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Abstract—Increased peripheral performance is causing strain
on the memory subsystem of modern processors. For example,
available DRAM throughput can no longer sustain the traffic
of a modern network card. Scrambling to deliver the promised
performance, instead of transferring peripheral data to and from
DRAM, modern Intel processors perform I/O operations directly
on the Last Level Cache (LLC). While Direct Cache Access
(DCA) instead of Direct Memory Access (DMA) is a sensible
performance optimization, it is unfortunately implemented with-
out care for security, as the LLC is now shared between the CPU
and all the attached devices, including the network card.

In this paper, we reverse engineer the behavior of DCA, widely
referred to as Data-Direct I/O (DDIO), on recent Intel processors
and present its first security analysis. Based on our analysis, we
present NetCAT, the first Network-based PRIME+PROBE Cache
Attack on the processor’s LLC of a remote machine. We show
that NetCAT not only enables attacks in cooperative settings
where an attacker can build a covert channel between a network
client and a sandboxed server process (without network), but
more worryingly, in general adversarial settings. In such settings,
NetCAT can enable disclosure of network timing-based sensitive
information. As an example, we show a keystroke timing attack
on a victim SSH connection belonging to another client on
the target server. Our results should caution processor vendors
against unsupervised sharing of (additional) microarchitectural
components with peripherals exposed to malicious input.

I. INTRODUCTION

Different processes running on a CPU may share microar-
chitectural components such as CPU caches for reasons of
efficiency. Given that these processes may belong to different
security domains, this sharing violates process isolation at the
microarchitectural level. Many existing attacks show that an
attacker can examine the modifications made to the shared
microarchitectural state by a victim operation to derive secret
information. Examples include leaking secret information from
victim processes [1, 2, 3, 4, 5, 6, 7] and cloud virtual
machines [8, 9, 10, 11]. These attacks can even be launched
from JavaScript in the browser [12, 13, 14]. The underlying
assumption behind all these attacks is that the attacker needs
either code execution or the ability to leverage victim code
running on the target processor to be able to observe modifi-
cations in the microarchitectural state.

In this paper, we challenge this assumption and show that
on modern Intel processors, any attached peripheral such as
the Network Interface Card (NIC) can directly manipulate and
observe the state of the processor’s Last-Level Cache (LLC).

This is possible because the processor enables peripherals to
perform Direct Cache Access (DCA) instead of Direct Mem-
ory Access (DMA) for improved I/O performance. We explore
the security implications of this widely-deployed mechanism
for the first time and show that an attacker can abuse it to
leak sensitive information from any peripheral that is exposed
to malicious input. To exemplify the threat, our proof-of-
concept exploit, NetCAT, can target a victim client of a DCA-
enabled server to leak that client’s private keystrokes in an
SSH session.

Existing microarchitectural attacks To leak sensitive infor-
mation with a microarchitectural attack, the attacker needs
to be able to measure the modification that a victim makes
to a part of the microarchitectural state. For example, in
a PRIME+PROBE attack, the attacker first primes a shared
resource to put it in a known state. In the second step, the
attacker probes the same resource set by accessing it again.
If the accesses are now slower, it means that a victim’s
secret operation has accessed the resource. This observation
is enough to leak secret information like cryptographic keys
from a process or a VM running on the same processor.
Furthermore, similar attacks have been mounted by executing
JavaScript [12, 13, 14, 15] and even through the network when
interacting with a vulnerable process [16, 17]. The JavaScript-
based attacks, while strengthening the threat model by not
requiring native code execution, are amenable to sandbox-
level mitigations [18] and still require the victim to execute the
attacker’s JavaScript code. Truly remote, network-only, attacks
relax the requirement for code execution on the target machine,
whether JavaScript or native code, by instead interacting with
a remote vulnerable process that happens to contain specific
gadgets (or otherwise cooperates with the client) on the remote
processor. Because these attacks do not have direct visibility
of the CPU cache state, they require a large number of time-
consuming network measurements as well as a vulnerable
(or cooperative) victim process, making them hard to use in
practice.

NetCAT This paper shows that it is possible to detect a single
LLC cache hit or miss on a remote processor from the network
on modern Intel platforms that are equipped with DDIO since
2012. This is possible since data center networks have become
increasingly fast, to the point that they allow a remote process



to observe the timing difference between a network packet
that is served from the remote processor’s cache versus a
packet served from memory as we show for the first time. This
basic capability allows us to build NetCAT, a PRIME+PROBE
attack on a portion of the remote processor’s LLC. NetCAT
can observe the activity of the remote processor as well as
other network clients that send traffic to the remote processor.
For instance, using these observations, NetCAT can perform a
keystroke timing analysis to recover words typed by a victim
client in an SSH session with the target server. Compared to a
native local attacker, NetCAT’s attack from across the network
only reduces the accuracy of the discovered keystrokes on
average by 11.7% by discovering inter-arrival of SSH packets
with a true positive rate of 85%.

For NetCAT to surgically manipulate the remote LLC state
and perform our end-to-end keystroke timing analysis, we
need to overcome a number of challenges. First, we must
reverse engineer how DDIO [19, 20, 21] (Intel’s DCA tech-
nology) interacts with the LLC, information that is undocu-
mented and unknown prior to our work. Second, to perform
PRIME+PROBE, we must blindly build remote eviction sets by
crafting the right sequences of network packets. We show how
a variation of the work by Oren et al. [14] can successfully
build eviction sets over the network. Third, to perform our end-
to-end attack, we must track when the remote machine receives
SSH packets from the victim client. We describe a novel cache
set tracking algorithm that recovers the state of the NIC’s ring
buffer, which we use to track distinct SSH traffic. We show
that the extracted cache activity is strong enough to perform
the necessary keystroke timing analysis and to recover typed
words successfully.

Contributions In summary, our contributions are as follows:
• We reverse engineer and provide the first detailed analysis

of Intel DDIO, a technology that directly places I/O traffic
in the processor’s LLC.

• We implement NetCAT, a practical network-based
PRIME+PROBE attack on the LLC of a remote processor.

• We implement an end-to-end keystroke timing attack
using NetCAT on the SSH session of a victim client
on the target server. A demo of the attack and addi-
tional information about NetCAT is available at https:
//www.vusec.net/projects/netcat.

II. BACKGROUND

In this section, we discuss the memory hierarchy, general
cache attacks and DCA, all of which are building blocks
for NetCAT. Furthermore, we discuss existing remote cache
attacks.

A. Memory Hierarchy

In order to speed up accesses to main memory, most
commodity processor architectures have multiple levels of
caching. The caches that are accessed first (closer to the CPU
core) are usually smaller but faster than the caches closer to the
main memory. The caches are in place to leverage spatial and
temporal access patterns. In recent commodity processors, we

often find a three-level hierarchy in which each CPU core has a
dedicated Level 1 (L1) and Level 2 (L2) cache. Moreover, the
CPU cores share a single Last Level Cache (LLC). Because
it is shared among cores, the LLC has a special role in cross-
core data accesses and recently also in PCIe data exchange,
as we discuss later in this section. Aside from cache speed
and size, cache design involves key properties such as cache
inclusivity versus exclusivity (or non-inclusivity) with respect
to other caches. As an example, in prior Intel server processors,
the LLC was inclusive with respect to L2, meaning that the
LLC had copies of all L2 cache lines. This changed with the
Skylake X microarchitecture, where the LLC is non-inclusive
with respect to L2, so that a cache line from L2 may not exist
in LLC.

B. Cache Attacks
Cache attacks belong to the more general class of microar-

chitectural attacks. The broad idea is to exploit the use of
shared resources on or around the CPU. An attacker leverages
these shared resources to typically steal (leak) information.
In cache attacks, the attacker builds a side channel based on
the timing information that can be observed in data fetches
from the different levels of caches or main memory. Such
timing information can be misused to gain information about
other processes and therefore reveal secrets. A successful side-
channel attack circumvents higher-level security mechanisms,
e.g., privilege separation.

