
KLIMAX: Profiling Memory Write Patterns to
Detect Keystroke-Harvesting Malware?

Stefano Ortolani1, Cristiano Giuffrida1, and Bruno Crispo2

1 Vrije Universiteit, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands
{ortolani,giuffrida}@cs.vu.nl

2 University of Trento, Via Sommarive 14, 38050 Povo, Trento, Italy
crispo@disi.unitn.it

Abstract. Privacy-breaching malware is an ever-growing class of mali-
cious applications that attempt to steal confidential data and leak them
to third parties. One of the most prominent activities to acquire private
user information is to eavesdrop and harvest user-issued keystrokes. De-
spite the serious threat involved, keylogging activities are challenging to
detect in the general case. From an operating system perspective, their
general behavior is no different than that of legitimate applications used
to implement common end-user features like custom shortcut handling
and keyboard remapping. As a result, existing detection techniques that
attempt to model malware behavior based on system or library calls are
largely ineffective. To address these concerns, we introduce a novel detec-
tion technique based on fine-grained profiling of memory write patterns.
The intuition behind our model lies in data harvesting being a good pre-
dictor for sensitive information leakage. To demonstrate the viability of
our approach, we have designed and implemented KLIMAX: a Kernel-
Level Infrastructure for Memory and eXecution profiling. Our system
supports proactive and reactive detection and can be transparently de-
ployed online on a running Windows platform. Experimental results with
real-world malware confirm the effectiveness of our approach.
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1 Introduction

Malware is still one of the main reasons for security incidents [12]. Among differ-
ent types of malware the one harvesting users’ private information is increasing
in terms of both impact and number of occurrences [17]. Stealing user confiden-
tial data serves for many illegal purposes, such as identity theft, banking and
credit card frauds, software and services theft, disclosure of clinical records, just
to name a few. A common activity performed by privacy-breaching malware
is keylogging, that is the eavesdropping, harvesting, and leakage of user-issued
keystrokes. To address the general problem of malware detection, a number of
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models and techniques have been proposed over the years. However, when ap-
plied to the specific problem of detecting malware with keylogging behavior, all
existing solutions are unsatisfactory. Signature-based solutions have limited ap-
plicability since they can easily be evaded and also require to isolate and extract
a valid signature before they are able to detect a new threat. Behavior-based
detection techniques overcome some of these limitations. They aim at distin-
guishing between malicious and benign applications by profiling the behavior of
legitimate programs [8] or malware [5]. Different techniques exist to analyze and
learn the intended behavior, however most of them are based on which system
calls or library calls are invoked at runtime. Unfortunately, characterizing key-
logging behavior using system calls is a prohibitive task, since there are many
legitimate applications (e.g., shortcut managers, keyboard remapping utilities)
that intercept keystrokes in the background and exhibit a very similar behavior.
These applications represent an obvious source of false positives. Using whitelist-
ing to solve this problem is not an option, given the large number of programs of
this kind and their pervasive presence in OEM software. Moreover, syscall-based
keylogging behavior characterization is not immune from false negatives either.
Consider the perfect model that can infer keylogging behavior from system calls
that reveal explicit sensitive information leakage. This model will always fail to
detect malware that harvests keystroke data in memory aggressively, and delays
the actual leakage as much as possible. Since malicious applications strive to
conceal their behavior, this scenario is the norm rather than the exception.

In this paper, we propose a new approach specifically tailored to detecting
privacy-breaching malware containing any form of keylogging activities. Our ap-
proach is still behavior-based but it profiles memory writes rather than system
or library calls. The basic idea is to analyze the correlation between the dis-
tribution of user-issued keystrokes and the resulting memory writes performed
by the malware to harvest sensitive data. Following this intuition, we inject a
carefully-chosen keystroke stream and observe the memory write patterns of the
analyzed application. High correlation values translate to immediate detection.

Note that our approach does not rely on the observation of the actual leak-
age of sensitive data, but instead leverages the key intuition that identifying
information harvesting is sufficient to infer malicious behavior. As a result, all
malware evasion techniques that conceal or delay information leakage are not
a concern for our detection technique. Another fundamental design choice is to
adopt a fine-grained profiling strategy, to isolate the keylogging behavior from
other concurrent activities. Our analysis shows that this is crucial to eliminate
additional sources of false negatives, since privacy-breaching malware often per-
forms many concurrent activities, possibly including those to actively disorient
behavior-based detection strategies.

A much more effective concealment technique is given by trigger-based be-
havior, namely malware that only starts actively harvesting sensitive data when
triggered by some, possibly external (e.g., bot command), events. This modus
operandi poses a serious challenge to all the known behavior-based detection
techniques, since failing to trigger the intended behavior either at learning or
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detection time results in poor detection accuracy. The proposed design addresses
this challenge allowing our detection strategy to work in both proactive and re-
active mode. Proactive detection is activated directly by the user. In reactive
mode, our behavior analysis is automatically activated on demand whenever a
candidate malicious application is recognized at runtime. This strategy is feasi-
ble due to the distinctive runtime characteristics of the keylogging activity, as
better explained later. All these countermeasures against evasion and conceal-
ment techniques allow our approach to achieve a very low false negative rate. In
the remainder of the paper, we also show how careful design strategies allow our
detection technique to achieve a minimum number of false positives as well. To
summarize, the contributions of this paper are the following:

A new behavior-based detection model based on memory write pattern
profiling, which is particularly suited for privacy-breaching malware exhibit-
ing keylogging behavior.

Design and implementation of KLIMAX: a Kernel-Level Infrastructure
for Memory And eXecution profiling based on our new model and ready
to be transparently deployed online on a running Windows platform. The
source code of the infrastructure is publicly available for download 3.

