QuUARANTINE: Mitigating Transient Execution Attacks with
Physical Domain Isolation

Mathé Hertogh
Vrije Universiteit Amsterdam
m.c.hertogh@vu.nl

Marius Muench
Vrije Universiteit Amsterdam &
University of Birmingham
m.muench@bham.ac.uk

Manuel Wiesinger
Vrije Universiteit Amsterdam
m.wiesinger@vu.nl

Nadav Amit
VMware Research
namit@vmware.com

Sebastian Osterlund*
Intel Corporation
sebastian.osterlund@intel.com

Herbert Bos
Vrije Universiteit Amsterdam
herbertb@cs.vu.nl

Cristiano Giuffrida
Vrije Universiteit Amsterdam
giuffrida@cs.vu.nl

ABSTRACT

Since the Spectre and Meltdown disclosure in 2018, the list of new
transient execution vulnerabilities that abuse the shared nature
of microarchitectural resources on CPU cores has been growing
rapidly. In response, vendors keep deploying “spot” (per-variant)
mitigations, which have become increasingly costly when combined
against all the attacks—especially on older-generation processors.
Indeed, some are so expensive that system administrators may not
deploy them at all. Worse still, spot mitigations can only address
known (N-day) attacks as they do not tackle the underlying problem:
different security domains that run simultaneously on the same
physical CPU cores and share their microarchitectural resources.
In this paper, we propose QUARANTINE, a principled, software-
only approach to mitigate transient execution attacks by eliminat-
ing sharing of microarchitectural resources. QUARANTINE decou-
ples privileged and unprivileged execution and physically isolates
different security domains on different CPU cores. We apply QUAR-
ANTINE to the Linux/KVM boundary and show it offers the system
and its users blanket protection against malicous VMs and (uniker-
nel) applications. QUARANTINE mitigates 24 out of the 27 known
transient execution attacks on Intel CPUs and provides strong secu-
rity guarantees against future attacks. On LMbench, QUARANTINE
incurs a geomean overhead of 11.2%, much lower than the default
configuration of spot mitigations on Linux distros such as Ubuntu
(even though the spot mitigations offer only partial protection).

“Both authors contributed equally to this research.
fContributions were partly made while employed at SBA Research.
#Contributions were made while employed at Vrije Universiteit Amsterdam.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RAID °23, October 16-18, 2023, Hong Kong, Hong Kong

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0765-0/23/10...$15.00
https://doi.org/10.1145/3607199.3607248

CCS CONCEPTS

« Security and privacy — Virtualization and security; « Soft-
ware and its engineering — Message passing.

KEYWORDS

Operating systems, Transient execution attacks

ACM Reference Format:

Mathé Hertogh, Manuel Wiesinger, Sebastian Osterlund, Marius Muench,
Nadav Amit, Herbert Bos, and Cristiano Giuffrida. 2023. QUARANTINE: Miti-
gating Transient Execution Attacks with Physical Domain Isolation. In The
26th International Symposium on Research in Attacks, Intrusions and Defenses
(RAID °23), October 16—18, 2023, Hong Kong, Hong Kong. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3607199.3607248

1 INTRODUCTION

After the initial Spectre [52] and Meltdown [65] disclosure, many
other transient execution attacks have come to light [7, 8, 18, 21,
29,51, 53, 71, 85, 88, 89, 92, 95-99, 101] and the end is not in sight—
many new vulnerabilities and attack variants have been disclosed
in this past year alone [3, 48, 84, 87]. Since the vulnerabilities are in
the hardware of billions of devices, fixing them is complicated. To
minimize disruption, software and hardware vendors keep releasing
ad-hoc mitigations that stop specific (known or N-day) exploits, but
fail to address their root cause and hence protect against future
(unknown or zero-day) attacks. Moreover, such “spot” mitigations
often incur high performance costs [60, 62], especially when used in
combination. Such costs permanently affect current/old-generation
processors and may be only alleviated (but not eliminated [4]) by
upgrading to newer generations with in-silicon fixes—until the
next vulnerability is disclosed and new costly N-day mitigations
are needed. Moreover, to mitigate the costs, some mitigations are
often disabled by default, leaving systems vulnerable.

In this paper, we propose to break the current N-day vulnera-
bility/mitigation cycle and counter zero-day exploits by address-
ing their root cause: the fact that transient execution attacks are
generally enabled by different security domains sharing microar-
chitectural resources. Exemplary here are MDS attacks, where an

https://doi.org/10.1145/3607199.3607248
https://doi.org/10.1145/3607199.3607248

RAID ’23, October 16-18, 2023, Hong Kong, Hong Kong

attacker can sample a plethora of microarchitectural buffers to dis-
close arbitrary data on the running core [8, 88, 98]. To this end, we
present QUARANTINE, a principled approach to physically isolate
different security domains on different CPU cores. Such physical
domain isolation offers blanket protection against all core-local tran-
sient execution attacks across domains, including future ones. By
furthermore partitioning the last level cache (LLC) among secu-
rity domains, we harden the system against cross-core transient
execution attacks. Moreover, we aim to investigate the costs of
comprehensively addressing the root cause of transient execution
attacks in software. We believe that this investigation is essential
as baseline for follow-up research.

While physical separation as a mitigation against transient exe-
cution attacks applies to any set of security domains, full isolation
is nontrivial to achieve. For instance, it is not sufficient to sched-
ule unprivileged applications or VMs on a separate core, as the
most security-sensitive domains (kernel/hypervisor), will still run
on the same core [40]. If the attacker manages to disclose data
from such domains, all security guarantees are void. Specifically,
compromising the kernel/hypervisor also compromises all user
applications/VMs.

Previous efforts to separate unprivileged domains while pro-
tecting the privileged domains from malicious users running on
the same core were unsuccessful. For instance, in addition to a
group scheduler that runs only mutually trusting threads on a sin-
gle core, Intel proposed a design with synchronized kernel entry
and exit—where no thread on the same core runs outside the kernel
when another is in the kernel [40]. Given the nontrivial complexity
and performance impact, such design was abandoned after initial
evaluation by the Linux coresched team [14].

In contrast, QUARANTINE moves the privileged code to a sep-
arate core, leaving only minimal code performing non-sensitive
core-local operations behind. Moreover, on commodity systems,
physical separation between privileged and non-privileged code is
possible not just between kernel and user, but also between host
(hypervisor) and guest (VM). As such, we investigate both options
and show that, while performing isolation at the user-kernel level
is complex and arguably impractical, the guest-host interface pro-
vides a promising target. Indeed, we show that instantiating our
design via virtualization-based isolation provides a practical solu-
tion to shield VMs but also (unikernel) applications from (un)known
transient execution attacks.

We evaluated the resulting solution on kernel and server bench-
marks. Our evaluation shows that QUARANTINE incurs a low per-
formance cost, while providing strong (exploit-agnostic) security
guarantees with an attack surface reduction of 97.5%.

Summarizing, our contributions are:

® QUARANTINE, a principled approach to mitigate transient at-
tacks across privilege domains by means of physical domain
isolation.

o An exploration of the design space, with cost/complexity
analysis of applying physical domain isolation to kernel-
and virtualization-based isolation.

e Implementations' of QUARANTINE for Linux/KVM, both
kernel- and virtualization-based.

Lavailable at https://github.com/vusec/quarantine

Hertogh et al.

Hardware Hardware

Hard: Hard:
Thread 0 CPU,COre Thread 1 Thread0 CPU Core Thread 1
|
Access
Secret
Shared buffer Shared buffer
e e.g., LFB/L1D e.g., LFB/LID
Leak
Secret
'

Figure 1: Transient execution attack against the hypervisor.
An attacker with co-located SMT threads can steal secrets
from the hypervisor by leaking data from shared buffers.

e An evaluation of QUARANTINE, to understand the real cost
of a comprehensive solution and demonstrating its strong
security guarantees and much lower cost than existing N-day
mitigations combined.

2 BACKGROUND

Terminology. We reserve the term core to refer to a physical
CPU core. By a CPU we shall mean a logical CPU core, ie., a
(hyper)thread. A sibling CPU is a CPU on the same core.

2.1 Transient Execution Attacks

Transient execution attacks exploit microarchitectural side chan-
nels to leak secret data. As such, deploying such attacks requires
(i) access to secret data during transient execution that leave mi-
croarchitectural traces and (ii) the ability to turn such traces into
observable secret-dependent behavior. As an example, Figure 1 de-
picts a Microarchitectural Data Sampling (MDS) [8, 88, 98] attack,
where data is leaked via on-core buffers shared among sibling CPUs.

Attack classifications [7, 84] generally group attacks into two
categories: branch misprediction-based (or Spectre-type [52]), which
rely on speculative execution, and machine clear-based (or Meltdown-
type [65]), which rely on plain out-of-order execution. Attacks ei-
ther leak on-core or off-core data, depending on the location of the
microarchitectural component that leaks. Whereas the above prop-
erties are unique to each attack, the same attack can be launched in
up to three different attack scenarios. In-domain attacks leak data
from the same domain (from the hardware perspective), circum-
venting software enforced boundaries, e.g., MDS from javascript
against the sandbox. Domain-bypass attacks enable an adversary
to directly leak data from other domains, e.g., a user process per-
forming MDS to leak kernel data. Cross-domain attacks leak data
from other domains in a confused deputy style, triggering transient
leakage in the victim domain via gadgets inside the victim’s code,
e.g., a VM triggering hypervisor code that happens to perform MDS.
Gadgets consist of two parts: the trigger gadget triggering transient
execution and transiently leaking secret data, and the disclosure
gadget encoding the secret into a covert channel. Trigger gadgets
for some attacks, say Spectre, are more common to find in commod-
ity software than for others, say MDS. Independent of the above
attack scenarios, an attack can be mounted against a victim running
on the attacker’s core, or a different core, and we call the attack
core-local or cross-core in those situations respectively.

https://github.com/vusec/quarantine

QUARANTINE: Mitigating Transient Execution Attacks with Physical Domain Isolation

2.2 Mitigating Transient Execution Attacks

Mitigating transient execution attacks typically involves different
components, such as microcode, firmware, OS, hypervisor, and ap-
plications, thereby making mitigations complex and often brittle.
Moreover, each mitigation tends to target only specific exploit vari-
ants and adds performance overhead due to the need to, e.g., flush
caches [26], limit speculation [81, 94], or partition resources [25].
Hence the combined complexity and performance impact grows
over time [4, 59, 60, 62, 78].

A more principled way to address transient execution (and gener-
ally side-channel) attacks is to isolate mutually distrusting security
domains [16]. However, in practice doing so is challenging, and
production deployment has been limited to two use cases: Site Iso-
lation [86], which browsers use to isolate web apps in separate
processes; and core scheduling, which kernels/hypervisors use to
isolate processes/VMs in separate cores [14]. However, neither of
these techniques isolates the privileged domain (i.e., kernel or hy-
pervisor), the most security critical component of the system. To
protect the privileged domain, Intel proposed mode-switch ren-
dezvous [40], ensuring no two sibling CPUs ever run in different
privilege domains at the same time, but the performance overhead
and complexity has been found to be excessive [9, 12].

2.3 Virtualization

To efficiently support virtualization, hardware extensions, such as
VT-x and AMD-V, introduce a new processor mode—guest mode.
In guest mode, some instructions cause a VM-exit (exit from guest
mode) to yield control to the hypervisor.

The CPU can enter guest mode by means of a dedicated instruc-
tion, such as VMRUN on AMD or VMLAUNCH on Intel. This performs a
world switch from host to guest, switching essential registers like the
stack and instruction pointers. From that moment, the guest runs
directly on the hardware. The host can predetermine what events
cause the VM to VM-exit. Some commonly intercepted events are
for example interrupts and writes to the CPU control registers.
Upon a VM-exit, the hypervisor regains control and solves the exit
reason, for example by handling the interrupt or emulating the
write to the control register. Once the VM-exit has been handled,
the hypervisor can start up the VM again.