Osvik et al. [1] pioneered the idea of PRIME+PROBE in
the context of L1 cache attacks. The PRIME+PROBE algorithm
consists of three steps: (1) Build cache eviction sets, (2) Prime:
Bring the cache to a known state by accessing the eviction
sets, (3) Probe: Access the eviction set again, during a victim
secret operation. Higher access times imply sets which the
victim process accessed.

Ristenpart et al. [22] used the PRIME+TRIGGER+PROBE
load measurement technique to detect keystroke activity on
L1 and L2 caches, allowing an attacker to infer activity on
virtual machines (VMs) that timeshare a core. Liu et al. [9]
extended PRIME+PROBE to the LLC, allowing the attacker to
extract secrets from co-hosted VMs without the need to share
the same core.

Browser-based Cache Attacks Browser-based cache attacks
strengthen the threat model of native code cache attacks
by executing from sandboxed JavaScript environments. They
exploit the fact that this JavaScript code executes logically
sandboxed but not at the microarchitectural level. Oren et
al. [14] introduced a non-canonical PRIME+PROBE attack from
JavaScript without any direct access to physical or virtual
addresses. Our eviction set building for NetCAT is based on
their approach. Gras et al. [13] used an EVICT+TIME attack
to break ASLR from JavaScript. Lipp et al. [23] launched a
keystroke timing attack from JavaScript to spy on the user
typing in the address bar. Frigo et al. [12] exploited the
integrated GPU with microarchitectural attacks to escape the
Firefox JavaScript sandbox on Android. All these attacks
face a number of practical challenges such as needing a

https://www.vusec.net/projects/netcat
https://www.vusec.net/projects/netcat
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Fig. 1: Difference between direct cache access (orange) and direct
memory access (blue). Additionally, the available write allocation
cache lines for direct cache access in orange versus the others in
green.

high-precision timer and the presence of other sandbox-level
mitigations in modern browsers [18] and also require the
victim to execute the attacker’s JavaScript code.

C. Remote Cache Attacks

Existing, remote, network-only cache attacks use the fact
that they can observe the overall execution time after sending
a request to a web server. [24] shows a realistic remote-only
attack on OpenSSL. Bernstein [17] showed complete AES key
recovery from known-plaintext timings which Neve et al. [25]
further improve. Schwarz et al. [16] demonstrated a network-
based Spectre attack targeting specific code patterns (or gad-
gets) in a remote victim to disclose information. All of these
attacks are highly target-specific, and take a long time (hours to
days) due to the need to average over large amounts of network
packets to remove the network noise. Furthermore, they both
require a vulnerable (or otherwise cooperative) victim server
program containing specific gadgets. Such gadgets must ensure
the input-dependent operation accounts for most of the overall
execution time in order to leak information. In contrast, our
work is a generic, remote cache channel for which we show
a realistic and non-exhaustive list of example attack scenarios
that do not depend on the software target.

D. Direct Cache Access

In traditional architectures, where the NIC uses DMA, the
memory latency alone quickly becomes the bottleneck in
network I/O-focused workloads on 10 Gb/s interfaces [19].
To alleviate the DRAM bottleneck, [19] proposes DCA, an
architecture where PCIe devices can directly access the CPU’s
LLC. The DCA cache region is not dedicated or reserved in the
LLC, but allocating writes are statically limited to a portion of
the LLC to avoid trashing caused by I/O bursts or unconsumed
data streams. Figure 1 illustrates a traditional DMA access (the
blue access flow) versus a DCA access (the orange access
flow).

Initially, Intel implemented DCA using a prefetch hint
approach, in which a DMA write would trigger a memory
prefetch into the LLC after arriving in main memory, but this
required support from the device to hint at DCA and device
driver support to prefetch these DCA hints. Starting with the
Intel Xeon E5 and Xeon E7 v2 processor families in 2011,
server-grade CPUs implement DCA under the name of Data
Direct I/O Technology (DDIO) [20, 21, 26, 27], which is
entirely transparent to software and hardware. With DDIO,
a server machine is able to receive and send packet without
any trips to main memory in the optimal case. We will further
describe DDIO and reverse engineer its behavior in the next
sections.

III. THREAT MODEL

Our threat model targets victim servers with recent Intel
processors equipped with DDIO, enabled transparently by
default in all Intel server-grade processors since 2012. We
assume the attacker can interact with a target PCIe device
on the server, such as a NIC. For the purpose of instantiating
our attack in a practical scenario, we specifically assume the
attacker is on the same network as the victim server and can
send packets to the victim server’s NIC, thereby interacting
with the remote server’s DDIO feature. In particular, in our
example we launch a cache attack over the network to a target
server to leak secret information (such as keystrokes) from the
connection between the server and a different client. While we
mostly focus on client to client attacks in this paper, DDIO
could be exploited in other settings as well. Section IX looks
at other threat models where our NetCAT can potentially apply
to applications on the target server processor (rather than other
clients) as well as other PCIe devices.

Our example attack (Section IV) abuses RDMA technology
in the NIC to control the memory location which a transmitted
packet accesses, as well as the low-latency offered by today’s
high-speed networks. RDMA is now available in the clouds of
many major providers and many data centers such as Azure,
Oracle, Huawei and Alibaba [28, 29, 30, 31]. In virtualized
cloud settings, NetCAT can target any VM on the target server,
as long as it can communicate with only one of these VMs
through a virtualized RDMA interface. In addition, if the
attacker’s VM (or virtualized server) is connected to a storage
server with RDMA using protocols such as SMBDirect [32]
or NFS [33], then NetCAT enables an attacker to spy on
other clients that connect to the storage server. Similarly, cloud
key-value service [34] and applications that integrate RDMA
to improve their performance, including big data [35, 36],
machine learning [37], and database [38] could be abused by
NetCAT-like attacks.

IV. ATTACK OVERVIEW

Our goal is to exploit the fact that the DDIO-enabled
application server in Figure 2 has a shared resource (the LLC)
between the CPU cores and the PCIe devices. We will show
that by abusing the sharing, we can leak sensitive information
from the LLC of the application server. There are many
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Fig. 2: Assumed topology for attacks

potential ways to exploit DDIO. For instance, an attacker with
physical access to the victim machine could install a malicious
PCIe device to directly access the LLC’s DDIO region. Our
aim in this paper is to show that a similar attack is feasible even
for an attacker with only remote (unprivileged) network access
to the victim machine, without the need for any malicious PCIe
devices.

To this end, we make use of RDMA in modern NICs.
RDMA bypasses the operating system at the data plane,
providing remote machines with direct read and write access to
a previously specified memory region. The OS is responsible
for setting up and protecting this RDMA region. However, as
we show later in more detail, when DDIO is enabled, RDMA
reads and writes have access not only to the pinned memory
region but also to parts of the LLC. Mellanox further motivates
the use of RDMA [39] for minimizing the performance-
degradation due to defenses required to protect against the
latest speculative execution attacks [15, 40]. Ironically, RDMA
makes it easier to perform network-based cache attacks as we
show in this paper.

Figure 2 illustrates our target topology, which is common in
data centers. The attacker controls a machine which communi-
cates over RDMA to an application server that supports DDIO
and also services requests from a victim on a separate NIC.
With this, we show that we can successfully spy on another
PCIe device. However, we do not rely on such separation, i.e.,
we could also spy on the same PCIe device where we issue
our PRIME+PROBE packets. In our adversarial attack, we will
assume that a victim client types in sensitive information over
an ssh connection. The aim of the attacker is finding out the
keystrokes typed by the victim client using the PRIME+PROBE
packets. There are three main challenges that we need to
overcome for implementing our attack:

C1 Inner workings of DDIO. Our attack requires a precise
knowledge of the effects of DDIO operations, the DDIO

allocation limitation, and the feasibility of detecting cache
hits and misses over the network.