Evaluation against real-world malware and against legitimate applications
that leverage keystroke-interception functionalities.

2 Background

Our behavioral model is based on the intuition that the malware actively har-
vests keystrokes and strives to conceal the related leakage. No assumption is
made on the malware internals. Instead, to detect any possible form of keystro-
kes harvesting, we base our analysis on memory write patterns that necessarily
emerge from the keylogging behavior.

Previously proposed approaches that attempted to build a profile of keylog-
ging behavior in terms of I/O patterns [13] are not suitable to solve this problem.
Unfortunately, malicious applications are determined to conceal their presence,
for example by delaying or disguising their I/O activity. Nevertheless, we adopt
two important concepts of that solution. First, we want to control the input of
the system, i.e., the pattern of the issued keystrokes. By obtaining a detection
environment where the input to the system is known, we can compare it to
the memory write patterns a process exhibits. Second, we rely on the Pearson
product-moment Correlation Coefficient (PCC from now on) to determine the
correlation between the two patterns. The reason of this choice is twofold. First,
the detailed analysis made in [13] provides a solid background to use PCC as a
metric to infer malicious behavior. Second, the level of granularity of our detec-
tion technique advocates for a detection strategy that is robust against arbitrary
data transformations that reflect the complexity of memory write activity. This
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allows us to ignore the mere amount of bytes written due to an intercepted key-
stroke. However, in order to do any statistical reasoning, we must be able to map
both the input pattern to a stream of keystrokes, and the amount of bytes writ-
ten to an output pattern. We address this concern by adopting the same abstract
keystroke representation introduced in [13] that discretized and normalized the
stream. (we invite the reader to consult the paper for more details).

3 Our Approach

In our approach we aim to ascertain the correlation between the stream of issued
keystrokes and the memory writes a process exhibits. In case a high correlation
between those is found, the monitored process is flagged as malware with key-
logging behavior. It is important to notice that in our approach we issue the
keystrokes without any application on the foreground. This is to explicitly trig-
ger any eavesdropping behavior in the background, and, at the same time, avoid
the common case of a simple word-processing application raising false alarms.
Malware that explicitly injects itself into a legitimate running process to eaves-
drop keystrokes of a target foreground application is discussed in Section 6.

Profiling memory writes is a fairly complex task. First, even a simple program
performs a huge amount of memory writes in a short period of time. Second,
memory management in the modern x86 architecture is partly responsibility
of the operating system (OS) and partly delegated directly to the hardware.
While software-managed events like page faults are in complete control of the
OS, tasks that occur more frequently like linear-to-physical address translations
are performed directly by the hardware. The OS has no means to intercept or
monitor these events. Performing differential analysis over multiple snapshots
of the physical memory is another loose end: multiple writes performed on the
same memory location would be detected as a single memory write.

The complexity of this challenge advocates for a low-level solution. Since
we wanted our solution to be widely adopted and ready to be deployable in
existing production systems, we ruled out the option of using any form of software
or hardware virtualization support, and opted for a kernel-level solution. This
choice is also crucial to access detailed information on execution contexts and
memory regions that is only available in the kernel. Knowledge about the running
thread and the DLL being used serves to our fine-grained analysis to better
isolate and profile the keylogging behavior among the many possible concurrent
activities performed by the malware. An obvious requirement for our solution is
also the ability to access this information in a thread-safe manner.

In exchange for a low-level development environment, operating in kernel-
space provides us with many advantages: we can intercept and to some extent
control the memory management, override the kernel data structures, access real-
time information, and most importantly, isolate our infrastructure from user-
space threats thus adopting a limited trusted computing base (TCB). This allows
us to target a broad class of malware, only ruling out kernel rootkits. In addition,
kernel-level events can be intercepted and used to trigger malware analysis on
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demand when using our detection technique in reactive mode, as better explained
in Section 6. Figure 1 displays a high level view of our solution as a three-
tier architecture. The three components are the monitor, the injector, and the
detector, of which only the first two are designed to run in kernel space. Even
if in our solution the detector is implemented as a user-space component, it
can be easily moved into the kernel to further limit the TCB. The monitor
exposes a memory write performance counter to the injector, and is divided into
two sub-components, the shadower and the classifier. The former takes care of
intercepting each memory write performed by the monitored process. The latter
classifies which memory region has to be monitored, and which memory write
has to be counted.

Windows Kernel (Ring 0)

Injector

User-land (Ring 3)

DetectorMonitored 
Process

1 - Attach to Process

2 - Injection Pattern 4 - Writes Counters

3b - Memory Writes

3a - Sample Injected

Memory Writes

Monitor
Shadower
Classifier

Fig. 1. High-level architecture.

Given a process to be analyzed for keylogging activities, our detection tech-
nique works as follows. First, we move the focus of the graphical user interface
to the desktop. Then, the detector instructs the monitor to intercept the mem-
ory writes of the target process. The classifier classifies the memory regions of
interest. Only for those memory regions the monitor instructs the shadower to
intercept any memory access. The detector, after establishing the nature and
length of the pattern to be used, sends its stream representation to the injector.
The injector has now knowledge of the number of keystrokes it has to inject for
each time interval. The detection process can now start: for each sample the
injector issues the determined number of keystrokes to system, and notifies the
monitor that the sample has been injected. The monitor then replies with the
memory writes that took place. Upon injection of all the samples, the injector
finally replies to the detector with the all the memory write counters. The detec-
tor transforms the write counters into patterns, and it computes their respective
correlations against the pattern previously injected. If any of the correlations is
statistically significant, the process is flagged as a keystroke-harvesting malware.