The hypervisor maintains a memory resident data structure,
called the VM control block (VMCB) on AMD or VM control struc-
ture (VMCS) on Intel, to control the VM. Among other things, it
can be used to inject virtual interrupts into the guest, to config-
ure which events cause a VM-exit, and to inspect what caused a
VM-exit after it happened.

3 THREAT MODEL

We consider a modern system running a state-of-the-art OS/hyper-
visor, and an attacker seeking to leak confidential across hardware
enforced security boundaries, without resorting to any software
vulnerabilities. We assume the attacker is capable of running arbi-
trary unprivileged code directly on the system, either as part of a
user application or a VM. The attacker is able to launch arbitrary
transient execution attacks. Concretely, we consider application-to-
application, application-to-OS, VM-to-VM, and VM-to-hypervisor
attack scenario’s. Note that this renders in-domain attacks (e.g.,

RAID ’23, October 16-18, 2023, Hong Kong, Hong Kong

sandbox escapes) out of scope; the attacker will have to use either
domain-bypass or cross-domain attacks.

4 MOTIVATION

To understand the problem that our work is tackling, we start by
getting an overview of the currently known transient execution
attacks, as well as their state-of-the-art (spot) mitigations before
proposing our solution.

4.1 Spot Mitigations

We analyzed all known transient execution attacks on Intel CPUs
and their mitigations. Table 1 provides an overview in chronological
attack disclosure order. The next four paragraphs explain each of
the four columns respectively.

Known Attacks. Distinguishing different attacks (or attack vec-
tors) from each other is not straightforward. For example, Intel
allocated a single CVE for Branch Target Injection (BTI), in which
Intel includes both BTB- and RSB-misspeculation attacks, which
are commonly classified as distinct attacks [7]. On the other hand,
Intel considers Intra-mode BTI a separate attack from BTI, while
others do not. Our classification follows Intel.

Default Spot Mitigations. For mitigations the situation is also
complicated. Multiple spot mitigations may attempt to defend
against the same attack, while others are effective against mul-
tiple attacks. As a reference for what the industry uses today, we
picked the Linux kernel, as it is security sensitive, supports (almost)
all modern CPUs, and is a central piece of modern computing in-
frastructure. The default spot mitigations applied by Linux depend
on the CPU, as many mitigations require hardware (and microcode)
support. For example, if eIBRS is not supported, Linux can fall back
to retpolines [94] against BTI and call depth tracking [61] against
Return Stack Buffer Underflow (RSBU). For clarity, we only listed
the best combination of mitigations against each attack.

Full Spot Mitigations. The Full Mitigation column shows the
additional mitigations needed, on top of the default mitigations, to
fully protect against a specific attack. Here we also follow Intel’s
recommendations, coupled with Linux’ needs. Due to the heavy
performance overhead of these mitigations, they are not deployed
by default.

We colored all of the mitigations based on how well they de-
fend the system according to the vendor’s statements. While this
results into a consistent classification, we want to stress that the
situation may be worse than depicted in Table 1. For example, Intel
reports that the Spectre, LITF and MDS mitigations are sufficient
for mitigating LVI, as “an unprivileged adversary has few points of
leverage to induce faults or assists into code executing at a higher
privilege level” [35]. However, gadget scanners like Kasper [48],
showed that users can induce such faults inside the Linux kernel.
Mitigation would require buffer flushing upon kernel entry, on top
of flushing upon kernel exit as required for mitigations against
other attacks. Another example is SCSB, which is deemed harm-
less by Linux developers, while JITted BPF code or kernel module
insertion may provide avenues for SCSB against Linux.

RAID ’23, October 16-18, 2023, Hong Kong, Hong Kong

Hertogh et al.

Attack Default Spot Mitigation Full Spot Mitigation Leak Origin
BCB [23, 51, 52] Bounds clipping, serialization Full serialization Mapped memory
BTI [24, 52, 53] eIBRS, selective IBPB, RSB filling IBPB always Mapped memory
RDCL [28, 65] KPTI L1D

RSRR [29] Microcode: stop speculation System registers
SSB [30] Selective SSBD SSBD always Mapped memory
LazyFP [27, 92] Eager FPU restore FPU

L1TF [26, 95, 101] PTE inversion, conditional L1D flush L1D flush always, no SMT L1D cache
MFBDS [32, 88, 98] | Flush buffers No SMT FB

MSBDS [38, 32] Flush buffers No SMT SB

MLPDS [32, 98] Flush buffers No SMT LP

MDSUM ([32] Flush buffers No SMT FB, SB, LP
SWAPGS [33] Serialization Mapped memory
TAA [31, 98] Flush uarch buffers No TSX FB, SB, LP

VRS [38] Microcode: stop propagation Vector registers
L1DES [34, 100] Microcode: stop propagation L1D cache

LVI [35, 96] Mapped memory
SAL1DS [36] No mitigation L1D flushing, no SMT L1D cache
SRBDS [37, 85] Microcode: flush buffers and serialize Uncore

FPVI [39, 84] Mapped memory
SCSB [41, 84] Mapped memory
FSFP [43] Microcode: unshare FSFP, selective FSFD | FSFD Mapped memory
BHI [3, 42] BTI + no user BPF, selective serialization | Unshare BHB Mapped memory
IMBTI [3, 42] BTI + no user BPF, selective serialization | No speculation Mapped memory
SLD [47, 84] Serialize shared memory access Serialize shared memory access | Mapped memory
SBDS [45] Flush buffers No SMT, flush buffers on MMIO | Uncore

RSBU [46, 102] eIBRS INT3 after RET Mapped memory
PRSBP [44] RSB filling Mapped memory

Table 1: Known transient execution attacks on Intel CPUs and their corresponding spot mitigations, as well as their depen-

dence on microarchitectural resources. Color legend: full mitigation , code audit dependent mitigation , partial mitigation ,

no mitigation , on-core leak origin , off-core leak origin .

Furthermore, is is questionable how future-proof the mitigations
are, as many attacks in recent years comprised the “full” spot miti-
gations available at the time. Examples of previously compromised
spot mitigations include eIBRS [3], retpoline and RSB filling [102],
VERW buffer flushing [100], and 1fence/jmp [74].

Leak Origin. For each attack, we also show the source from which
data leaks in Table 1. Many of the attacks can leak any data that
the victim core has legal access to. In particular, this memory must
have been mapped by some CPU on the core at some point in time—
possibly before the attack, as data may remain in caches even after
unmapping—hence we specify “mapped memory” as leak origin for
these attacks. For the other attacks, we can more precisely pinpoint
the microarchitectural component from which data is leaked.

A color coding distinguishes on-core and off-core leak origins.
Note that “mapped memory” leaks on-core data, as an attacker
cannot leak data that was not architecturally accessible to the victim
core in the first place, as described above. An adversary mounts an
attack in either a domain-bypass or a cross-domain scenario—recall
that in-domain attacks are out of scope. Attacks with on-core leak
origins can only perform a domain-bypass, if the victim resides

on the same core. Against victims running on separate cores, the
adversary is therefore required to resort to cross-domain attacks.

Overhead. Let us examine the performance overhead of the de-
fault spot mitigations against transient execution attacks that are
currently in widespread use. We run LMbench under Ubuntu 20.04
on an Intel(R) Xeon(R) Silver 4110 CPU @2.10GHz with 32 GB of
RAM, which supports many spot mitigations.

Table 2 presents our results normalized to a configuration with-
out mitigations (second column). The third column provides the nor-
malized performance for default Ubuntu, while the other columns
present results for specific mitigations disabled. As shown in the
table, even enabling just the default mitigations results in a ge-
omean slowdown of almost 2x, with BTI/Spectre-v2 mitigations,
page table isolation and MDS incurring the highest costs. Going
beyond the default mitigations adds so much overhead that kernel
developers consider full spot mitigations impractically expensive
(e.g., LVI-CFI [96]). The overhead on newer CPU models may be
lower [4], but it is still substantial.

Summary. Since the high overhead of applying all spot mitiga-
tions is impractical for real-world systems—even some single spot

QUARANTINE: Mitigating Transient Execution Attacks with Physical Domain Isolation

RAID ’23, October 16-18, 2023, Hong Kong, Hong Kong

AL
&%%0
S/
&
& & & @?ﬂ S
& & ES O %
P A S SH D U SO ’» ;& &
> N o & K & > & & & (2
s F ¥ e KRS &S
& S S < < < <& < N &

Simple syscall 1.0 800 806 7.90 819 820 7.89 442 791 798 795 780
Simple read 1.0 3.65 359 354 353 3.68 357 231 364 350 3.55 3.26
Simple write 1.0 521 521 514 517 513 521 325 501 524 515 471
Simple stat 1.0 184 178 174 179 181 182 144 178 182 1.80 1.72
Simple fstat 1.0 3.68 372 3.67 367 376 374 240 362 3.69 3.62 345
Simple open/close 1.0 19 186 180 189 184 188 144 191 186 1.85 1.72
Select on 10 fd’s 1.0 249 247 242 251 249 254 172 240 247 246 2.43
Select on 100 fd’s 1.0 138 141 132 137 138 139 117 139 136 137 1.35
Select on 250 fd’s 1.0 115 118 112 115 114 116 1.07 116 115 1.16 1.16
Select on 500 fd’s 1.0 109 111 106 108 1.09 1.09 1.05 110 1.09 1.10 1.08
Select on 10 tcp fd’s 1.0 260 259 248 259 256 260 190 257 259 260 227
Select on 100 tep fd’s 1.0 291 29 283 29 291 293 282 289 291 293 1.16
Select on 250 tep fd’s 1.0 290 294 283 294 291 290 288 293 292 295 1.05
Select on 500 tep fd’s 1.0 297 298 287 294 294 295 294 296 293 296 1.04
Signal handler installation 1.0 363 374 3.61 373 372 361 238 378 3.65 373 358
Signal handler overhead 1.0 135 133 128 136 135 130 118 136 130 1.34 1.34
Protection fault 1.0 174 164 156 169 1.63 167 128 165 1.63 164 154
Pipe latency 1.0 123 123 120 124 123 124 115 123 123 119 1.13
AF_UNIX sock stream latency 1.0 160 1.68 1.62 1.60 159 164 128 161 1.67 1.60 157
Process fork+exit 1.0 116 105 113 113 114 114 105 101 114 1.08 1.09
Process fork+execve 1.0 108 111 112 112 1.09 111 104 099 115 111 1.09
Process fork+/bin/sh -c 1.0 112 108 109 113 111 111 1.04 094 110 1.09 1.08
Pagefaults on /tmp/lmbench/XXX 1.0 113 112 111 112 113 113 108 112 113 113 113
UDP latency using localhost 1.0 130 130 129 129 130 132 125 132 132 131 1.11
TCP latency using localhost 1.0 123 124 123 124 125 122 121 123 127 124 1.08
TCP/IP connection cost to localhost 1.0 1.22 1.24 123 125 122 123 120 128 122 124 1.06
mean 1.0 229 229 224 229 229 228 177 226 228 228 1.96
geomean 1.0 195 194 190 195 194 194 | 160 191 194 193 @ 1.65

Table 2: LMBench results for different kernel mitigation configurations compared to a mitigations=off baseline.

mitigations alone are considered too costly [1, 9]—these systems
are instead left (partially) vulnerable. Moreover, as we have seen,
even the default spot mitigations may incur very high overheads.
The complex system of transient execution attacks makes security
analysis and picking spot mitigations difficult. Perhaps most im-
portantly, spot mitigations are not future proof: every new attack
requires additional spot mitigations, incurring even more complex-
ity and performance overhead. In the meantime, systems are almost
certainly vulnerable to yet undisclosed attacks.

4.2 Towards a Solution

Can we do better than spot mitigations? As we show in Table 1,
24 of the 27 known transient execution attacks depend on on-core
leakage, which suggests cross-core attacks are inherently more dif-
ficult. Indeed, from a computer architecture perspective, essential
ingredients of transient execution attacks are mostly core-local:
faults, pipeline flushes, micro-optimizations, mispredictions, opti-
mistically forwarding data across different buffers, etc. On the other
hand, off-core events are much rarer and adhere to a well-defined
interface, which enables better security analysis.

