
tractive target for hardware-based attacks. For example, a
single bit flip in a page table page caused by Rowhammer
could grant an attacker the control over a physical memory
location that she does not own, enough to gain root privi-
leges [25 [26]. Further, security defenses such as ASLR and
others that bootstrap using ASLR [5| [8 |19} |20] rely on ran-
domizing where code or data is placed in virtual memory.
Since this (secret) information is embedded in page tables,
the attackers can perform various side-channel attacks on
the interaction of the MMU with page tables to leak this
information |12].

The virtual to physical memory translation is slow as it
requires multiple additional memory accesses to resolve the
original virtual address. To improve performance, modern
processors make use of multiple levels of caches such as
translation lookaside buffers (TLBs), special-purpose page
table caches and even general data caches. To mount a suc-
cessful attack on page tables, attackers often need to repeat-
edly flush these caches [12, 13| [25] 26] to observe the sys-
tem’s behavior when manipulating page tables. The details
of TLBs and data caches are easy to find by examining pro-
cessor manuals [15, [16]. Information on page table caches
such as their size and behavior, however, is often lacking.
Without this information, attackers need to resort to trial
and error and it becomes difficult to build robust attacks
that work across different architectures.

In this paper, we retrofit AnC [12], an existing EVICT+TIME
side-channel attack on the MMU to build RevAnC, a reverse
engineering framework for determining the size and internal
architecture of page table caches as well as how they inter-
act with other caches on 23 microarchitectures comprising
various generations from Intel, ARM and AMD processors.
RevAnC relies on the fact that page table lookups by the
MMU are stored in the last level cache (LLC) in order to
speed up the next required translation. By flushing parts
of the LLC and timing the page table lookup, RevAnC can
identify which parts of the LL.C store page tables. On top of
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flushing the LLC, RevAnC needs to flush the TLB as well as
page table caches. Since the information on the size of TLB
and the LLC is available, we can use RevAnC to reverse
engineer the properties of the page table caches that are of
interest to attackers, like their internal architecure and size.
Summarizing, we make the following contributions:

e We describe a novel technique to reverse engineer the
undocumented page table caches commonly found in
modern processors.

e We evaluate our technique on 23 different microarchi-
tectures from recent Intel, ARM and AMD processors.

e We release RevAnC as open-source software. RevAnC
provides a convenient interface to flush page table caches
on the microarchitectures that we tested and can au-
tomatically detect page table caches on new proces-
sors. More information about AnC and RevAnC can
be found at: https://www.vusec.net/projects/anc

We provide some necessary background in Section [2 We
then discuss our design and implementation on multiple ar-
chitectures in Section [3| before evaluating it on 23 different
processors in Section@ We discuss related work in Section
and conclude in Section

2. BACKGROUND AND MOTIVATION

In this section, we discuss the paging memory manage-
ment scheme and its implementation on most modern pro-
cessors. Furthermore, we look at how the MMU performs
virtual address translation, and the caches that are used to
improve the performance of this translation.

2.1 Paging and the MMU

Paging has become integral to modern processor architec-
tures as it simplifies the management of physical memory
by virtualizing it: the operating system no longer needs to
relocate the entire memory of applications due to a limited
address space and it no longer needs to deal with fragmenta-
tion of physical memory. Furthermore, the operating system
can limit the memory to which a process has access, prevent-
ing malicious or malfunctioning code from interfering with
other processes.

As a direct consequence, many modern processor archi-
tectures use an MMU, a hardware component responsible
for the translation of virtual addresses to the corresponding
physical addresses. The translations are stored in the page
tables—a unidirectional tree of multiple levels, each of which
is indexed by part of the virtual address to select the next
level page table, or at the leaves, the physical page. Hence,
every virtual address uniquely selects a path from the root
of the tree to the leaf to find the corresponding physical
address.

Figure 1] shows a more concrete example of how the MMU
performs virtual address translation on x86_64. First, the
MMU reads the CR3 register to find the physical address
of the top-level page table. Then, the top nine bits of the
virtual address index into this page table to select the page
table entry (PTE). This PTE contains a reference to the
next-level page table, which the next nine bits of the virtual
address index to select the page table entry. By repeating
this operation for the next two levels, the MMU can then
find the corresponding physical page for 0x644b321£4000 at
the lowest-level page table.

