Rain: Transiently Leaking Data from Public Clouds Using Old Vulnerabilities

Mathé Hertogh*, Dave Quakkelaar*, Thijs Raymakers*, Mahesh Hari Sarma*,
Marius Muench**, Herbert Bos*, Erik van der Kouwe*
*Vrije Universiteit Amsterdam, **University of Birmingham

Abstract—Given their vital importance for governments and
enterprises around the world, we need to trust public clouds to
provide strong security guarantees even in the face of advanced
attacks and hardware vulnerabilities. While transient execution
vulnerabilities, such as Spectre, have been in the spotlight
since 2018, until now there have been no reports of realistic
attacks on real-world clouds, leading to an assumption that
such attacks are not practical in noisy real-world settings
and without knowledge about the (host or guest) victim. In
particular, given that today’s clouds have large fleets of older
CPUs that lack comprehensive, in-silicon fixes to a variety of
transient execution vulnerabilities, the question arises whether
sufficient software-based defenses have been deployed to stop
realistic attacks—especially those using older, supposedly mit-
igated vulnerabilities.

In this paper, we answer this question in the negative. We
show that the practice of mitigating vulnerabilities in isolation,
without removing the root cause, leaves systems vulnerable.
By combining such “mitigated” (and by themselves harmless)
vulnerabilities, attackers may still craft an end-to-end attack
that is more than the sum of its parts. In particular, we show
that attackers can use L1TF, one of the oldest known tran-
sient execution vulnerabilities (discovered in January 2018), in
combination with a simple speculative out-of-bounds load, to
leak data from other guests in a commercial cloud computing
platform. Moreover, with an average end-to-end duration of 15
hours to leak the TLS key of an Nginx server in a victim VM
under noisy conditions, without detailed knowledge of either
host or guest, the attack is realistic even in one of today’s
biggest and most important commercial clouds.

1. Introduction

As governments and enterprises around the world rely
on proprietary public clouds for on-demand access to scal-
able computing, today’s clouds have become a foundational
component of our digital infrastructure. Since all multi-
tenant cloud solutions imply that users may share physical
resources with untrusted other tenants, they require implicit
trust in the security guarantees of the underlying hardware
and system software to keep data safe from adversarial co-
tenants. Providing such guarantees is challenging, especially
in the presence of the ever-expanding arsenal of transient-
execution and side-channel exploits [1]], [2], [3], [4l, [5],
[6fl, 171, 81, 191, [[10], [11]], [12]. While mitigations exist for

each of these vulnerabilities, even for older and vulnerable
hardware, they are often incomplete, especially as deployed.
The reason is that comprehensive mitigation of transient
execution vulnerabilities such as Spectre [1f], L1TF [7],
[13[], and MDS [8], [9], [10] is very expensive [14]]. Not
surprisingly, industry deploys ‘spot’ mitigations instead—
rendering the vulnerability too difficult to exploit using
known techniques, but without removing the root cause.

Even so, there have been no reports of realistic attacks
on real-world clouds with any of the older vulnerabilities.
It appears as if the collection of mitigations put in place
by cloud providers is sufficient to stop exploitation of these
vulnerabilities in practice [15]. Indeed, some consider these
attacks so complicated that it is questionable if they form a
practical threat [16]], [17], [18], [19]], [20]. While new vul-
nerabilities still create media attention [21]], [22] and often
remain under embargo while mitigations are deployed [23]],
there is little concern about older vulnerabilities such as
LITF [7], [13] (discovered in January 2018).

In this paper, we question this lack of concern and
show not only that practical attacks on modern clouds are
possible, but that they are possible with vulnerabilities we
considered mitigated 7 years ago. In particular, we use LITF
together with a speculative out-of-bounds load to overcome
all relevant security measures and leak sensitive data from
the hypervisor and even a co-tenant on the Google cloud.
While others have argued that combining L1TF and half-
Spectre was possible [24], [25]], and some used synthetic
gadgets in proof-of-concepts [26], we show that more than
a theoretical possibility, this is a real-world threat in popular
clouds. Using a novel technique based on pointer chasing
through the host and guest, we leak all information required
to manually perform two-dimensional page table walks (i.e.,
through the guest’s page tables and extended page tables) in
software; with this, we can translate arbitrary virtual guest
addresses to host physical addresses, enabling the leakage
of any byte in the memory of the victim via L1TF.

Our leakage primitive also works on the Amazon cloud,
but defenses in depth restrict leakage to non-sensitive host
data. The attack assumes no knowledge of the software
running on the victim, nor does it assume a prior leakage
of the randomized address space layouts, and it is effective
even in the presence of realistic noise. Our research provides
further evidence that the common practice of mitigating a
vulnerability in isolation is not sufficient if it fails to remove
the root cause, as attackers may combine issues that are

harmless in isolation to craft an end-to-end attack that is
more than the sum of its parts.

We demonstrate our attack on KVM-based hypervisors,
and believe the approach applies to other hypervisors as
well. In particular, we evaluate the attack in three types
of cloud environments that run on CPUs where L1TF was
mitigated in software: a local system running base KVM,
Google Cloud Engine (GCE) instances of type N1 [27], and
Amazon Web Services (AWS) instances of type C5 [2§]. On
base KVM and GCE instances, we successfully extracted
sensitive data, such as the TLS key from an Nginx server
running on a guest VM. On AWS cloud instances, we were
able to leak non-sensitive information from the host, but
not any data from guest VMs, due to defenses in depth in
the hypervisor that unmap sensitive guest data from it. Our
attack explicitly detects whether it is running on an L1TF-
vulnerable CPU. It is also stealthy: we are not aware of
any mechanisms that reliably allow a hypervisor to detect
our attack, and both AWS and Google reported that their
production fleets’ monitoring systems did not detect any of
our exploitation efforts. [[]

We summarize our contributions as follows:

o« We show transient execution attacks: (a) are prac-
tical to leak sensitive data in real-world clouds,
(b) using some of the oldest vulnerabilities available,
and (c) without prior knowledge of the victims.

e We demonstrate that spot mitigations of transient ex-
ecution vulnerabilities are not sufficient, as the com-
bined exploitation of vulnerabilities deemed harm-
less individually can lead to high-impact attacks.

e We describe a novel attack technique based on
aggressive pointer chasing and software-controlled
two-dimensional page table walks to leak any byte
in a VM running on the same host system.

e We showcase our findings by launching LI1TF
Reloaded, an end-to-end guest-to-guest attack on
proprietary cloud environments and successfully
leak cryptographic data from a victim VM in the
Google cloud.

Ethical Considerations. To avoid any negative impact on
the targeted cloud providers or any of their customers,
we took the necessary precautions. All of our exploitation
efforts were conducted on dedicated hosts, i.e., sole-tenant
machines, in the respective provider’s fleet. This ensured
that only our own VMs ran on one physical machine, hence
no other customer data was ever at risk. Both AWS and
Google were fully aware of our research, and we informed
the parties of our attacks in advance (including which exact
instances we were targeting and when), and performed them
with their permission. This guaranteed exploitation occurred
in real-world production environments with no risk to any
of the cloud providers’ customers.

'As we explain later, we did our research with explicit permission of
the cloud providers, with safeguards to prevent leakage of third party data.

Realistic Attacker. The attack we demonstrate in this paper
is realistic. We rented our VMs from the production fleets
of AWS and Google by means of regular user accounts, via
the same APIs as any ordinary cloud customer does. While
we targeted only our own VMs on sole-tenant hosts, one can
do the same for victim VMs on a multi-tenant host. AWS
and Google confirmed that both types of machines use the
same hardware and software stacks, only differing in their
VM allocation policy; hence, any attack on a sole-tenant
machine also applies to a multi-tenant machine.

In addition, we performed our attacks in a black-box
fashion. Neither AWS nor Google provided us with any
insider information, such as what host kernel is running (i.e.,
version, configuration, patches, etc.), or which mitigations
were deployed. We thus never had any more access to
the targeted systems than any ordinary cloud user would,
including no access to the hypervisor or bare metal.

Coordinated Disclosure. Following coordinated disclosure
practices, we officially notified AWS and Google about
LITF Reloaded in May 2025 and discussed possible mit-
igations with them. Later, we also notified other relevant
parties, such as the Linux kernel maintainers, Intel, and
other cloud providers, and publicly disclosed the issue in
August 2025. Our patch to eliminate the exploited half-
Spectre gadget has been mainlined by Linux [29], and has
been deployed by AWS and Google. Moreover, Google
deployed ASI as a more in-depth mitigation in response
to LITF Reloaded [30]. AWS confirmed that already de-
ployed defense-in-depth mechanisms prevent us from leak-
ing (other) guest memory [31]. Google agreed that L1TF
Reloaded posed a direct threat to their customers, and
awarded this research with a bounty of over $150k as part of
their Cloud Vulnerability Reward Program (VRP), the most
that the Cloud VRP has ever given out. We strongly believe
that this open attitude towards security is a good thing, and
appreciate that AWS and Google actively stimulate security
improvements by facilitating this type of research.

Artifact Availability. An artifact of this research, including
exploit code, exploit demo video, noise workloads, and
reproduction instructions is available at |https://github.com/
vusec/rain. Both AWS and Google used it to successfully
reproduce our exploit on their respective clouds, indepen-
dently confirming our results.

2. Background

2.1. Transient Execution Attacks

For optimization purposes, modern processors imple-
ment out-of-order and prediction-based speculative execu-
tion to perform operations before they are needed or before
the CPU knows if it should perform them at all. Doing
so may lead to undesired behavior when the prediction is
wrong or the processor is unable to handle execution faults
(e.g., illegal data accesses) immediately. While the CPU will
detect these errors eventually and roll back all changes to

https://github.com/vusec/rain
https://github.com/vusec/rain

the architectural state (registers, memory), traces of such
“transient execution” remain detectable in the microarchi-
tectural state. For instance, data accessed by the transient
instructions will now be in the cache. Moreover, if a memory
access is secret dependent, attackers can often recover the
secret data by means of a cache attack [32], [33]], [34], [35].
Since the first disclosure of Meltdown [2]] and Spectre [1]
in 2018, researchers have discovered many new transient
execution attacks [3, [4]], [6], 71, 81, [90, [L1]], [13], [36],
[3711, 138], [39], [40].

2.2. L1 Terminal Fault

One of the earliest transient execution vulnerabilities,
discovered in January 2018, is L1 Terminal Fault (L1TF) [7],
[13]], [41], [42]. It allows unprivileged speculative access to
data residing in the L1 data cache and affects Intel proces-
sors up to Coffee Lake [43]]. The root cause of L1TF lies in
the logic implementing “terminal faults”: upon translating
a virtual address with an invalid Page Table Entry (PTE),
translation terminates immediately, but the L1 data cache is
still indexed with the physical address in the PTE. Upon
an L1 hit, the memory access instruction gets served the
referenced data speculatively, enabling leakage via side-
channel techniques [32].

In a cloud attack scenario, a guest OS can purposefully
mark a PTE invalid, leading the terminal fault to skip the
Extended Page Table (EPT) walks that isolate VMs from
host physical memory. In other words, the CPU interprets
the guest physical address in the PTE as a host physical
address, and indexes the L1 data cache with it. By putting
any desired host physical address in the guest’s PTE, a VM
gains speculative access to the corresponding data, as long
as it resides in the L1 data cache. In short, L1TF provides a
VM with the following leakage oracle: the VM picks a host
physical address, and the CPU leaks the corresponding data
if it resides in the L1 data cache, or leaks nothing otherwise.