Furthermore, we note that previous work [105] analyzed tran-
sient execution attacks and their covert channels. Out of the 14
covert channel types analyzed, 9 are core-local. Moreover, the core-
local ones are the most widely used in known attacks: 19 out of 20
analyzed attacks use a core-local covert channel, such as the L1 or
L2 data cache. The only ones that generalize to cross-core covert
channels are data cache covert channels, by instead using the LLC
which is shared across cores.

Our approach. Based on these insights, we propose physical
domain isolation (physically separating victim and attacker on dif-
ferent cores) as a principled defense against transient execution
attacks. Domain-bypass attacks relying on on-core leakage are di-
rectly rendered impossible. In other words, on-core attacks are only
possible in cross-domain fashion, requiring the victim to contain
specific gadgets, to be triggered by the attacker across cores.

While trigger gadgets are attack specific (and hence not easily
targeted by a blanket mitigation), disclosure gadgets only depend
on the covert channel. Physical domain isolation ensures that the
covert channel must be cross-core, a severe limitation as we saw
above. Indeed, the only practical cross-core covert channel resource

RAID ’23, October 16-18, 2023, Hong Kong, Hong Kong

Interrupt Controller

PHYSICAL DOMAIN ISOLATION

\X-

Unprivileged Core 2

Interrupt Controller

— v

Privileged Core 1

Unprivileged Core 0

Privileged Stub ...+ ...\ . Privileged Stub

Figure 2: Physical domain isolation in QUARANTINE.

used in real-world cross-domain transient execution attacks so far
is the LLC. By additionally partitioning the LLC between victim and
attacker, physical domain isolation eliminates even this disclosure
vector.

In the following, we present QUARANTINE, our approach for
achieving physical domain isolation.

5 PHYSICAL DOMAIN ISOLATION

QUARANTINE’s physical domain isolation isolates different security
domains on separate cores to prevent them from sharing core-
local microarchitectural resources. Moreover, it unshares the LLC,
partitioning it among the security domains. In the following, we
describe our design at a high level and explain our design choices,
like control flow and interrupt rerouting, and potential problems,
like breaking CPU-locality assumptions.

5.1 Core Partitioning

Using core scheduling or affinity pinning, modern systems already
support isolation of different unprivileged domains on distinct cores.
The design, depicted as the baseline situation in Figure 2, thwarts
application-to-application and VM-to-VM attacks. However, it does
not protect privileged domains (i.e., the OS or hypervisor) as they
still share microarchitectural resources with untrusted domains.

In contrast, physical domain isolation strives to run all security
domains on separate cores, including privileged domains. The ex-
act accomplishment of this goal would result in a perfect defense
against core-local transient execution attacks across security do-
mains. Unfortunately, contemporary hardware does not allow exact
separation of privileged and unprivileged code on separate cores. In
particular, mode switching between privilege levels (e.g., by syscalls
or VM-exits), always occurs on the same CPU.

Hertogh et al.

privileged
stub
unprivileged
core

privileged
core

Hardware

priviledge switch
Cross-core

communication

Figure 3: Privilege mode switching in QUARANTINE.

QUARANTINE circumvents these hardware limitations by means
of a privileged stub, as shown in the lower half of Figure 2. Con-
ceptually, unprivileged domains and privileged domains execute
exclusively on their own subset of cores, while privileged stubs sup-
port unprivileged domains on mode switches—providing core-local
scheduling and redirecting control flow to and from the privileged
cores for all other privileged functionality. These stubs are minimal
in size and only access insensitive data. We analyze the remaining
attack surface that these stubs introduce in Section 8.3.

5.2 Isolating Privileged Execution

Upon a synchronous mode switch into a privileged domain, e.g.,
due to a system call or VM-exit, control flow enters the privileged
stub on the unprivileged core, as depicted in Figure 3. The stub
performs a minimal recovery from the mode switch, e.g., restoring
its register state, and then sends a request to a privileged core. The
privileged core handles the request and notifies the (unprivileged)
stub, as soon as the request is completed. Upon notification, the
stub immediately returns control to the unprivileged domain. For
cross-core communication, we exchange data via shared memory.
While we could, in principle, move some rerouting code from the
stub to the unprivileged domain, much like the mode-switching
optimizations for exceptionless syscalls [91], we favored simplicity
and compatibility in our design.

External interrupts cause asynchronous privilege mode switches.
To prevent (privileged) interrupt handlers from running on unpriv-
ileged cores, we programmed the system-wide interrupt controller
to send core-independent interrupts to privileged core only. Indeed,
the majority of interrupts (including all I/O interrupts), can be han-
dled by any core. We leave only a small subset to be handled locally,
most notably local timer interrupts for core-local scheduling.

5.3 Breaking Locality Assumptions

As modern hardware is designed to run privileged and unprivileged
domains on the same CPU, so is modern software. Operating sys-
tem kernels and hypervisors generally assume that they run on
the same CPU as the process/VM that they service. Privileged code
accessing an unprivileged address space or using CPU-local vari-
ables implicitly depends on such locality assumptions. By moving
the code to a different core, physical domain isolation breaks many
of the underlying locality assumptions, and hence its correctness.
Care must be taken in resolving such locality issues on modern
kernels and hypervisors, lest they lead to substantial additional
complexity. Furthermore, the corresponding patches (e.g., address
space switching on the privileged CPU), may well incur significant
performance overhead.

QUARANTINE: Mitigating Transient Execution Attacks with Physical Domain Isolation

5.4 Cache Partitioning

Core isolation, as described above, already stops the sharing of
on-core caches, typically L1 and L2, between different security
domains. But the LLC, typically L3, is normally shared among cores.
QUARANTINE explicitly partitions the LLC to give every security
domain exclusive access to a different part of the LLC. Doing so
eliminates LLC covert channels, the cross-core alternative to widely
used, but core-local, L1 data cache covert channels (cf. Section 4.2).
As data caches are transparent to software, this does not require
any software modifications, apart from the LLC configuration code.

5.5 Kernel- vs Virtualization-based Isolation

Our high-level design for physical domain isolation can, in principle,
be applied either to the user-kernel interface to support kernel-based
isolation or to the guest-host interface to support virtualization-
based isolation. In the following, we explore both design options on
commodity systems, using Linux/KVM as a reference. We first de-
scribe our unsuccessful efforts to implement kernel-based isolation
and argue this option is impractical for operating systems such as
Linux. Next, we present a virtualization-based instantiation of our
design and provide concrete evidence of its practicality and show
that it is able to mitigate transient execution attacks mounted by
malicious VMs and (unikernel) applications.

6 (IM)PRACTICALITY OF KERNEL-BASED
ISOLATION

QUARANTINE’s kernel-based isolation prototype isolates unprivi-
leged user processes from the privileged Linux kernel (v5.15), as
well as from each other.

6.1 Core Partitioning

Kernel-based isolation redirects execution to an isolated kernel core
whenever a user process, running on a distinct user core, traps into
the kernel. As system calls are frequent events for many workloads,
the performance of user applications depends directly on their la-
tency. The ideal configuration for minimal latency would dedicate
a kernel core to each user application, such that this core can im-
mediately service system calls whenever they get executed. The
downside of such a setup is that it removes one core for each iso-
lated user process and, thus, does not scale to real-world workloads.
Hence, we developed a kernel-based isolation prototype in which a
kernel core can handle a configurable number of user cores.

6.2 Isolating the Kernel

On each kernel CPU we deploy a service thread, which services
system calls coming from privileged stubs on user CPUs. To min-
imize overhead and attack surface, we redirect system calls from
user to kernel CPUs as soon as the user CPU is ready to execute it,
ie., in do_syscall_64. To ensure minimal request latency, service
threads and user processes poll a shared memory location.

6.3 Locality Problems

While conceptually simple, cross-core system calls on operating
systems such as Linux are very complex in practice.

RAID ’23, October 16-18, 2023, Hong Kong, Hong Kong

Baseline Quarantine Overhead

Syscall Users Calls s s X
1 23200 0.04 0.72 1851
gotppid() 2 360614 0.04 1.43 36.76
4 821871 0.04 2.46 63.18
3 1384734 0.04 5.09 130.86
1 12137 0.07 122 16.86
read() 2 342346 0.21 1.38 19.09
4 735226 0.37 2.70 37.28
3 1362904 0.41 5.96 82.46
1 218210 0.06 091 15.43
) 2 348516 0.15 1.19 20.12
writeQ 4 731462 0.22 248 41.84
8 1340910 0.32 5.20 87.85

Table 3: Kernel-based isolation performance for LMbench’s
latsyscall microbenchmark.

User Context Switching. Frequently used system calls such as
read, write, and ioctl require access to a process’ context, e.g.,
its address space, locks and bookkeeping data. As a result, service
threads servicing multiple user CPUs frequently switch between
user contexts, which harms performance [64]. Moreover, without
kernel-based isolation user space applications immediately trap into
the kernel (e.g., via the syscall instruction on x86_64) and continue
execution, whereas with kernel-based isolation processes may have
to wait until the service thread finished servicing other processes.

Scheduling. Scheduling service threads using the existing Linux
scheduler leads to unacceptable system call latencies. To improve
response times, we perform direct context switching in and out
of our service treads, circumventing the Linux scheduler. Unfortu-
nately, such customizations are not very compatible with the rest of
the kernel and require custom solutions for complicated scheduling
decisions (e.g., whether to run a service thread or a normal kernel
thread upon whose results the service thread may depend).

CPU-local Variables. Linux’ system call handlers make heavy
use of CPU-local variables, such as current (the currently running
process) or RCU locks. Patching these handlers to become inde-
pendent of such CPU-local variables requires pervasive changes
to the kernel. The variable current alone is referenced thousands
of times throughout system call handlers. After two person years’
worth of implementation effort, our prototype reliably supports a
few dozen system calls. Implementing enough system calls to run,
say, a web server or browser, requires a major overhaul of the Linux
kernel.

6.4 Performance

We evaluate the performance of different configurations for kernel-
based isolation with the OS microbenchmark suite LMbench [73]
and report results in Table 3. To highlight solely the system call
rerouting overhead, we disabled interrupt and page fault rerouting,
as well as LLC partioning. Despite our optimization efforts, the
results suggest that kernel-based isolation is impractical. Even in
an ideal one-on-one configuration, the system call latency is unac-
ceptably high and further degrades once multiple users share one
kernel CPU.

Conclusion. The relationship between the Linux kernel and its
user processes is complex and the kernel assumes CPU-locality
in many places. Supporting a significant number of system calls

RAID ’23, October 16-18, 2023, Hong Kong, Hong Kong

especially requires a heroic effort. Furthermore, the resulting per-
formance overhead is unacceptable. We conclude that kernel-based
isolation, while possible in theory, is not practical for operating
systems such as Linux.

7 VIRTUALIZATION-BASED ISOLATION

Instead of targeting the kernel-user boundary, virtualization-based
isolation physically separates the hypervisor (the host), from the
VMs (the guests)—as well as the VMs from each other. Although
conceptually QUARANTINE effectuates radical changes to the fun-
damental workings of the hypervisor, our patches are noninvasive
and minimally impact the operation of the Linux kernel. We imple-
mented QUARANTINE’s virtualization-based isolation for AMD on
top of Linux/KVM for kernel v5.15 in 523 lines of code, including
changes in the architecture and vendor-specific subsystems.

7.1 Resource Partitioning

For simplicity, we partition the available cores during system ini-
tialization statically into host and guest cores, whose CPUs we call
host and guest CPUs respectively. Furthermore the guest cores are
distributed among different users, such that different users are also
isolated from each other. We implemented the physical isolation of
security domains using the topology and CPU affinity functionality
of the Linux kernel. While dynamic host/guest core policies are
possible, our experimental results confirm that the host domain
is typically used sparingly and simple static policies, e.g., a single
host core, are sufficient.