The solution hereby explained has been implemented for Windows XP 32-
bit version, but the general design is applicable to other OSes as well. The
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kernel has been configured to run in single processor mode and without taking
advantage of the Physical Address Extension (PAE). All the components can be
easily updated to handle PAE and SMP kernels. Porting the implementation to
either Windows Vista or Windows 7 requires the user to disable the PatchGuard
security protection.

3.1 Detector

The pattern generation is the most important task carried out by the detector.
As we explained in Section 2, a pattern is defined in terms of multiple param-
eters (N , T , Kmin, and Kmax) and a characteristic function that describes the
underlying pattern distribution. In order to generate a pattern representation
from these input specifications we used the statistical suite R [15]. To obtain low
predictability of the pattern in question, we leverage all the standard random
distributions supported by R. Throughout our tests adopting different distribu-
tions and parameters yielded comparable accuracy results, as already confirmed
in [13]. Upon completion of the injection, the detector receives a detailed report
of the memory writes the process performed. The report includes a set of write
patterns classified per code segment and thread. Each of these patterns is fur-
ther categorized basing on the written memory regions (data, stack, or heap).
The detection process terminates with a correlation test against all the output
patterns found. The process is then flagged as malicious when at least one of
those shows a PCC ≥ 0.70.

3.2 Injector

The injector runs in kernel space and is implemented as a virtual keyboard
driver. Once it receives the injection pattern sent by the detector, it converts it
into a stream of keystrokes, and starts injecting the samples. After each sam-
ple it retrieves the write counters from the monitor. Once the whole injection
terminates, it forwards the write results to the detector. It may be argued that
simpler solutions exist. For instance, the library function SendInput would have
allowed us to run the whole component in user space, thus reducing the over-
all complexity. However, in order to keep a limited TCB and a higher-priority
injection we opted again for a kernel-level solution.

3.3 Shadower

In the x86 architecture a memory access is cooperatively handled by the CPU
and the OS. Each time a linear address is referenced, the processor checks for
its validity. When the physical page is either not present or its access is re-
stricted, the processor asserts the page fault interrupt (0x0E). It also pushes in
the thread’s stack contextual information of the fault: the page fault error code,
the faulting address, the current instruction pointer (EIP), and the eflags reg-
ister’s content. Finally, the control passes to the OS kernel. In Windows XP the
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page fault is handled by the KiTrap0E handler. The handler’s task is to explicitly
invoke MmAccessFault that is in charge to determine the nature of the occurred
page fault. If the page in question is paged out to the disk, a page-in command
is issued. The control can now safely return to the very same instruction that
triggered the fault, and the program’s execution continues. If the page fault was
due to an access violation (for instance because of an illegal address referenced),
an exception record is built, and passed down to the user program. This will
often result in the application abruptly terminating with a message informing
the user of a protection fault.

KLIMAX places itself in the middle of this execution flow, and exploits its
internals to track down each time a memory address is referenced. The main idea
is to protect all the process’ address space, intercepting each time the processor
asserts the page fault interrupt to signal the access violation. Once we identify
the instruction liable for the access violation, we disassemble it and calculate
the number of bytes the instruction attempted to write. The main issue is how
we make the program gracefully recover from the error, and continue its execu-
tion. Obviously we need to unprotect that memory region (otherwise it would
be impossible for the program to continue its execution). However, if another
instruction later accesses the very same memory region, it will find no protec-
tion in place, thus we would not be able to intercept this memory access. The
only viable instant to restore the protection is exactly after the execution of the
first instruction. The x86 architecture provides a built-in feature to notify the
program after the processor has executed an instruction. This feature is known
as “single step”, and can be enabled by setting the trap flag in the eflags reg-
ister. When the flag is enabled, the process asserts the debug interrupt (0x01)
prior execution of the following instruction. By leveraging this feature we are
able to protect back a memory region exactly once the instruction referencing it
completes its execution. If we programmatically execute all the steps we hereby
outlined, a program’s execution can be thoroughly monitored by means of its
memory accesses.

In KLIMAX the shadower is the component that implements the memory
protection and handles all the memory accesses. KLIMAX installs two cus-
tomized interrupt handlers for both 0x0E and 0x01 interrupts by modifying the
processor’s Interrupt Descriptor Table (IDT). These two handlers are the only
entry points needed to selectively unprotect and protect the accessed memory
regions. As soon as we instruct KLIMAX to monitor a process, the shadower
asks the classifier which memory regions shall be protected, and hence mon-
itored. The classifier reports back the corresponding set of page table entries
(PTEs). The shadower creates a shadow copy of all the PTE’s Owner bit, i.e. it
sets their bit to 0. It then flushes the TLB. This is mandatory in order to cope
with the TLB caching address linear-to-physical resolutions. In case the refer-
enced linear address is cached in the TLB, the OS needs not to walk the page
tables. In contrast, if the TLB is flushed, any access to the memory referenced by
these PTEs will result in an access violation. Figure 2(a) depicts this scenario.
When this occurs, the shadower (i) reverse-lookups the PTE that references the
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(a) Page fault interrupt handler invoked.
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(b) Debug interrupt handler invoked.