2.3. Mitigating L1 Terminal Fault

To combat such exploits, Intel provides in-silicon mitiga-
tions for newer generations of CPUs, and microcode updates
and software-based measures for older CPUs [41]]. Fully
mitigating LITF data leakage in virtualized environments,
however, requires disabling EPT—a measure so expensive
that providers opt for more practical options [18].

In particular, cloud providers use the combination of
L1D flushing [41]], [44] and core scheduling [15]], [45]. The
former consists of flushing the L1 data cache upon VM-
entry and prevents a VM from leaking left-over data from
other security domains. In Linux this occurs either upon
every VM-entry or conditionally [44]] (i.e., only performing
a flush upon VM-entry from “non audited” kernel code
paths). However, flushing the cache alone does not suffice, as
another VM or guest may run concurrently on another vCPU
of the same physical core. To prevent this from occurring,
we must also disable SMT, but this comes at a significant

& . ¥ O $
S °© e,‘@ 60\\ \é 6&\ S ©
K\ St & &
$ & I
No Flushing A+H+V A+H+V A+H+V A+H+V
Conditional
LID Flushing A+H+V A+H A+H, A+H,
L1D Flushing A+H+V A+H A A

TABLE 1: For different flush and SMT configurations, what
data remains leakable by an attacker VM? A: attacker VM’s
own data, H: host data, H,: audited host data, V': other
(victim) VM data. Leaking an attacker VM’s own data might
sound uninteresting, but this includes leaking its (normally
hidden) location in host physical memory, which can help
facilitate other exploitation methods (e.g., Rowhammer).

performance cost. Instead, security-minded systems com-
bine flushing with core scheduling: ensuring that a VM is
only scheduled on a core if the other VMs on the core
are also trusted. Combined, these mitigations prevent guest-
to-guest attacks. In principle, guest-to-host attacks are still
possible, as the hypervisor can still run on the same physical
core with any guest at any time. To explicitly address
this, one would require strict core-scheduling [41]], which
additionally involves “stunning” sibling hyperthreads upon
a VM-exit: while one hyperthread runs the hypervisor, all of
its siblings must be idle, incurring major performance over-
head. However, Linux kernel developers explicitly doubted
the practical exploitability of the short vulnerable window
for the guest-to-host attack [15].

To summarize, only in-silicon mitigations or disabling
EPT fully stop L1TF data leakage. All the aforementioned
software measures are, instead, spot mitigations that cannot
stop an attacker from leaking data from the L1 data cache,
only making sure that data from certain domains is not
available in the cache for leakage. In Table[I] we show what
data can still be leaked when using common L1D flushing-
based mitigations.

2.4. Half-Spectre Gadgets

To launch a Spectre attack [1]], an attacker steers spec-
ulative execution toward a particular code pattern, a so-
called “gadget”, that discloses and transmits secret data
via a microarchitectural side channel (e.g., a cache attack).
For instance, the Spectre-vl gadget in Listing |I| consists
of an out-of-bounds memory access that loads some secret
data, and a subsequent secret-dependent load that transmits
said data, following a mispredicted conditional branch. To
exploit this gadget, the attacker lets the branch execute many
times with a value for index that satisfies the condition on
Line 1 to ‘train’ the CPU to predict that the branch will
be taken upon the next iteration. By subsequently providing
a value for index that does not satisfy the condition, the
CPU speculatively accesses a value outside the array bounds
(Line 2) and then leaks the data using a memory dereference
through B, before recognizing its mistake.

o v oA W —

if (index < ARRAY SIZE)

x = Alindex]; /
y = B[4096%x]; /

if (index < ARRAY SIZE)
x = A[index]; // ac

Sss secret during speculation

Listing 1: Top: a classic Spectre-vl gadget. Bottom: a half-
Spectre gadget, an incomplete Spectre-v1 gadget where the
transmission of the secret is absent.

To mitigate Spectre, software developers aggressively
remove such code patterns from their programs. However,
what about incomplete gadgets, such as the bottom code
fragment in Listing This “half-Spectre” gadget (some-
times referred to a prefetch gadget in literature [460]) is
exactly like the top one, but without the transmission part
(Line 3). These are harmless by themselves, and are still
very common. While attackers may still leak the secret
accessed in Line 2 using other transient execution attacks
such as MDS [8]], [9], [10], these attacks have been compre-
hensively mitigated [47]], so the risk was considered limited.
However, recent work has shown that, in theory at least, half-
Spectre gadgets are still usable in combination with other
vulnerabilities to leak sensitive data [24]], [26]. The question
is whether the spot mitigations deployed in modern clouds
are sufficient to stop such attacks in practice.

3. Threat Model

We consider a malicious VM in a realistic cloud en-
vironment (i.e., where the attacker rents their VM like an
ordinary customer of the targeted cloud, and thus has the
same capabilities), in the presence of co-located workloads.
Attackers have root access to their own virtual machine and
may perform hypercalls to interact with the hypervisor. We
assume that the host system runs the latest microcode ver-
sion and is up-to-date with regard to all (default) mitigations
against transient execution attacks, including L1D flush-
ing [41]], [44] and core scheduling [15]], [45]. In addition,
we assume the presence of all default mitigations against
traditional software exploitation, such as stack canaries,
WeX and (K)ASLR. Further, we consider the attacker blind
with respect not just to other guest VMs, but also to the host
system, i.e., they do not have any in-depth knowledge of
the (proprietary) hypervisor and the undocumented measures
deployed against exploitation. The aim of our attacker is to
perform a transient execution attack in order to leak sensitive
data from the host and/or other VMs in the system.

4. Attack Overview

In this section, we provide an overview of LITF
Reloaded, in which an attacker combines L1TF with a half-
Spectre gadget in the hypervisor to launch a guest-to-guest
attack that achieves arbitrary data leakage from other guest
VMs in the system.

LITF mitigations such as L1D flushing and core
scheduling prevent guest-to-guest attacks, but not guest-to-

o S

§ Attacker vCPU 2 Attacker vCPU 2

= triggering Half- = triggering Half- b

.2 | | Spectre gadgets 8 Spectre gadgets 8

o || ’ > . . >

O | |in the hypervisor T in the hypervisor T

- - =] =
@ B —

"HE Y 2

o T T
i 3

Physical core
L1d

NN N N N N N N
S - R —

o A |
8
= Attacker vCPU continuously try to use L1TF to
% leak L1D content from the hypervisor
o
-
Time >

Figure 1: L1TF Reloaded combines L1TF with half-Spectre.
On one logical core, the attacker performs a hypercall to
make the hypervisor execute a half-Spectre gadget and spec-
ulatively access out-of-bounds memory. This brings secret
data into the L1 data cache, which the sibling logical core
leaks using L1TF.

host attacks—although Linux kernel developers were ini-
tially doubtful about their practical exploitability [[15]. In
this paper, we instead demonstrate the practicality of the
attack. By means of a controllable half-Spectre gadget in the
hypervisor, we trick it into speculatively loading arbitrary
system memory into the L1 data cache. We then use L1TF
on the sibling core to leak the contents of the L1 data
cache, despite all mitigations present against L1TF. Figure]
conceptually illustrates this combined exploitation.

Our end-to-end attack consists of six phases: (1) local
attack preparation, (2) cloud host profiling, (3) gadget base
discovery, (4) host targeting, (5) guest targeting, and (6) data
extraction. Given the sophisticated nature of the attack, we
first give a high-level overview of each of the steps and
defer the detailed explanation to Section [5] We display this
high-level overview in Figure

Local Attack Preparation. In this phase, we lay the ground
work for our subsequent attack steps on our own machine. In
particular, we prepare a guest VM that is optimized for L1TF
leakage and scan a recent version of the target hypervisor
for an exploitable half-Spectre gadget. While we do not
know if the version of the hypervisor in the public cloud
is the same, we assume that it will be similar. For instance,
after discovering an exploitable half-Spectre gadget in KVM
through local gadget analysis, we make the educated guess
that this gadget also exists in the hypervisors in public
clouds that are based on KVM. While any controllable
transient load primitive will do, we assume in the remainder
of this paper that the gadget accesses an element in an array
with an offset that is controlled by the attacker.

Cloud Host Profiling. Next, we determine whether the host
system provided by the targeted public cloud is vulnerable to
our attack. We do so by first profiling the CPU, to see if our
guest VM is likely running on a CPU that is vulnerable to

e Host Targeting
For a direct map kernel pointer v, find p such thatv - p,
then:

e Guest Targeting

Find root page table, extended page tables, then:

e Gadget Base Discovery
Find p such that v - p, find x such thatv + x=Vv' = p
(i.e., virtual addresses v and v' map to physical
address p in physical memory), then:

Drect Kemel . . . et
Local Attack Map Start Pointer
Preparation Gadget Gadget Qrect U | rual Page Table Walk
Base Base ap emory|
U Direct U Virtual s v -
A S _ g Sy
N v Data P Extended Page Table Walk
xtende 'age Table Wal
Cloud Host AN TN A Vv € virtual addresses in the host's direct map, v -s - p
Profiling +X +y V Vguest € Virtual addresses in the guest, v = progt
Find root page table,

then:

S A

Page Table Walk
V/ v € virt addresses in host, translate v to p using page table walk

Load data from v + x +y into L1 data cache using the
half-Spectre gadget, leak it from p +y using L1TF

Data
Extraction

Figure 2: Overview of our attack strategy. After (1) preparing our attack locally and (2) checking whether our VM is likely
running on a vulnerable CPU, we (3) find the physical address of the gadget’s base and use the host kernel’s direct map
to establish an arbitrary host physical memory read primitive. Then, we (4) break KASLR by determining the start of the
direct map, and by chasing kernel pointers in it locate the host’s root page table to enable the translation of all host virtual
addresses to host physical addresses. Using this translation ability, we further chase pointers through kernel structures to
(5) find the victim VM’s page tables and extended page tables, enabling virtual guest address to host physical address

translation. With that, we can (6) chase arbitrary guest pointers to extract sensitive data from the victim VM guest.

LI1TE. If so, we perform a number of experiments that detect
the mitigations that the host enables against L1TF, and check
whether they impede our attack. If all indicators suggest that
the host is vulnerable, we commence our exploit.

Gadget Base Discovery. Given the half-Spectre gadget in
the hypervisor, we define x as the attacker-controllable offset
used by the gadget to access an array element. We first
consider the gadget’s base—the address corresponding to
offset zero of the array. This is an unknown virtual address v.
Since we can only use LITF to leak data from the cache
corresponding to a particular physical host address, we find
the physical host address p that corresponds to v.

Next, we are interested in the host kernel’s direct (mem-
ory) map, where all physical memory of the host system
is linearly mapped in virtual memory. Namely, if v points
inside the direct map, we can use the gadget to load arbitrary
physical host memory mapped at v + x (with x potentially
negative) into the L1 data cache, and extract it using L1TF
on the linearly matched physical address p+ x. In that way,
we acquire an arbitrary host physical memory read primitive.