For LLC partitioning we also choose for simplicity: every domain
gets a part of the LLC proportional to the number of cores it got
assigned. For example, if a user runs on 2 of the 8 cores in total,
then it will have access to a quarter of the LLC. LLC partitioning is
implemented on top of Linux’ resctr] functionality.

7.2 Isolating Hypervisor Execution

Under Linux/KVM, a VM is implemented as a user process. The
hypervisor consists of both user space, e.g., QEMU [6], and the host
kernel, in particular its KVM module. We call the user process of a
VM its owner. Each VM is associated with a runner: a kernel thread
on a guest CPU responsible for running its VM. Runners are part
of the privileged stubs on guest CPUs (cf. Figure 2).

Rerouting VM-exits. Figure 4 illustrates the steps to run a VM
under QUARANTINE. On a host CPU, an owner instructs KVM to
run its VM via the ioctl system call. KVM almost entirely sets up
the VM to run, and then sends a cross-core VM-start message to
the VM’s runner function on a guest CPU. In response, the runner
performs the remaining CPU-local setup and executes the VMRUN
instruction. From here on, the VM takes control and executes its
code in guest mode until the occurrence of a VM-exit event. The
latter returns control to the runner, which recovers from the VM-
exit and as soon as possible sends a cross-core VM-exit message
to the host CPU of the VM’s owner. KVM and the owner process
handle the VM-exit on the host CPU, after which the VM will be
ready to run again.

As the VM is controlled via the memory resident VMCB, VM-
exits can be handled from any CPU. To illustrate this, let us consider
the example of a guest VM-exiting due to a page fault. The VMCB

Hertogh et al.

Guest Cores
Guest mode

Host Cores

User mode Kernel mode

Core-local
VMRUN preparation

Figure 4: KVM execution under QUARANTINE. CPU-
independent operations are bound to host CPUs, while CPU-
local operations are executed on guest CPUs.

contains an exit code that tells the host CPU that a page fault
happened, as well as information such as the faulting address. The
host CPU determines whether it involved a host- or a guest-side
page fault, i.e,, if it was caused by host page swapping or not. In the
former case, KVM swaps the page back in. In the latter case, KVM
injects a page fault into the guest by setting a flag in the VMCB,
prompting the guest OS to execute its own page fault handler upon
the next VMRUN.

Cross-core Communication. Besides the general execution flow,
Figure 4 also shows the physical isolation boundary. The red line
separates execution performed on host vs. guest CPUs. We cross this
physical isolation boundary by sending VM-start and VM-exit mes-
sages between host and guest CPUs via shared memory. Runners
and host CPUs receive these messages by performing collabora-
tive polling: iteratively checking for a message and invoking the
scheduler if there is no message yet. This method allows us to mul-
tiplex CPUs between multiple runners or owners, while keeping
the latency for VM-start and VM-exit messages low.

Shrinking Runners. The yellow blocks in Figure 4 highlight the
runner’s code in the stub, which QUARANTINE seeks to minimize
to provide strong isolation guarantees. To this end, we thoroughly
analyzed KVM’s code paths concerned with VMRUN handling and
determined which parts of the code are CPU-independent and
which need to run on the guest CPUs. Listing 1 shows the critical
section around a VMRUN, delimited by en/disabling interrupts and
preemption. We concluded that this entire critical section must
be run on the guest CPU. The only addition is that KVM may
need to handle four special time management requests just before
the critical section, which we determined to be CPU-local as well
and hence also execute on guest CPUs. Based on our analysis, we
conclude that the resulting amount of privileged code of runners

QUARANTINE: Mitigating Transient Execution Attacks with Physical Domain Isolation

vepu->srcu_idx = srcu_read_lock (&vcpu->kvm->srcu);
preempt_disable();

static_call (kvm_x86_prepare_guest_switch) (vcpu);
local_irqg_disable();

VMRUN
local_irqg_enable();
preempt_enable();

Listing 1: KVM’s critical section around a VMRUN.

on guest CPUs is minimal. We refer to Section 8.3 for a quantitative
analysis of the whole host stub.

Interrupt Rerouting. QUARANTINE relies on the Linux’ SMP IRQ
affinity interface [76] to redirect all architecture-independent in-
terrupt requests (IRQs) to host CPUs while allowing that minimal
set of interrupts (such as timer interrupts) that is necessary for
CPU-local functionality to reach the guests.

7.3 Locality Problems

Cross-core Control Flow Diversion. As VM-start and VM-exit mes-
sages effectively cause control flow to switch to a different CPU and
lock-ownership is CPU-bounded in Linux, QUARANTINE ensures
that senders release any acquired locks before sending a message
and corresponding receivers acquire these locks again. In addition,
to avoid KVM issues at the VM-start and VM-exit boundaries result-
ing from variables on the CPU-local kernel stack, we replaced these
with per-VM variables on the heap such that their state persists
independently of CPU-local function call stacks.

Owner Context Switching. An important locality assumption
KVM makes is that it runs in the user context of the current VM’s
owner. This for example required us to let each owner share its
address space with its runner. On the host CPU, it requires us to
switch between owner contexts upon serving VM-exits from dif-
ferent VMs. As we will see in Section 8, this does not result in bad
performance, as it did for kernel-based isolation (cf. Section 6.3).
We expect this difference to stem from VM-exits happening less
frequently and being more expensive to handle than system calls.

Scheduling. This prototype uses the unmodified Linux scheduler,
contrary to kernel-based isolation (cf. Section 6.3).

CPU-local Variables. In order to get rid of all problematic CPU-
local variables, we only had to replace six references to current
by a pointer to the owner inside the host stubs. This was a very
low engineering effort compared to similar problems for kernel-
based isolation (cf. Section 6.3). As opposed to virtualization-based
isolation breaking locality assumptions only on the by design small
host stubs, kernel-based isolation does so for kernel code running
on kernel CPUs, i.e., almost the entire kernel. This discrepancy in
complexity represents a major practical advantage of hypervisor-
based over kernel-based isolation. For the former, two man years
of effort led to the support of a few dozen system calls, while the
latter offers the same functionality as unmodified KVM.

RAID ’23, October 16-18, 2023, Hong Kong, Hong Kong

7.4 Isolating User Applications

So far, we presented a virtualization-based QUARANTINE prototype
to protect and isolate VMs, but the same design can be used to
protect user applications by adopting a unikernel architecture [56].
Striking a balance between performance and application compatibil-
ity is notoriously challenging for unikernels [54]. However, recent
solutions show that the Kernel Mode Linux (KML) [70] can be used
to implement highly efficient and compatible unikernels, by simply
folding existing application code into the Linux kernel [56].

In QUARANTINE, we adopt this approach to turn unmodified
Linux applications into “VMs” which can be isolated with QUAR-
ANTINE. This approach eliminates the need to partition kernel-side
application execution at the OS level (which is challenging, as pre-
viously discussed) and even provides opportunities for unikernel
optimizations. In particular, recent work shows that even straight-
forward KML-based optimizations (e.g., running a minimal, opti-
mized Linux kernel) can lead to impressive speedups [56].

Nonetheless, for a fair evaluation, we enabled no special uniker-
nel optimizations for our experimental analysis, using the same
kernel for the KML guest and the host. As such, despite some in-
trinsic KML optimizations (i.e., the syscall interface being reduced
to a lighter library call interface in the guest [56]), we observed
essentially identical performance for our benchmarks running in
VMs vs. virtualized unikernels. As a result, for simplicity, we only
present results for the VM-based configuration of QUARANTINE in
our evaluation. Similarly, we only consider a VM-based baseline for
our benchmarks, even to evaluate the impact of our design on base-
line (non-virtualized) user applications. While virtualization does
add a cost compared to native execution, we observed relatively
low overhead for our benchmarks (e.g., around 5% Nginx saturated
throughput degradation), which can easily be more than amor-
tized by the speedups provided by unikernel optimizations (e.g.,
over 30% Nginx saturated throughput improvement with Lupine
optimizations [56]).

8 EVALUATION

We evaluate QUARANTINE in terms of performance, engineering
complexity, and security guarantees.

8.1 Performance Evaluation

Setup. We evaluated our QUARANTINE prototype on a test ma-
chine with an AMD Ryzen Threadripper PRO 5995WX 64-Core
Processor with 2 CPUs per core, 512 GB of RAM, and an Aquantia
AQC107 NIC. The test machine runs Ubuntu 22.04.1 using Linux
kernel 5.15 with QUARANTINE enabled or disabled (baseline). To
reduce noise, we used the performance scaling governor and dis-
abled KASLR, THP, and KSM. As QUARANTINE is an alternative
to deployed spot mitigations against transient execution attacks,
we also disabled all spot mitigations that can be disabled without
source code modification?.

We ran all benchmarks inside a lightweight Alpine Linux 3.15
(running kernel 5.15.12) test VM on the test machine. The test VM

Note, that even when disabling all mitigations the Linux kernel protects against
Spectre-v1 “on a case by case base with explicit pointer sanitation and usercopy
LFENCE barriers.” [13]. To compare against an unmodified (“vanilla”) baseline, we
chose to keep these mitigations in-place.

RAID ’23, October 16-18, 2023, Hong Kong, Hong Kong

. & >
e v§ &
& 0‘; 4"50
Benchmark < & 9
Simple syscall 0.09 us 0.09 us 5.94 %
Simple read 0.11 ps 0.13us 1349 %
Simple write 0.11 us 0.12us 1075 %
Simple stat 0.42 us 0.46 us 10.00 %
Simple fstat 0.17 us 0.17 ps 0.69 %
Simple open/close 0.66 s 0.69 us 513 %
Select on 10 fd’s 0.27 us 0.27 us -1.65%
Select on 100 fd’s 0.63 s 0.82pus 2998 %
Select on 250 fd’s 1.22 ps 1.72 us 40.95%
Select on 500 fd’s 2.27 ps 327 ps 4415%
Select on 10 tcp fd’s 0.29 us 0.29 us 1.42 %
Select on 100 tcp fd’s 1.33 ps 1.72 us 30.00 %
Select on 250 tep fd’s 3.06 us 412 pus 3452%
Select on 500 tcp fd’s 6.01 ps 816 us 3569 %
Signal install 0.13 us 0.14 us 1093 %
Signal overhead 0.63 us 048 us -23.92%
Protection fault 0.23 us 0.26 us 1167 %
Pipe latency 1.97 ps 1.99 us 0.94 %

AF_UNIX sock stream 3.23 us 3.48 ps 7.60 %

Process fork+exit 21.65 us 23.43 us 8.23 %
Process fork+execve 61.69 ps 66.38 1 7.59 %
Process fork+/bin/sh 150.24 us 165.09 us 9.88 %
Pagefaults 0.09 ps 0.10 us 1331 %

UDP latency localhost 3.36 us 3.48 us 3.62 %

TCP latency localhost 4.22 ps 4.37 us 3.65 %

Local TCP/IP connect 11.76 ps 11.91 ps 1.27 %
Table 4: LMBench performance: microbenchmark latencies
for baseline vs. QUARANTINE.

runs on top of KVM and QEMU 4.2.1 with 64 GB of hugepage
backed memory. We pass through the host’s Aquantia NIC to the
test VM via vfio. For server benchmarks, we generate a load from
a separate client machine with an AMD Ryzen 5 5600X 6-Core
Processor, 16 GB of RAM, and an Aquantia AQC107 NIC, running
Ubuntu 20.04.4.

We ran all our experiments 11 times and report the median. Dur-
ing our experiments, we varied the host/guest CPU configuration
to understand the impact of CPU count. To fairly compare QUARAN-
TINE against the baseline, both configurations use always an equal
number N of CPUs on the physical test machine. In an N-CPU
configuration, the baseline runs the test VM with N virtual CPUs
(vCPUs). In contrast, QUARANTINE always uses a single host CPU
and N — 1 guest CPUs, and therefore runs the test VM with N — 1
vCPUs. As QUARANTINE needs both a host and a guest CPU, the
minimal configuration it can run on is the 2-CPU one.