Level 1 Level 2 Level 3 Level 4

TE 0 PTE_0: PTE 0 PTE0:

CR3: Level 1 Physical Addr

PTE 200: Level 2 Phys Addr
PTE 300: Level3 Phys Md#

PTE 400: Level 4 Phys Addr |

PTE 500: Target Phys Addr

Figure 1: MMU’s page table walk to translate
0x644b321£4000 to its corresponding memory page on
the x86_64 architecture.

2.2 Caching MMU'’s Operations

The performance of memory accesses improves greatly if
the MMU can avoid having to resolve a virtual address that
it already resolved recently. For this purpose, CPUs store
the resolved address mappings in the TLB cache. Hence,
a hit in the TLB removes the need for an expensive page
table walk. In addition, to improve the performance of a
TLB miss, the processor stores the page table data in the
data caches.

Modern processors may improve the performance of a
TLB miss even further by means of page table caches or
translation caches that store PTEs for different page table
levels 2] [3]. While page table caches use the physical ad-
dress and the PTE index for indexing, translation caches
use the partially resolved virtual address instead. With
translation caches the MMU can look up the virtual address
and select the page table with the longest matching prefix.
Hence, translation caches skip upper levels of the page ta-
ble and continue the translation with the lowest-level page
table present within the cache for the given virtual address.
While this allows the MMU to skip part of the page table
walk, the implementation of translation caches also comes
with additional complexity. Furthermore, these caches can
be implemented as split dedicated caches for different page
table levels, as one single unified cache for different page ta-
ble levels, or even as a TLB that is also capable of caching
PTEs. We discover using RevAnC that for instance, AMD’s
Page Walking Caches, as found in the AMD K8 and AMD
K10 microarchitectures, and Intel’s Page-Structure Caches
are examples of unified page table caches and split translation
caches, respectively. Similarly, ARM implements a unified
page table cache (table walking cache) in the designs that are
optimized for low-power consumption and silicon utilization,
while they implement a split translation cache (intermedi-
ate table walking cache) in their designs optimized for high
performance.

Figure [2] visualizes how different caches interact with each
other when the MMU translates a virtual address. While the
TLBs and caches have been documented thoroughly, many
of the details on both page table and translation caches re-
main unspecified.

2.3 Motivation

Recent hardware attacks that abuse page tables need to
properly flush page table caches in order to operate correctly.
The prefetch attack [13], for example, relies on when the
virtual address translation partially succeeds in one of the
page table caches in order to gain knowledge about a ran-
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Figure 2: a generic implementation of an MMU and
all the components involved to translate a virtual
address into a physical address.

domized address in the kernel. Rowhammer attacks that
manipulate page tables need to repeatedly flush the TLB
and page table caches in order to scan the physical memory
for sensitive information.

Another example where flushing page table caches is nec-
essary is the AnC attack |12]. MMU’s page table walks are
cached in the LLC. AnC makes use of this fact to perform a
EVICT+TIME attack [22] to determine the offsets within page
table pages that the MMU accessed during a page table
walk. The known offsets reveal the randomized virtual ad-
dresses, breaking ASLR. AnC needs to try many different
access patterns multiples of times for a reliable attack and
for each one of them it needs to flush the page table caches
in order to trigger a complete page table walk. Hence, the
knowledge of the internal page table caches are necessary for
a correct and an efficient implementation of AnC.

In some cases, TLBs function as page table caches. In
these cases, the cpuid instruction can be used to report the
size of the different TLBs, and thus the size of the different
page table caches. However, on some x86_64 microarchi-
tectures the cpuid instruction does not report the sizes for
all the TLBs. For instance, despite the fact that a TLB is
present on Intel Sandy Bridge and Ivy Bridge processors to
cache 1 GB pages, this information is not being provided by
the cpuid instruction at all. Furthermore, on other CPU ar-
chitectures there may be no way to report the TLB sizes, or
the page table caches may have been implemented as com-
pletely independent units. We hence need a more principled
approach to finding the important properties of page table
caches.