However, it is not guaranteed that the gadget’s base v
points inside the direct map. If not, we must find the value
for z such that v + x accesses the gadget’s base v’ in the
direct map; with that, we can then add y to x such that v 4
(z+y) loads arbitrary physical memory from the direct map
that we can then leak using L1TF at the matching physical
address p + y.

Host Targeting. From the direct map, we leak a kernel
pointer to easily recognizable data and search through phys-
ical memory for this data using our previously acquired
primitive. To this end, we find the physical address that
corresponds to the (virtual) kernel pointer. As the physical
memory is linearly mapped in the direct map, subtracting
the found physical address from the kernel pointer gives us

the start of the direct map in virtual memory. With the start
of the direct map, we can translate host virtual addresses
in the direct map to physical addresses to leak them using
LITF, effectively breaking KASLR in the host.

We subsequently use our address translation ability to
discover the location of the root page table of the host.
We do so by chasing (i.e., repeatedly dereferencing) kernel
pointers in the direct map through kernel structures and
leaking their contents. By performing a page table walk with
our leakage primitive, we can now translate arbitrary host
virtual addresses to physical addresses (and with that, chase
arbitrary host pointers).

Guest Targeting. Using our ability to translate arbitrary host
virtual addresses to physical addresses, we chase pointers
through kernel structures to find and leak the metadata of
our victim VM in the host system. Doing so, we leak the root
of its extended page tables and the value of its CR3 register
(i.e., the root of its own page tables). Together, these enable
us to perform two-dimensional page table walks, translating
guest virtual addresses to host physical addresses.

Next, we evaluate the guest’s page tables to determine
its address space layout in order to break KASLR in the
guest. With that, we have now acquired the ability to chase
arbitrary pointers in the guest kernel, and know where to
start searching for interesting processes to target.

Data Extraction. Finally, with knowledge of the guest’s
kernel layout, we leak the kernel structures necessary to
discover all running tasks in the guest. For the target task,
we chase pointers throughout its metadata structures to leak
its root page table. From there, we search through the task’s
memory in the guest for any sensitive data that we desire.

5. L1TF Reloaded

L1TF Reloaded, our end-to-end transient execution at-
tack on a (proprietary) public cloud, leaks sensitive data
from a victim guest VM on a mainline Linux host and a
GCE host, while on AWS, we leak (only) non-sensitive data
from the host itself due to deployed defenses in depth. The
main challenge for the attacker is finding the targeted secret
data in physical memory — within the hundreds of gigabytes
of RAM commonly available on cloud servers. We address
this challenge by abusing the (meta)data resident in the host
and victim guest kernels. In this section, we discuss the steps
necessary to build our exploit and leak sensitive data from
a victim guest VM.

5.1. Local Attack Preparation

Before launching the exploit, an attacker locally prepares
a guest kernel and scans for usable half-Spectre gadgets in
a host that is similar to the targeted cloud’s hypervisor.

Exploiting L1TF. To leak data from arbitrary physical ad-
dresses using L1TF, the attacker needs (partial) control over
the PTE that is used to cause a terminal fault, and ensure
that the data is present in L1 data cache. In our threat model,
the attacker has full control over a malicious VM, and thus
has the ability to change their own PTEs. Specifically, they
can choose the host physical address to leak from and mark
the PTE invalid to trigger the terminal fault. For our attack,
we use a modified version of PTEditor [48]], which maps
the page tables of our program into user space to enable
the modification of PTEs without involving the kernel. Nor-
mally, the TLB must be flushed when the PTE is changed.
However, as no TLB entry or paging-structure cache entry
is created for non-present pages on Intel CPUs [49]], we add
this use case to PTEditor to improve our performance.

Upon accessing a non-present page, the CPU’s MMU
will raise a page fault exception that is handled by the
kernel’s page fault handler. Consequently, every address we
attempt to leak causes a slow context switch to the kernel,
as well as the execution of many instructions. This not
only impedes our performance, but also affects our leakage
results, as every instruction that is executed may influence
the state of the L1 data cache and may even lead to the
eviction of the target data. Since we have full control over
the guest kernel, we apply a patch that suppresses a page
fault in the kernel and bypasses the page fault handler. More
specifically, instead of properly handling the L1TF-induced
page fault, the interrupt handler returns immediately to a
user-defined user address—executing only a few instructions
in the kernel. In terms of performance, this approach yields
an average 0.5 microsecond latency for a page fault as
opposed to a 2.6 microsecond one for the base kernel (across
2 million measurement samples).

Half-Spectre in the Hypervisor. L1TF allows an attacker
to leak data in the L1 data cache in a guest-to-host attack
scenario. Thus, any data accessed by a hypervisor running

on the same core as the attacker will be susceptible to leak-
age. As the hypervisor by itself is unlikely to (frequently)
access sensitive data, we combine L1TF with a half-Spectre
gadget to trick the hypervisor into loading sensitive data into
the L1 data cache, and subsequently leak it using L1TF.

For a half-Spectre gadget in the hypervisor to be usable
in our attack, the attacker must be able to control its exe-
cution reliably. In particular, to induce mispredictions on a
conditional branch, the branch needs to be consistently taken
to train the branch predictor. Secondly, the attacker should
control the memory the gadget accesses, for instance, by
means of an attacker-controlled offset. To find such gadgets,
we focused our analysis on VM hypercalls and potential
gadgets in their handlers, because a VM may use the
privileged vmcall instruction to call a predefined function
in the hypervisor—a hypercall. As these functions can be
reached reliably by an attacker VM, and some hypercalls
take attacker-controlled arguments, they are fertile ground
to scan for exploitable gadgets.

Within a few hours of manual code review, we found
the half-Spectre gadget in the hypercall handling code for
the KVM_HC_SCHED_YIELD hypercall shown in Listing
By manually tracing uses of this hypercall’s user-controlled
parameters, we find that one of these values is used to index
into the phys_map array—an array located in the direct
memory map of the Linux kernel. In the base, upstream
Linux kernel, all available physical memory of the host
is directly mapped into the kernel’s virtual memory [50].
Thus, an out-of-bounds memory access in this array allows
an attacker to transiently access all of the host’s mem-
ory. In this gadget, the index value is checked before it
is used, preventing an architectural out-of-bounds access.
However, in-place branch mistraining of the bounds check
on dest_id, and evicting map—max_apic_id from the
cache to lengthen the speculative window, allows an attacker
to force the host kernel to perform the speculative load
map—phys_map [dest_1id] on any (8-byte aligned) 64-
bit virtual address.

A drawback of this particular half-Spectre gadget is that
the throughput, even on a mostly idle system, is very low due
to the single_task_running check (line 9) blocking access to
the gadget most of the time. To quantify this, the gadget is
essentially blocked 99.9% of the time. However, this is not a
fundamental issue, and we will show in Section [5.3] that with
various optimizations we can use the gadget to perform an
end-to-end exploit. Finally, concerning Linux’ conditional
L1D flushing, this gadget resides on an “audited” code path,
meaning that it is reachable without triggering conditional
L1D flushing. We do not rely on this property, however, and
keep our exploit technique generic: we trigger the gadget
from one vCPU, and concurrently leak that data using L1TF
from a sibling vCPU.

5.2. Cloud Host Profiling

To perform the attack, the attacker must determine
whether their malicious VM runs on a vulnerable host
system in the targeted cloud.

static void kvm_sched_yield(struct kvm_vcpu *vcpu,
unsigned long dest_id)
{
struct kvm_vcpu *target = NULL;
struct kvm_apic_map *map;

vcpu->stat.directed_yield_attempted++;

R - NV S SR R,

9 if (single_task_running())

10 goto no_yield;

11

12 rcu_read_lock () ;

13 map = rcu_dereference (vcpu->kvm->arch.apic_map) ;
14

15 if (likely (map) && dest_id <= map->max_apic_id
16 && map->phys_map [dest_id])

17 target = map->phys_map[dest_id]->vcpu;

18

19 P
Listing 2: The half-Spectre gadget we exploit in Lin-
ux/KVM. Via a hypercall, a VM can trigger this KVM func-
tion with full control over the hypercall argument dest_id.

For the host system, this means:

1) The host must run on an L1TF-vulnerable CPU.
2) The hypervisor must deploy insufficiently compre-
hensive mitigations in software.

In a virtualized environment, the hypervisor may emu-
late CPUID to hide the true CPU microarchitecture, and in
addition, attackers do not know the exact defenses deployed.
Therefore, we consider an attack scenario where we auto-
matically detect whether a system is likely to be vulnerable
from inside a guest, without relying on the hypervisor.

Vulnerable CPU. Intel server CPUs of the Skylake microar-
chitecture and earlier are vulnerable to L1TF [43]. Hence, to
address the first requirement, we assess whether the attacker
VM runs on such a system. Unfortunately, we cannot assume
that self-reporting by means of the CPUID instruction is
accurate, as the instruction may be emulated. Instead, we
measure the size of the Path History Register (PHR), which
in Skylake and older microarchitectures is only 93 branches,
while on recent CPUs such as Ice Lake have PHRs it is as
large as 194 [51]]. The PHR is a shift register that records the
global history of recently executed branches (and whether
they were taken) to help predict correlated branch patterns.
Thus, we can determine the PHR size by testing how many
dummy branches we can insert between branches while still
capturing the correlation between them—using an algorithm
from prior work [51]] adapted to a virtualized environment.

A PHR size equal to 93 does not guarantee that the
CPU is vulnerable to LI1TF. For instance, the Cascade
Lake microarchitecture has the same PHR size, but is not
vulnerable to L1TF by virtue of hardware mitigations. Even
so, PHR size estimation provides attackers with a quick test
to narrow down the search for vulnerable systems, without
wasting cycles on CPUs that are known not to be vulnerable.

Deployed Hypervisor Mitigations. As the only mitigations
that tackle the root of the issue in software are prohibitively
expensive, the default configuration on operating systems

such as Linux relies on spot mitigations instead. We ad-
dress the second requirement by checking the inventory
of software-based mitigations against LITF present on the
system via timing side channels.

First, we measure memory access latency before and af-
ter a VM guest-to-host context switch, to determine whether
the hypervisor implements L1D flushing. We prime the L1
data cache by accessing a set of addresses that neither evict
other addresses in the same cache set nor incur prefetching
by the memory controller. By triggering a VM exit path
that does not trash the L1 data cache and measuring the
addresses’ subsequent access latency, we can tell whether
the cache was flushed. Doing this for both audited and non-
audited code paths, we can also distinguish between (full)
LI1D flushing and conditional L1D flushing.

Next, we build upon prior work [52] to detect SMT
using a port-contention side channel. On a modern CPU,
each physical core contains a number of execution ports that
process micro-operations that originate from instructions
executed on either of the cores’ hyperthreads. As the ports
are shared by sibling hyperthreads, contention can lead to
an increased instruction execution latency for one vCPU if a
sibling vCPU occupies the same ports. Thus, we determine
whether SMT is enabled by measuring the instruction la-
tency of a particular contention-sensitive workload that runs
on two vCPUs on the same physical core against a single-
vCPU baseline.

Finally, we profile for strict core-scheduling by examin-
ing vCPU idle time. We let one vCPU execute the contention
code snippet and measure its execution time. On the sibling
vCPU, we constantly cause VM-exits to transfer into the
hypervisor’s context. If the contention snippet’s performance
degradates significantly more compared to normal port con-
tention, this indicates the forced idling (i.e., stunning) of our
contention VCPU due to strict core-scheduling.

