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1 High Level Summary

This document discloses a microarchitectural security vulnerability enabling
unauthorized data exfiltration from pubic clouds. We have implemented an
attack, with which a malicious cloud customer can read data from the underly-
ing cloud infrastructure, as well as from other customers using the same cloud
infrastructure. The attacker does not need to know anything, a priori, about its
victims: the attack itself can discover which other customers are using the same
cloud infrastructure, list the programs they are running, and read their data.
We show an example exploit, where a victim customer is hosting a website in
a public cloud, and our attack leaks cryptographic data enabling decryption of
the website’s traffic, and impersonation of the website. While mitigating our
particular example attack is easy — this report includes the fix — mitigating
the attack technique in general is difficult to do effectively as well as efficiently.
We encourage cloud providers to take more in depth measurements against this
attack surface. The main takeaways are:

e Some microarchitectural mitigations deployed by cloud vendors are insuf-
ficient.

GCE: customer data at direct risk.

AWS: system security weakened, without direct risk to customer data.

e Open security research is the best way to ensure security. Google and
Amazon actively enabled this research (cf. Section . The general con-
clusion should not be that Amazon’s and Google’s security was lacking,
but that they are actively stimulating security improvements. We think
cloud vendors with closed security policies are putting end users at more
risk then, in this case, Google and Amazon are.



2 Technical Summary

In the scope of the ongoing research project “Rain”, that investigates the prac-
tical exploitability of transient execution vulnerabilities in public clouds, we
have found and successfully exploited a combination of two such vulnerabilities:
L1TF and half-Spectre. The affected CPUs are therefore restricted to L1TF-
vulnerable ones. The half-Spectre gadget we found is in Linux/KVM, reachable
from a VM via a hypercall — restricting our PoC to target KVM-based hy-
pervisors. Our PoC achieves arbitrary host memory leakage, as well as either
restricted or arbitrary guest data leakage, depending on different cloud vendors
their defense-in-depth deployments. On GCE VMs we showcase that, within
hours, we can (1) leak what other VMs the host kernel is running; (2) list what
processes are running within a victim VM; and (3) leak the private TSL key of
an Nginx webserver running inside a victim VM. On AWS; only (1) succeeds.
The main technical takeaways are:

e Transient execution attacks are real, and pose serious threats. Although
understanding the underlying microarchitectural vulnerabilities requires
expert knowledge, and the side-channel building blocks of the attacks are
unreliable and slow, one can build reliable and robust exploits on top of
them that find and leak critical secrets with perfect accuracy within hours.

e Transient execution attacks are stealthy. Neither Google nor Amazon
detected any of our exploit versions, which had been running on their
public cloud infrastructure for weeks on end.

e Spectre gadget removal provides zero security guarantees. Easy-to-spot
gadgets are being (re-)inserted into critical software constantly, let alone
deep and generic gadgets, whose detection is an unsolved problem.

3 Coordination & Ethics

Amazon and Google gave explicit permission for this research, provided free-
of-charge access to their public clouds, and are participating in the responsible
disclosure process. From the point of view of the research team (the authors
of this report), the research was done black-box, without any company-insider
information: no knowledge of the host kernel, no knowledge of deployed mitiga-
tions, etc. We did however get the upfront confirmation that dedicated-hosts,
i.e., sole tenant machines, run in the same environment and configuration as
shared hosts/machines. Therefore, we conducted all of our experiments and
exploitation efforts on dedicated hosts, giving us the guarantee that no cus-
tomer data could ever be leaked, while preserving a perfectly realistic exploit
environment of real world public clouds.



4 Threat Model

We consider the attacker to be a malicious public cloud user, renting VMs and
trying to disclose confidential information from the cloud. The main target is
obtaining data from other cloud customers. We do not assume the attacker to
know who the other customers are, or where in the world they are running their
VMs. The attacker will simply spawn VMs, discover what other customers they
are colocated with on the same host, discover what they are doing, and leak
sensitive data.