C2 Remote PRIME+PROBE. Our attack requires us to re-
motely build cache eviction sets for our PRIME+PROBE
attack, without knowledge of virtual or physical addresses
of the RDMA memory region on the remote machine,
introducing unique challenges in measuring cache activity
over the network.

C3 End-to-end attack. To implement an end-to-end attack,
we require a solid understanding of what sensitive data
may reside in the DDIO-reachable part of the LLC and
is eligible for leaking.

We address these challenges in the following sections:

C1: Inner workings of DDIO. Section V analyzes DDIO in
depth. First, we find suitable remote read and write primitives
using DDIO. Next, we show that it is possible to detect LLC
hits over the network via DDIO. Furthermore, we confirm the
known DDIO restrictions on allocating writes, and we discover
that the precise percentage of the LLC accessible to allocating
writes differs between Intel CPU models.

C2: Remote PRIME+PROBE In Section VI, we use our newly
obtained understanding of DDIO to remotely create cache
eviction sets. We adapt existing PRIME+PROBE algorithms to
cope with the challenges of network noise and with the slower
read/write operations compared to native code.

C3: End-to-end attack Finally, we showcase various DDIO
attack scenarios in Section VII. First, we build a covert channel
between a network client and an unnetworked, cooperating
sandboxed process on a remote machine. Second, we build
a covert channel between two cooperating network clients
running in two separate networks, without any direct com-
munication paths. Third, we describe an adversarial keystroke
timing attack on a victim SSH connection of another client
by remotely measuring cache activity caused by SSH packets,
described in Section VIII. Our adversarial setup is sketched in
Figure 2.

V. REVERSE ENGINEERING DDIO

To remotely measure cache activity, we require remote
read/write primitives provided by the PCIe device’s DDIO ca-
pabilities. This section discusses how we build these required
primitives to mount our attack, while in the process elaborating
on the relevant details of DDIO.

A. Access Latencies

The first step in implementing our attack is to determine
whether we can measure the timing difference between cache
hits and memory reads over the network. We used two servers
(Intel Xeon Silver 4110) running Ubuntu 18.04.1 LTS, each
with a Mellanox ConnectX-4 Infiniband NIC (produced in
2016). We used one of the servers as an RDMA server and the
other one as a client. As a baseline, the ib_read_lat latency
benchmark measured an average latency between our two
machines of 1,550 ns, with a standard deviation of 110ns and
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a 99th percentile of 1,810 ns. To send one-sided RDMA reads
and (in later experiments) writes, we use libibverbs.

In our first experiment, we iterated over 50,000 memory
addresses 150 times. In each iteration, we issued two RDMA
reads to the same memory address and measured the time
taken for each result to arrive back at the client. We measured
no significant difference between the two accesses. Closer
inspection revealed that this is because an address read via
DDIO that is absent in the LLC is served directly from main
memory without being allocated in the LLC (i.e., subsequent
reads to an uncached memory location remain uncached).

In a second experiment, we instead issued the following
sequence of operations in each iteration: Read(x) - Write(x)
- Read(x). The idea is that the first read is served from
main memory, while the read after the cache-allocating write
is served from the LLC, allowing us to measure a baseline
difference between memory reads and cache hits. Figure 3
shows that the resulting distributions of the two types of
reads are distinguishable. Section VI discusses mechanisms
to further distinguish LLC-based reads from memory reads.

B. DDIO Cache Ways

As previously discussed, DDIO limits write allocations
to prevent cache trashing from PCIe devices. Because this
limitation impacts our ability to create eviction sets and mount
cache attacks, we study the mechanics of the limitation. To
this end, we build a pool of addresses that map to the same
cache set and are accessible via RDMA. We achieve this
by allocating a large buffer on the RDMA server and then
applying the method of Maurice et al. [41] to find pages with
the same LLC color. We then remap the RDMA buffer so
that the RDMA client can directly access these addresses via
DDIO, allowing us to remotely create eviction sets without
yet knowing the exact algorithm needed to achieve this in the
general case. With the help of this colored RDMA buffer, we
are able to explore the layout of DDIO ways in the LLC.

More specifically, our experiment repeatedly writes to n
addresses in the colored buffer (within the same cache set)

TABLE I: Overview of CPU models used in our experiments, and
summary of our experimental findings on the DDIO allocation ways
and allocation limit.

CPU LLC DDIO

Xeon Haswell E5-2630 v3 20 MB (20 ways), incl 2 ways (10%)
Xeon Skylake Silver 4110 11 MB (11 ways), n-incl 2 ways (18%)

and then reads those same addresses, measuring whether
these reads are served from cache. We start with n = 0
and increment n after each round. The expectation is that
this allows us to determine the DDIO write allocation limit
by finding the n where the number of cache hits becomes
constant.

We perform this experiment on two machines equipped with
Intel Xeon E5-2630 v3 processors running CentOS 7.4, each
with a Mellanox ConnectX-3 Infiniband NIC (produced in
2014). Each machine’s LLC has a size of 20 MB and is 20-
way set associative according to the specifications. As shown
in Figure 4, starting with n = 2 (Write 0-1), we see a constant
pattern of two addresses being served from the cache and the
rest of the addresses being served from main memory. The
memorygram is darker for low latencies and lighter for high
latencies. This experiment yields strong evidence that there are
two DDIO ways on our test machines. This is also supported
by the original Intel documentation [26], which states that the
write allocation limit is 10% of the LLC (i.e., 2 ways out of
a total of 20 ways is 10% of the LLC). On the Intel Xeon
Silver 4110, our experiments also reveal two DDIO ways,
which, given that this model uses an 11 MB and 11-way set
associative LLC, means that the DDIO write allocation limit
is instead around 18.2% of the LLC, as shown in Table I.

Figure 4 additionally yields insights into the cache replace-
ment policy used for the DDIO region in the LLC. As we can
see, the last two written values are served from the LLC. Our
further experiments with random write and read operations
suggest that the replacement policy is most likely evicting the
least recently used (LRU) cache lines in the DDIO region.

VI. REMOTE PRIME+PROBE

In order to launch a successful remote PRIME+PROBE
attack, we need write and read primitives on a memory region
on the remote machine. As described in Section V, RDMA
gives us these capabilities on the LLC.

A. Creating a Remote Eviction Set

The first step of PRIME+PROBE is to build cache eviction
sets [1]. In our case, under the write allocation restrictions
of DDIO, we do not build eviction sets for all cache sets
in the LLC, but only for the limited number of cache ways
accessible by DDIO. Building eviction sets and later on using
it to leak data relies on basic RDMA operations, so any
application that uses one-sided RDMA and allows an RDMA
client to write data can be used for NetCAT attacks. We
exemplify this on RDMA-memcached [42], a key-value store
with RDMA support. RDMA-Memcached implements GET
and SET operations where memory allocation is split into



No
 w

rit
e

W
rit

e 
0

W
rit

e 
0-

1
W

rit
e 

0-
2

W
rit

e 
0-

3
W

rit
e 

0-
4

W
rit

e 
0-

5
W

rit
e 

0-
6

W
rit

e 
0-

7
W

rit
e 

0-
8

W
rit

e 
0-

9
W

rit
e 

0-
10

W
rit

e 
0-

11
W

rit
e 

0-
12

W
rit

e 
0-

13
W

rit
e 

0-
14

W
rit

e 
0-

15
W

rit
e 

0-
16

W
rit

e 
0-

17
W

rit
e 

0-
18

W
rit

e 
0-

19

Write Loads

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Ad
dr

es
s

Fig. 4: Memorygram of DDIO-ways experiment. Darker colors imply
faster, and lighter colors imply slower access times. From left to
right, we increase the number of n addresses written before reading
all addresses back (between 0 and 20). The latencies correspond to
read access times.

1 MB sized chunks. In order to allocate a large enough memory
region to build an eviction set, we allocate multiple 1 MB
sized key-value items. Once the objects are allocated, they can
be accessed at arbitrary offsets with basic one-sided RDMA
operations.