Fig. 2. The behavior of the shadower and classifier in both scenarios.

faulting address, then if the PTE is valid, it replaces the Owner bit with its orig-
inal value; (ii) sets the trap flag in the pushed eflags register; (iii) stores the
address that caused the page fault along with the current thread identifier in a
private buffer. If the page fault error code reveals that the fault was because of
a write attempt, the shadower invokes the classifier to update the performance
counters. Before giving the control back to the OS we have to be sure that the
current thread will be the next one to be executed. Otherwise any other thread
being part of the same process would have access to an unprotected memory
region. KLIMAX addresses thread safety by temporarily blocking, if present, all
the other process’ threads till the memory region is protected back. This may
cause deadlocks if for some reason the same instruction causing a page fault
blocks the current thread’s execution. KLIMAX automatically intercepts these
events, and restores the environment to safety by immediately protecting the
memory region back, and by making the blocked threads runnable. Note that
no memory write is lost in the entire process. Finally the control is given to the
real interrupt handler KiTrap0E. The function MmAccessFault can now deter-
mine the real reasons of the page fault. In case no reason is found, that is the
page was valid and the page fault took place only because of the shadower, the
kernel gracefully resumes the program’s execution. In any other case the kernel
transparently executes all the steps required to resolve the page fault.

When the program resumes its execution, the very same instruction is ex-
ecuted for a second time. We point out that the same instruction may trigger
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multiple page faults in case multiple memory regions are referenced. KLIMAX
automatically handles these multiple page faults by following again the steps
before outlined. Assuming that all the referenced memory regions are now un-
protected, the execution continues till the following instruction, where, because
of the set trap flag, the processor asserts the debug interrupt (Figure 2(b)). As a
consequence, the shadower is again invoked (this time due to the 0x01 interrupt
handler). It now checks in its private buffer which memory address previously
faulted when the current thread was executing. It reverse-lookups the PTE and
it replaces the Owner bit with the shadowed copy. Eventually it flushes the TLB
entry by means of the invlpg instruction. There are cases in which the shadower
does not have a shadow copy for that PTE yet. This happens when the original
page fault occurred because the page was invalid. In such cases the classifier
is once again invoked, and asked to determine whether the PTE shall be set
protected. The program resumes its execution as soon as all the threads that
KLIMAX previously blocked are restored to their original execution state.

3.4 Classifier

The classifier is invoked in two different courses of action: when the shadower
needs to determine whether a PTE shall be protected, and to update the per-
formance counters after a write took place. To determine if a PTE shall be
shadowed, the classifier analyzes the PTE content. In a number of cases, the
classifier replies negatively, for example when the PTE is not valid, or the PTE
is not user accessible. In any other case it updates the PTE’s shadow copy and
replies affirmatively to the shadower. In case the classifier is invoked to update
the performance counters, several steps are carried out. First, it uses the EIP to
access the instruction that generated the page fault. It then disassembles it to
extract the amount of bytes the instruction attempted to write. It also retrieves
the original ecx register’s value in case the faulting instruction was part of the
rep mov family. This is a mandatory step because a rep mov instruction exe-
cutes the mov instruction ecx times. Once the amount of bytes is computed, the
classifier updates the performance counters. It uses the instruction to infer which
executable component attempted to write (the main program or some DLLs). It
also retrieves the current thread id, so it can discriminate writes performed by
different threads. Depending on the particular memory location found, a memory
write is recorded for the data region, the current thread’s stack, or the heap.

4 Optimizing Detection Accuracy

In this section, we examine in detail how our design deals with potential sources
of false negatives and false positives to maximize detection accuracy.

False negatives arise when a malicious application exhibiting keylogging be-
havior evades our technique and goes undetected. A first attempt for malware
to evade detection is to spawn multiple processes and multiple threads and per-
form keylogging activity in any of newly created execution contexts. To deal
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with this situation, our infrastructure supports simultaneous monitoring of mul-
tiple processes and multiple threads. Keylogging behavior is inferred from any
highly-correlated memory write profile, put together on a per-thread basis.

Another important factor to consider is that malware authors strive to con-
ceal the malicious behavior and exploit any possible information leakage channel
available. To deal with this scenario effectively, KLIMAX monitors any memory
writes performed by both the application code and the DLLs. This is crucial
for two reasons. First, the keylogging activity may be implemented entirely in
a DLL installed by the malicious application. Second, any form of information
leakage that goes beyond harvesting keystroke-related data in memory must be
mediated by the OS and typically exposed to the application via the library
interface. We have experimented at length with many forms of information leak-
age, including storing keystroke-related data on the disk, recording information
in the Windows registry, or sending data over the network. In all the cases, the
memory write patterns exhibited by the system DLLs used to carry out these
tasks showed extremely high correlation with our injected pattern.

A potential evasion strategy is to avoid using any system DLL and reim-
plement the API interface entirely without any significant memory writes that
would otherwise trigger detection. While the concrete possibility of such a strat-
egy remains to be explored—especially in multi-threaded contexts—, our im-
plementation can be trivially extended to enrich the memory write profile with
commonly used in-kernel performance counters that record and expose any form
of I/O activity on a per-thread basis. In our analysis, however, we have not been
able to identify any realistic example of this scenario in practice.

False positives arise when a legitimate monitored application shows high
correlation with the injected pattern and triggers detection. In our preliminary
experiments, we found many examples of benign applications showing high cor-
relation when considering generic memory write patterns. In these cases, the ap-
plication would typically register a callback to the kernel to intercept keystroke
events, discriminate those of interest, and trigger some action (i.e. launch spe-
cific application) when a match against a predefined key sequence was identified.
The high correlation was essentially triggered by the mechanics of invoking the
programmer-provided callback—implemented in a system DLL (i.e. USER32.dll
in the version of Windows we experimented with)—, and by transient memory
write patterns observed on the stack at callback execution time.

To deal with these very common scenarios, our key observation is to con-
centrate the analysis exclusively on memory write patterns that clearly indicate
a form of information harvesting or leakage. In this light, our implementation
first avoids logging any memory writes performed by USER32.dll. As a result,
this frequently-used system DLL becomes part of the TCB in our design. We
believe this is not a serious limitation, since any common security suite solution
constantly monitors system DLLs to detect any malicious attempt to replace
them. As an option, our implementation can be trivially extended to perform
similar integrity checks on core system DLLs and intercept attempts to replace
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them. Note that USER32.dll does not expose any API that can be somehow
exploited to leak keystroke-related data and potentially evade our technique.