5 LI1TF Mitigations

L1 Terminal Fault (L1TF) is a transient execution vulnerability affecting older-
generation Intel processors. For details on L1TF, we refer to the Foreshadow
discovering paper [1] and Intel’s whitepaper [2]. L1TF allows a VM to read
arbitrary host physical memory residing in the L1 data cache. Since L1TF can-
not be fixed in microcode, older generation CPUs require software mitigations.
The only mitigation preventing the read primitive itself is disabling extended
paging, causing major performance overhead. The goal of all alternative mitiga-
tions is to ensure that, whenever an untrusted guest is running on a CPU core,
that core’s L1D cache does not contain secret data. To this end, the hypervisor
can flush the L1D cache just before every VM-enter. Some kernels implement
optimizations, e.g. Linux’ “conditional flushing”, but this is not important to
our attack. Additionally, either SMT must be disabled —a major performance
reduction— or the hypervisor must perform core-scheduling: distrusting parties
may never run simultaneously on the same core [23]. Perfect enforcement of this
scheduling constraint requires “kernel synchronization”, i.e., one hyperthread’s
VM-exit forces its sibling to VM-exit as well, also resulting in high performance
loss.

6 CPU Targeting & Mitigation Detection

An attacker’s first aim is to get VMs running on L1TF-vulnerable CPUs in the
cloud, and check whether (in)sufficient mitigations are deployed by the hypervi-
sor. From inside a VM, one does not know a priori what CPU one is running on:
the hypervisor can emulate CPUID to return a wrong answer. Similarly, despite
what the hypervisor tells to the VM about its L1TF mitigation deployments,
the truth may be different. Therefore, our attack does not rely on a truthful
hypervisor, but seeks answers to these questions independently itself.

Both AWS and GCE allow a user to request VMs of specific instance/ma-
chine “types” [4,5]. On AWS and GCE we pick the C5 and N1 types respectively,
which are both listed to be partly backed by Intel Skylake servers — vulnerable to
L1TF. Our attacker VM verifies that it is running on the expected Skylake CPU,
by measuring a microarchitectural characteristic of the CPU that varies across



[
° Attacker > Attacker >
8 vCPU g vCPU ]
()] > >
S I ac
5 v 5
== e =
gD S >
Z AN N N N N NN
L [o] X XX | A A |
o
2 Attacker VCPU
_S Uses L1TF to leak L1D content from hypervisor
g
-l
Time >

Figure 1: L1D Flushing and Core Scheduling without Kernel Synchronization
leave the hypervisor’s data vulnerable to be leaked.

different microarchitectures: the amount of global branch history memorized by
its branch predictor [6].

Next, we designed timing side-channel techniques that let a VM detect side-
effects of different L1TF mitigations. Using a cache side channel before and after
VM-exits, we detected that both AWS and GCE deploy Linux’ conditional L1D
flushing on their Skylake servers. Via a port contention side-channel, we enable
two vCPUs to detect their simultaneous co-location on the same physical core.
From this, we detected SMT to be enabled, while core-scheduling with kernel
synchronization was disabled, on both AWS and GCE.

Although this mitigation configuration is Linux’ default, its documentation
explicitly states “The administrators of cloud and hosting setups have to care-
fully analyze the risk for their scenarios and make the appropriate mitigation
choices, ...” [7]. The deployed mitigations allow an attack scenario as depicted
in Figure [1} as also discussed in Linux’ core-scheduling documentation [3], al-
though its practical exploitability is stated to be “debatable”.

7 Half Spectre

Under normal circumstances the hypervisor accesses only non-sensitive data,
such as the attacker VM’s own metadata. Therefore, an attacker as in Figure
will have a hard time exploiting this vulnerability beyond much more than
for example a host KASLR break. Extraordinary circumstances can however
be created by abusing half-Spectre gadgets in the hypervisor. By triggering
a half-Spectre gadget in the hypervisor, the attacker may trick the hypervisor
into speculatively fetching any mapped data into its L1D cache, as depicted in

Figure
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Figure 2: For a short duration of time, in between the hypervisor’s speculative
load and the next VM-enter of the half-Spectre hyperthread, the secret data will
reside in the attacker core’s L1D cache. Within this short window, the L1TF
hyperthread leaks the secret data out of the shared L1D cache.

With manual code review of Linux’ KVM subsystem, and in particular its
hypercall handlers, we found the half-Spectre gadget listed in Figure This
gadget gives an attacker the primitive to perform a speculative load within the
hypervisor’s address space. With in-place branch mistraining of the bounds
check on dest_id, and evicting map->max_apic_id from the cache to lengthen
the speculative window, we can force the host kernel to perform the speculative
load map->phys map [dest_id] on any (8-byte aligned) 64-bit virtual address.