LMbench. We first evaluated Quarantine on the LMbench bench-
mark suite to stress-test the guest kernel. As LMbench is a single-
threaded workload, we ran LMbench in the test VM under the
minimal 2-CPU configuration. Table 4 presents our results.

As shown in the table, the performance overhead varies greatly
across microbenchmarks. The overhead is more prominent for the
select benchmarks, presumably due to the growing number of
VM-exits as one increases the number of monitored file descriptors.

Hertogh et al.

Nginx Throughput x10° Nginx Latency

12 Baseline 99% latency

1200 Baseline throughput
Quarantine 99% latency

Quarantine throughput

Latency (iis)

Throughput (kReqs/
=3

IS

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Number of CPUs Number of CPUs

(a) Throughput (b) 99% Latency

Figure 5: Performance impact of QUARANTINE for Nginx.
Both baseline and QUARANTINE have the same total number
of CPUs available during the experiments.

Overall, QUARANTINE suffers a 11.2% geomean overhead compared
to the baseline. This is better than spot mitigation performance.

Nginx. To evaluate the impact of our design on real-world user
applications, we evaluated the Nginx web server running in the test
VM on QUARANTINE. In particular, we ran experiments on Nginx
1.20.2, serving a 64 byte file over 4,096 concurrent connections. We
benchmark Nginx using the wrk [17] benchmarking tool on the
client machine, using 32 client wrk threads for 30 seconds. The
client machine is not capable of fully saturating nginx for large
numbers of cores. Therefore, although we ran our experiments up
to 128 CPUs, we only included the results where the CPU saturation
was more than 99%, i.e., up to the 30-CPU configuration.

Figure 5a displays Nginx’s throughput for varying configurations.
In a 2-CPU configuration, the baseline has approximately double the
throughput of QUARANTINE. This is expected, as QUARANTINE can
only use a single guest CPU to run the VM with Nginx, as opposed to
the baseline using two. The cost of QUARANTINE due to dedicating
a CPU to run the host gets amortized as we move to bigger CPU
counts. Quarantine’s relative throughput degradation compared to
the baseline becomes 23.9% at the 10-CPU configuration and stays
stable until the 28-CPU configuration, listing 22.8% degradation.
For even bigger configurations, Quarantine’s performance starts to
plummet due to the single host CPU bottlenecking the system.

The throughput degradation is caused by two factors: (1) not
running the VM/Nginx on the host CPU, and (2) the performance
impact of QUARANTINE, due to, e.g., VM-exit and interrupt rerout-
ing. For the 10-CPU and 28-CPU configurations, (1) contributes
10.0% and 3.6% throughput degradation respectively, and hence (2)
accounts for 15.4% and 19.9% respectively. We suspect the increas-
ing load on the host CPU, as we scale up, to lead to longer VM-exit
latencies, which cause the increase in overhead of type (2).

We also measured the 99% tail latency experienced of Nginx
during the execution of our benchmarks. Figure 5b presents our
results. Running Nginx on only a single vCPU, i.e., in the 1-CPU
configuration for the baseline and in the 2-CPU configuration for
QUARANTINE, results in very low tail latencies—not unexpected in
a single-worker-process configuration of Nginx.

On higher-CPU-count configurations, the tail latency of the
baseline and QUARANTINE become similar. Both baseline and QUAR-
ANTINE have minimal 99% tail latency in the 14-CPU config, with

QUARANTINE: Mitigating Transient Execution Attacks with Physical Domain Isolation

Memcached Throughput

1000

800

Throughput (kRegs/s)

9

Baseline throughput
Quarantine throughput

0 5 10 15 20 25 30

0 2
Number of CPUs

Figure 6: Memcached throughput.

QUARANTINE’s latency being 73.2% longer than the baseline’s. From
the 26-CPU configuration onwards, the baseline’s tail latency stays
low, while QUARANTINE’s steadily grows. This is again because the
host CPU start bottlenecking the system for bigger configurations.

Memcached. We ran Memcached 1.6.12 in the exact same setup
as Nginx in our test VM. The client machine runs memaslap v1.0
for 30 seconds with 20 threads and a concurrency of 140 to generate
the workload. The results are listed in Figure 6. The CPU utilization
is again more than 99% for every config with at most 30 CPUs.

QUARANTINE has peak throughput on the 10-CPU configura-
tion, reporting a throughput degradation of 17.4% compared to the
baseline. The figure also emphasizes that Quarantine’s core con-
figuration is workload dependent. Memcached spends more time
in the host and therefore needs more host cores per guest core on
average, compared to Nginx.

Interrupt Rerouting and Cache Partitioning. We also ran the bench-
marks above with interrupt rerouting and/or LLC partitioning dis-
abled. This did not result in any significant changes in performance.
We think this is because induced extra communication overhead
is compensated by better locality. We conclude that these security
enhancing measures do not affect performance.

8.2 Engineering Effort

We now compare the engineering effort of our virtualization-based
isolation QUARANTINE prototype. We measured 523 lines of code?
over 16 files for the full prototype, which was designed and en-
gineered in only 5 person months. Such low effort is in contrast
to kernel-based isolation as well as other existing blanket protec-
tions against transient execution attacks, namely Address Space
Isolation (ASI) [90] and the Secret-Free hypervisor (SF) [103]. ASI
and SF provide MMU-based isolation (as oposed to our core-based
isolation). This requires to have explicit knowledge of “secrets” (or
“non-secrets”), introducing additional complexity. ASI was devel-
oped by multiple teams from multiple companies for over 3 years,
with the most recent patch changing 189 files and 4,229 lines of
code® [90]. SF’s engineering effort was not detailed by the authors,
however they report 2,415 lines of code changed for Secret-Free Xen.
We conclude that QUARANTINE’s engineering (and maintenance)
effort is far lower than competing solutions.

3measured using CLOC v1.92 [11]

RAID ’23, October 16-18, 2023, Hong Kong, Hong Kong

8.3 Security Evaluation

Remaining Attack Surface. In this section, we evaluate how ef-
fective QUARANTINE is in reducing the attack surface of core-local
transient execution attacks. Recall that, although an ideal design
would achieve perfect isolation, i.e., 100% attack surface reduction,
such perfect physical domain isolation strategy is infeasible in prac-
tice due to the constraints imposed by virtualization hardware. As
such, QUARANTINE strives to minimize the privileged (host) stub of
code run on unprivileged (guest) CPUs. To quantify such residual
attack surface, we measure the number of hypervisor functions run
on guest CPUs compared to the baseline. We focus on the num-
ber of functions since the number of potential transient execution
gadgets is approximately proportional to the number of vulnerable
functions an attacker has access to.

Our hypervisor consists of two components: QEMU and KVM.
QEMU contains 9,831 functions in total. This static set over approxi-
mates all the functions (and gadgets) an attacker can possibly reach,
targeting specific virtual devices, etc.—providing an indication of
the baseline attack surface for QEMU. A similar estimate is much
harder for KVM, due to its tight integration inside the Linux ker-
nel. As a more realistic but also pessimistic proxy, we used Linux’
function tracing capabilities to dynamically trace the set of KVM
functions executed during the execution of saturated Nginx. We
adopted a similar tracing-based approach to identify the set of KVM
functions QUARANTINE needs to run on guest CPUs—and manually
checked the code to ensure our approximation was sound. Our
analysis reported 2,113 KVM functions executed by the baseline
and 297 KVM functions executed by QUARANTINE’s guest CPUs. As
our combined results show, the baseline (QEMU+KVM) attack sur-
face consists of 11,944 host functions, while QUARANTINE’s residual
attack surface consists of only 297 functions, 2.5% of the baseline.

To understand the nature of the residual attack surface, we in-
spected the 297 remaining host functions. The purposely chosen
code for our runners contributes 48 of the functions, while the
scheduler contributes most of the code, namely 167 functions. The
other 87 functions have a variety of origins, such as CPU-local in-
terrupt handlers, wait queues, watchdogs, the eventfd subsystem,
and the RCU subsystem.

We conclude that QUARANTINE significantly reduces the tran-
sient execution attack surface in practice: 97.5% for VMs and even
more (over 99.5%) for unikernel applications, given that the entire
Linux kernel and its many gadgets [48] are part of the baseline
attack surface.

Security Guarantees. Recall that our threat model considers user-
to-user, user-to-kernel, VM-to-VM, and VM-to-hypervisor attack
scenarios. Within this context, QUARANTINE effectively mitigates a
whole class of attacks, namely transient execution attacks that leak
on-core data. As physical domain isolation separates attacker and
victim on separate cores, QUARANTINE forces an attacker to use a
cross-core attack. Cross-core domain-bypass attacks are inherently
impossible using on-core leakage. Cross-core cross-domain attacks
require the victim to contain a trigger gadget reachable across
cores, as well as a disclosure gadget for a non-LLC cross-core covert
channel, making such attacks infeasible in practice.

This class of on-core leaking transient execution attacks includes
24 of out the 27 known transient execution attacks on Intel CPUs

RAID ’23, October 16-18, 2023, Hong Kong, Hong Kong

(cf. Table 1). Possibly even more importantly: QUARANTINE is more
future proof than the plethora of spot mitigations. QUARANTINE
guarantees to defend against any on-core leaking transient exe-
cution attack, including future ones. Spot mitigations do not give
similar guarantees whatsoever. In contrast, historically spot mitiga-
tions have time and time again been circumvented [3, 74, 100, 102].

9 DISCUSSION

Our evaluation demonstrates that physical domain isolation is feasi-
ble and can be implemented using reasonable performance penalties.
We believe that our prototype provides a solid base to demonstrate
this, however we believe there is room for additional improvements.

Scaling via Multiple Host Cores. Currently, our prototype only
supports one host CPU. Consequently, we did not evaluate the effect
of several host cores, but we believe that allowing for multiple host
cores will improve QUARANTINE’s performance after the first host
core is saturated. However, given that our evaluation showed that
even a single host core can handle huge and realistic workloads,
we leave this to future work.

Hardening of Privileged Stubs. Although privileged stubs archi-
tecturally only access security insensitive data, they might spec-
ulatively access secret data, which would then become leakable
on-core. To this end, we minimized the size of the privileged stubs
(by 97.5%), ensuring no such gadgets remain in the stub. In order to
systematically ensure this, future work could use modern gadget
scanners [48, 79, 83], which are effective since the stub’s code is
small and frequently executed. Another option would be to unmap
all memory on guest cores, and just-in-time map pages whenever
the stub needs access (meaning the data is insensitive).

Alternative Covert Channels. QUARANTINE mitigates cross-core
covert channels used by transient execution attacks, by partitioning
the LLC. Practical exploits have so far only used data cache covert
channels, which could generalize to a cross-core setting using the
LLC. Other cross-core covert channels do exist, e.g., DRAM row
buffer [82], though there usability in practical transient execution
attacks has never been shown. In particular, there granularity is
much higher and no practical disclosure gadgets in real-world soft-
ware has been found so far. The same holds for covert channels
abusing imperfect LLC partitioning implementations [50, 80]. If, in
the future, another covert channel does pose a threat, QUARANTINE
could be extended to also mitigate it, e.g., a DRAM row buffer aware
allocator to isolate different security domains on different DRAM
banks.

Hardware/Software Co-design. Although QUARANTINE is cur-
rently a software-only mitigation, the approach could benefit from
a hardware/software co-design. Heterogeneous multicore proces-
sors [75] allow host and guest cores to be mapped on different
microarchitectures, potentially improving overall efficiency. QUAR-
ANTINE would also benefit from lower latency cross-core commu-
nication primitives.

10 RELATED WORK

Isolation for Performance. There is alarge body of work on system
design using isolation to improve performance, with an extensive

Hertogh et al.

focus on virtualized environments and clouds. Some efforts rely on
commodity hardware features such as Intel CAT to partition shared
microarchitectural state such as LLCs and study the resulting per-
formance isolation guarantees on otherwise unmodified virtualized
systems [104, 107]. Other efforts focus on rethinking the virtualiza-
tion stack to improve performance isolation and specialization.