Other sources of false positives are transient memory writes on the stack that
are frequently used in the programmer-provided callback to implement the ap-
plication logic. At a first glance, one might be tempted to exclude the stack from
the analysis altogether. Unfortunately, an attacker could still leverage long-lived
regions of the stack to harvest keystroke-related data and evade the resulting
detection technique. Implementing this strategy is trivial and only involves allo-
cating a sufficiently-large buffer on the stack in the entry point of the program
(e.g. main()), and keeping a global pointer to access the buffer from the callback.
To provide an effective solution to both problems, KLIMAX identifies long-lived
regions of the stack during execution automatically and excludes any other stack
region from the analysis.

To this end, we have designed an adaptive algorithm to safely identify long-
lived stack regions for existing and newly created thread stacks. Initially, the
entire stack is marked as long-lived and no memory write is excluded from the
analysis. As the execution progresses, we sample the stack pointer of each thread
under analysis at regular time intervals and update the deepest value found. This
allows us to avoid any assumption on long-lived regions at thread initialization
time when long-lived stack variables may not have been allocated yet. When a
sampled value of the stack pointer falls behind the deepest value found, we finally
observe the stack shrinking for the first time, and our adaptive identification
strategy can safely start.

The first memory range we observe at the time when the stack first shrinks
becomes the current long-lived region of the stack. As the stack keeps shrinking
during execution, we update the long-lived region of the stack till convergence.
This strategy follows the intuition that the stack pointer is always deeper than
any long-lived stack variable used by the program with the exception of samples
collected at thread initialization time. Our adaptive algorithm converges very
quickly and causes only very few irrelevant memory writes on short-lived regions
of the stack to be accounted for in the analysis at initial stages. Finally, note
that ignoring short-lived regions of the stack in the analysis is hardly a concern
for the generation of false negatives. An attacker can only temporarily harvest
sensitive information on short-lived stack variables and any other global memory
write pattern will still result in high correlation and trigger detection.

5 Evaluation

We have evaluated KLIMAX extensively, first with a syntethic keylogger to as-
sess the ability to detect multiple forms of data harvesting, subsequently experi-
menting with realistic benign applications and malware to evaluate our detection
accuracy in real-world scenarios. Our experiments were performed on a personal
computer equipped with a 2.13GHz Intel Core i7 processor and 4 GB memory,
running Windows XP Professional SP3.



12 Stefano Ortolani, Cristiano Giuffrida, and Bruno Crispo

5.1 Synthetic Evaluation

Our synthetic keylogger is a standard Windows application written in C++ in
less than 100 lines of code. Our keylogger can be configured to emulate several
forms of data harvesting, a feature which turned out to be very useful for evalu-
ating the robustness of KLIMAX and for regression testing purposes during the
development of the overall infrastructure.

Table 1. Synthetic test cases and resulting PCC values.

Global+SLS LLS Disk Network

keylogger.exe
Data 1 0 ∼1 0
Stack 0 1 0 0
Heap 1 0 ∼1 0

ntdll.dll
Data - - 0 0.76
Stack - - 0 0
Heap - - ∼1 0.91

kernel32.dll
Data - - 0 0
Stack - - 0 0
Heap - - ∼1 ∼1

mswsock.dll
Data - - - 0
Stack - - - 0
Heap - - - 0.98

wshtcpip.dll
Data - - - 0
Stack - - - 0
Heap - - - 0.94

In Table 1 we show the results of the most representative experiments con-
ducted in common keystroke harvesting scenarios. In the table we represent
every output distribution of interest showing at least one non-null value within
the window of observation. Output distributions were produced at the finest level
of granularity possible, to report PCC values for individual memory regions (i.e.
data, stack, heap) of the program code (i.e. keylogger.exe) and of each DLL.

The first column of the table shows the correlation values estimated by KLI-
MAX for our synthetic keylogger configured to harvest every keystroke inter-
cepted on the heap, on the data region, and on a stack variable allocated at
callback execution time. As expected, full correlation is found on the heap and
on the data region, while no activity was recorded and thus no correlation is
shown for the short-lived stack variable.

The second column shows correlation results for our synthetic keylogger con-
figured to harvest every keystroke intercepted on a long-lived stack buffer allo-
cated in the entry point of the program. Thanks to the quick convergence of our
adaptive algorithm to automatically track long-lived stack regions, full correla-
tion is still found as a result of all the suspicious memory writes detected on the
stack. We also tested our adaptive algorithm in several adverse conditions, for
example, starting the analysis at initialization time or at thread creation time. In
all the cases, the number of spurious writes in the initial stages of the algorithm
was negligible and had no impact on the overall correlation values computed.

Finally, the last two columns of the table show correlation results for two
other interesting scenarios: a keylogger logging every keystroke on the disk, and
a keylogger sending every keystroke to a remote server. In both cases, the activity
performed by the DLLs is reflected in very high correlation values that would
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immediately trigger detection. Note that no DLL-originated memory write on
the stack was recorded in any of test cases. Memory activity on the stack was
only identified for short-lived variables, as expected. Also note that the high
correlation values reported for memory write patterns on the heap and the data
region in the third test case are actually produced by the C Run-Time Libraries,
which on Windows are statically linked by default.

5.2 Malware Detection

To evaluate the effectiveness of our detection technique, we experimented KLI-
MAX with real-world malware. Our analysis started with obtaining a random
sample of the malware dataset described in [16]. The original sample included
64 entries matching at least one keylogger-like label from all the results given
by VirusTotal. Out of the 64 entries initially extracted, we isolated 23 malware
samples that were categorized as active in the original dataset.