3. RevAnC

Using cpuid on x86_64 and the flat device tree (FDT) on
ARMv7-A and ARMv8-A, we can detect the processor topology
including its properties such as the TLBs, the caches, the
names of the processor and the vendor and the microarchi-
tecture. With this information, we can build an appropriate
eviction set to flush the TLB and the data caches. We can
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then use these eviction sets in RevAnC to learn about the
page table and translation caches by performing the AnC
attack incrementally as we described in this section. We
needed to overcome a number of challenges to make Re-
vAnC work across different architectures which we will dis-
cuss hereafter.

def detect_caches(n, threshold):
sizes = []

for level in page_levels:
for size in [1, 2, 3, 4, 6, 8, 12, 16, 24, ...]:
count = 0
evict_set = build_evict_set(sizes + [size])

for attempt in [1 .. n]:
timings = profile_page_table(evict_set)
slot = solve(timings)

if slot == expected_slot:
count += 1

if count / n > threshold:
break

sizes.append(size)

return sizes

Listing 1: high-level overview of the code used to detect
the sizes of the page table cache where n is the amount of
attempts and threshold is the required accuracy.

3.1 Using the MMU’s Cache Signal

We rely on the fact that the MMU’s page table walk ends
up in the target processor’s data caches for learning about
page table caches. Assuming an Intel x86 64 with four page
table levels as a running example, the MMU’s page table
walk of a given virtual address v brings four cache lines from
the four page table pages into the L1 data cache as well as
L3, given that L3 is inclusive of L1. As a result, the next
page table walk for v will be considerably faster if the cache
lines are still in one of the data caches.

The CPU data caches are partitioned into cache sets.
Each cache set can store up to N cache lines which is re-
ferred to as N-way set-associative cache. Oren et al. [21]
realised that given two different (physical) memory pages,
if their first cache lines belong to the same cache set, then
the other cache lines in the page share (different) cache sets
as well, i.e. if we select an offset ¢ within one page that is
aligned on a cache line boundary, then the cache line at off-
set t in the other page will share the same cache set. This is
due to the fact that for the first cache lines to be in the same
cache set, all the bits of the physical address of both pages
that decide the cache set and slice have to be the same and
that an offset within both pages will share the same lower
bits.

This property of the caches allows us to simply use many
pages as an eviction buffer. Let’s assume that one of the
four page table entries that translate v is at offset zero of
the page table page. If we access the first cache line of all the
pages in our eviction buffer, we will evict an MMU’s recent
page table walk of v from the cache. Hence, the next page
table walk of v will be slightly slower since it needs to fetch
the aforementioned page table entry from memory. This is
an example of an EVICT+TIME attack which RevAnC uses to
find up to four cache lines out of the possible 64 cache lines
in a memory page that store page table entries. Note that



by trying various offsets apart from v, we can distinguish
which cache line hosts the page table entry at each level. For
example, if we perform the EVICT+TIME on v + 32KB, the
cache line that changes compared to performing EVICT+TIME
on v is the cache line that is hosting the level 1 page table.
This is because on x86 64, each cache line can store 8 page
table entries that map 32 KB of virtual memory.

Assuming a page table cache for one of the page table
levels, we will not observe the MMU’s activity on that level
without flushing the page table cache for that level. As an
example, assume that there is a page table cache for level
2 page tables with 32 entries. Given that each entry in the
level 2 page table maps 2 MB of virtual memory, if we access
a virtually contiguous 64 MB buffer (at every 2 MB bound-
ary), we are going to flush this page table cache. We hence
can easily bruteforce the size of the potential page table
cache at each level. For example, if we could not observe
the signal with RevAnC for the upper three levels of the
page tables on an x86_64 Intel, it is due to the page table
(translation) cache at the level 2 page table. We then can
bruteforce the size of this cache, before moving to the upper
level. Listing [I] shows how this is possible. Note that unlike
the original AnC attack, in RevAnC we assume a known
virtual address, so we know exactly where the MMU signal
should appear in the cache. To make Listingrobust across
architectures we needed to address a number of issues which
we discuss next.

3.2 Ensuring Memory Order

Many modern CPU architectures implement out-of-order
execution, where instructions are being executed in an or-
der governed by the availability of input data, rather than
by their original program order. With out-of-order execu-
tion instructions are decoded and stalled in a queue until
their input operands are available. Once the input operands
are available, the instruction may be issued to the appropri-
ate execution unit and executed by that unit before earlier
instructions. In addition such CPU architectures are often
superscalar, as they have multiple execution units allowing
multiple instructions to be scheduled to these different exe-
cution units, allowing for the simultaneous execution of these
instructions. After the completion of the instructions their
results are written in another queue that is being retired
in the order of the original program to maintain a logical
order. Furthermore, several modern CPU architectures do
not only have the ability to execute instructions out-of-order,
but they also have the ability to re-order memory operations.