8 Leak Primitive

The attacker spawns a VM on one physical core, with two vCPUs, corresponding
to the core’s two hyperthreads — the default on public cloud setups, due to
core-scheduling. One vCPU, i.e., one hyperthread, continuously triggers the
half-Spectre gadget, while its sibling performs L1TF to leak the contents of the
speculatively loaded cacheline, as depicted in Figure

This results in a leak primitive allowing the disclosure of any data that can
be speculatively loaded by the half-Spectre gadget, i.e., any memory mapped
into KVM’s address space during execution of kvm_sched _yield. For mainline
Linux, as well as GCE’s host kernel, this is all physical memory, due to the
kernel’s direct map. On AWS, limitations apply as we will see in Section [9}

Our implementation successfully leaks data on a local Skylake server running
a mainline 6.13 host Linux kernel, as well as on a AWS C5 node, and a GCE N1
node. We setup an experiment that measures the leakage rate and accuracy of
this leak primitive, for leaking chunks of both 8 bytes and 256 bytes, represen-
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static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
{

struct kvm_vcpu *target = NULL;

struct kvm_apic_map *map;

vcpu->stat.directed_yield_attempted++;

if (single_task_running())
goto no_yield;

rcu_read_lock();
map = rcu_dereference(vcpu->kvm->arch.apic_map);

if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
target = map->phys_map[dest_id]->vcpu;

Figure 3: The half-Spectre gadget we exploit in Linux/KVM. Via a hypercall, a
VM can trigger this KVM function, with full control over the hypercall argument
dest_id.

tative of leaking pointers and leaking a 2048 bit private RSA key. The results
are listed in Figure[d The virtual line indicates the setting used in our exploit:
about 1B/s, resulting in roughly 95% on mainline Linux and AWS, and 50%
accuracy on GCE.

9 Additional Cloud Vendor Specific Mitigations

The difference between GCE and mainline Linux/AWS in Figure [4] hints at
something additional measures on GCE hampering the leakage signal. Google
has acknowledged that they implemented extra, custom mitigations against
L1TF, explaining this behavior. We do not know any details of these addi-
tional mitigations — neither did we try to find out. The conclusion is however
clear: although this may slow down an attack, it will not prevent one, as proven
by this research.

During the exploitation of our leakage primitive on AWS, we discovered that
the AWS host kernel does not have all of physical memory mapped into its direct
map of physical memory. We attribute this to a defense-in-depth, that unmaps
physical memory of other guests from the direct map, & la memfd_secret [3],
and this was confirmed by AWS. Since our leak primitive allows data exfiltration
of any memory mapped into KVM’s address space, during execution of the half-
Spectre gadget on our own logical core, this prevents us from directly leaking
other guest memory.

This leaves open the question of whether some other guest memory is still
mapped into the address space, but outside of the direct map. For example,
although an example victim VM’s metadata (struct kvm) in AWS’s host kernel
was not mapped in the direct map, and hence our initial attempts at leaking
it from another VM failed, it was still mapped in the host kernel’s vmalloc
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Figure 4: The byte error rate, i.e., the chance of a byte being leaked incorrectly,
as a function of the time we spend leaking per byte. Our measurements on
mainline Linux and AWS were so similar that we merged their data points.

region, eventually allowing its cross-VM leakage. We leave further analysis of
the residual mappings of guest memory in host address space for future research,
and encourage Amazon to openly publish the details of this mitigation, as their
security hinges on such details.

Lastly, even in the best-case scenario were no other guest memory is mapped
in at all, this vulnerability still achieves arbitrary host kernel and host userspace
data leakage. This is still a very powerful primitive for an attacker, which, as
part of a bigger exploit chain, could enable the exploitation of other vulnera-
bilities that enable full system compromise but might be hard to exploit, e.g.,
memory safety bugs.

10 Exploit Overview

Despite the slow and somewhat unreliable leakage primitive, we build a proof-of-
concept exploit that reliably leaks a web server’s private TSL certificate within
hours. The main challenge is finding the secret data (e.g., the TSL key) in
physical memory — within the hundreds of gigabytes of RAM on cloud servers.
We tackle this challenge by abusing the (meta)data resident in the host and
victim guest kernels. On a high level, the exploit consists of the following steps:

1. Locate the half-Spectre gadget’s base address;
2. Break host KASLR;

3. Gain host address translation capability;



List processes running on the host, finding other (victim) VM(s);
Gain guest address translation capability;
Break guest KASLR,;

List processes running in the guest, finding Nginx;

® N o e

Leak Nginx’s private TSL certificate from its heap.