For all the identified entries, we conducted extensive analysis and manual
inspection to determine the real nature of each sample and identify the presence
of any relevant keystroke interception API used for keylogging purposes. Only
in a few cases, the binary was neither packed nor obfuscated and basic static
analysis was sufficient to extract the set of APIs used. In all the cases, however,
we had to repeatedly perform dynamic malware analysis to determine whether
any keylogging API was actually invoked at runtime. To carry out our analysis
we experimented with the most common malware analyzers available online. In
many cases, the analysis was made extremely difficult by malware trying to con-
ceal and obfuscate their behavior, with explicit measures to evade several forms
of static and dynamic analysis. We ran several experiments for each malware
sample considered, even in cases when no keylogging API was detected by static
or dynamic analysis. For these cases, it is important to assess whether any other
malware activity could unexpectedly result in high PCC values and trigger de-
tection. For all the other cases, high PCC values are to be expected every time
a malware sample exhibits any form of keylogging behavior.

To simulate a realistic detection scenario, we assumed that no information
was available on which of the running processes was the malware. To deal with
this setting, we first waited to system to be idle, we then ran KLIMAX against
all the processes for a limited amount of time (N = 4 and T = 500), and
finally we flagged as candidate only the processes performing memory writes
during a warm-up injection phase. This first step greatly reduced the number
of candidate processes and allowed KLIMAX to examine only a few processes
in a second step. In all our experiments (and in any realistic scenario on an
idle system) the number of candidates rarely exceeded a handful of cases, thus
allowing KLIMAX to later on analyze all the remaining processes in parallel, and
minimize the detection time. During the second step of our analysis, we instead
configured KLIMAX with N = 20 and T = 500, and triggered a successful
detection in case of PCC values ≥ 0.70. The remaining configuration parameters
(Kmin, Kmax, and the underlying distribution of the pattern) played a negligible
role in our experiments, hence producing similar results using different settings.
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Table 2. Malware considered for analysis and resulting PCC values.

Malware Label Keylogging API API used PCC
Backdoor.Win32.Poison.pg 4 4 ∼1
Trojan-Downloader.Win32.Zlob.vzd - - negligible
Monitor.Win32.Perflogger.ca - - negligible
Suspicious.Graybird.1 - - negligible
Trojan-Spy.Win32.SCKeyLog.am - - negligible
Backdoor.Win32.IRCBot.ebt - - negligible
Worm.MSIL.PSW.d 4 4 0.74
Worm.Win32.Fujack.cr - - negligible
BackDoor.Generic9.MQL 4 4 ∼1
Trojan.Win32.Agent.arim - - negligible
PSW.Agent.7.AH 4 4 0.78
Worm.Win32.AutoRun.adro - - negligible
Trojan.Win32.Delf.eq - - negligible
Net-Worm.Win32.Mytob.jxu - - negligible
Trojan-Spy.Win32.SCKeyLog.au - - negligible
Backdoor.Ciadoor 4 4 0.98
Backdoor.Win32.Agent.su 4 - negligible
Backdoor.Win32.G Spot.20 - - negligible
Trojan-Spy.MSIL.KeyLogger.oa 4 - negligible
Downloader.Rozena - - negligible
Downloader.Banload.BDRQ - - negligible
Heur.Trojan.Generic - - negligible
PSW.Generic7.BNDX - - negligible

Table 2 shows the results of our evaluation for the set of malware samples
considered. For each sample, we show: (i) the result of our static and dynamic
analysis to identify any keylogging API; (ii) the result of our fine-grained analysis
to determine whether the keylogging API was actually used at runtime; (iii) the
maximum PCC value reported by KLIMAX for each process and each thread
created by the malware sample at runtime. Negligible correlation is reported
for PCC values below 0.1. The labels adopted to identify each malware sample
are taken from common antivirus software—including Kaspersky, Symantec, and
AVG—depending on availability and discrimination power.

As shown in the table, for 16 malware samples we were not able to identify any
keylogging API and the resulting PCC values were always negligible, as expected.
A manual inspection revealed that these samples were sometimes misclassified,
in other cases we found downloaders instructed to download additional malicious
software, in yet other cases we found privacy-breaching malware not exhibiting
keylogging behavior (e.g. stored password stealers). Furthermore, in 5 cases,
where the keylogging APIs were correctly identified and also used at runtime,
KLIMAX always reported high correlation values triggering detection. Finally,
in the 2 remaining cases, we identified the presence of keylogging APIs in the
malware samples, but those APIs were never actually used at runtime. As a
result, KLIMAX reported negligible correlation.

In both cases, we were able to easily analyze the runtime behavior of the
malware and establish that no keylogging API was actually used. In the case
of Backdoor.Win32.Agent.su, no memory write pattern could ever be recorded
even when using very large windows of observation. The malicious application
appeared to be completely idle and waiting for input from a remote server. In
this case, it can be speculated that the keylogging behavior is only triggered
on demand, when new input is received from the remote server. In the case of
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Trojan-Spy.MSIL.KeyLogger.oa, intensive malicious activity was found in the
memory write patterns recorded by KLIMAX, but not a single memory write
was performed from the DLL that implements the keylogging API.

5.3 False Positive Analysis

We have evaluated KLIMAX with many common benign Windows applications
to assess the robustness of our approach with respect to false positives. In the
simplest cases, we experimented with applications not relying on any form of
keystroke interception mechanism which always resulted in negligible correlation
values, or, more often, no correlation at all. More interesting cases are those
applications that do rely on some form of keystroke interception mechanism for
legitimate purposes. This is the case for popular Windows shortcut managers,
launchers, and key remappers. For this reason, we decided to concentrate our
evaluation on these cases that are particularly prone to generating false positives.