To measure the execution time of a single instruction on
such CPU architectures, we have to inject memory barriers
before and after the timing instructions, and code barriers
before and after the resulting code to flush the instructions
and memory operations that are in-flight. To serialise the
memory order, we can use the dsb instruction ARMv7-A and
ARMv8-A, whereas on x86_64 both the rdtscp and mfence
instructions guarantee a serialised memory order. To seri-
alise the instruction order, we can use the cpuid instruction
on x86_64, and the isb sy instruction on both ARMv7-A and
ARMv8-A.

3.3 Timing

Since the difference between a cache hit and a cache miss
is in the order of hundreds of nanoseconds or even tens of
nanoseconds, a highly accurate timing source is required to

be able to distinguish a cache hit from a cache miss. While
timing information can be obtained through clock_gettime ()
on POSIX-compliant operating systems, the timing informa-
tion is not accurate enough on various ARMv7-A and ARMv8-A
platforms.

Many modern architectures have dedicated registers to
count the amount of processor cycles providing a highly ac-
curate timing source. While such registers are accessible
through the unprivileged rdtsc of rdtscp instructions, the
PMCCNTR register offered by the performance monitoring unit
(PMU) on both ARMv7-A and ARMv8-A is not accessible by
default. Furthermore, when these registers were introduced
initially, they were not guaranteed to be synchronised among
cores and the processor clock was used directly to increment
them. In these cases, process migration and dynamic fre-
quency scaling may influence the timings up to the point
that they become unreliable.

Given that most processors today have multiple cores, a
thread that simply increments a global variable in a loop
can provide a software-based cycle counter. We found this
method to work reliably on various platforms with a high
precision. Note that the JavaScript version of the original
AnC attack deploys a similar technique to build a high pre-
cision timer.

3.4 Discussion

While RevAnC can detect split MMU caches, it cannot
currently distinguish a unified from a split MMU cache that
only caches level 2 entries as these behave the same. Further,
RevAnC cannot distinguish page table caches from transla-
tion caches. Some architectures use TLBs to implement page
table or translation caches. In the case that these TLBs are
unified, evicting the TLB also evicts the PTEs. While it
is possible to detect this by allocating huge pages for the
eviction set, we have left this for future work.

4. EVALUATION

We evaluate RevAnC using 23 different CPUs from Intel,
ARM and AMD produced from 2008 to 2017. We report
the discovered sizes of page table caches for each page table
level (we refer to e.g., level 2 page table as PL2) and finally
the time that our technique needs for reverse engineering
this information. We have also included the sizes of the
different caches and TLBs available for each of the CPU for
comparison and completeness.

Our findings are summarized in Table[[] RevAnC uses the
information in Table [1] to flush TLBs and page table caches
by allocating as many pages as there are cache entries and
touching each of these pages for each page level. Listing [2]
shows this access pattern. By touching the pages, the MMU
will be forced to perform a virtual address translation to re-
place an existing entry in the cache. Furthermore, by using
the page size as the stride for each of the page levels, Re-
vAnC can flush the page structure caches or TLBs in the
case of huge pages.

We will now go through interesting points and differences
between each vendor discovered by RevAnC.

4.1 Intel

On Intel the last-level cache is inclusive, which means that
data available in the last-level cache must also be available
in the lower level cache(s). Because of this property, it is suf-
ficient to only evict cache lines from the last-level cache, as
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CPU Year Caches TLBs Detected Time
L1 L2 L3 PL1 PL2 PL3 PL2 PL3 PL4

Intel Xeon E3-1240 v5 (Skylake) @ 3.50GHz 2015 32K 256K 8M 1600 32 20 24 3-4 0 3mO08s
Intel Core i7-6700K (Skylake) @ 4.00GHz 2015 32K 256K 8M 1600 32 20 24 3-4 0 3m4ls
Intel Celeron N2840 (Silvermont) @ 2.16GHz 2014 24K 1M N/A 128 16 N/A 12-16 0 0 52s