FlexSC [91] is an early example for for separating kernel and
userspace. It reduces the cost of system calls by sending system call
requests and replies via a shared page. This way, the authors could
run the kernel on one core and the user process on another. FlexSC
does not focus on fully synchronizing the two domains (e.g., it
does not reroute interrupts). Later work showed that spreading the
components of a small (research) OS across separate cores improves
reliability [22].

Kumar et al. [15, 55] conducted early work on the idea of sidecores:
cores dedicated to performing specific hypervisor functionality.
Since then, much research has focused on improving virtualized
I/O performance by using I/O sidecores [2, 19, 20, 57, 63, 67, 106].
The main idea is to move the part of the hypervisor responsible
for I/O to dedicated cores, in order to minimize the number of I/O-
induced VM-exits and hence optimize performance. In contrast to
these solutions, QUARANTINE seeks to isolate as much privileged
(hypervisor) code as possible to specific cores for security.

Landau et al. [58] previously explored the idea of splitting guest
and hypervisor execution on separate cores to improve performance.
They argue that their split hypervisor/guest execution design is
infeasible on commodity hardware and describe a hardware model
which would make the design practical. QUARANTINE can be seen
as a practical approximation of “split execution” for security on
contemporary hardware and hypervisors.

Finally, unikernels [54, 56, 68, 69, 72] isolate application code
from the rest of the system using virtualization. This paradigm
has emerged as the golden standard for performance specializa-
tion in virtualized environments, with impressive speedups even
when simply folding unmodified applications and the Linux ker-
nel into a unikernel using KML—as suggested by Lupine [56] and
Unikraft [54]. With QUARANTINE, we suggest unikernels can also
serve as a convenient way to transform unmodified applications
into portable security domains for security isolation.

Isolation for Security. Apart from domain-specific variants (e.g.,
Site Isolation in web browsers [86]), much research on isolation
against side-channel and transient execution attacks focuses on OS-
or hypervisor-level isolation. Similar to performance isolation, prior
research has suggested using commodity hardware features (e.g.,
Intel CAT [66]) or system design to counter side-channel attacks.
In the latter category, early work [49, 93] suggested hypervisor-
less cloud architectures, which, however, lack many of the modern
virtualization features. More recent work focuses on commodity
virtualization stacks, with solutions such as moving target defenses
to periodically randomize VM placements and minimize attack
exposure [77]. Unlike QUARANTINE, all these solutions target tradi-
tional cross-VM side-channel attacks, but are not concerned with
transient execution attacks leaking on-core data from other unpriv-
ileged/privileged security domains.

Even more recently, researchers have suggested isolation prim-
itives such as USC to mitigate transient execution attacks [5]. To

QUARANTINE: Mitigating Transient Execution Attacks with Physical Domain Isolation

minimize the attack surface, USC requires the kernel/hypervisor
to map the bare minimum amount of memory while serving user
requests. While this design has been demonstrated on research ker-
nels [5], it is challenging to implement on commodity kernels, as
it requires pervasive kernel/hypervisor changes. Indeed, there are
concurrent proposals to implement similar solutions such as ASI on
Linux/KVM [90] and SF [103] on Xen, which are considerably more
complex than QUARANTINE, as discussed in Section 8.2. A simpler
option is to allow users to annotate sensitive memory regions and
prevent any non-user accesses [10]. However, this strategy can
only protect predetermined data. Moreover, unlike QUARANTINE,
all these solutions assume that the necessary kernel-mapped data
contains no relevant secret, a property which is nontrivial to verify
in practice. Finally, another ongoing proposal is for coresched [14]
to re-enable its kernel-protection mechanism to mitigate on-core
unprivileged-to-privileged domain attacks, but developers have
reported “abyssal” performance due to the strict kernel entry/exit
synchronization between sibling CPU threads [9].

11 CONCLUSION

Domain isolation is a well-established systems security principle
and its applicability has transferred to the ongoing transient execu-
tion era. Unfortunately, the ability of a transient execution attacker
to leak data across security domains such as concurrently running
kernel code makes it challenging to implement isolation on com-
modity systems. In this paper, we showed that, by targeting the
guest-host (rather than much more complex user-kernel) interface,
it is feasible to move the privileged hypervisor domain to an entirely
separate core at a low complexity cost. This design provides strong
security guarantees against a broad spectrum of both known and
unknown transient execution attacks. To substantiate our claims,
we presented a QUARANTINE prototype for Linux/KVM, empiri-
cally showing that physical domain isolation is efficient and has less
overhead than the combination of state-of-the-art spot mitigations.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their feedback. This work
was supported by Intel Corporation through the “Allocamelus”
project, the Dutch Science Organization (NWO) through project
“Intersect”, and VMWare through an “Early Career Faculty” award.
SBA Research (SBA-K1) funded this work within the framework of
COMET-Competence Centers for Excellent Technologies by the
Austrian Federal Ministry for Climate Action, Environment, Energy,
Mobility, Innovation and Technology (BMK), the Austrian Federal
Ministry of Labour and Economy (BMDW), and the federal state of
Vienna, managed by the The Austrian Research Promotion Agency
(FFG).

REFERENCES

[1] Amazon. 2020. Flushing L1d On Context Switches. https://www.phoronix.com/
scan.php?page=news_item&px=Linux-Blasts-L1d-Flushing.

[2] Nadav Amit, Muli Ben-Yehuda, IBM Research, Dan Tsafrir, and Assaf Schuster.
2011. vVIOMMU: Efficient IOMMU Emulation. In 2011 USENIX Annual Technical
Conference (USENIX ATC 11). USENIX Association, Portland, OR. https://www.
usenix.org/conference/usenixatc11/viommu-efficient-iommu-emulation

[3] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos, and Cristiano Giuf-
frida. 2022. Branch History Injection: On the Effectiveness of Hardware Mit-
igations Against Cross-Privilege Spectre-v2 Attacks. In 31st USENIX Security

[10
[11
[12
[13
[14
[15

[16

[17
[18

[19

[20

[21

[22

[23

[24

[25

[26

]

]

]

]

]
]

RAID ’23, October 16-18, 2023, Hong Kong, Hong Kong

Symposium (USENIX Security 22). USENIX Association, Boston, MA, 971-988.
https://www.usenix.org/conference/usenixsecurity22/presentation/barberis
Jonathan Behrens, Adam Belay, and M. Frans Kaashoek. 2022. Performance
Evolution of Mitigating Transient Execution Attacks. In Proceedings of the
Seventeenth European Conference on Computer Systems (Rennes, France) (EuroSys
"22). Association for Computing Machinery, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3492321.3519559

Jonathan Behrens, Anton Cao, Cel Skeggs, Adam Belay, M. Frans Kaashoek, and
Nickolai Zeldovich. 2020. Efficiently Mitigating Transient Execution Attacks
using the Unmapped Speculation Contract. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20). USENIX Association,
1139-1154. https://www.usenix.org/conference/osdi20/presentation/behrens
Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In
2005 USENIX Annual Technical Conference (USENIX ATC 05). USENIX Associa-
tion, Anaheim, CA. https://www.usenix.org/conference/2005-usenix-annual-
technical-conference/qemu-fast-and-portable-dynamic-translator

Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von
Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2019.
A Systematic Evaluation of Transient Execution Attacks and Defenses. In 28th
USENIX Security Symposium (USENIX Security 19). USENIX Association, Santa
Clara, CA, 249-266. https://www.usenix.org/conference/usenixsecurity19/
presentation/canella

Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Ma-
rina Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar,
Jo Van Bulck, and Yuval Yarom. 2019. Fallout: Leaking Data on Meltdown-
resistant CPUs. In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM.

Alexandre Chartre. 2022. Address Space Isolation for KVM. https://lore.kernel.
org/lkml/91dd5f0a- 61da-074d-42ed-bf0886f617d9@oracle.com/

Jonathan Corbet. 2021. memfd_secret() in 5.14. https://lwn.net/Articles/837595/
Albert Danial. 2021. cloc: v1.92. https://doi.org/10.5281/zenodo.5760077

Linux Developers. 2020. https://www.kernel.org/doc/html/latest/admin- guide/
hw-vuln/core-scheduling html#protecting- the-kernel-irq-syscall-vmexit
Linux Kernel Developers. 2019. Spectre Side Channels - Linux Kernel Documen-
tation. https://www.kernel.org/doc/html/v5.15/admin-guide/hw-vuln/spectre.
html

Joel Fernandes. 2020. Core scheduling (v9). (Nov 2020). https://lore kernel.org/
all/20201117232003.3580179- 1-joel@joelfernandes.org/

Ada Gavrilovska, Sanjay Kumar, Himanshu Raj, Karsten Schwan, Vishakha
Gupta, Ripal Nathuji, Radhika Niranjan, Adit Ranadive, and Purav Saraiya. 2007.
High-performance hypervisor architectures: Virtualization in hpc systems. In
Workshop on system-level virtualization for HPC (HPCVirt). Citeseer.

Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. 2019. Time Protection:
The Missing OS Abstraction. In Proceedings of the Fourteenth EuroSys Conference
2019 (Dresden, Germany) (EuroSys ’19). Association for Computing Machinery,
New York, NY, USA, Article 1, 17 pages. https://doi.org/10.1145/3302424.3303976
Will Glozer. 2012. wrk - a HTTP benchmarking tool. https://github.com/wg/wrk
Enes Goktas, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and Cristiano
Giuffrida. 2020. Speculative Probing: Hacking Blind in the Spectre Era. In Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security.

Abel Gordon, Nadav Har’El, Alex Landau, Muli Ben-Yehuda, and Avishay
Traeger. 2012. Towards Exitless and Efficient Paravirtual I/O. In Proceedings of
the 5th Annual International Systems and Storage Conference (Haifa, Israel) (SYS-
TOR ’12). Association for Computing Machinery, New York, NY, USA, Article
10, 6 pages. https:/doi.org/10.1145/2367589.2367593

Nadav Har’El, Abel Gordon, Alex Landau, Muli Ben-Yehuda, Avishay Traeger,
and Razya Ladelsky. 2013. Efficient and Scalable Paravirtual I/O System. In 2013
USENIX Annual Technical Conference (USENIX ATC 13). USENIX Association,
San Jose, CA, 231-242.

Jann Horn. 2018. Speculative Store Bypass. https://bugs.chromium.org/p/
project-zero/issues/detail?id=1528.

Tomas Hruby, Dirk Vogt, Herbert Bos, and Andrew S. Tanenbaum. 2012. Keep
Net Working - on a Dependable and Fast Networking Stack. In Proceedings of
the 2012 42nd Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN) (DSN °12). IEEE Computer Society, USA, 12 pages.