One challenge in building the eviction sets is that we have
no knowledge of the virtual or physical addresses of the
RDMA memory region on the remote machine. However, we
can control our accesses through an offset relative to a base,
combined with the knowledge that allocated memory chunks
are page aligned. Oren et al. [14] engineered a non-canonical
PRIME+PROBE for a similar problem when they attacked
the LLC from JavaScript. We base our approach on their
algorithm, with the caveat that we must address challenges
resulting from running the algorithm over the network. These
challenges include resilience against timing shifts caused by
network variance, and the involvement of a second machine
in the measuring process. Moreover, read and write operations
over the network are orders of magnitude slower than run
locally.

The broader idea of the algorithm [14] is to use a set S
of page-aligned addresses, all with the same offset from the
page start, and a candidate address x. The set is initially quite
large so that it naturally forms an eviction set for address x.
The algorithm then reduces the set by iteratively removing
addresses and checking whether the set still forms an eviction
set. Using this backwards-selection strategy, the algorithm
creates a minimal eviction set of size equal to the number
of cache ways. After finding one eviction set for the given
offset within a page, the algorithm can build eviction sets for
the rest of the offsets. With a page size of 4KB and a cache
line size of 64B, this yields an additional 63 eviction sets.

Our first naïve approach used multiple rounds to measure
whether the set S still forms an eviction set, to account for the
measurement noise over the network. However, this made the

algorithm quite slow, especially when profiling all the available
cache sets (magnitude of hours). We therefore introduced a
number of optimizations.

Optimization 1 As a first optimization, we introduce a
forward-selection algorithm that creates a possible smaller set
S that evicts address x. We start from an empty set S and
on each iteration we add one more addresses to S until we
measure an eviction. This selection process reduces the num-
ber of addresses in S from thousands to hundreds on average.
The optimization works well because the DDIO ways are a
subset of the full cache ways, e.g., on an Intel Xeon E5-2630
v3 CPU, we only have to find two out of the potential twenty
addresses that form an eviction of address x. This reduced set
S is then the input of the backwards-selection algorithm. The
forward-selection algorithm is detailed in Appendix A.

Optimization 2 The second optimization concerns the
backwards-selection algorithm. In the original algorithm, the
set S is first written completely and then written again while
leaving one address s out on each iteration. This compares
the cache miss time of x to the miss/hit time of x depending
on whether S \ s is still an eviction set. In our approach, we
instead first measure a cache hit on x by writing and reading
x, and then compare the access time to S \ s. This works
because S always evicts x on a successful profiling run, while
reducing the number of write operations in this step by a factor
of two.

Optimization 3 As a third optimization, instead of only
removing one address s from set S in the backwards-selection
process, we implement a dynamically adjusting algorithm that
removes multiple addresses from S at the same time. The
algorithm increases the number of addresses to be removed
by ten after the previous iteration successfully decreases S.
Contrary, the algorithm decreases the number of addresses to
be removed by one if the previous iteration did not decrease
S. The number of addresses to be removed is bound to a
maximum of half the size of S. The adjustment algorithm
is disabled when the size of S is small, as adjusting it then
can impact the runtime negatively with additional iterations
needed. We outline the updated backwards-selection algorithm
in Appendix B. In recent research, Vila et al. [43] provide an
optimized algorithm to reduce eviction sets to minimal eviction
sets. Applying the new algorithm could further improve the
performance of the backwards-selection.

Optimization 4 Our final optimization introduces a clean-
up step. After successfully building an eviction set for one
cache set, we iterate over the whole pool of addresses to
find other addresses that also map to this same cache set.
Either they were not part of S in the first place, or they were
redundant in S and can be removed from the minimal eviction
set. This clean-up step helps to shrink the pool of addresses
considered by the forward-selection algorithm (and the rest of
the pipeline) for the subsequent cache sets.

Resilience Our experiments employ multiple strategies to cope
with network noise, network queuing, and the side effects of



0 1 2 3 4 5
Time (min)

0

20

40

60

80

100
Ca

ch
e 

Se
ts

 P
ro

fil
ed

 (%
)

E5-2630 v3 - Avg latency: 1.71 us
E5-2630 v3 - Avg latency: 2.59 us
E5-2630 v3 - Avg latency: 2.69 us
Xeon Silver 4110 - Avg latency: 1,55 us

Fig. 5: Cumulative cache set profiling evaluation with different
machine combinations in a data center.

the measurement machine itself. First, we use multiple mea-
surement rounds and take the median latency measurement.
This simple yet effective approach significantly improves the
stability of building the eviction sets. The number of rounds
is a trade-off between performance and reliability, and can
be adjusted to the noise factors in different environments.
However, note that we can only use this approach if we control
the operation we want to measure. This is the case when
building eviction sets, but as we will see later, it is not the
case for keystroke detection.

Second, as shown in Section V, DDIO reads do not cause
cache allocations if they are served from main memory.
Therefore, we know a priori that a DDIO read does not change
the state of the LLC. We can use this behavior to our advantage
by reading the same address multiple times consecutively and
taking the median latency of these micro rounds. Such micro
rounds are especially useful when complete rounds are not
possible.

Finally, the three different stages (forward-selection,
backward-selection, and clean-up) have multiple built-in sanity
checks. In case a test fails, the pipeline either goes back to
the previous stage or completely restarts the profiling for this
cache set.

B. Evaluation

We evaluated the remote eviction set building algorithm on
the DAS-5 cluster [44]. This allowed us to test the algorithm
with machine pairs that have different latencies, depending on
where they are located in the data center and with different
number of switch hops. All machines have the same processor
(Intel Xeon E5-2630 v3) and machine configurations. Fur-
thermore, we evaluated the algorithm on a second Intel Xeon
Silver 4110 cluster to show the generality of our attack. We
used an initial pool of 5,000 page-aligned addresses to build
the eviction set. We profiled a total of 16,384 cache sets (256
colors, 4KB page size).

As shown in Figure 5, the total profiling time was between
3 minutes and 19 seconds, and 5 minutes and 52 seconds.

We can see that network latency has a direct influence on
the time it takes to profile the whole LLC. Furthermore, the
performance of the algorithm increased when fewer addresses
were in the pool. This speedup is due to the clean-up step
where addresses that belong to the same cache set are removed
from the pool, thus reducing the search space of the algorithm
over time. The shown latencies are reported by the ib_read_lat
latency benchmark. The standard deviation of the latencies of
the three cluster machine combinations was between 0.08µs
and 0.10µs. The standard deviation of the latencies for the
Intel Xeon Silver 4110 cluster was 0.11µs. In the trace of the
Xeon Silver, we can also observe a sanity check failing at
around minute three, at which point the algorithm recovers by
restarting the current profiling round. To verify the correctness
of the eviction set, we implemented a verification procedure
that tests every eviction set against other addresses that are
mapped to the same cache set, in order to check whether they
are evicted. Furthermore, we test the eviction sets against each
other to verify their uniqueness.

To conclude, we have shown that it is possible to create an
eviction set for the DDIO cache lines in a data center topology
in under 6 minutes.

VII. COVERT CHANNEL

In this section, we present two cooperative DDIO-based
attacks. In the first scenario, we build a covert channel between
two clients that are not on the same network but can send pack-
ets to a shared server. In the second scenario, we build a covert
channel between a client and a sandboxed process on a server.
We use the high-bandwidth covert channel protocol from Lui
et al. [9], originally used to send data between two virtual
machines running on the same physical machine. Similar to
our covert channel, Maurice et al. [45] describe a cross-core
covert channel between processes and Oren et al. [14] describe
a covert channel built from JavaScript. Further, Maurice et
al. [46] developed a robust and error-free covert channel
protocol, which was used to transmit an SSH connection
between two virtual machines. We present an adversarial
network-based keystroke timing attack in Section VIII.