We installed and tested a sample of the most popular free Windows ap-
plications in this category. For each application, we performed static binary
analysis—and dynamic analysis when necessary—to extract the set of rele-
vant Windows APIs used, all taken from USER32.dll. For our purposes, it
is important to distinguish between generic keystroke interception APIs (e.g.,
SetWindowsHookEx, GetKeyState, GetAsyncKeyState), and hotkey registration
APIs (i.e. RegisterHotKey). When RegisterHotKey is used, a programmer-
provided callback is called only when the specified hotkey is detected by the ker-
nel. Since RegisterHotKey only allows registering hotkeys with standard modi-
fiers (i.e., CTRL, ALT, SHIFT, WIN), a carefully-chosen input stream adopted by the
injector will essentially never trigger the execution of the programmer-provided
callback and irrelevant correlation values are to be trivially expected.

Luckily, the majority of the hotkey managers we have encountered rely on
both RegisterHotKey and some other standard keystroke interception API to
provide a broader range of features. Testing applications that always make use
of standard interception APIs is crucial to make our false positive analysis more
effective. When necessary, we updated the default configuration of each appli-
cation to trigger all the necessary code paths that forced the program to use
standard keystroke interception APIs. Before running each experiment, we man-
ually verified this assumption using dynamic analysis.

Table 3. Applications considered for false positive analysis and resulting PCC values.

Application Standard API RegisterHotKey PCC
HoeKey 1.13 4 4 negligible
KeyTweak 2.3.0 4 - negligible
Hot Key Plus 1.01 4 4 negligible
AutoHotkey 1.0.96.00 4 4 ∼1
ZenKEY 2.3.9 4 4 negligible
Aquarius Soft Keyboard Hotkey 2.5 4 4 negligible
Hotkey Recorder Version 2 4 - negligible
HotKey Magic 1.3.0 4 - negligible

Table 3 shows the results of our analysis for the set of applications considered.
For each application, we show the APIs identified using static and dynamic
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analysis, and the resulting correlation values found. For brevity, we show a single
correlation value for each application, which represents the maximum correlation
value found over all the output distributions considered on a per-process per-
thread basis. Negligible correlation is reported for PCC values below 0.1.

Our analysis shows that in only 1 case KLIMAX reported non-negligible
correlation values. It is important to remark that in all the other cases high
correlation values would have been still reported if we had not explicitly ignored
any memory write patterns on short-lived stack regions or any memory writes
generated by USER32.dll. In the case of AutoHotkey, arguably the most popular
hotkey manager for the Windows platform, the high correlation value reported
admittedly calls for immediate detection.

A closer inspection reveals that AutoHotkey stores all the keystrokes inter-
cepted in a global buffer to implement advanced features and provide a scriptable
interface for the user to handle the keystroke collected in the most convenient
way. This experiment confirms the conservativeness of our approach, which aims
to signal any form of sensitive data harvesting as dangerous, even without ex-
plicitly tracking down information leakage.

Ironically, the case of AutoHotkey shows that our analysis is rarely overly
conservative. A quick web search reveals that the scriptable interface of Auto-
Hotkey does allow the user to transfer the previously stored keystrokes elsewhere
and implement a fully-fledged keylogger in as few as 8 lines of code.

6 Discussion

From the experiments presented, some important properties of our approach
have distinctly emerged. First, we confirmed that in-memory keystroke data
harvesting can be used as a good predictor to detect sensitive information leak-
age. Our detection strategy was successful in detecting all the malware samples
examined that explicitly used keystroke interception APIs and exhibited key-
logging behavior. The main strength of our detection strategy is to be able to
detect keylogging behavior within short windows of observation even for mal-
ware buffering sensitive data in memory for a long time. In contrast, existing
techniques that attempt to detect information leakage explicitly yield a higher
number of false negatives in the general case, unless an indeterminately large
window of observation can be possibly used. For example, an information leak-
age tracking mechanism would probably require a window of observation of days,
if a malware were to use a sufficiently large buffer to harvest a substantial number
of keystrokes before transferring all the data elsewhere.

Second, keystroke data harvesting, when identified correctly, leaves a small
margin for false positives. Although it is not possible to draw final conclusions
in the general case, we have only encountered a single hotkey manager that was
signaled as suspicious. As mentioned earlier, this application can indeed be con-
figured to behave like a keylogger and our detection result reflected its behavior.
An important remark is that false positives are to be expected for benign ap-
plications that unnecessarily harvest sensitive data in global memory regions.
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Consider, for example, a sloppy shortcut manager implementation that allocates
all the temporary variables on the global data region. While it is impossible to
rule out the existence of these cases in general, we have not encountered any
example of realistic application in this category during our analysis. Further-
more, in cases where sensitive data harvesting were truly unnecessary, it would
be straightforward to adapt the particular application under analysis to work
with our detection technique. As far as false negatives are concerned, our tech-
nique, when used to proactively detect keylogging behavior, suffers from coverage
problems common to existing solutions that attempt to build models based on
dynamic malware behavior [6]. Namely, if the expected behavior is never trig-
gered within the window of observation but somewhat later, the resulting model
can potentially miss some of the fundamental properties intended. In our exper-
imental analysis, we have seen only two candidate malware samples that could
possibly belong to this category. In these two cases, we have speculated that
the keylogging behavior might only be triggered when an event of a particular
nature occurs. Under these circumstances, our proactive strategy may not be
able to infer detection successfully within the window of observation.