Intel. 2018. Bounds Check Bypass. https://www.intel.com/content/www/
us/en/developer/articles/technical/software-security-guidance/advisory-
guidance/bounds-check-bypass.html

Intel. 2018. Branch Target Injection. https://www.intel.com/content/www/
us/en/developer/articles/technical/software- security-guidance/advisory-
guidance/branch-target-injection.html

Intel. 2018. Indirect Branch Restricted Speculation. https:
//www.intel.com/content/www/us/en/developer/articles/technical/software-
security-guidance/technical-documentation/indirect-branch-restricted-
speculation.html

Intel. 2018. L1 Terminal Fault. https://www.intel.com/content/www/
us/en/developer/articles/technical/software-security- guidance/advisory-

https://www.phoronix.com/scan.php?page=news_item&px=Linux-Blasts-L1d-Flushing
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Blasts-L1d-Flushing
https://www.usenix.org/conference/usenixatc11/viommu-efficient-iommu-emulation
https://www.usenix.org/conference/usenixatc11/viommu-efficient-iommu-emulation
https://www.usenix.org/conference/usenixsecurity22/presentation/barberis
https://doi.org/10.1145/3492321.3519559
https://www.usenix.org/conference/osdi20/presentation/behrens
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://lore.kernel.org/lkml/91dd5f0a-61da-074d-42ed-bf0886f617d9@oracle.com/
https://lore.kernel.org/lkml/91dd5f0a-61da-074d-42ed-bf0886f617d9@oracle.com/
https://lwn.net/Articles/837595/
https://doi.org/10.5281/zenodo.5760077
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/core-scheduling.html#protecting-the-kernel-irq-syscall-vmexit
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/core-scheduling.html#protecting-the-kernel-irq-syscall-vmexit
https://www.kernel.org/doc/html/v5.15/admin-guide/hw-vuln/spectre.html
https://www.kernel.org/doc/html/v5.15/admin-guide/hw-vuln/spectre.html
https://lore.kernel.org/all/20201117232003.3580179-1-joel@joelfernandes.org/
https://lore.kernel.org/all/20201117232003.3580179-1-joel@joelfernandes.org/
https://doi.org/10.1145/3302424.3303976
https://github.com/wg/wrk
https://doi.org/10.1145/2367589.2367593
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/bounds-check-bypass.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/bounds-check-bypass.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/bounds-check-bypass.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/branch-target-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/branch-target-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/branch-target-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/l1-terminal-fault.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/l1-terminal-fault.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/l1-terminal-fault.html

RAID ’23, October 16-18, 2023, Hong Kong, Hong Kong

guidance/l1-terminal-fault.html

Intel. 2018. Lazy FP state restore. https://www.intel.com/content/www/us/en/
security-center/advisory/intel-sa-00145 html

Intel. 2018. Rogue Data Cache Load. https://www.intel.com/content/www/
us/en/developer/articles/technical/software- security-guidance/advisory-
guidance/rogue-data-cache-load. html

Intel. 2018. Rogue System Register Read. https://www.intel.com/content/www/
us/en/developer/articles/technical/software-security- guidance/advisory-
guidance/rogue-system-register-read.html

Intel. 2018. Speculative Store Bypass. https://www.intel.com/content/www/
us/en/developer/articles/technical/software- security-guidance/advisory-
guidance/speculative-store-bypass.html

Intel. 2019. Intel Transactional Synchronization Extensions (Intel TSX)
Asynchronous Abort. https://www.intel.com/content/www/us/en/developer/
articles/technical/software-security-guidance/advisory-guidance/intel- tsx-
asynchronous-abort.html

Intel. 2019. Microarchitectural Data Sampling. https://www.intel.
com/content/www/us/en/developer/articles/technical/software-security-
guidance/advisory-guidance/microarchitectural-data-sampling.html

Intel. 2019. Speculative Behavior of SWAPGS and Segment Registers. https:
//www.intel.com/content/www/us/en/developer/articles/technical/software-
security-guidance/advisory-guidance/speculative-behavior-swapgs-and-
segment-registers.html

Intel. 2020. L1D Eviction Sampling. https://www.intel.com/content/www/
us/en/developer/articles/technical/software-security-guidance/advisory-
guidance/l1d-eviction-sampling.html

Intel. 2020. Load Value Injection. https://www.intel.com/content/www/
us/en/developer/articles/technical/software-security-guidance/advisory-
guidance/load-value-injection.html

Intel. 2020. Snoop-assisted L1 Data Sampling. https://www.intel.
com/content/www/us/en/developer/articles/technical/software-security-
guidance/advisory-guidance/snoop-assisted-11-data-sampling.html

Intel. 2020. Special Register Buffer Data Sampling. https://www.intel.
com/content/www/us/en/developer/articles/technical/software-security-
guidance/advisory-guidance/special-register-buffer- data- sampling.html

Intel. 2020. Vector Register Sampling. https://www.intel.com/content/www/
us/en/developer/articles/technical/software-security- guidance/advisory-
guidance/vector-register-sampling.html

Intel. 2021. Floating Point Value Injection. https://www.intel.com/
content/www/us/en/developer/articles/technical/software-security-
guidance/advisory-guidance/floating-point-value-injection.html

Intel. 2021. Microarchitectural Data Sampling (MDS), Version: 3.0.
https://www.intel.com/content/www/us/en/developer/articles/technical/
software-security-guidance/technical-documentation/intel- analysis-
microarchitectural-data- sampling. html.

Intel. 2021. Speculative Code Store Bypass. https://www.intel.com/
content/www/us/en/developer/articles/technical/software-security-
guidance/advisory-guidance/speculative-code-store-bypass.html

Intel. 2022. Branch History Injection and Intra-mode Branch Target In-
jection. https://www.intel.com/content/www/us/en/developer/articles/
technical/software-security-guidance/advisory-guidance/branch-history-
injection.html

Intel. 2022. Fast Store Forwarding Predictor. https://www.intel.
com/content/www/us/en/developer/articles/technical/software-security-
guidance/technical-documentation/fast- store-forwarding-predictor.html
Intel. 2022. Post-barrier Return Stack Buffer Predictions. https:
//www.intel.com/content/www/us/en/developer/articles/technical/software-
security-guidance/advisory-guidance/post-barrier-return-stack-buffer-
predictions.html

Intel. 2022. Processor MMIO Stale Data Vulnerabilities. https://www.intel.
com/content/www/us/en/developer/articles/technical/software-security-
guidance/advisory-guidance/processor-mmio-stale-data-vulnerabilities.html
Intel. 2022. Return Stack Buffer Underflow. https://www.intel.com/
content/www/us/en/developer/articles/technical/software-security-
guidance/advisory-guidance/return-stack-buffer-underflow.html

Intel. 2022. Speculative Load Disordering. https://www.intel.com/
content/www/us/en/developer/articles/technical/software-security-
guidance/advisory-guidance/speculative-load-disordering.html

Brian Johannesmeyer, Jakob Koschel, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. 2022. Kasper: Scanning for Generalized Transient Execution Gadgets
in the Linux Kernel. In NDSS.

Eric Keller, Jakub Szefer, Jennifer Rexford, and Ruby B Lee. 2010. Nohype:
virtualized cloud infrastructure without the virtualization. In Proceedings of the
37th annual international symposium on Computer architecture.

Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and
Joel Emer. 2018. DAWG: A defense against cache timing attacks in speculative
execution processors. In 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 974-987.

[51]

[52]

[53

[54]

[55]

[56

[57

[58]

[59

[60

[61

[62

[63]

[64]

[65

[66

[67

[68

[69

[70

[71]

Hertogh et al.

Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative Buffer Overflows:
Attacks and Defenses. arXiv:1807.03757 [cs.CR]

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Ex-
ecution. In 2019 IEEE Symposium on Security and Privacy (SP). 1-19. https:
//doi.org/10.1109/SP.2019.00002

Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and
Nael Abu-Ghazaleh. 2018. Spectre Returns! Speculation Attacks using the
Return Stack Buffer. In 12th USENIX Workshop on Offensive Technologies (WOOT
18). USENIX Association, Baltimore, MD. https://www.usenix.org/conference/
woot18/presentation/koruyeh

Simon Kuenzer, Vlad-Andrei Badoiu, Hugo Lefeuvre, Sharan Santhanam, Alexan-
der Jung, Gaulthier Gain, Cyril Soldani, Costin Lupu, Stefan Teodorescu, Costi
Réducanu, Cristian Banu, Laurent Mathy, Razvan Deaconescu, Costin Raiciu,
and Felipe Huici. 2021. Unikraft: Fast, Specialized Unikernels the Easy Way. In
Proceedings of the Sixteenth European Conference on Computer Systems (Online
Event, United Kingdom) (EuroSys °21). Association for Computing Machinery,
New York, NY, USA, 376-394. https://doi.org/10.1145/3447786.3456248
Sanjay Kumar, Himanshu Raj, Karsten Schwan, and Ivan Ganev. 2007. Re-
architecting VMMs for multicore systems: The sidecore approach. In Workshop
on Interaction between Opearting Systems & Computer Architecture (WIOSCA).
Citeseer.

Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and Sibin Mohan. 2020. A Linux
in Unikernel Clothing. In Proceedings of the Fifteenth European Conference on
Computer Systems (Heraklion, Greece) (EuroSys "20). Association for Computing
Machinery, New York, NY, USA, Article 11, 15 pages. https://doi.org/10.1145/
3342195.3387526

Yossi Kuperman, Eyal Moscovici, Joel Nider, Razya Ladelsky, Abel Gordon, and
Dan Tsafrir. 2016. Paravirtual remote i/o. ACM SIGARCH Computer Architecture
News 44, 2 (2016).

Alex Landau, Muli Ben-Yehuda, and Abel Gordon. 2011. SplitX: Split Guest/Hy-
pervisor Execution on Multi-Core. In 3rd Workshop on I/O Virtualization (WIOV
11). USENIX Association, Portland, OR. https://www.usenix.org/conference/
wiov11/splitx-split- guesthypervisor-execution-multi-core

Michael Larabel. 2018. Bisected: The Unfortunate Reason Linux 4.20 Is Running
Slower. https://www.phoronix.com/scan.php?page=article&item=linux-420-
bisect.

Michael Larabel. 2020. The Brutal Performance Impact From Mitigating The
LVI Vulnerability. https://www.phoronix.com/review/lvi-attack-perf.

Michael Larabel. 2022. Call Depth Tracking For Less Costly Retbleed Mitigation
Hopes To Land Soon. https://www.phoronix.com/news/Call-Depth-Tracking-
Hope-Soon

Michael Larabel. 2022. In Light Of Spectre BHI, The Performance Impact For
Retpolines On Modern Intel CPUs. https://www.phoronix.com/scan.php?page=
article&item=spectre-bhi-retpoline&num=1.

Dongwoo Lee, Changwoo Min, and Young Ik Eom. 2016. vCanal: Paravirtual
Socket Library towards Fast Networking in Virtualized Environment. IEICE
TRANSACTIONS on Information and Systems 99, 2 (2016).

Chuanpeng Li, Chen Ding, and Kai Shen. 2007. Quantifying the Cost of Context
Switch. In Proceedings of the 2007 Workshop on Experimental Computer Science
(San Diego, California) (ExpCS ’07). Association for Computing Machinery, New
York, NY, USA, 2-es. https://doi.org/10.1145/1281700.1281702

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, Mike
Hamburg, and Raoul Strackx. 2020. Meltdown: Reading Kernel Memory from
User Space. Commun. ACM 63, 6 (may 2020), 46-56. https://doi.org/10.1145/
3357033

Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,
and Ruby B. Lee. 2016. CATalyst: Defeating last-level cache side channel attacks
in cloud computing. In 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 406-418. https://doi.org/10.1109/HPCA.2016.
7446082

Jiuxing Liu and Bulent Abali. 2009. Virtualization polling engine (VPE) using
dedicated CPU cores to accelerate I/O virtualization. In Proceedings of the 23rd
international conference on Supercomputing.

Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas Gazagnaire,
David Sheets, Dave Scott, Richard Mortier, Amir Chaudhry, Balraj Singh, Jon
Ludlam, et al. 2015. Jitsu:Just-In-Time Summoning of Unikernels. In NSDL
Anil Madhavapeddy and David] Scott. 2013. Unikernels: Rise of the Virtual
Library Operating System. Queue 11, 11 (2013).

Toshiyuki Maeda and Akinori Yonezawa. 2003. Kernel Mode Linux: Toward
an Operating System Protected by a Type Theory. In Advances in Computing
Science — ASIAN 2003. Progamming Languages and Distributed Computation
Programming Languages and Distributed Computation, Vijay A. Saraswat (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 3-17.

Giorgi Maisuradze and Christian Rossow. 2018. ret2spec: Speculative Execution
using Return Stack Buffers. (2018).