A. Covert Channel Between Network Clients

In the first scenario, the two clients send RDMA pack-
ets to the target server, but they do not share a common
RDMA memory region (i.e., cannot communicate directly).
Furthermore, the clients are not able to communicate with
each other directly over the network. Such a scenario could
be enforced by having two different physical networks or a
logical separation between networks. From Section VI, we
know that we can measure the cache activities of the whole
DDIO portion of the LLC. This means we can also measure
the activity of another client over the network in the LLC.

Thus, in a cooperative setting, two clients can communicate
by sending packets to different offsets in their respective
RDMA buffers, while the other client detects which offset
was activated by the other client’s packet. In our unidirectional
covert channel, the first step in establishing communication is
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Fig. 6: Evaluation of the covert channel between two network clients.
We compare the peak bit rate versus the resulting error bit rate.

to agree on which cache sets will be used for the transmission.
The sender chooses a page-aligned memory location and then
uses the cache sets that cover that location for communication.
To synchronize, the sender then iterates over all successive
cache sets in the page and sends packets (using RDMA writes)
to these cache sets in a distinct pattern over a long period of
time.

The receiver iterates over all profiled cache sets to detect
the pattern. This allows the receiver to find the 64 cache sets
(i.e., a page) that cover a page with the same color as the
sender’s page. The two parties have now agreed on 64 shared
cache sets on the server. Therefore, in every round, the sender
can transmit 64 bits by either activating or not activating
each of the 64 cache sets. In order to loosely synchronize
the measurements, we use the approach from Lui et al. [9].
The sender transmits the current round of information multiple
times over a predefined amount of time. The receiver measures
the cache activity for the same amount of time and therefore
knows when a transaction round is completed. The time the
receiver needs to PRIME+PROBE 64 cache sets is the minimum
time window for each round.

Results The appropriate time window for the covert channel
depends on the time in which the receiver can launch at least
one PRIME+PROBE iteration. In our test networks [44], the
smallest possible time window which reliably allowed the
receiver to finish its operation within the window is 0.44 ms.
This translates to a peak bandwidth of 145.45 Kb/s. Under
this condition, we have an error rate of 9.43%. We evaluated
multiple time windows up to a conservative choice of 4 ms
(16 Kb/s). In a longer window, the receiver can launch multiple
PRIME+PROBE iterations. Therefore, the receiver gains more
data points, which results in a lower error rate. At the 4 ms
window, we measured an error rate of 0.20%. Figure 6
illustrates our experiments with different time window sizes.
Note that this simple covert channel protocol has no built-in
reliability; if more reliability (i.e., redundancy) is needed, then
the bandwidth of the covert channel will decrease proportion-

ally.

B. Covert Channel to Sandboxed Process

In this scenario, we have a sandboxed process on the server
that has no access to any networking capabilities. However,
the sandboxed process can still write to the LLC. To build
a covert channel, we observe that this scenario is similar to
the previous one, except that the sandboxed process is the
sender and the client is the receiver. The difference with the
covert channel between the two network clients is that memory
accesses by the sandboxed process do not necessarily spill into
the receiver-visible LLC portion dedicated to DDIO.

In our setting, the DDIO region of the LLC consists of two
cache lines (2 ways in the LLC). Thus, to ensure a successful
transmission, the sandboxed process must write n − 1 cache
lines in an n-way set associative LLC, guaranteeing that the
write is visible in the DDIO region. In a non-inclusive LLC,
the process must also consider the L2 cache, since the L2
must be filled before data is written into the LLC. Regardless
of whether the LLC is inclusive, the sandboxed process must
first create an LLC eviction set, following strategies form prior
work [7, 14]. Once eviction sets are found for 64 different
cache sets, the covert channel can be built similarly to the
case with two network clients, the main difference being that
instead of one write per cache set, the sandboxed process must
write the entire eviction set per targeted cache set. The receiver
can then use PRIME+PROBE to monitor these evictions from
the network.

Results Similar to our covert channel between network clients,
the transmission rounds are loosely synchronized with a pre-
defined time window. Also similarly, the covert channel band-
width is limited by how fast a receiving client can check the
64 cache sets. Hence, even though the sender must issue more
write operations compared to the previous covert channel,
these operations are done natively on the CPU, making them
much faster than the receiver’s network-based operations. As a
result, the bandwidth for the sandboxed process covert channel
is the same as for the network to network covert channel.

VIII. NETWORK-BASED KEYSTROKE ATTACKS

In this section, we present results from an adversarial
setting. We measure keystroke timings on an SSH connection
from a victim to reconstruct sensitive (typed) data. Our goal
here is not to improve upon the existing body of keystroke at-
tack literature, but rather demonstrate our cache measurements
are sufficiently accurate to implement practical, adversarial
timing attacks.

On a high level, our attack works as follows. The attacker
controls a machine that has an RDMA link to an application
server as illustrated in Figure 2. The attacker uses remote
PRIME+PROBE to detect network activity in the LLC. A user
then opens an interactive SSH session to the application server
from a different machine. In an interactive SSH session, each
keystroke is sent in a separate packet. The attacker is able
to recover the inter-packet times from the cache using the
ring buffer location and map them to keystrokes. As we will



0 16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

27
2

28
8

30
4

32
0

33
6

35
2

36
8

38
4

40
0

41
6

43
2

44
8

46
4

48
0

49
6

Rounds

0
3
6
9

12
15
18
21
24
27
30
33
36
39
42
45
48
51
54
57
60
63

Ca
ch

e 
Se

ts

Fig. 7: Memorygram of ring buffer experiment with remote
PRIME+PROBE. Darker colors imply faster and lighter colors imply
slower access times. In every round we send two network packets.
We can see that the ring buffer moves forward each round.

show in this section, such an attack can be launched with
a single trace of sensitive data. After launching a remote
PRIME+PROBE to measure LLC activity, a successful attack
requires the following steps:

1) Locate the network ring buffers of the RX-Queues.
2) Track the RX head to recover incoming packet times.
3) Use machine learning to map times to keystrokes.

A. Locating Ring Buffers in the LLC

A ring buffer is a circular data structure that facilitates
processes in reading and writing data asynchronously. In the
case of networking, ring buffers are used as a queue between
the NIC and the operating system. The ring buffer does not
hold packet data directly, but rather pointers to the actual
packet data structure (socket kernel buffers). Modern operating
systems often have distinct queues (ring buffers) for receiving
(RX) and sending (TX) packets. The network ring buffers
are often allocated over multiple differently colored pages,
which should prevent the ring buffer from self-evicting from
the cache. Our experiments show that the ring buffer accesses
leave a very distinct pattern in a memorygram. Specifically,
two consecutive incoming packets activate the same eviction
set, the next two packets then activate the next eviction set,
and so on. As a result, for multiple consecutive packets, a
staircase-like pattern becomes visible in the memorygram, as
can be seen in Figure 7.

To locate the ring buffers in the remote LLC, we first build
the remote eviction set as described in Section VI. Next, we
launch a PRIME+PROBE variant, where we send two network
packets to the server after each prime, and then immediately
measure the latency with the probe step. For each of the 256
profiled colors, we execute the PRIME+PROBE 512 times, for
a total of 1024 packets per color. After finishing all rounds,
we find the distinct staircase pattern in one of the pages. With
an RX queue length of 128, the pattern repeats eight times, as
shown in Figure 7.

As most modern operating systems have a default network
ring buffer size of 512–4096 entries, the staircase pattern still
emerges, but covers multiple pages. As the pattern is cyclic,
the attacker can reconstruct all possible locations of the ring
buffers and predict where to expect the next cache activity.

Modern NICs and operating systems often support multiple
RX and TX queues, and use mechanisms such as receive-side
scaling (RSS) to distribute packets over different queues on
the receiving side, according to a hash over the packet data.
Specifically, the hash function is typically a five-tuple input
hash over the source IP address, source port, destination IP
address, destination port, and the protocol. By changing the
source port and protocol, an attacker can map all different
queues with the profiling method mentioned above. For sim-
plicity, but without loss of generality, we illustrate the attack
on a system that has one RX queue enabled and a ring buffer
that resides within one page, i.e., 128 entries.