While we believe that the problem of triggering a specific malicious behav-
ior is orthogonal to our work and is focus of much prior research [11,2,3], our
infrastructure design is intended to mitigate this issue. We explicitly designed
KLIMAX to also support reactive detection with practically no runtime over-
head. From the moment KLIMAX is installed into the kernel, some slowdown
can only be perceived for the particular application under analysis. This means
that we can leave KLIMAX inactive inside the kernel without any performance
problem and reactively activate our analysis on a target application only when
some particular event occurs. At the kernel level, we have the ability to support
almost arbitrary detection policies driven by monitored system events. For ex-
ample, a reactive detection policy might consider starting the analysis whenever
a system call that registers a keystroke-interception callback is issued by a given
application. This will immediately trigger a behavior analysis of the application.
If no detection is found, another policy might consider repeating the same analy-
sis on the same application every m minutes, to determine whether the behavior
of the callback changes overtime in face of some particular event. Although we
have not explicitly evaluated the performance of such policies at the system call
level, we envision a negligible runtime overhead. The evaluation of policy-driven
detection mechanisms is part of our ongoing work.

Another source of false negatives is given by malware trying to perform
denial-of-service attacks or confuse our detection technique. A first important
observation is that carrying out this attack successfully is not entirely trivial
if we allow KLIMAX to perform a multi-stage analysis with different configu-
ration parameters for each stage (i.e., typically increasing the size of the time
interval at every stage). Second, we remind that the adopted correlation metric
is known to be robust against attempts to break the correlation by disguisement.
For example, in [13] we show that the PCC is not affected by keyloggers writing
to a file a random number of bytes for each intercepted keystroke. Finally, a
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malicious application performing any DOS attack should also avoid introducing
an excessive delay not to miss subsequent keystrokes. This is the reason why
buffering the intercepted keystrokes on the short lived stack for too long is also
not an option to evade our detection technique.

7 Related Work

Malware detection has always proved to be a challenging task. If early detec-
tion mechanisms relied on signatures to counter this plague, code obfuscation or
polymorphism easily affected the technique’s accuracy. To overcome this prob-
lem, behavior-based approaches [20] started to focus on sequences of system or
library calls to profile the behavior deemed malicious. Unfortunately, since the
sequence of syscalls only describes a certain implementation rather than a gen-
eral behavior, building a malware evading this technique was a trivial task. Other
approaches overcame this limitation by focusing on information flows rather than
on mere sequences of syscalls. Malware profiles, by leveraging more-contextual
information in terms of library [5] or system calls [9,6], started to grasp the se-
mantics lying behind a malicious activity. However, mimicry attacks were still
possible [7]. To address this concern, Lanzi et al. [8] recently proposed system-
centric profiling of benign applications. This approach results in low false posi-
tives, without hindering the detection accuracy.

All the approaches hereby mentioned, however, can not cope with malware
practically identical to benign applications in terms of system and library calls,
without generating a significant number of false positives. As we showed in Sec-
tion 5.3, malicious applications with keylogging abilities share huge portions of
their logic with rather common user applications. In light of this concern, many
approaches recently emerged to detect keylogging activities [1,4,13]. Instead of
focusing on the APIs used to intercept the keystrokes, they have tried to mea-
sure the potential correlation with the APIs in charge of leaking this information.
However, while this approach may be effective against commonly used keylog-
gers, they can not easily detect malicious applications concealing their presence
by aggressively harvesting sensitive data and hiding leakage to any possible ex-
tent.

This clearly advocates for more fine-grained approaches. Unfortunately, even
taint analysis proved itself ineffective in detecting malware harvesting user-issued
keystrokes [18]. In our work, we ignore the concept of tainting, and instead lever-
age the behavior profiled by a fine-grained memory analysis. This is achieved by
shadowing the entire memory address space of the monitored program. To our
knowledge, similar approaches have only been adopted to evade rootkit detec-
tion [19] or to automatically unpack unknown malware [14]. Our memory mon-
itoring strategy is similar, in spirit, to the technique proposed by Miller [10].
However, his solution did not monitor the whole address space, nor did it pro-
vide strong thread-safety guarantees. Since our infrastructure is to be used for
malware analysis and detection, our design explicitly took into account every
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memory write performed by any process’ component to rule out the possibility
of false negatives.

8 Conclusions

Traditional malware detection techniques are either signature-based or rely on
coarse-grained behavioral profiles that model the interaction of a given appli-
cation with the environment. In the present paper, we focused on detecting
a particular class of malware exhibiting keylogging behavior, and argued that
both models are ill-suited for the task. In addition, existing keylogger detec-
tion techniques are either not tailored to generic malware analysis and detection
or heavily prone to generation of false positives. To address these concerns, we
presented KLIMAX, a kernel-level infrastructure that we proposed to analyze
and detect malware with generic keylogging behavior. Our prototype can be de-
ployed on unmodified Windows-based production systems without interruption
of service. To infer keylogging behavior, we inject a carefully-crafted keystroke
stream into the system and observe the resulting memory write patterns of the
target process.

The experimental results of our proactive detection technique show that our
system leaves practically no margin for false positives and allows for no false
negatives when the keylogging behavior is triggered within the window of ob-
servation. To address trigger-based keylogging behavior, our design supports
policy-based reactive detection that allows for practically no false negatives in
the general case. In our evaluation, we also found that almost every malware
sample with keylogging behavior was misclassified by a number of antivirus pro-
grams. This suggests that our infrastructure can also be used in large-scale mal-
ware analysis and classification to help recognize and classify emerging privacy-
breaching threats in a more accurate way. Finally, we believe that the general
model proposed in this paper can potentially be reused to identify other classes
of malware. Extending the scope of our detection technique to a broader range
of malicious activities is part of our future work.
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