The whole exploit chain succeeds on mainline Linux and GCE, whereas only
steps 1, 2, 3 and 4 succeed on AWS (cf. Section E[) Below we describe each
step in more detail.

10.1 Find Gadget’s Base in Physical Memory

The gadget’s base address is &map->phys_map. Making use of the page-alignment
of the map object, that is dynamically allocated upon creation of our VM, we
brute force it’s physical address as follows. We constantly trigger the half-
Spectre gadget with offset zero (i.e., dest_id = 0), bringing the start of the
phys_map array into the L1D cache. On the L1TF sibling, we stride at page
granularity through physical memory, guessing the base’s physical address. The
phys_map array holds one pointer to a kvm_lapic structure for each vCPU of
the VM, in our case 2. A correct guess is indicated by the L1TF-leakage of these
two kernel pointers.

This gives us the physical address p of the gadget’s base, which enables the
arbitrary physical memory read primitive: as the base is kmalloced and hence
points inside the host’s direct map, passing a (possibly negative) offset of x
to the half-Spectre gadget lets it speculatively load at physical address p + x
through the direct map.

As an optimization, we don’t actually leak the pointers, but only scan for
their top two bytes being all ones. Another optimization is that we don’t actually
use the half-Spectre gadget listed above, but the “architectural gadget” listed
in Figure [5| The half-Spectre gadget’s throughput is, on a mostly idle system,
very bad due to the single_task_running check blocking access to the gadget
most of the time — in the order of 99.9%. The architectural gadget is, due to the
particular data-flow, not an exploitable half-Spectre gadget, but is consistently
reachable.

10.2 Break Host KASLR

Next, we do actually leak the full two pointers at the start of phys_map. The
structures they point to start with easily recognizable data. These are kmalloc-
pointers, inside the host kernel’s direct map, which is backed by 1GB pages.
Therefore, we know the lower 30 bits of their physical address. The remaining
few physical address bits we brute force: at every possible physical address
location, we leak the data, and check for the expected recognizable data. Upon
a match, we have found a kernel pointer in the direct map, as well as its physical



static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
struct kvm_lapic_irq *irq, u32 min)
{
int i, count = 0O;
struct kvm_vcpu *vcpu;

if (min > map->max_apic_id)
return O;

for_each_set_bit(i, ipi_bitmap,
min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
if (map->phys_map[min + i]) {

Figure 5: The architectural gadget used to locate the half-Spectre gadget’s base.

address. Subtracting them from each other gives us the start of the host’s direct
map. Therefore, from now on, we can translate direct map pointers into physical
addresses, a crucial capability going forward.

As an aside, knowing start of the direct map also tells us the virtual address
of the gadget’s base. This can be important for using the half-Spectre gadget to
target parts of the host kernel’s virtual address space outside of its direct map,
as well see later.

10.3 Gain Host Address Translation Capability

We already know the location of our own vCPU’s kvm_lapic structure. From
here, we do a pointer chase through the host kernel, using only direct map
pointers, to find some more useful structures. In particular, we find our own
kvm_vcpu structure, representing our vCPU, our own task_struct, describ-
ing the host process running our VM, and its address space information in its
mm_struct. From this last structure, we leak the location of our own task’s root
page table. This enables us to translate arbitrary host virtual addresses, by
performing a page table walk with our leakage primitive. In turn, this allows us
to chase arbitrary host kernel pointers.

10.4 Find Victim VM

With full host pointer chasing capability, we are ready to find a victim VM. Our
own task_struct is part of a linked list of all host tasks. We simply chase this
linked list, leaking the process ID and command, i.e., name of the task, of all
processes running on the host. Names such as “qgemu”, “nanny”, “VCPU-", or
“dom-”, reveal the processes in charge of running (other) VMs.

Given a task running a VM, we locate the structures representing its (open)
files. We find the file handed out by KVM that represents the VM, via which
we locate the victim VM’s kvm and kvm_vcpu structures.



10.5 Gain Guest Address Translation Capability

From the victim VM’s metadata, we leak the root of its extended page tables,
as well as its current cr3 value, pointing to the root page table in use by the
guest. Together, these enable us to perform two-dimensional page table walks,
translating guest virtual addresses to host physical addresses. In other words,
we can now start pointer chasing within the guest kernel.