B. Tracking the Ring Buffer
Once we have determined the page containing the ring

buffer, we want to track the exact movements of the ring buffer
to leak incoming inter-packet times. One challenge is that
when we see an activation of a cache set, we cannot be sure
whether this was due to the ring buffer or due to other cache
activity. Furthermore, one observed activity of the ring buffer
can mean that one or two packets were received, since both
subsequent packets activate the same cache set. Lastly, unlike
in cooperative attacks, we cannot use multiple measurement
rounds because the location of the ring buffer may change
between measurements.

To overcome these challenges, we designed a two-stage
pipeline to extract inter-packet times. An online tracker is
in charge of following the Ethernet NIC ring buffer during
the measurements, and sends Ethernet probing packets to
continuously confirm its position in the cache, determined by
sending the RDMA cache PRIME+PROBE packets. The offline
extractor takes the data produced by the tracker and uses it to
compute the likeliest occurrences of client Ethernet network
packets (non-probing packets, more specifically, client SSH
packets). The following two paragraphs detail how these two
algorithms are designed.

Online tracking Repeatedly checking all 64 eviction sets is
too slow to measure unsynchronized network packets. Thus,
we reduce the number of eviction sets measured at the same
time by forming a window w of measurements and shifting
w according to the current position of the ring buffer pointer.
One of the challenges with this approach is deciding when
to shift the window in order to follow the head of the ring
buffer. To solve this challenge, we send packets from the
attacker machine between measurement rounds. These packets
guarantee ring buffer advancement and corresponding cache
miss. If the online tracker does not observe this, we know
that we must adjust the position of the window w. At a
high level, the online tracking algorithm works as follows.
First, we have to determine the current position pos of the
ring buffer. We do this by sending many network packets in



an initial PRIME+PROBE phase. We stop once we have high
confidence that the algorithm detected the correct current ring
buffer position.

Next, the online tracker uses its knowledge of pos to prime
the eviction sets around pos in a window of size w. In our
tests, we chose w = 10 for a good trade-off between measuring
speed and reliability. We now probe until the algorithm detects
a cache activation in the window w, at which point we
save the measurements and begin another priming round. We
periodically synchronize by sending a packet after priming
the cache. After each synchronization, the algorithm sends a
network packet to confirm that we register the cache activation
as expected. For these experiments, we require a latency
threshold to differentiate between packets that cause a cache
hit versus the ones that cause a cache miss. We find that we
need to maintain this threshold dynamically, as it can slightly
drift on the victim machine for unspecified reasons (likely
due to power management). In addition to our measurements
of ring buffer activity, we save all confirmed and missed
synchronization points to aid in the offline analysis phase
described next. We provide pseudocode detailing the online
tracker’s behavior in Appendix C.

Offline extraction The goal of the offline extractor phase is
to compute at which time steps the victim machine received
packets that were not probes sent by the attacker. To this end,
the offline extractor receives cacheline latency measurements,
and the state of the online tracker at each measurement point.
The online tracker only records a timestep when it estimates
that there is a cacheline miss observed anywhere among the
measurements, regardless of whether it was caused by a probe
or not.

The offline extractor examines the cacheline latency mea-
surements and reconstructs the ring buffer accesses. The
extractor can rely on the known times of the probing packets
which serve as a baseline score for the extractor. We compute
the corresponding ring buffer progression that this arrival
pattern produces. We score this guess by summing up all
measurement latencies that, according to this progression,
should be cache misses. We clamp latencies below the 10th
percentile and above the 99th percentile to limit the effect of
outliers.

We try to enhance our most basic guess by greedily inserting
one extra arrived packet in any timestep, starting at 0. If any
of these insertions result in a better scoring guess than the
current one, we adopt this new pattern of packet arrivals. If
our new packet was inserted in step N , we try to insert another
packet starting at N (not 0), and only adopt the new guess if
there is an improvement, and we repeat this until we cannot
improve the guess further. The output of the extractor is a
list of timestamps of possible packets that were sent by other
clients.

In the last step, we filter network packets that are most
likely SSH packets. This step is done by a heuristic, as we do
not have any header packet information to distinguish an SSH
packet form other network packets. The idea of the heuristic

is that after a keystroke is transmitted, the client will send
an ACK packet. This heuristic works on an idle network.
However, this is also an inherent limitation of network-based
attacks. If there is more network traffic, i.e., packets arriving
close together, our algorithm is not able to distinguish them
from SSH packets.

C. Keystroke Prediction

In the previous section, we described how an attacker
could measure the cache activity related to the ring buffer
and then extract possible SSH packets. The next step is
to predict keystrokes from the extracted inter-packet times.
Song et al. [47] pioneered the recovery of keystrokes from
interactive SSH sessions. In their work, they showed the
feasibility of such an attack when capturing SSH packets
on a network tap. For this purpose, they used bigrams and
a Hidden Markov Model (HMM) to guess typed passwords.
The challenge with password datasets is that it is unethical to
collect real passwords from users. This would leave the option
to let users type a predetermined set of passwords. However,
real passwords typing underlies a unique typing frequency
which is hard to approximate when users are not trained to
type these passwords frequently and over a longer time period.
Furthermore, such a dataset would need hundreds of different
passwords for a fair evaluation. Similar to more recent work
in the area [23, 48], we decided to use word guessing to show
an attacker can successfully perform keystroke prediction from
the cache measurements.

In order to facilitate reproducibility and comparability, we
used a publicly available dataset [49]. The dataset consists of
twenty subjects typing free and transcribed text. We extracted
words from the free typing sessions with only lowercase
characters. The filtered dataset contained a total of 4,574
unique words, on average 228.7 unique words per subject. We
split the dataset in training and test set for each user. For each
word that was typed multiple times, we split the dataset in a
2:1 ratio between training and test set. We ensure, that a word
trace that is in the test set has at least one other trace of the
same word in the training set. Furthermore, we also kept word
traces in the training set that only occurred once. On average,
the training set consists of 376.25 word traces and the test set
of 121 traces per user. As we will show later, it is crucial to
evaluate a dataset with a sufficiently large word corpus.

To predict words, we used the k-nearest neighbor’s algo-
rithm (k-NN), similar to recent work on microarchitectural
attacks [23]. The k-NN algorithm classifies an unseen sample
by looking at the k nearest neighbors by using a distance met-
ric. In our experiments we used k = 15 and uniform weights.
This simple approach is a good match to classify keystroke
sequences, as we expect users to type words similarly every
time. However, users still have a certain degree of variance
in their typing, which makes keystroke timing recovery chal-
lenging. Prior keystroke timing attacks [47, 48, 50, 51, 52, 53]
have also experimented with more sophisticated methods like
HMMs, support-vector machines, and neural networks to map
keystrokes to characters, words, or users. We focus on a



TABLE II: SSH packet recovery quality for different intervals based
on tcpdump (Network) data and cache activity (Cache) data.

0.05s Interval 0.01s Interval 0.001s Interval
Source TP FP FN TP FP FN TP FP FN

tcpdump 1.00 .00 .00 1.00 .00 .00 .93 .00 .06
DDIO .85 .04 .11 .70 .04 .26 .49 .04 .46
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Fig. 8: Absolute difference between the SSH keystrokes emission
time and all the correctly predicted SSH packets within I = 0.001.

simple k-NN baseline here and expect that, by applying a
more sophisticated method, the accuracy of our predictions
can further be increased.