5.3. Gadget Base Discovery

LITF can leak data from any physical address as long
as the data at that address resides in the L1 data cache. To
make sure sensitive data from the hypervisor is loaded into
the L1 data cache, we want to use the half-Spectre gadget in
Listing [2]to speculatively perform an out-of-bounds memory
access. However, since the physical address of the data is
unknown, we cannot extract it from the cache. We now
explain how we solve this and build our arbitrary host
physical memory read primitive.

The half-Spectre gadget accesses an array in mem-
ory by taking the address of index (offset) zero of the
array (i.e., the gadget’s base) v and adding an attacker-
controlled offset (index) x. While v is unknown, we know
that v = &map—phys_map. By making use of the page
alignment of the map object, which is dynamically allocated
upon the creation of our VM, we elect to brute force its
physical address. To do so, we continually trigger the half-
Spectre gadget with offset zero (i.e., dest_id = 0) to
bring the start of the phys_map structure into the L1 data
cache. Using L1TF on the sibling vCPU, we stride at page

static int _ pv_send_ipi (unsigned long *ipi_bitmap,
struct kvm_apic_map smap,
struct kvm_lapic_irqg xirq,
u32 min)

int i, count = 0;

struct kvm_vcpu *vcpu;

R - NV S SR R,

9 if (min > map->max_apic_id)

10 return 0;

11

12 for_each_set_bit (i, ipi_bitmap,

13 min ((u32)BITS_PER_LONG,

14 (map->max_apic_id - min + 1))) {

15 if (map->phys_map[min + 1i]) {
16 P

Listing 3: The architectural gadget we use to help locate the
half-Spectre gadget’s base.

granularity through physical memory, guessing the base’s
physical address p. The beginning of the phys_map array
holds a pointer to a kvm_1lapic structure for each vCPU
of the VM, which in our case is two pointers. From here,
we know we have correctly guessed the physical address of
the two pointers if we leak them using L1TF.

The discovery of the physical address p of our gadget’s
base yields an arbitrary host physical memory read primi-
tive. Since the base is kmalloc’d and hence points inside
the host’s direct map, passing a (possibly) negative offset
z to the half-Spectre gadget lets it speculatively load from
address p+ x through the direct map (as the linear mapping
of the direct map means it matches v + x).

While the accessed array is located in the host kernel’s
direct memory map for this particular half-Spectre gadget,
for another it may not be. In that case, we must find the gad-
get’s base mapped in the direct map at v’ by speculatively
trying different values of z for our out-of-bounds memory
access at v+x. We can verify whether we encounter the base
in the direct map at v’ by checking the leaked data using
L1TF and seeing whether it corresponds to the leaked data
from v. Using the knowledge of the base’s physical address,
the attacker would know the base’s offset in the physical
memory page, allowing them to search through memory at
a page-sized stride; regardless, this step requires additional
optimization to be practical.

As we discussed prior in Section [5.1] the throughput
of the half-Spectre gadget is very low. To compensate, we
optimize our approach by firstly not leaking the entirety
of the pointers, and secondly by employing an alternative
half-Spectre gadget that, while not exploitable due to its par-
ticular data flow, can consistently load our actually targeted
gadget’s base address into cache. We show this architectural
gadget in Listing

5.4. Host Targeting

Next, using our arbitrary physical memory read primi-
tive, we fully leak the two previouly mentioned kernel point-
ers that are at the beginning of phys_map. We know from
manual analysis that these two pointers point to structures
that start with easily recognizable data in the host kernel’s

direct map; we refer to them as direct map pointers. Now,
we aim to break KASLR in the host kernel by finding the
physical address of the data one of the pointers points to.

As the direct map is backed by 1 GB pages in memory,
we know the lower 30 bits of the physical addresses of
the pointers (because the pointer is a virtual address, and
the direct map is linearly mapped into virtual memory). We
can brute-force the remaining few physical address bits by
leaking from every possible physical address and checking
whether the leaked data matches the data we are looking for.
Once we have found the physical address that corresponds
to one of the pointers, we can subtract the physical address
from the pointer to find the virtual address of the start of
the host’s direct map; this gives us the ability to translate
direct map pointers into physical addresses—allowing us to
leak data from any kernel direct map pointer using L1TF.

Though we now have the ability to leak data from any
kernel direct map pointer, we do not have any knowledge
about the layout of the host’s memory, and thus do not
know the location of interesting data to leak. Hence, we
choose to perform pointer chasing on the pointers we have
access to through kernel structures in search of such data.
By continuously dereferencing pointers and finding new
pointers to chase to more data structures in the host kernel,
we can eventually locate valuable structures that contain e.g.,
root page tables, heap memory mappings, etc. One could, in
essence, view the majority of the exploit chain as one long
pointer chase throughout the host’s physical memory.

As we show in Figure [3] we take our own vCPU’s
kvm_lapic structure (which we know exists at the begin-
ning of phys_map) and do a pointer chase from it through
the host kernel, only using direct map pointers, in search
of interesting structures to leak. In particular, we discover
our own kvm_vcpu structure, which represents our vCPU,
our task_struct, describing the host process running
our VM, and the VM’s address space information in its
mm_struct. From the latter structure, we leak the location
of our task’s root page table. With it, we can translate
arbitrary host virtual addresses to physical addresses by
performing a page table walk using our leakage primitive.
Now, rather than being limited to direct map pointers, we
can leak data from any kernel pointer in the host system.

5.5. Guest Targeting

With the ability to chase any kernel pointer in the host
and leak data from it, we now aim to find a victim VM. We
start by looking at our own task_struct, which is part
of a linked list of all tasks in the host; from it, we can leak
the process ID and command, i.e., the name of the task, for
all processes running on the host. From the task name, we
can make an educated guess on which process is in charge
of running another VM. Having selected a task that runs a
VM, we locate the structures that represent its (open) files,
and find the file that KVM hands out to represent the VM.
Using it, we discover the victim VM’s metadata: the kvm
and kvm_vcpu structs.

kvm_lapic

kvm_vcpu

task_struct

mm_struct

u64 ino

u32 divide_count struct rcuwait wait

struct kvm_vcpu *vepu struct pid *pid .

bool apicv_active rwlock_t pid_lock

struct hlist_head i
tasks[PIDTYPE_MAX]

struct hlist_head inodes

struct rbnode ... unsigned long task_size

struct mm_struct *mm H pgd_t *pgd

struct mm_struct ... atomic_t ...

Figure 3: Example of a pointer chase in our exploit chain. As we can translate a (virtual) pointer to a physical address, we
leak the data to which the pointer points, essentially dereferencing it. From the kvm_lapic struct, we leak consecutive
pointers to other structs until we find the host’s root page table (pgd, Page Global Directory).

From the metadata, we leak the root of the victim VM’s
extended page tables, as well as the current value of its CR3
register, which is a physical address at which the root page
table used by the guest itself resides; this root page table
can thus be of any process currently running in the guest.

Together, these enable us to perform a two-dimensional
page table walk, translating guest virtual addresses to host
physical addresses. With that, we can now chase pointers
within the guest VM’s kernel and leak their data via L1TF.

However, we do not yet know where to start our pointer
chasing to discover interesting structures. For that, we need
to break KASLR in the guest kernel. Using the root page
table we leaked earlier, we read the kernel’s address space
layout, which is possible because every process maps the
upper kernel range of the virtual address space, and find the
start of the kernel’s text and the start of the guest kernel’s
direct map. With the former, we can start our pointer chase
in the guest kernel, while with the latter we can skip most of
the costly page table walks in the case of (common) guest
pointers inside the direct map.

5.6. Data Extraction

Armed with knowledge of the victim guest’s kernel
layout, we start by leaking its init_task struct, and from
there traverse its tasks to find a promising victim process
handling sensitive data. If the targeted victim process runs
as a system service, we can apply a further optimization: We
first find systemd as the first child of swapper, and then
only traverse the children of systemd to locate the victim
process. We note that a similar optimization is possible for
the prior phase in the attack where we locate the victim
VM: by abusing the tree structure of the process tree, one
could search for the victim VM inside the host kernel more
efficiently. However, we did not implement this.

After we located the victim process, we leverage knowl-
edge about the target’s process layout to continue the attack.
Consider Nginx as example. By inspecting its mm_struct,
we recover its root page table and the virtual address of the
start of its heap memory; using the former, we determine the
physical address of the latter to enable data leakage from
Nginx’s heap. Using the knowledge that Nginx stores its
private key at a static location on its heap, we leak the two

prime numbers that comprise the RSA key and reconstruct
the private key using the RSA protocol. Note that, even
if we did not know the key’s location, it can be brute-
forced since the two prime numbers are surrounded by two
“magic” numbers (PEM-format tags), making it easy for us
to recognize them.

For the purpose of reliability, we implement an addi-
tional check to ensure that we leak all 2048 bits of Nginx’s
key correctly. To do so, we exploit the sparsity of prime
numbers: if we make an error during key leakage, the
resulting (large) number will with a very high likelihood
not be prime. Hence, by checking if the leaked number is a
prime number, we are able to verify our leakage results.

5.7. Chase and Check

Our leakage primitive may be unreliable, causing the
leaked values to contain errors. As a result, if only a single
error transpires during the exploit’s chain of pointer chases,
the attack fails. To overcome this issue, we do a sanity check
after every a few pointer chases, where we consider whether
the new location we arrived at is consistent with what we
expect—if not, we backtrack. We refer to this as chasing-
and-checking. A simple example can be given by chasing
down a doubly linked list: after every traversal of the next
pointer, one also leaks the previous pointer, and check that it
indeed points to the previous location. We do this throughout
the exploit, with different checks tailored to different places
throughout the exploit’s long chase.

6. End-to-End Cloud Exploitation

Our end-to-end attack is specifically tailored to target
KVM-based hypervisors, which we know are active in the
AWS and GCE clouds. However, since the L1TF vulnerabil-
ity is a CPU bug (and is thus present on all systems running
on such CPUs), and a half-Spectre gadget is a common code
pattern that is not unique to Linux, the LITF Reloaded
attack technique should work on any host system with a
controllable hypervisor gadget. That is, as long as the host
CPU is vulnerable to L1TF, and the attacker can find and
control a usable half-Spectre gadget in the hypervisor to
load any desired data into the L1 data cache.

6.1. Exploitation Setup

Our cloud exploitation efforts involved three clouds
(self-hosted, AWS, GCE) and three types of VMs (attacker,
victim, noise). First, we describe their setup in detail. In each
subsequent subsection, we will detail which combination of
these we used.

Host Platforms. We evaluate our L1TF Reloaded exploit
on three platforms. The first platform is self-hosted: a local
Skylake server with an Intel Xeon Silver 4110 CPU and
32GB of RAM, running Ubuntu 24.04 with Linux kernel
6.12, whose KVM subsystem hosts our VMs. This is the
only platform on which we have system-level (even physi-
cal) access to the machine. For the second platform, AWS,
we rent a dedicated host system of the C5 instance type
with 96 vCPUs and 192GB of RAM [28]]; these instances
are reported to run on Skylake and Cascade Lake CPUs—of
which only the former is vulnerable to L1TF. We note that
we did not have any issue acquiring a machine backed by
a vulnerable Skylake CPU on AWS. Last is GCE, where
we rent a dedicated host system of the N1 instance type
with 96 vCPUs and 825GBf| of RAM [27]]; these instances
are reported to run on Sandy Bridge, Ivy Bridge, Haswell,
Broadwell, or Skylake CPUs—which are all vulnerable to
L1TFE. Both the rented AWS and GCE hosts are part of the
regular production cloud fleets. We can only spawn VMs on
these hosts via the regular customer API. As such, we do
not have access to, control over, or insider knowledge about
the underlying hypervisor or other system-level internals.