10.6 Break guest KASLR

Where do we start chasing? Well first, we break the guest’s KASLR. This boils
down to reading its address space layout from its page tables. In particular, we
find the start of the guest kernel’s text section, as well as the start of the guest
kernel’s direct map. The former allows us to start our pointer chase in the guest
kernel. The latter we merely use to skip most of the costly 2D-page table walks
in case of (very common) guest pointers inside the direct map.

10.7 Find Nginx Within Guest

With knowledge of the guest’s kernel layout, we leak its init_task, and from
there, traverse its tasks to find Nginx. As an optimization, we first find systemd
as the first child of swapper, and then only traverse the childeren of systemd
to find Nginx. A similar optimization, abusing the tree-structure of the process
tree, could speed up the search of the victim VM inside the host kernel, but we
never implemented that.

10.8 Leak Nginx’s Private TSL Certificate

From Nginx’s mm_struct we read find its root page table. Note that the previous
guest root page table we leaked was just some random one that happened to
be loaded at leak time. Since any process maps the entire upper kernel part of
virtual address space, this sufficed until now. But now, we read the location
of Nginx’s heap from its mm_struct, and we actually need Nginx’s page tables
to translate that user space address into a host physical address. Nginx stores
the private key on a static location on its heap. But even without this: the
two prime numbers from which the RSA key is built up, are surrounded by two
“magic” numbers (PEM-format tags), making it easy to recognize them. We
leak the two prime numbers off of Nginx’s heap, and use them to reconstruct
the private key (following the RSA protocol).

11 Exploit Reliability: Chase & Check

Ignoring the abstraction levels we’re piercing for a moment, one can view the
exploit chain as one long pointer chase through host physical memory. This
constitutes a problem given that our leakage primitive is unreliable: a single
error anywhere in the pointer chase and we lose the trail. The classic reliability

10



solution for side-channel attacks is to trade performance for accuracy: take
more side-channel measurements. But if your pointer chase doubles in depth,
you need to double your amount of measurements per pointer to compensate
for that, resulting in quadratic run-time complexity relative to the depth of the
pointer chase. As our exploit involves a very deep chase, this becomes infeasible.

Instead, we opt for a strategy which we call “Chase & Check”. After every
(few) pointer chase(s), we do a sanity check, whether the new location we arrived
is consistent with what we expect. A simple example can be given by chasing
down a doubly linked list: after every traversal of the next pointer, you also
leak the prev pointer, and check that it indeed points to your previous location.
We do this throughout the exploit, with different checks tailored to different
places throughout the exploit’s long chase.

Although the final data we leak, Nginx’s private key, is not part of the pointer
chase, we still implement a “check” to ensure we leak all 2048 bits of the key
correctly. For this, we abuse the sparsity of prime numbers: if we make an error
during key leakage, the resulting (big) number will with very high likelihood
not be prime.

12 Host Kernel Reversing

One last technicality we skipped over so far is the fact that, a priori, we as an
attacker do not know the exact host kernel version, configuration, and possible
patches, that Google and Amazon use in production. In order to perform a
pointer chase through the host kernel data structures, we need to know the
offsets of specific fields in the structures we are traversing. This requires some
reverse engineering efforts.

On an up and running mainline Linux host kernel, we dump all the relevant
data structures at run time. Next, on an unknown cloud version of Linux, we
use our leak primitive to also leak (parts of) the same data structures. Since
for mainline, we know the offsets already, we can compare the leaked data and
make educated guesses about where the unknown kernel’s data resides. An easy
example is given in Figure [0]

| mainline Linux | GCE | AWS
——————————————— e et Sttt L
kvm_lapic + 78 | 3e8 | 695 | Tba
kvm_lapic + 80 | 1 | 8000000000000000 | 8000000000000000
kvimn_lapic + 88 | 2 | 100000000 | 1
kvm_lapic + 90 || ffffa03509eec600] | 10 | 2
kvm_lapic + 98 | 100010101 | ffff9352eff70e40 | ffff93e461d18000
kvm_lapic + a0 | fEFEFfff | 100000101 | 1600000101
kvm_lapic + a8 | ffffa035f6c5€000 | fEFFFfff | fEffffff
kvm_lapic + b0 | 0 | ffff934164541000 | ffff93e461274000
kvm_lapic + b8 | 0 | 0 | 0

Figure 6: Example of reversing the offset of struct kvm_lapic’s vcpu field
(highlighted for mainline Linux), by leaking the kvm_lapic’s data on GCE and
AWS. The obvious (and correct) guess here for both AWS and GCE is 0x98.
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Not all structures are as easy as this one of course. We encountered struc-
tures where the field we are looking for is thousands of bytes apart from the posi-
tion on mainline Linux. Also, structures annotated with the randomize _layout
compiler attribute are harder to reverse, and require some chasing of pointer
before conclusions can be drawn. But after a bit of manual labor (which we are
quite sure of could be automatized as well), the attacker knows all the required
offsets, and is ready for exploitation. We noticed that these offsets stay constant
between different hosts on both GCE and AWS, leaving this to be a one-time
effort.