D. Evaluation

We evaluated NetCAT on the Intel Xeon Silver 4110 cluster
with three machines shown in Figure 2. The attacker can send
packets to the NIC to which the victim machine is connected.
This allows the attacker to send synchronization packets, as
previously described. The victim starts an SSH connection to
the application server and then starts typing the words from
the test set. We use expect, which is a programmable interface
to interact with interactive programs, to replay the words in
the SSH session by using the key-down-to-key-down times
from the dataset [49]. This approach allows us to replicate
our experiments with different settings and environmental
factors. The online tracker measures the cache activity over
7 seconds. The expect program starts to replay the words
within such capturing window. Note that the exact start time
is not fed into the tracking or extraction algorithms. Besides
measuring the cache activity, we also capture the incoming
network traffic on the application server with tcpdump. While
the tcpdump baseline assumes a strong attacker model which
requires physical access to the server (i.e., a network tap),
these traces allow us to make a side-by-side comparison of
the classifier on keyboard key-down-to-key-down times, the
actual network packet interarrival times (through tcpdump),
and data recovered from the cache activity.

We have a total of 2,420 test word traces. The total capturing
of the training data takes ~6h. This time includes measuring
the cache for each word during 7 seconds plus some time to
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Fig. 9: Successful extraction of the packet times from the cache
measurements of the word "because" typed by subject s033.

set up tcpdump. It is important to note that we only trace the
words once and use the resulting data in our classification.

Evaluation of SSH packet recovery We evaluated the work
of the online tracker and offline extractor over the entire test
set of twenty subjects. We define a predicted packet as True
Positive (TP) if the packet is within an interval I of the
SSH keystroke packet. A False negative is registered if no
predicted packet is within interval I of a SSH keystroke. If
the signal extraction predicts more packets than there were
emitted, these are counted as False Positive (FP). Similarly,
if multiple packets are predicted for one keystroke only, one
results in a TP and the rest are FPs. We evaluated the extraction
on three different intervals I . Table II presents our results. For
I = 0.05s, we can extract the SSH keystroke packets with a TP
rate of 84.72% (and 11% FN rate). When reducing the interval
I , the number of FNs increases. With I = 0.001s, the TP rate
is still at nearly 50%. Zhang et al. [48] established the ballpark
figure of I = 0.001s as sufficient for successful keystroke
attacks. For comparison, the table also shows the results of
extracting the SSH packets and their times from tcpdump.
These (ideal) results serve as a baseline for packets delayed
over the network and thus no longer within the interval I .

Figure 8 shows the absolute difference between the SSH
keystrokes emission time and all the correctly predicted SSH
packets within I = 0.001. As we can see, the correctly
classified packets from the cache have a higher inner quartile
range compared to the packets captured with tcpdump. In
general, this shows that we can extract incoming packet times
with only slight time differences compared to the baseline
and tcpdump. However, the challenge is to correctly extract
the packets from the cache measurements in the first place.
To give an intuition about a successful SSH packet recovery,
we show a trace for the word "because" in Figure 9. In this
case, the recovered SSH packets are almost perfectly aligned
with the original emission of the keystrokes. Such alignment
is possible in low-latency networks. Otherwise, the network
and cache data would be shifted according to the transmission
time. As we are displaying the data points over a resolution
of 1.2 seconds, the small perturbations of the measurements
cannot be seen.

End-to-End Evaluation To perform an end-to-end accuracy
evaluation, we now take the predicted packets from cache
activity and feed them into the k-NN model that was trained
on the keyboard training data. We chose this setting as an
attacker might have access to a dataset of keystrokes, but
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Fig. 10: Classifier accuracy and Top-10 accuracy for the raw keyboard
data, the data extracted from tcpdump, and the data from the cache
measurements over all subjects.

cannot replay them on the target network topology. To put
the evaluation results of the classifier into perspective, we
summarize the accuracy and Top-10 accuracy for the keyboard
data, the data extracted from tcpdump, and the data from the
cache measurements in Figure 10. We can see that, even on the
keyboard data, the accuracy of the k-NN model is below 40%
which tells us that accurately predicting the true words in this
dataset is challenging. Therefore, we used the common Top-10
accuracy metric to show that predicting the right word within
a limited number of guesses (10) can be achieved accurately
with 85.75%.

When comparing the Top-10 accuracy based on the network
data with the raw keyboard data, we can see a significant
accuracy drop. Comparing these results with the 93.48% true
positive rate on a 0.001s interval in Table II, we can see
that even slight perturbations in the interleaving times can
mislead the classifier trained on raw keyboard data. This makes
predicting the right words more challenging for imperfect SSH
packet recovery as in the case of the cache measurements.
However, on average over all users, the classifier predicts the
right word within its first ten guesses (Top-10 accuracy) in
58.95% of the words. Encouragingly, this is only roughly
15% lower than the performance of tcpdump classification.
For 50% of the words, the attacker is able to guess the word
with 7.85 guesses (median distance). On average over all users
and words, the guessing distance is 20.89. On average we have
228.7 words per user. Therefore, a random guesser would have
an average distance of 114.35 words. We conclude that the
signal of our cache measurement is strong enough to launch a
successful keystroke timing attack via remote PRIME+PROBE.
The full test scores for each test data source and subject can
be found in Appendix D.

To analyze the impact of the word corpus on the classifier,
we changed the number of unique words used for training and
testing. On every round we choose x words at random from
the user specific corpus and then increases x by ten for the
next round. The unique words do not necessary increase by
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Fig. 11: Variance of the classifier’s accuracy when changing the
number of unique words for test and training set over all subjects.

ten as we have different word corpus sizes per subject. As
shown in Figure 11, with less unique words the classifier has
a much higher accuracy than with the total number of unique
words in the original dataset [49]. Furthermore, the variance of
accuracy is quite significant over a lower number of words and
flattens around 170 average unique words per subject. These
observations can be made for all the three different testing
data sources. One drawback of using a high number of unique
words is that our training data set is relatively small, i.e., most
of the words in the training set only have one user trace. A
dataset with many repetitions per word, a large enough word
corpus, and a sufficient number of test subjects would naturally
improve the accuracy of predictions.

IX. GENERALIZATION

We now discuss how, in future work, NetCAT-like attacks
may be generalized beyond our proof-of-concept scenarios.

PCIe to CPU attacks As discussed, DDIO’s write allocation
limitation prevents an attacker from building eviction sets for
the full LLC, making it challenging to directly leak informa-
tion from the host CPU. To accomplish such an information
leak, we believe we can leverage server software running on
the victim. For example, the AnC [13] attack can potentially
be launched over the network. Given a read primitive with
arbitrary offset, such as Redis [54] would give, an attacker
might generate an access pattern that would flush a TLB
set and translation caches as reverse engineered by [3, 55].
The attacker would then dereference a target virtual address,
guaranteed to generate a pagetable walk with virtual address-
dependent offsets. If this experiment is repeated often enough
with the same offsets (modulo page size), the evictions will
eventually reach the DDIO level and the signal will become
observable by NetCAT. Similarly, we expect that when certain
Spectre [16] gadgets are dereferenced repeatedly with the same
offsets (modulo page size), they will cause visible evictions at
the DDIO level and allow secrets to be revealed remotely, just
as local spectre attacks can.



A further challenge is the resolution time by which we can
measure changes in the cache. The eviction set of one cache
set in the DDIO context contains two addresses. Therefore
continuous probing of one cache set requires two one-sided
RDMA reads. The ib_read_lat latency benchmark measured
an average latency between our Intel Xeon Silver 4110 cluster
of 1,550 ns for single a read. In our experiments, we time
both read operations together, which results in less overhead
than single timed operations. On average we can profile one
eviction set with a resolution of 2892 ns on the Intel Xeon
Silver 4110 cluster (99th percentile: 3066 ns, SD: 115 ns).
The resolution time is bounded by the network round trip time
and will differ depending on the setup. Compared to a local
cache timing attack, the reduced resolution time in network-
based attacks means that for cryptographic key recovery more
measurements will likely be necessary. This is an interesting
avenue for further research.

Other PCIe Devices as Targets While this paper focuses on
snooping on NIC activity through DDIO, in general we can
snoop on other PCIe devices. For example, a USB keyboard
may send user keystroke events to the LLC via DDIO.
This opens the possibility for JavaScript attacks that measure
the LLC activity and can obtain sensitive keystroke data or
network activity as shown by previous attacks [14, 23]. Unlike
previous attacks, the attack through DDIO would be able to
monitor cache access patterns and discern hardware-specific
behavior, as demonstrated in this paper with the NIC receive
buffer access pattern. This potentially allows DDIO-enabled
attacks to reach a higher precision.