Attacker VM. For our attacker VM, we spawn (on any
of the host platforms) a Ubuntu 22.04 VM with 2 vC-
PUs, 7.5GB of memory and a 50GB disk. We install our
custom guest kernel (based on Linux 6.13) that speeds up
L1TF leakage by inserting a page fault handler bypass (cf.
Section @ Lastly, we build the L1TF Reloaded exploit,
implemented mostly in C.

Our exploit process consists of two threads: one that
triggers the half-Spectre gadget to load data into the L1 data
cache, and one that utilizes L1TF to leak the data out of that
(same, shared) L1 data cache. This requires both threads to
run simultaneously on two hyperthreads of a single physical
core. Due to the core-scheduling mitigation (which we find
deployed by both AWS and GCE), the hypervisor schedules
our attacker VM’s two vCPUs simultaneously on the same
physical core, automatically fulfilling this requirement.

Victim VMs. We show the attack against two types of ex-
ample victim VMs. Both have 2 vCPUs, 7.5GB of memory,
and 10GB of disk space (default on GCE). Our Ubuntu
victim VM runs Ubuntu 24.04, while our Debian victim
VM runs Debian 12 Bookworm (default on GCE), both

2While Google’s API listed the machine as having 624GB of RAM,
during exploitation we had to chase physical addresses around 800GB.
We concluded that the real machine must have had more RAM, and
we configured our exploit to assume 825GB. Note: this (attacker-chosen)
configured amount determines average exploit runtimes.

with their respective default settings. On both we install
the default (with respect to their OS) Nginx web server,
as served by apt, as our target. Nginx is set up with the
default HTTPS configuration with an auto-generated self-
signed TLS certificate.

The security of the web server fundamentally relies on
the secrecy of the private RSA key of this certificate: once
leaked, you can impersonate the web server to any desired
malicious ends. Therefore, the goal of our exploit is to leak
this private RSA key to showcase concretely how we can
extract a specific, high-value secret from a victim VM. But
in general, the exploit could leak any in-memory victim data.

Noise VMs. We also deployed VMs generating large
amounts of system-level noise to investigate the reliability
of our exploit. All such noise VMs have 32 vCPUs, 128GB
of memory, and 1TB of disk space. To pressure the memory
subsystem, the cache noise VM runs two workloads, each
with 16 vCPUs allocated 16 vCPUs: a cache-thrashing
workload that consists of 16 processes, each striding through
their own 1GB buffer at cacheline granularity in a tight
loop—continuously trashing the last-level cache; and a
cache-coherency workload, which consists of one process
with 16 threads that each (independently) randomly reads
from or writes to one of the 128 cachelines of a shared
8KB buffer—generating considerable cache coherency traf-
fic between cores. To generate I/O pressure, a disk noise
VM constantly copies around hundreds of gigabytes of files
(and syncs those changes to disk), while a network noise
VM constantly downloads huge files from external servers.

6.2. Profiling AWS and GCE Hosts

After developing our exploit on our self-hosted cloud
platform, we spawned an attacker VM on both AWS and
GCE hosts. Our first objective is to determine the vulner-
ability of these platforms to L1TF Reloaded, as discussed
in Section For both AWS and GCE, we determined
our host CPU to be an Intel Skylake CPU, vulnerable to
LITFE. As for mitigations against L1TF, our profiling exper-
iments showed that conditional L1D flushing was enabled.
Moreover, port contention indicated that our attacker VM’s
two vCPUs were simultaneously scheduled on sibling hyper-
threads of the same physical core. This confirms SMT to be
enabled, and strengthens our belief that core-scheduling is
enabled, as suggested by both GCE [18]] and AWS [53]] doc-
umentation. Lastly, we determine that strict core-scheduling
(i.e., sibling stunning upon VM-exit) is not deployed. Hence,
we conclude that on both the AWS and GCE platforms, we
are running on an L1TF-vulnerable CPU with insufficient
software mitigations to stop L1TF Reloaded.

While it is known that both AWS and GCE employ
KVM-based hypervisors, we do not have knowledge con-
cerning their exact versions or the the presence of custom
patches. Hence, we next verify whether the half-Spectre
gadget we identified in mainline KVM is also present and
exploitable. We do so by performing the Gadget Base Dis-
covery phase of L1TF Reloaded, and find it was success-

—e— GCE - 8 bytes

GCE - 256 bytes
—e— Mainline Linux & AWS - 8 bytes
—e— Mainline Linux & AWS - 256 bytes

Byte error rate (%)

Time spend per byte (seconds)

Figure 4: The byte error rate, i.e., the chance of a byte
being leaked incorrectly, as a function of the time we spend
leaking each byte. Our measurements on mainline Linux and
AWS were so similar that we merged their data points.

ful through the subsequently enabled out-of-bounds (host-
kernel) data leakage. From this, we confirm that the ex-
ploitable half-Spectre gadget is also present in the AWS
and GCE hypervisors.

6.3. Leakage Primitive Evaluation

On all three clouds, we spawn an attacker VM that is
now armed with our desired leakage primitive: an arbitrary
read into the host kernel’s address space. We evaluate this
leakage primitive on all three clouds with an experiment that
measures its leakage rate and accuracy when leaking chunks
of both 8 bytes and 256 bytes of random data, representative
of leaking pointers and a 2048 bit private RSA key. We
display the results in Figure [4]

The vertical line indicates the setting used in our exploit:
a leakage of about 1 B/s, resulting in roughly a 95%
accuracy on mainline Linux and AWS, and a 50% accuracy
on GCE. We confirm with Google that this reduction in
accuracy on GCE machine instances is caused by a defense
they implement that is not public; at the time of writing, they
were not able to share any further information about said
defense. As we show in this paper, this reduced accuracy is
not a fundamental problem, as we are still able to launch our
end-to-end attack and leak sensitive guest data successfully.

6.4. Host Kernel Reverse Engineering

To discover the data we need to leak to implement our
end-to-end exploit, we perform pointer chasing through ker-
nel structures on the host kernel. However, we as an attacker
have no a priori knowledge concerning the exact host kernel
version used, its configuration, and possible patches that
a cloud vendor may have implemented in the production
environment. In order to perform the required pointer chase
through the host kernel, we need to determine the offsets

| mainline Linux | GCE | AWS

78
80

3e8

1

2 100000000 1
ffffa03509eec600 10 2

| 695 |
| |
| |
100010101 | ffffo352eff70e40 | ffffo3e461d18000
| |
| |
| |
I |

kvm_lapic Tba
kvm_lapic
kvm_lapic 88
kvm_lapic 90

_ + |
_ + |
- + |
_ + |
kvm_lapic + 98 |
_ + |
_ + |
- + |
_ + |

FEFFFFFF 100000101 100000101
FFffa035f6c50000 FEFFFFFF FEFFFFFF
0 | ffff934164541000 | ffffo3e461274000
0 0 0

kvm_lapic EL]
kvm_lapic a8
kvm_lapic bo
kvm_lapic + b8
Figure 5: Example of reversing the offset of struct
kvm_lapic’s vepu field (highlighted for mainline Linux),
by leaking the kvm_lapic’s data on GCE and AWS. The
obvious (and correct) guess here for both AWS and GCE is
0x98.

of some specific fields in the structures we traverse. This
requires some manual reverse-engineering efforts.

We exploit the fact that both AWS and GCE use KVM-
based hypervisors, so we predict the hypervisor to be very
similar to our self-hosted system. On the self-hosted system,
with one attacker VM up and running, we dump all the
relevant data structures at runtime. Next, we from an attacker
VM on AWS and GCE use our leakage primitive to recover
(parts of) the same data structures. Since we have acquired
the offsets for the structures in the base Linux kernel already,
we can compare the leaked data and make educated guesses
about where the unknown kernel’s data resides. We illustrate
the aforementioned with a simple example in Figure [3

Not all structures are straightforward to reverse engineer,
however. Some structures have fields we aim to target that
are thousands of bytes removed from their position in the
base Linux kernel, and others are annotated with random-
ization compiler attributes; these require more manual effort
to reverse and in some cases pointer chases to discover.
Regardless, we were able to determine all offsets required
to start the attack on both the GCE and AWS clouds.

6.5. Exploit Evaluation

Armed with our leakage primitive and knowledge of the
host kernel’s data structures, we are ready for end-to-end
exploitation. On all three clouds, we spawn one attacker
VM, one Ubuntu victim VM, and one Debian victim VM,
and launch our exploit. On the self-hosted and GCE clouds,
the exploit succeeds in leaking the private keys of both
victims. On AWS, however, the exploit only succeeds in
leaking meta-data from the host kernel, thereby discovering
the existence of the two victim VMs on the system but
failing to leak guest data from these victims themselves. We
confirm with AWS that they, as a defense in depth, unmap
guest memory from the host’s address space; we discuss this
further in Section

For an in-depth evaluation, we on GCE now allocate
six dedicated host platforms, and spawn an attacker VM on
each. On one dedicated host, we also spawn a Ubuntu victim
VM, whereas on the other five hosts, we spawn a Debian
victim VM. Each victim VM has an independently gener-
ated private Nginx key. We run the exploit on these host
systems for a total of 28 runs, out of which 25 completed

successfully; there, we leak the entire private key of the
victim VM correctly. The other three runs did not reach the
end of the exploit, due to Gadget Base Discovery failure.
Among the successful exploit runs, the average run time
was 14.2 hours (standard deviation: 16.2 hours), which was
spent as follows:

Find Gadget Base: 10.9h (76.3%)

Find Victim VM in Host: 2.6h (18.3%)
Find Victim Nginx in Guest: 0.3h (2.2%)
Leak Nginx’s TLS key: 0.4h (3.2%)

Note the large standard deviation: the initial step of finding
the gadget’s base can take half an hour if we are lucky, or
three days if we are not.

6.6. Exploit Noise Resilience

The aforementioned evaluation of the exploit chain was
performed on dedicated hosts that were mostly idle. Now,
we aim to verify whether the attack also works as effectively
when large amounts of system noise are present, as it may
be on a real shared cloud. To do so, we must put the
system under extreme memory (i.e., cache) pressure, and
perform intensive I/O operations continuously. Note that
CPU-intensive workloads on other cores do not influence
the attack, whereas one could possibly make the argument
that many interrupts from I/O could disrupt the exploit’s
flow/synchronization, or that cache pressure could disrupt
its cache side channel used to exploit L1TF.

On GCE, we spawn an attacker VM, a Debian vic-
tim VM, and three noise VMs: cache, disk, and network.
Moreover, from an external server, we access the victim
Nginx web server 100 times per second. We repeated the
experiment that produced the results in Figure 4} and found
no significant differences. Next, we repeated the end-to-end
exploit 10 times, which succeeded all 10 runs by leaking
the key correctly every time. For these runs, the average
run-time was 15.2 hours (with a standard deviation of 9.9
hours)—showing no significant change from the runs on the
idle system. From this, we conclude that our exploit is robust
under extreme system noise.