Intel Core i7-4500U (Haswell) @ 1.80GHz 2013 32K 256K 4M 1088 32 4 24 3-4 0 2mb53
Intel Core i7-3632QM (Ivy Bridge) @ 2.20GHz 2012 32K 256K 6M 576 32 4 24-32 3 0 3mO05s
Intel Core i7-2620QM (Sandy Bridge) @ 2.00GHz 2011 32K 256K 6M 576 32 4 24 2-4 0 3mlls
Intel Core i5 M480 (Westmere) @ 2.67GHz 2010 32K 256K 3M 576 32 N/A 24-32 2-6 0 2mdds
Intel Core i7 920 (Nehalem) @ 2.67GHz 2008 32K 256K 8M 576 32 N/A 24-32 3 0 4m26s
AMD Ryzen R7 1700 8-Core (Zen) @ 3.3GHz 2017 32K 512K 16M 1600 1600 64 0 64 0 13m16s
AMD FX-8350 8-Core (Piledriver) @ 4.0GHz 2012 64K 2M 8M 1088 1088 1088 0 0 0 2m50s
AMD FX-8320 8-Core (Piledriver) @ 3.5GHz 2012 64K 2M 8M 1088 1088 1088 0 0 9 2m4T7s
AMD FX-8120 8-Core (Bulldozer) @ 3.4GHz 2011 16K 2M 8M 1056 1056 1056 0 0 0 2m33s
AMD Athlon II 640 X4 (K10) @ 3.0GHz 2010 64K 512K N/A 560 176 N/A 24 0 0 Tm50s
AMD E-350 (Bobcat) @ 1.6GHz 2010 32K 512K N/A 552 8-12 N/A 8-12 0 0 5m38s
AMD Phenom 9550 4-Core (K10) @ 2.2GHz 2008 64K 512K 2M 560 176 48 24 0 0 6mb52s
Rockchip RK3399 (ARM Cortex A72) @ 2.0GHz 2017 32K 1M N/A 32 512 N/A 16 6 N/A 17m49s
Rockchip RK3399 (ARM Cortex A53) @ 1.4GHz 2017 32K 512K N/A 10 512 N/A 64 0 N/A 7mO06s
Allwinner A64 (ARM Cortex A53) @ 1.2GHz 2016 32K 512K N/A 10 512 N/A 64 0 N/A 52m26s
Samsung Exynos 5800 (ARM Cortex A15) @ 2.1GHz 2014 32K 2M N/A 32 512 N/A 16 0 N/A 13m28s
Nvidia Tegra K1 CD580M-A1 (ARM Cortex A15) @ 2.3GHz 2014 | 32K oM N/A 32 512 N/A 16 0 N/A | 24m19s
Nvidia Tegra K1 CD570M-A1 (ARM Cortex A15; LPAE) @ 2.1GHz | 2014 | 32K 2M N/A 32 512 N/A 16 0 N/A 6m35s
Samsung Exynos 5800 (ARM Cortex A7) @ 1.3GHz 2014 32K 512K N/A 10 256 N/A 64 0 N/A 17m42s
Samsung Exynos 5250 (ARM Cortex A15) @ 1.7GHz 2012 32K 1M N/A 32 512 N/A 16 0 N/A 6m46s

Table 1: the specifications and results

/* Flush the TLBs and page structure caches. */
for (j = 0, level = fmt->levels; j <= page_level; ++level, ++j)
{

p = cache->data + cache_line * cache->line_size;

for (i = 0; i < level->ncache_entries; ++i) {
*p = 0xbA;
p += level->page_size;

Listing 2: flushing the TLBs and page structure caches.

this will cause them to be evicted from the lower-level caches
as well. We have found that Intel’s Page-Structure Caches
or split translation caches are implemented by Intel Core
and Xeon processors since at least the Nehalem microarchi-
tecture. On Intel Core and Xeon processors there are caches
available for 24-32 PL2 entries and 4-6 PL3 entries, whereas
on Silvermont processors there is only a single cache avail-
able for 12-16 PL2 entries. Note that during multiple runs
of our solution, we converged to different numbers that are
close to each other. A conservative attacker can always pick
the larger number. On Intel Core and Xeon processors, as
well as Silvermont processors, we have found that the sizes
of the TLBs as reported by cpuid can be used as an ap-
propriate guideline to fully flush these caches, as it is very
likely that the TLBs used to cache huge pages also contain
the logic to cache intermediate page walks. Finally, we have
found that while Sandy Bridge and Ivy Bridge implement a
TLB to cache 1G pages, the cpuid instruction does not re-
port the presence of this TLB, and that both Nehalem and
Westmere implement a PL3 page structure cache without
even having such a TLB implemented.