13 Exploit Success Rate & Run Time

As noted before, the entire exploit chain only works on mainline Linux and
GCE. We evaluate the exploit in the most realistic setting: GCE. The exploit
is even faster/more accurate on both mainline Linux (and AWS for the first
part of the exploit), cf. Section [?]. In our setup, one dedicated host runs two
VMs: one (idle) 2-vCPU victim VM and one 2-vCPU attacker VM. Whereas
we developed the exploit on one GCE dedicated host, attacking a Ubuntu 24.04
victim running the corresponding default Nginx webserver, for the evaluation we
spawned an additional five dedicated hosts, with the default VM GCE suggests
as victim (Debian 12 Bookworm), and its default Nginx. We ran the exploit for
multiple days on the six different physical hosts. This resulted in 28 exploit runs,
out of which 25 successfully completed. Each successful exploit run perfectly
leaked the entire private key correctly. Among the successful exploit runs, the
average run time was 14.2 hours (standard deviation: 16.2 hours), which was
spent as follows:

e Find Gadget Base: 10.9h (76.3%)

e Find Victim VM in Host: 2.6h (18.3%)

e Find Victim Nginx in Guest: 0.3h (2.2%)
e Leak Nginx’s TSL key: 0.4h (3.2%)

Note the big standard deviation: finding the gadget’s base can take half an hour
if you are lucky, or 3 days if you are unlucky.

The above evaluation was run on dedicated hosts that were mostly idle.
Lastly, to validate that this attack would work just as well with lots of system
noise, we put the system under extreme memory (i.e., cache) pressure, as well as
a lot of I/O. Note that CPU intensive workloads on other cores do not influence
our attack, whereas one could possibly make the argument that many interrupts
from I/0 could disrupt the exploit’s flow/synchronization, or that cache pressure
could disrupt its cache-covert channel used to exploit L1TF.

We fill one entire dedicated host with the maximum amount of vCPUs, out
of which 1/3 is constantly copying hundreds of gigabytes of files (disk I/0), 1/3
is constantly downloading huge files from an external server (network I/0), and
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1/3 is pressuring the memory subsystem. In particular, the last 1/3 consists of
32 vCPUs: 16 are trashing the (last level) cache, by each traversing their own
1GB of memory in a tight loop; and 16 are triggering lots of cache coherency
traffic, by all simultaneously reading and writing to 128 shared cachelines in a
tight loop. Lastly, from an external server, we access the victim Nginx webserver
100 times per second.

Rerunning the experiment from Figure [4] did not give significantly different
results. Running the exploit 10 times, it succeeded 10 times, leaking the key
correctly every time. The average exploit run time was 15.2 hours (standard
deviation: 9.9 hours) — again, no significant changes. Therefore, we conclude
that the exploit is very robust under extreme system noise.

14 Mitigation

Cloud vendors should reconsider which mitigations against L1TF they deploy.
Possible options include the mitigations mentioned in Section[5] as well as AWS-
like approaches such as memfd_secret or Address Space Isolation (ASI) |9]. The
last two options are limited in their effectiveness, as they still allow host memory
reads, and only protect other guest data. Also, for ASI, one should carefully
consider the attack surface left open by ASI-exits. Lastly, there is the strategy
of eliminating (half-)Spectre gadgets from the hypervisor. We think this is not a
durable solution, as Spectre gadget scanning is an unsolved problem, for which
no sound solution is in sight. Or put even worse: there is not even consensus
on the definition of a (half-)Spectre gadget yet.

Since the Linux kernel’s current mitigation strategy does rely on the removal
of Spectre gadgets, we will submit a patch to the mainline kernel to remove the
half-Spectre gadget used in this exploit, by inserting an array_index nospec,
which we expect to have zero performance cost.
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