6.7. Exploit Stealthiness

By design, microarchitectural attacks are stealthy. That
is not only because they do not trigger architectural faults,
but also because their leakage traces occur at the microar-
chitectural level, which is outside the reach of traditional
monitoring systems (which operate the architectural level).

We confirm this through our efforts to implement
real-world microarchitectural exploitation in the production
clouds of AWS and GCE. Namely, across development,
leakage experiments, host kernel reverse engineering, and
running the end-to-end exploit repeatedly, over a time of sev-
eral months, AWS and Google informed us that none of their
cloud monitoring systems ever detected L1TF Reloaded.
This includes Google’s systems monitoring “certain classes
of these [L1TF] attacks”, deployed since 2018 [18].

7. Mitigations

With the L1TF Reloaded attack described in this paper,
we demonstrated that LITF—7 years after its discovery—
can still be used to leak sensitive data from other VMs on
commercial clouds, despite the commonly deployed soft-
ware mitigations.

7.1. Spot Mitigations

We start by discussing spot mitigations, specifically fo-
cusing on those relevant to L1TF Reloaded.

L1TF Mitigation. As discussed in Section all spot mit-
igations that specifically target L1TF are ineffective against
LITF Reloaded or incur major performance overheads. The
mitigation deployed by AWS and GCE, i.e., conditional L1D
flushing together with core scheduling, is by far the most
performant mitigation that still prevents direct guest-to-guest
attacks. It does, however, not impede L1TF Reloaded: on
both AWS and GCE clouds, we crafted an arbitrary read
primitive into the host virtual address space using half-
Spectre.

Half-Spectre Gadget Scanning. A straightforward mitiga-
tion strategy is to remove all half-Spectre gadgets from the
host kernel. If no gadgets exist, the attack we describe in this
paper is no longer possible. However, as the code pattern
that constitutes them is simply an array access with a bounds
check on its index—an extremely common operation—it
is not likely that one can completely avoid introducing
them into code. In addition, automated Spectre gadget scan-
ners [12f], [54], [55], [56], [57], 58] cannot guarantee that all
potential gadgets can be found, and in many cases do not
offer an analysis of their potential exploitability. In short,
finding half-Spectre gadgets is a unsolved problem, and
protection based on their removal does not provide robust
security guarantees. This research also offers evidence for
this: despite Google’s efforts in 2020 to remove all half-
Spectre gadgets from KVM that they could find [59], we
found the exploitable gadget in Listing [2]

7.2. Blanket Mitigations

Next we discuss ‘blanket mitigations’, which aim to pro-
vide generic, future-proof protection against broad classes of
microarchitectural attacks via system-wide hardening tech-
niques (i.e., defense in depth).

Unmapping Memory. The key idea of memory unmapping
mitigations is that microarchitectural attacks cannot leak
memory that is not mapped. Namely, by unmapping memory
from the hypervisor’s virtual address space, a microarchi-
tectural attack (including L1TF Reloaded) cannot force the
hypervisor to access this memory to enable its leakage.
This results in a major attack surface reduction at a low
performance cost. A major challenge for these types of

mitigations however is determining what data to unmap, i.e.,
what data should be considered sensitive or secret.

Exclusive Page Frame Ownership (XPFO) [60], [61],
secret_memfd [62]], and process-local memory [63]] are sim-
ilar implementations of a memory unmapping mitigation
in Linux; they provide the user with the ability to unmap
(specific) user-space memory from the kernel—or guest
memory from KVM. It is then left to the user to decide
what data to unmap. AWS employs this type of mitigation
in their Nitro hypervisor as well [31]], thereby preventing our
LITF Reloaded exploit from leaking data of other guests.
More specifically, we used our exploit to verify that guest
memory is not mapped into Linux’ direct map on AWS
machine instances, and also found that guest registers are
not saved into their kvm_vcpu structures. AWS did not
provide more details on what exact memory they unmap,
and we did not verify whether an attacker may still leak
guest data from other places, e.g., kernel stacks or I/O
buffers. Secret-Free Hypervisor [64], for instance, offers a
detailed description of what memory they unmap for various
hypervisors, in which they include, for example, kernel
stacks; we note that from this work, we find that global I/O
buffers cannot easily be unmapped. Alternatively, Address
Space Isolation (ASI) [65]], [66], [67] dynamically switches
between different address spaces. There, KVM normally
runs in a restricted address space without sensitive data, and
upon a sensitive memory access, switches to a full address
space, enabling the application of (expensive) mitigations
only when necessary. Here, determining what data is sensi-
tive remains difficult. Google deployed ASI on their L1TF-
vulnerable CPUs in response to L1TF Reloaded [30].

Under any unmapping mitigation, the hypervisor still
requires its own data (and code) to be mapped. As a result,
this type of mitigation strategy inherently leaves host data
vulnerable to leakage. While such data are not necessarily
sensitive, we nonetheless argue that leaking (non-sensitive)
host memory hurts system security. Namely, as part of an
exploit chain involving multiple vulnerabilities, having the
ability to read host memory is valuable to an attacker. For
instance, one could use these host data to bypass stack
canaries, break host KASLR, find target data to corrupt
using a memory safety bug, or verify correct heap massaging
for use-after-free exploitation.

Core Isolation. Lastly, we consider kernel core isolation as
proposed by Quarantine [|68]]. The authors describe isolating
privileged and unprivileged execution on different physical
cores, which become privileged and unprivileged cores. As a
result, guests will run only on their own unprivileged cores,
and will never be co-located with the kernel; any privi-
leged operation will be delegated to a privileged core. This
prevents both the guest-to-guest and guest-to-host attack
scenarios, as different security domains are always isolated
to separate physical cores. Quarantine is a comprehensive
mitigation against all on-core leaking transient execution
attacks (including L1TF), protecting both other guests and
host data. It is however not reported how Quarantine per-
forms when the hypervisor runs more than a single VM.

8. Discussion

Applicability to Other Cloud Environments. With our
end-to-end attack, we show that a combined exploitation of
LITF and a half-Spectre gadget in the hypervisor can leak
data from guest VMs on a host system, and is practical in
realistic commercial cloud settings. In particular, our attack
can leak non-sensitive host data from C5 cloud instances
of AWS, and that it can leak sensitive guest data from all
VMs in the system on N1 cloud instances of GCE. While
the gadgets used in this paper are specific to KVM (and thus
KVM-based proprietary hypervisors), other hypervisors are
likely to expose similar half-Spectre gadgets, enabling this
attack. As long as L1TF is not mitigated in hardware, and
the hypervisor can be made to load arbitrary data into the
L1 data cache, an attacker can leak arbitrary host and/or
guest VM data. As older CPUs vulnerable to L1TF are still
part of the fleets of many commercial cloud providers and
half-Spectre gadgets consist of code patterns common in
virtually all software, cloud providers other than AWS and
Google could be at risk.

Prevalence of L1TF Vulnerable CPUs. A main require-
ment for our attack is that the host system’s CPU is affected
by L1TF, a vulnerability known for 7 years with hard-
ware mitigations implemented in newer CPUs. Yet, cloud
providers expect long life times of their hardware, leading
to a substantial number of hosts in their fleet where L1TF
requires mitigation in software. Unfortunately, public data
on fleet composition or instance popularity is not available
for major cloud providers. Thus, we cannot accurately de-
termine how many systems would be affected by our attack.

However, to estimate the prevalence of vulnerable sys-
tems, we inspect the specification of rentable instance types
in public clouds as proxy. For AWS general purpose EC2
instances, out of 10 Intel-based instance types, 4 may be
backed by L1TF affected CPUs [28]]. Similar, out of 20 Intel-
based instance types available in GCE, 4 may use according
CPUs [27]. Hence, we expect that a substantial amount of
L1TF-affected CPUs are actively in-use to this day.

Similar Transient Execution Vulnerabilities. Other tran-
sient execution vulnerabilities have been discovered that,
similary to L1TF, allow unprivileged software to leak data
from the local compute-core. Examples include MDS [8]],
[, [10] (2019) and GDS [69] (2023) on Intel CPUs, and
TSA [70] (2025) on AMD CPUs. While this work focused
on L1TF from 2018, researchers keep discovering new vari-
ants. This highlights the continuing danger posed by both
known and yet unknown CPU vulnerabilities that enable
core-local data leakage. Since the techniques to exploit all of
these vulnerabilities are largely the same (e.g., side-channel
analysis), we think our successful exploitation of L1TF in
real-world cloud settings (even under heavy system noise)
strengthens confidence in the belief that similar vulnerabil-
ities may pose serious real-world threats as well.

9. Related Work

9.1. Profiling CPUs and Detecting Mitigations

Prior work has shown the possibilities of identifiying
CPU microarchitectures and information about microarchi-
tectural components in non-native attack scenarios, such as
web browsers. For instance, Trampert et al. [[71] present
side-channel-related benchmarks that reveal CPU properties
relevant to transient execution attacks, such as cache sizes
or cache associativities, from the browser. Similarly, Saito
et al. [72]] show methods that help determine, among others,
the number of CPU cores, presence of SMT, and CPU family
type. While the aforementioned work focuses on browsers,
we in our work target a virtualized attack scenario.

Rather than investigate the microarchitectural properties
of a CPU directly, other work aims to directly determine
a system’s susceptibility to particular transient execution
attacks. GhostBuster [73]], for example, evaluates existing
tools that check a system’s vulnerability against transient
execution attacks. The authors classify such tools into two
categories: information gathering tools, which rely on sys-
tem information sources such as CPUID and MSRs to map
available mitigations [74], [75]], and empirical tools, which
emulate specific attacks to determine whether the transient
execution attack is possible (and thus not mitigated) [46],
[76]. For tools in the latter class, they note that one can use
either performance monitoring counters [76] or side-channel
attacks [46] to do so. In general, both classes of tools do not
consider the virtualized attack scenario, as there CPUID and
MSR access can be emulated and performance monitoring
counters are rarely virtualized.

9.2. L1TF

The Foreshadow attack [7], [13[], later described by
Intel as L1 Terminal Fault (L1TF) [41]], [42]], demonstrated
that transient execution attacks could not only breach the
user-kernel boundary [2f], but also security boundaries such
as Intel SGX [7] and the separation between virtual ma-
chines [[13]], [[77]. This led to the implementation of miti-
gations such as core scheduling [15]], [[45] and L1D flush-
ing [41]], [44] to prevent L1TF as it was originally described.

Prior work showed how one could exploit L1TF despite
the aforementioned mitigations [24]], [25], [26]. Manthey
et al. found half-Spectre gadgets in the Xen hypervisor,
and described how they could potentially be exploited in
tandem with L1TF [24]; specifically, to use the gadget to
bring data into the cache on one hyperthread while L1TF
is used on another to read the cached data. As a follow-up
to the aforementioned, Stecklina demonstrated this attack
by introducing an artifical half-Spectre gadget, showing
how it bypasses the mitigations against L1TF in the Linux
kernel [26]. While this was a synthetic attack that served
to validate the deployed defenses, we implement the first
end-to-end attack that exploits this combination of transient
execution vulnerabilities on unmodified hypervisors. Next,
Schwarzl et al. [25] show an attack on a Linux kernel

without retpoline [78]], where the attacker exploits attacker-
controlled addresses remaining in general-purpose regis-
ters and their speculative dereferences in the kernel upon
interrupt-induced context switches. In this manner, data from
the L3 data cache is loaded into the L1 data cache, and
can be leaked using L1TF. Whereas we in our attack trick
the hypervisor into loading any desired sensitive data, the
attacker here has no control over what data the host accesses,
and relies on the host continuously accessing sensitive data
to ensure it remains in the shared L3 cache.