4.2 AMD

On AMD the last-level cache is exclusive, which means
that data is guaranteed to be in at most one of the caches
allowing more data to be stored at once. To be able to
properly evict cache lines, we have to allocate an eviction set
of which the size is equal to the total sum of the cache sizes.
Our tests have found that the AMD K10 microarchitectures
implements AMD’s Page Walking Cache with 24 entries.
Because AMD Bulldozer and Piledriver implement a 1024-
entry L2 TLB that also acts as a Page Walking Cache |9,
it is sufficient to only flush the TLB, as indicated by our
tests. Similarly, AMD Zen implements a 1536-entry L2 TLB

for 23 different microarchitectures.

that also acts as a Page Walking Cache. However, another
L2 TLB with 64 entries dedicated to 1G pages has been
introduced with AMD Zen. Finally, AMD Bobcat seems to
implement a page directory cache with 8 to 12 entries.

4.3 ARMYV7-A and ARMvS-A

While configurable, on most ARMv7-A processors, the L2
cache are configured to be non-inclusive. The virtual ad-
dress space is divided into two page levels with 256 entries
and 4096 entries mapping 4K and 1M per entry respectively.
With Large Physical Address Extensions (LPAE) this is di-
vided into three page levels with 512, 512 and 4 entries map-
ping 4K, 2M and 1G per page table respectively. Despite the
fact that the last page level only consists of four entries, the
RevAnC can still be applied to the other page levels to de-
termine the existence of page table or translation caches.
Even though the last-level page table only consists of four
entries that fit into a single cache line, we can still apply
RevAnC to the other two page levels to determine the ex-
istence of page table and translation caches. Furthermore,
the low-power variants, such as the ARM Cortex A7, im-
plement a page table cache, while the performance-oriented
variants, such as the ARM Cortex A15 implement a trans-
lation cache. We have found that these caches are 64 entries
and 16 entries in size respectively. Furthermore, we have
found that these sizes can be determined reliably with and
without LPAE, and even on ARM big.LITTLE processors
with heterogeneous cores, where all cores have been enabled.

ARMv8-A processors implement an inclusive last-level cache
and the x86-64 paging model, where Linux often only uses
three page levels rather than four to improve the perfor-
mance of page look-ups. We have found that the low-power
variants like the ARM Cortex A53 implement a 64-entry
unified page table cache, whereas the ARM Cortex A72 ex-
tends the 16-entry split translation cache with 6 additional
PL3-entries.

S. RELATED WORK

AnC [12] launches an EVICT+TIME attack on the MMU
which relies on how PTEs are cached in the LLC in order to
derandomize user-space ASLR from JavaScript. Attacks us-
ing the prefetch instruction [13] rely on cached TLB entries
and partial translations to derandomize kernel-space ASLR
natively. Page tables are an attractive target for Rowham-
mer attacks. Drammer [26] and Seaborn’s attacks [25] cor-



rupt a PTE to make it point to a page table page. All
these attacks will fail if page table caches are not properly
flushed. This paper provides a robust technique for flushing
these caches on various architectures.

Reverse engineering of commodity hardware has become
popular with increasing attacks on hardware. Hund et al. [14]
reverse engineered how Intel processors map physical mem-
ory addresses to the LLC. DRAMA [23] used a DRAM tim-
ing side channel in order to reverse engineer how memory
controllers place data on DRAM modules. In this paper, we
reverse engineered various undocumented properties of page
table caches common in the MMU of modern processors.

6. CONCLUSIONS

Hardware-based attacks such as cache or Rowhammer at-
tacks are gaining popularity as compromising hardened soft-
ware is becoming more challenging. For robust attacks across
various processors, the properties of various intra-processor
caches become important. These caches are often hidden
from software and as a result they are sometimes not prop-
erly documented. In this paper, we described RevAnC, a
framework for reverse engineering the properties of page ta-
ble caches commonly found on recent processors. We applied
our technique on 23 different microarchitectures to detect
that 20 of them implement these page table caches. Our
open-source implementation provides a convenient interface
for flushing these caches on these 20 microarchitectures and
can automatically detect page table caches on future mi-
croarchitectures. More information about this project be
found at: |https://www.vusec.net/projects/anc
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