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/l1-terminal-fault.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00145.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00145.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/rogue-data-cache-load.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/rogue-data-cache-load.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/rogue-data-cache-load.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/rogue-system-register-read.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/rogue-system-register-read.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/rogue-system-register-read.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-store-bypass.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-store-bypass.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-store-bypass.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/intel-tsx-asynchronous-abort.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/intel-tsx-asynchronous-abort.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/intel-tsx-asynchronous-abort.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/microarchitectural-data-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/microarchitectural-data-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/microarchitectural-data-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-behavior-swapgs-and-segment-registers.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-behavior-swapgs-and-segment-registers.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-behavior-swapgs-and-segment-registers.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-behavior-swapgs-and-segment-registers.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/l1d-eviction-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/l1d-eviction-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/l1d-eviction-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/load-value-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/load-value-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/load-value-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/snoop-assisted-l1-data-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/snoop-assisted-l1-data-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/snoop-assisted-l1-data-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/special-register-buffer-data-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/special-register-buffer-data-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/special-register-buffer-data-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/vector-register-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/vector-register-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/vector-register-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/floating-point-value-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/floating-point-value-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/floating-point-value-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/intel-analysis-microarchitectural-data-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/intel-analysis-microarchitectural-data-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/intel-analysis-microarchitectural-data-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-code-store-bypass.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-code-store-bypass.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-code-store-bypass.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/fast-store-forwarding-predictor.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/fast-store-forwarding-predictor.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/fast-store-forwarding-predictor.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/post-barrier-return-stack-buffer-predictions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/post-barrier-return-stack-buffer-predictions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/post-barrier-return-stack-buffer-predictions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/post-barrier-return-stack-buffer-predictions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/processor-mmio-stale-data-vulnerabilities.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/processor-mmio-stale-data-vulnerabilities.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/processor-mmio-stale-data-vulnerabilities.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/return-stack-buffer-underflow.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/return-stack-buffer-underflow.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/return-stack-buffer-underflow.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-load-disordering.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-load-disordering.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-load-disordering.html
https://arxiv.org/abs/1807.03757
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://doi.org/10.1145/3447786.3456248
https://doi.org/10.1145/3342195.3387526
https://doi.org/10.1145/3342195.3387526
https://www.usenix.org/conference/wiov11/splitx-split-guesthypervisor-execution-multi-core
https://www.usenix.org/conference/wiov11/splitx-split-guesthypervisor-execution-multi-core
https://www.phoronix.com/scan.php?page=article&item=linux-420-bisect
https://www.phoronix.com/scan.php?page=article&item=linux-420-bisect
https://www.phoronix.com/review/lvi-attack-perf
https://www.phoronix.com/news/Call-Depth-Tracking-Hope-Soon
https://www.phoronix.com/news/Call-Depth-Tracking-Hope-Soon
https://www.phoronix.com/scan.php?page=article&item=spectre-bhi-retpoline&num=1
https://www.phoronix.com/scan.php?page=article&item=spectre-bhi-retpoline&num=1
https://doi.org/10.1145/1281700.1281702
https://doi.org/10.1145/3357033
https://doi.org/10.1145/3357033
https://doi.org/10.1109/HPCA.2016.7446082
https://doi.org/10.1109/HPCA.2016.7446082

QUARANTINE: Mitigating Transient Execution Attacks with Physical Domain Isolation

(72]

(73]

[74

=
22

%
=

oo
=

(82

(83

(84

(85

oo
2

(87

(88

[89

[90

[91]
[92]

(93]

[94]

[95]

[96

Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit
Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017. My VM is Lighter
(and Safer) than your Container. In SOSP.

Larry W McVoy, Carl Staelin, et al. 1996. LMbench: Portable Tools for Per-
formance Analysis.. In USENIX annual technical conference. San Diego, CA,
USA.

Alyssa Milburn, Ke Sun, and Henrique Kawakami. 2022. You cannot always
win the race: Analyzing the Ifence/jmp mitigation for branch target injection.
arXiv preprint arXiv:2203.04277 (2022).

Sparsh Mittal. 2016. A Survey of Techniques for Architecting and Managing
Asymmetric Multicore Processors. ACM Comput. Surv. 48, 3, Article 45 (feb
2016), 38 pages. https://doi.org/10.1145/2856125

Ingo Molnar and Max Krasnyansky. 2020. SMP IRQ affinity. https://docs.kernel.
org/core-api/irq/irq-affinity.html.

Soo-Jin Moon, Vyas Sekar, and Michael K Reiter. 2015. Nomad: Mitigating
arbitrary cloud side channels via provider-assisted migration. In CCS.

Tsing Mui. 2022. Intel CPUs Lose Up to 36% Performance with New Spectre
Patch. The FPS Review (Mar 2022).

Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fetzer. 2020.
SpecFuzz: Bringing Spectre-type vulnerabilities to the surface. In 29th USENIX
Security Symposium (USENIX Security 20). USENIX Association, 1481-1498.
https://www.usenix.org/conference/usenixsecurity20/presentation/oleksenko
Riccardo Paccagnella, Licheng Luo, and Christopher W Fletcher. 2021. Lord of
the Ring (s): Side Channel Attacks on the CPU On-Chip Ring Interconnect Are
Practical.. In USENIX Security Symposium. 645-662.

Salvador Palanca, Stephen A. Fischer, Subramaniam Maiyuran, and Shekoufeh
Qawami. 2002. MFENCE and LFENCE Micro-Architectural Implementation
Method and System. US Patent 6,651,151.

Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. 2016. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks..
In USENIX Security Symposium. 565-581.

Zhenxiao Qi, Qian Feng, Yueqiang Cheng, Mengjia Yan, Peng Li, Heng Yin, and
Tao Wei. 2021. SpecTaint: Speculative Taint Analysis for Discovering Spectre
Gadgets.. In NDSS.

Hany Ragab, Enrico Barberis, Herbert Bos, and Cristiano Giuffrida. 2021. Rage
Against the Machine Clear: A Systematic Analysis of Machine Clears and Their
Implications for Transient Execution Attacks. In USENIX Security.

Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
2021. CrossTalk: Speculative Data Leaks Across Cores Are Real. In S&P. Intel
Bounty Reward.

Charles Reis, Alexander Moshchuk, and Nasko Oskov. 2019. Site isolation:
Process separation for web sites within the browser. In USENIX Security.

Xida Ren, Logan Moody, Mohammadkazem Taram, Matthew Jordan, Dean M.
Tullsen, and Ashish Venkat. 2021. I See Dead pops: Leaking Secrets via In-
tel/AMD Micro-Op Caches. In 2021 ACM/IEEE 48th Annual International Sympo-
sium on Computer Architecture (ISCA). https://doi.org/10.1109/ISCA52012.2021.
00036

Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-Privilege-
Boundary Data Sampling. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security (London, United Kingdom) (CCS
’19). Association for Computing Machinery, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3319535.3354252

Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel Gruss.
2019. Netspectre: Read arbitrary memory over network. In European Symposium
on Research in Computer Security. Springer.

Junaid Shahid. 2022. Address Space Isolation for KVM. https://lore.kernel.org/
1kml/20220223052223.1202152- 1- junaids@google.com

Livio Soares and Michael Stumm. 2010. FlexSC: Flexible System Call Scheduling
with Exception-Less System Calls. In OSDI Vol. 10.

Julian Stecklina and Thomas Prescher. 2018. LazyFP: Leaking FPU Register State
using Microarchitectural Side-Channels. (2018).

Jakub Szefer, Eric Keller, Ruby B Lee, and Jennifer Rexford. 2011. Eliminating
the hypervisor attack surface for a more secure cloud. In Proceedings of the 18th
ACM conference on Computer and communications security.

Paul Turner. 2018. Retpoline: a Software Construct for Preventing Branch Target
Injection. https://support.google.com/fags/answer/7625886.

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In Proceedings of the 27th USENIX Security Symposium.
USENIX Association.

Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin,
Daniel Genkin, Yarom Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens.
2020. LVI: Hijacking Transient Execution through Microarchitectural Load
Value Injection. In 41th IEEE Symposium on Security and Privacy (S&P’20).

RAID ’23, October 16-18, 2023, Hong Kong, Hong Kong

[97] Stephan van Schaik, Alyssa Milburn, Sebastian Osterlund, Pietro Frigo, Giorgi

[98

[99

[100

[101

[102

[103

[104

[105

[106

[107

]

]

]

]

Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. Adden-
dum 1 to RIDL: Rogue In-flight Data Load. In S&P.

Stephan van Schaik, Alyssa Milburn, Sebastian Osterlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:
Rogue In-flight Data Load. In S&P.

Stephan van Schaik, Alyssa Milburn, Sebastian Osterlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2020. Adden-
dum 2 to RIDL: Rogue In-flight Data Load. In S&P.

Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin, and Yuval
Yarom. 2021. CacheOut: Leaking Data on Intel CPUs via Cache Evictions. In
S&P.

Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikei, Frank
Piessens, Mark Silberstein, Raoul Strackx, Thomas F. Wenisch, and Yuval Yarom.
2018. Foreshadow-NG: Breaking the Virtual Memory Abstraction with Transient
Out-of-Order Execution. Technical report (2018).

Johannes Wikner and Kaveh Razavi. 2022. RETBLEED: Arbitrary Speculative
Code Execution with Return Instructions. In 31st USENIX Security Symposium
(USENIX Security 22). USENIX Association, Boston, MA, 3825-3842. https:
//www.usenix.org/conference/usenixsecurity22/presentation/wikner
Hongyan Xia, David Zhang, Wei Liu, Istvan Haller, Bruce Sherwin, and David
Chisnall. 2022. A Secret-Free Hypervisor: Rethinking Isolation in the Age of
Speculative Vulnerabilities. In IEEE S&P.

Yaocheng Xiang, Xiaolin Wang, Zihui Huang, Zeyu Wang, Yingwei Luo, and
Zhenlin Wang. 2018. DCAPS: Dynamic cache allocation with partial sharing. In
EuroSys.

Wenjie Xiong and Jakub Szefer. 2021. Survey of transient execution attacks and
their mitigations. ACM Computing Surveys (CSUR) 54, 3 (2021).

Cong Xu, Sahan Gamage, Hui Lu, Ramana Kompella, and Dongyan Xu. 2013.
vTurbo: Accelerating Virtual Machine I/O Processing Using Designated Turbo-
Sliced Core. In 2013 USENIX Annual Technical Conference (USENIX ATC 13).
Cong Xu, Karthick Rajamani, Alexandre Ferreira, Wesley Felter, Juan Rubio,
and Yang Li. 2018. dcat: Dynamic cache management for efficient, performance-
sensitive infrastructure-as-a-service. In EuroSys.

https://doi.org/10.1145/2856125
https://docs.kernel.org/core-api/irq/irq-affinity.html
https://docs.kernel.org/core-api/irq/irq-affinity.html
https://www.usenix.org/conference/usenixsecurity20/presentation/oleksenko
https://doi.org/10.1109/ISCA52012.2021.00036
https://doi.org/10.1109/ISCA52012.2021.00036
https://doi.org/10.1145/3319535.3354252
https://lore.kernel.org/lkml/20220223052223.1202152-1-junaids@google.com
https://lore.kernel.org/lkml/20220223052223.1202152-1-junaids@google.com
https://support.google.com/faqs/answer/7625886
https://www.usenix.org/conference/usenixsecurity22/presentation/wikner
https://www.usenix.org/conference/usenixsecurity22/presentation/wikner

	Abstract
	1 Introduction
	2 Background
	2.1 Transient Execution Attacks
	2.2 Mitigating Transient Execution Attacks
	2.3 Virtualization

	3 Threat Model
	4 Motivation
	4.1 Spot Mitigations
	4.2 Towards a Solution

	5 Physical Domain Isolation
	5.1 Core Partitioning
	5.2 Isolating Privileged Execution
	5.3 Breaking Locality Assumptions
	5.4 Cache Partitioning
	5.5 Kernel- vs Virtualization-based Isolation

	6 (Im)practicality of Kernel-based Isolation
	6.1 Core Partitioning
	6.2 Isolating the Kernel
	6.3 Locality Problems
	6.4 Performance

	7 Virtualization-based Isolation
	7.1 Resource Partitioning
	7.2 Isolating Hypervisor Execution
	7.3 Locality Problems
	7.4 Isolating User Applications

	8 Evaluation
	8.1 Performance Evaluation
	8.2 Engineering Effort
	8.3 Security Evaluation

	9 Discussion
	10 Related Work
	11 Conclusion
	Acknowledgments
	References