10. Conclusion

In this paper, we have shown how two different transient
execution vulnerabilities, L1TF and half-Spectre gadgets,
can be combined into a powerful attack primitive. A ma-
licious VM can bypass existing mitigations against guest-
to-guest leakage attacks by using a half-Spectre gadget in
the hypervisor. The gadget in the hypervisor lets it act as a
confused deputy, loading host physical memory into the L1
data cache. On a sibling SMT core, the malicious VM can
then use L1TF to leak the host physical memory from L1
data cache, potentially leaking memory from other guests
on the system. With that, we demonstrate an end-to-end,
guest-to-guest attack on base Linux and GCP cloud instance
machines that leaks a private key from an Nginx web server
running in a victim VM in an average time of 14.2 hours.

With our attack, we demonstrate that mitigating transient
execution vulnerabilities in isolation is not effective when
their exploitation can be combined to not only circumvent
existing defenses but yield powerful attack primitives. Blan-
ket mitigations such as memory unmapping or core isolation
would have prevented this attack from occurring, and indeed
successfully defended the AWS cloud against our exploit.
Not comprehensively addressing transient execution vulner-
abilities leaves room for novel combinations of exploitation
to rear their heads.

11. Acknowledgements

We thank Alexandra Sandulescu and Eduardo Vela Nava
from Google and Federico Maggi, Claudio Canella, and
Moritz Lipp from AWS for their collaboration throughout
the project. We thank the anonymous reviewers for their
feedback. We thank Google and AWS for providing us
with free cloud credits to rent VMs for this research. This
project was co-funded by the European Union under ERC
Advanced grant No. 101141972 (“Ghostbuster”), Horizon
Europe under grant agreement No. 101120962 (‘“Rescale”).
It was additionally funded by NWO under Gravitation grant
024.006.037 (“CiCS”) and the Dutch Ministry of Economic
Affairs and Climate under the AVR “Memo” project. Views
and opinions expressed are however those of the authors
only and do not necessarily reflect those of the European
Union, the European Research Council or any of the funding
agencies. Neither the European Union nor the granting
authority can be held responsible for them.

References

(1]

(2]

(3]

(4]

[3]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in [EEE S&P,
2019.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin et al., “Meltdown: reading
kernel memory from user space,” in USENIX Security, 2018.

G. Maisuradze and C. Rossow, “ret2spec: Speculative execution using
return stack buffers,” in CCS, 2018.

J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin,
D. Genkin, Y. Yuval, B. Sunar, D. Gruss, and F. Piessens, “LVI:
Hijacking Transient Execution through Microarchitectural Load Value
Injection,” in IEEE S&P, 2020.

J. Wikner and K. Razavi, “Retbleed: Arbitrary speculative code
execution with return instructions,” in USENIX Security, 2022.

E. Goktas, K. Razavi, G. Portokalidis, H. Bos, and C. Giuffrida,
“Speculative probing: Hacking blind in the Spectre era,” in CCS,
2020.

J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the keys to the Intel SGX kingdom with
transient out-of-order execution,” in USENIX Security, 2018.

S. Van Schaik, A. Milburn, S. Osterlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “Ridl: Rogue in-flight data load,”
in IEEE S&P, 2019.

C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck, and
Y. Yarom, “Fallout: Leaking data on Meltdown-resistant CPUs,” in
CCS, 2019.

M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “Zombieload: Cross-privilege-boundary
data sampling,” in CCS, 2019.

E. Barberis, P. Frigo, M. Muench, H. Bos, and C. Giuffrida, “Branch
History Injection: On the Effectiveness of Hardware Mitigations
Against Cross-Privilege Spectre-v2 Attacks,” in USENIX Security,
2022.

S. Wiebing, A. de Faveri Tron, H. Bos, and C. Giuffrida, “InSpectre
Gadget: Inspecting the Residual Attack Surface of Cross-privilege
Spectre v2,” in USENIX Security, 2024.

O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, R. Strackx, T. F. Wenisch, and Y. Yarom,
“Foreshadow-ng: Breaking the virtual memory abstraction with tran-
sient out-of-order execution,” 2018.

M. Larabel, “The brutal performance impact from mitigating the
LVI vulnerability,” https://www.phoronix.com/review/lvi-attack-perf,
2020.

The Linux kernel development community, “Core scheduling,” https:
//docs.kernel.org/admin- guide/hw-vuln/core-scheduling.html,

Kasperksy, “Spectre vulnerability: 4 years after discovery,” https:
/Iwww.kaspersky.com/blog/spectre-meltdown-in-practice/43525/,
2022.

L. Torvalds, “Linus torvalds growing frustrated by buggy hardware,
theoretical cpu attacks,” https://linux.slashdot.org/story/24/10/21/
1533228/linus-torvalds- growing- frustrated-by-buggy-hardware-
theoretical-cpu-attacks, 2024.

P. Turner and P. G. Parseghian, “Protecting
against the new it speculative vulnerabilities,”
https://cloud.google.com/blog/products/gcp/protecting-against-
the-new-11tf-speculative-vulnerabilities, August 2018.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

L. Torvalds, “Linus torvalds on current meltdown/spectre patches—
”somebody is pushing complete garbage for unclear reasons.”,”
https://www.reddit.com/r/Amd/comments/7s3rnr/linus_torvalds_on_

current_meltdownspectre_patches/, 2018.

——, “Linux kernel mailing list [patch 0/7] ibrs patch series,” https:
/Nkml.org/lkm1/2018/1/4/720| January 2018.

B. Toulas, “New apple cpu side-channel attacks steal data
from browsers,” https://www.bleepingcomputer.com/news/security/,
new-apple-cpu-side-channel-attack- steals-data-from-browsers/.

R. Lakshmanan, “Researchers expose new intel cpu flaws enabling
memory leaks and spectre v2 attacks,” https://thehackernews.com/
2025/05/researchers-expose-new-intel-cpu-flaws.html.

K. Zetter, “Intel fixes a security flaw it said was repaired six months
ago, asks researchers to not reveal flaws despite grace period,” New
York Times, November 2019.

Manthey, Norbert and Stecklina, Julian and Wieczorkiewicz, Pawel,
“XSA-289 - Xen Security Advisories,” https://xenbits.xen.org/xsa/
advisory-289.html, 2019.

M. Schwarzl, T. Schuster, M. Schwarz, and D. Gruss, “Speculative
Dereferencing of Registers: Reviving Foreshadow,” 2021.

J. Stecklina, “l1tf-demo,” https://github.com/blitz/11tf-demo, 2019.

G. Cloud, “General-purpose machine family for Compute Engine,”
https://cloud.google.com/compute/docs/machine-resource,

AWS, “Amazon EC2 Instance types,” https://aws.amazon.com/ec2/
instance-types.

T. Raymakers, “KVM: x86: use array_index_nospec
with indices that come from guest,” |https:/git.kernel.
org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?1d=
c87bd4dd43a624109c3cc42d843138378a7f4548&s=31} 2025.

M. Hertogh, E. Vela Nava, D. Quakke-
laar, and M. Rizzo, “Project Rain:L1TE,”
https://bughunters.google.com/blog/4684191115575296/project-
rain-11tf, September 2025.

A. Saidi, M. Lipp, and F. Sironi, “Amazon EC2 defenses
against L1TF Reloaded,” https://aws.amazon.com/blogs/security/ec2-
defenses-against-11tf-reloaded, August 2025.

Y. Yarom and K. Falkner, “FLUSH+ RELOAD: A high resolution,
low noise, L3 cache side-channel attack,” in USENIX Security, 2014.

M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and
J. Torrellas, “Attack directories, not caches: Side channel attacks in
a non-inclusive world,” in IJEEE S&P, 2019.

C. Percival, “Cache Missing for Fun and Profit,” http://www.
daemonology.net/papers/htt.pdf, 2005.

D. Gruss, R. Spreitzer, and S. Mangard, “Cache Template Attacks:
Automating Attacks on Inclusive Last-Level Caches,” in Proceedings
of the 24th USENIX Security Symposium, ser. SEC 15. USENIX
Association, 2015, p. 897-912.

E. Koruyeh, K. Khasawneh, C. Song, and N. Abu-Ghazaleh, “Spectre
Returns! Speculation Attacks Using the Return Stack Buffer,” in
WOOT, 2018.

MITRE, “CVE-2018-3639, Spectre Variant 4: Speculative Store By-
pass (SSB),” https://cve.mitre.org/cgi-bin/cvename.cgi?’name=CVE-
2018-3639, 2018.

M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss,
“NetSpectre: Read arbitrary memory over network,” in ESORICS,
2019.

G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. Lai, “Sgxpectre:
Stealing Intel Secrets from SGX Enclaves via Speculative Execution,”
in EuroS&P, 2019.

A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “SMoTherSpectre: exploiting
speculative execution through port contention,” in CCS, 2019.

https://www.phoronix.com/review/lvi-attack-perf
https://docs.kernel.org/admin-guide/hw-vuln/core-scheduling.html
https://docs.kernel.org/admin-guide/hw-vuln/core-scheduling.html
https://www.kaspersky.com/blog/spectre-meltdown-in-practice/43525/
https://www.kaspersky.com/blog/spectre-meltdown-in-practice/43525/
https://linux.slashdot.org/story/24/10/21/1533228/linus-torvalds-growing-frustrated-by-buggy-hardware-theoretical-cpu-attacks
https://linux.slashdot.org/story/24/10/21/1533228/linus-torvalds-growing-frustrated-by-buggy-hardware-theoretical-cpu-attacks
https://linux.slashdot.org/story/24/10/21/1533228/linus-torvalds-growing-frustrated-by-buggy-hardware-theoretical-cpu-attacks
https://www.reddit.com/r/Amd/comments/7s3rnr/linus_torvalds_on_current_meltdownspectre_patches/
https://www.reddit.com/r/Amd/comments/7s3rnr/linus_torvalds_on_current_meltdownspectre_patches/
https://lkml.org/lkml/2018/1/4/720
https://lkml.org/lkml/2018/1/4/720
https://www.bleepingcomputer.com/news/security/new-apple-cpu-side-channel-attack-steals-data-from-browsers/
https://www.bleepingcomputer.com/news/security/new-apple-cpu-side-channel-attack-steals-data-from-browsers/
https://thehackernews.com/2025/05/researchers-expose-new-intel-cpu-flaws.html
https://thehackernews.com/2025/05/researchers-expose-new-intel-cpu-flaws.html
https://xenbits.xen.org/xsa/advisory-289.html
https://xenbits.xen.org/xsa/advisory-289.html
https://github.com/blitz/l1tf-demo
https://cloud.google.com/compute/docs/machine-resource
https://aws.amazon.com/ec2/instance-types
https://aws.amazon.com/ec2/instance-types
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c87bd4dd43a624109c3cc42d843138378a7f4548&s=31
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c87bd4dd43a624109c3cc42d843138378a7f4548&s=31
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c87bd4dd43a624109c3cc42d843138378a7f4548&s=31
http://www.daemonology.net/papers/htt.pdf
http://www.daemonology.net/papers/htt.pdf
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3639
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3639

[41]

[42]

[43]

[44]

[45]
[46]

(471

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[571

(58]

[591

[60]

[61]

[62]

[63]

Intel, “L1 terminal fault,” https://www.intel.com/content/www/us/
en/developer/articles/technical/software-security- guidance/technical-
documentation/intel-analysis-11-terminal-fault.html,

, “L1 terminal fault,” https://www.intel.com/content/www/us/
en/developer/articles/technical/software-security- guidance/advisory-
guidance/l1-terminal-fault.html.

Intel, “Affected Processors: Guidance for Security Issues on Intel Pro-
cessors,” https://www.intel.com/content/www/us/en/developer/topic-
technology/software-security- guidance/processors-affected-
consolidated-product-cpu-model.html,

The Linux kernel development community, “L1D Flushing,” https:/
www.kernel.org/doc/html/latest/admin- guide/hw-vuln/I1d_flush.html.

J. Corbet, “Core scheduling,” https://lwn.net/Articles/780703/, 2019.

C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ort-
ner, F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evalua-
tion of transient execution attacks and defenses,” in USENIX Security,
2019, Extended classification tree and PoCs at https://transient.fail/.

Intel, “Microarchitectural Data Sampling (Disclosure Documentation
758366, v3),” https://www.intel.com/content/www/us/en/
developer/articles/technical/software-security- guidance/technical-
documentation/intel-analysis- microarchitectural-data-sampling.html,
2021.

M. Schwarz, “Pteditor,” https://github.com/misc0O110/PTEditor.

Intel, “Intel. 2023. Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A,
3B, 3C, 3D, and 4,” 2023.

The Linux kernel development community, “Linux Memory Manage-
ment,” https://www.kernel.org/doc/html/latest/arch/x86/x86_64/mm.
html.

H. Yavarzadeh, M. Taram, S. Narayan, D. Stefan, and D. Tullsen,
“Half&Half: Demystifying Intel’s Directional Branch Predictors for
Fast, Secure Partitioned Execution,” in IEEE S&P, 2023.

A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. Pereida Garcia, and
N. Tuveri, “Port Contention for Fun and Profit,” in IEEE S&P, 2019.

AWS, “The EC2 approach to preventing side-channels,”
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-
aws-nitro-system/the-ec2-approach-to-preventing-side-channels.html.

J. Zomer and A. Sandulescu, “Finding gadgets for CPU side-channels
with static analysis tools,” |https://github.com/google/security-
research/blob/master/pocs/cpus/spectre- gadgets/README.md.

D. Carpenter, “Smatch check for Spectre stuff,” |https://lwn.net/
Articles/752409/.

0. Oleksenko, B. Trach, M. Silberstein, and C. Fetzer, “SpecFuzz:
Bringing spectre-type vulnerabilities to the surface,” in USENIX
Security, 2020.

Z. Qi, Q. Feng, Y. Cheng, M. Yan, P. Li, H. Yin, and T. Wei, “Spec-
Taint: Speculative Taint Analysis for Discovering Spectre Gadgets,”
in NDSS, 2021.

B. Johannesmeyer, J. Koschel, K. Razavi, H. Bos, and C. Giuffrida,
“Kasper: scanning for generalized transient execution gadgets in the
Linux kernel,” in NDSS, 2022.

M. Pomonis, “KVM: x86: Extend Spectre-vl mitiga-

tion,” https://lore.kernel.org/lkm1/20191211204753.242298-1-
pomonis @google.com/.

V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis, “ret2dir:
Rethinking kernel isolation,” in USENIX Security, 2014.

J. Corbet, “Exclusive page-frame ownership,” https://lwn.net/Articles/
700647/, 2016.

_ “Keeping secrets in
https://lwn.net/Articles/812325.

M. Hillenbrand, “Process-local memory allocations for hiding KVM
secrets,” https://lwn.net/Articles/791069/, 2024.

memfd areas,”

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]
[76]

[77]

[78]

H. Xia, D. Zhang, W. Liu, I. Haller, B. Sherwin, and D. Chisnall, “A
Secret-Free Hypervisor: Rethinking Isolation in the Age of Specula-
tive Vulnerabilities,” in IEEE S&P, 2022.

A. Chartre and C. Wilk, “Improve Security with Address Space Iso-
lation (ASI),” https://blogs.oracle.com/linux/post/improve-security-
with-address-space-isolation-asi, 2019.

J. Shahid, “[RFC PATCH 00/47] Address Space Isolation
for KVM,” https://lore.kernel.org/lkml1/20220223052223.1202152- 1-
junaids @ google.com/, 2022.

B. Jackman, “[PATCH 00/26] Address Space Isolation
(ASI),” https://lore.kernel.org/lkm1/20240712-asi-rfc-24-v1-0-
144b319240d8 @google.com/, 2024.

M. Hertogh, M. Wiesinger, S. Osterlund, M. Muench, N. Amit,
H. Bos, and C. Giuffrida, “Quarantine: Mitigating Transient Execu-
tion Attacks with Physical Domain Isolation,” in RAID, 2023.

D. Moghimi, “Downfall: Exploiting speculative data gathering,” in
32nd USENIX Security Symposium (USENIX Security 23), 2023, pp.
7179-7193.

0. Oleksenko, F. Solt, C. Fournet, J. Hofmann, B. Kopf, and S. Vo-
los, “Enter, exit, page fault, leak: Testing isolation boundaries for
microarchitectural leaks,” in 2026 IEEE Symposium on Security and
Privacy, May 2026.

L. Trampert, C. Rossow, and M. Schwarz, “Browser-Based CPU
Fingerprinting,” in ESORICS, 2022.

T. Saito, K. Yasuda, K. Tanabe, and K. Takahashi, “Web Browser
Tampering: Inspecting CPU Features from Side-Channel Informa-
tion,” in Broadband and Wireless Computing, Communication and
Applications, 2017.

A. Mambretti, P. Convertini, A. Sorniotti, A. Sandulescu, E. Kirda,
and A. Kurmus, “GhostBuster: understanding and overcoming the
pitfalls of transient execution vulnerability checkers,” in SANER,
2021.

S. Lesimple, ‘“spectre-meltdown-checker,”
speed47/spectre-meltdown-checker.

https://github.com/

VUSec, “mdstool-cli,” https://github.com/vusec/ridl.

A. Mambretti, M. Neugschwandtner, A. Sorniotti, E. Kirda,
W. Robertson, and A. Kurmus, “Speculator: a tool to analyze specu-
lative execution attacks and mitigations,” in ACSAC, 2019.

M. S. Brunella, G. Bianchi, S. Turco, F. Quaglia, and N. Blefari-
Melazzi, “Foreshadow-VMM: Feasibility and Network Perspective,”
in IEEE NetSoft, 2019.

P. Turner, “Retpoline: A Software Construct for Preventing Branch-

Target-Injection,” https://support.google.com/fags/answer/7625886,
2018.

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/intel-analysis-l1-terminal-fault.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/intel-analysis-l1-terminal-fault.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/intel-analysis-l1-terminal-fault.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/l1-terminal-fault.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/l1-terminal-fault.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/l1-terminal-fault.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1d_flush.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1d_flush.html
https://lwn.net/Articles/780703/
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/intel-analysis-microarchitectural-data-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/intel-analysis-microarchitectural-data-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/intel-analysis-microarchitectural-data-sampling.html
https://github.com/misc0110/PTEditor
https://www.kernel.org/doc/html/latest/arch/x86/x86_64/mm.html
https://www.kernel.org/doc/html/latest/arch/x86/x86_64/mm.html
https://github.com/google/security-research/blob/master/pocs/cpus/spectre-gadgets/README.md
https://github.com/google/security-research/blob/master/pocs/cpus/spectre-gadgets/README.md
https://lwn.net/Articles/752409/
https://lwn.net/Articles/752409/
https://lwn.net/Articles/700647/
https://lwn.net/Articles/700647/
https://lwn.net/Articles/791069/
https://blogs.oracle.com/linux/post/improve-security-with-address-space-isolation-asi
https://blogs.oracle.com/linux/post/improve-security-with-address-space-isolation-asi
https://lore.kernel.org/lkml/20220223052223.1202152-1-junaids@google.com/
https://lore.kernel.org/lkml/20220223052223.1202152-1-junaids@google.com/
https://lore.kernel.org/lkml/20240712-asi-rfc-24-v1-0-144b319a40d8@google.com/
https://lore.kernel.org/lkml/20240712-asi-rfc-24-v1-0-144b319a40d8@google.com/
https://github.com/speed47/spectre-meltdown-checker
https://github.com/speed47/spectre-meltdown-checker
https://github.com/vusec/ridl
https://support.google.com/faqs/answer/7625886

12. Meta-Review

The following meta-review was prepared by the program
committee for the 2026 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

12.1. Summary

The authors demonstrate that transient-execution ex-
ploits are practical in the cloud under real-world, noisy
conditions. They showed that combining two vulnerabili-
ties, which were mitigated in isolation, enabled exploitation
when used together. This enabled them to conduct end-to-
end attacks that extract data from both Google Cloud and
Amazon Web Services.

12.2. Scientific Contributions

o Identifies an Impactful Vulnerability
e Provides a Valuable Step Forward in an Established
Field

12.3. Reasons for Acceptance

1) The paper identifies an impactful vulnerability.
While neither of the two primitives they combined
(L1TF and a speculative out-of-bounds load) are
novel by themselves, when used together they by-
pass mitigations currently deployed in real cloud
infrastructure. This enable a guest VM to read sen-
sitive data from both co-tenants and the hypervisor.

2) The paper provides a valuable step forward in an
established field. Many prior works have demon-
strated transient execution attacks only in lab set-
tings with minimal noise. By demonstrating end-to-
end attacks against a cloud setup with many pro-
cesses generating a huge amount of noise through
heavy memory pressure and IO operations, the
authors prove that transient-execution attacks are
in fact feasible in realistic cloud settings.

12.4. Noteworthy Concerns

The paper leverages a vulnerability only open to old
CPUs (namely L1TF) and, as such, its results only directly
apply to limited scenarios. While there are vulnerabilities in
newer CPUs, and it is possible that they may be exploitable
in clouds, this work’s focus on older CPUs and vulnerabil-
ities raises doubts about generalization.

	Introduction
	Background
	Transient Execution Attacks
	L1 Terminal Fault
	Mitigating L1 Terminal Fault
	Half-Spectre Gadgets

	Threat Model
	Attack Overview
	L1TF Reloaded
	Local Attack Preparation
	Cloud Host Profiling
	Gadget Base Discovery
	Host Targeting
	Guest Targeting
	Data Extraction
	Chase and Check

	End-to-End Cloud Exploitation
	Exploitation Setup
	Profiling AWS and GCE Hosts
	Leakage Primitive Evaluation
	Host Kernel Reverse Engineering
	Exploit Evaluation
	Exploit Noise Resilience
	Exploit Stealthiness

	Mitigations
	Spot Mitigations
	Blanket Mitigations

	Discussion
	Related Work
	Profiling CPUs and Detecting Mitigations
	L1TF

	Conclusion
	Acknowledgements
	References
	Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