X. MITIGATION

This section discusses potential mitigations against last-level
cache side-channel attacks from PCIe devices, such as the
attack presented in this paper.

Disabling DDIO The most obvious and straightforward miti-
gation against DDIO-based attacks such as ours is to disable
DDIO. This can be done by adjusting the Integrated I/O (IIO)
configuration registers. There are two possibilities, changing
it globally (Disable_All_Allocating_Flows bit) or per root
PCIe port (NoSnoopOpWrEn and Use_Allocating_Flow_Wr
bit). We successfully mitigated NetCAT by setting these bits
on our Intel Xeon E5 cluster. For the Intel Xeon Silver 4110
the offsets of these bits are not (yet) publicly documented.
While this approach mitigates our attack by preventing us from
building a cache eviction set, it comes at a significant perfor-
mance cost. For example, even for 10 GB/s NICs, disabling
DDIO presents a performance bottleneck [19]. Applications
which are latency sensitive could suffer an increase of latency
by 11% to 18% [26]. Furthermore, power consumption could
increase by seven watts per two-port NIC [27].

LLC Partitioning Another possible defense is to use CAT
to partition the LLC in hardware or software [56], to limit
eviction to a number of ways per set. However, note that this
does not solve the problem of inter-device DDIO snooping, as
all DDIO-enabled devices still share the same cache ways.

This defense can be implemented in software through page
coloring, which allows security domains to be isolated by the
kernel by organizing physical memory by color (each color
being a partition in the LLC), and ensuring that separate
security domains never share a color. Unfortunately, given
that domains frequently share devices, this defense might be
hard to apply in practice. Software-based LLC partitioning is
explored in detail in [57].

Another existing software cache defense is based on
TSX [58]. However, this defense does not help against our
attack because TSX protects only cache activity generated
by the CPU, not devices. Other software defenses [59, 60]
similarly fail to address the inter-device snooping possibility.
Using CAT can have also negative side effects as it can be
abused to accelerate rowhammer attacks [61].

DDIO Improvement The most principled alternative is to
change the current design of DDIO. In an ideal design, every
user (e.g., network client) would receive their own portion
of the cache. Partitioning by ways seems attractive, but is
not scalable because of the limited number of ways in the
LLC. Ultimately, we believe the optimal solution is a flexible
hardware mechanism that allows systems software (such as
the OS) to selectively whitelist regions of the LLC for use by
DDIO-enabled devices.

XI. RELATED WORK

A. Local Microarchitectural attacks

Local microarchitectural attacks have been widely studied
in the context of leaking and corrupting information. These
attacks typically either spy on a victim process [1, 2, 3, 4, 5,
6, 7] or co-located VMs [8, 9, 10, 11].

Osvik et al. [1] pioneered the PRIME+PROBE attack
on the L1 cache, while Ristenpart et al. [22] developed
PRIME+TRIGGER+PROBE to measure L1 and L2 activity on
VMs that share a core. Liu et al. [9] extended PRIME+PROBE
to the LLC under the assumption of large memory pages,
allowing the attacker to extract secrets from co-hosted VMs.
Later work extended the threat model to JavaScript [12, 13,
14, 15, 23], allowing attack code to be delivered from a web
server.

Our remote PRIME+PROBE is based on the method of Oren
et al. [14] to build a non-canonical eviction set. Moreover, our
attack requires no attack code execution on the victim machine
at all.

B. Network Side-channel & Microarchitectural Attacks

Network-based side-channel attacks typically trigger code
execution on a victim machine and then observe the execu-
tion time to leak information. For instance, Bernstein [17]
recovered an AES key by monitoring request times in a web
server encrypting a known-plaintext message. Monitoring was
supported by a local machine that was a clone of the victim
web server. Cock et al. [62] used an OpenSSL vulnerability
to launch a distinguishing attack against Datagram TLS,
exploiting the non-constant execution time of the MAC check.



Schwarz et al. [16] remotely exploited a web server containing
a Spectre v1 gadget triggered over the network, showing that
is is possible to break ASLR over the network.

Kim et al. [63] shows that the Rowhammer flaw can be
triggered from software, and later found to be exploitable by
increasingly sophisticated means [64, 65, 66, 67], all of which
local. Recent work has shown that Rowhammer can also be
triggered from the network. Tatar et al. [68] shows how RDMA
can be leverage to build an end-to-end Rowhammer exploit in
data center settings. Lipp et al. [69] show that under certain
cache-limited conditions, Rowhammer can also be triggered
in Ethernet networks as well.

Many network-based attacks require repeating operations to
filter out noise factors like network variance. In contrast, our
attack leaks sensitive information using only a single trace
of operation. This is possible because we can measure cache
activity precisely by pinpointing the exact cache sets to mea-
sure, providing us with more accurate activity measurement
than prior work. Moreover, NetCAT can spy even on other
PCIe peripherals (not just the CPU), making NetCAT the first
network-based attack of its kind.

C. Keystroke attacks

Prior keystroke recovery attacks have targeted procf [48],
audio [70], CPU scheduling [71], Wi-Fi Signals [72], inter-
rupts [73] and graphic renderings [74]. Song et al. [47] were
the first to use SSH network packets to exploit interleaving
times for password recovery, using a Hidden Markov Model
(HMM) to model character pairs. Hogye et al. [75] argued
that network timing variance would disguise such interleaving
times in a real-world network. Lipp et al. [23] used JavaScript
to spy on URLs typed into browser address bars, using a
closed-world dictionary and using k-nearest neighbors to map
their signal to URLs. We use the same basic technique to
demonstrate the signal strength of our attack. However, we
use a publicly available dataset [49] which provides a large
set of words and subjects to show that our keystroke attack is
practical in real-world settings. As discussed in Section VIII,
a large word corpus is key to validating classifier results.

In our prototype setup, we were able to retrieve cacheline
information with a polling frequency of between 10kHz and
20kHz. Our offline extraction logic is then reliable enough so
that the word prediction accuracy only reduces on average by
11.7% compared to predicting the words from raw keyboard
data.

XII. CONCLUSION

In the last decade, increased peripheral performance has
forced Intel to place the LLC on the fast I/O path in its
processors. This paper explored the security implications of
this design choice and showed that the DDIO feature on
modern Intel CPUs exposes the system to cache attacks over
the network. Our proof of concept exploit, NetCAT, can leak
secret keystrokes of a victim client of a target OpenSSH
server through nothing more than timing the duration of
network requests. Our implementation of NetCAT required

us to reverse engineer the details of the DDIO technology
on Intel processors in order to measure the timing differences
between packets served from the LLC or memory, respectively.
Using only this basic timing primitive, NetCAT is able to build
eviction sets and use these as the first stage of a network-
based LLC PRIME+PROBE attack, ultimately leading to our
keystroke timing attack. While NetCAT is powerful even with
only minimal assumptions, we believe that we have merely
scratched the surface of possibilities for network-based cache
attacks, and we expect similar attacks based on NetCAT in
the future. We hope that our efforts caution processor vendors
against exposing microarchitectural elements to peripherals
without a thorough security design to prevent abuse.

RESPONSIBLE DISCLOSURE

We initiated a coordinated disclosure process with Intel and
NCSC (the Dutch national CERT) on June 23, 2019. The
vulnerability was acknowledged by Intel with a bounty and
CVE-2019-11184 was assigned to track this issue. The public
disclosure was on September 10, 2019.

ACKNOWLEDGEMENTS

We would like to thank our shepherd, Clémentine Maurice,
and the anonymous reviewers for their valuable feedback. This
work was supported by the European Union’s Horizon 2020
research and innovation programme under grant agreements
No. 786669 (ReAct) and No. 825377 (UNICORE), by Intel
Corporation through the Side Channel Vulnerability ISRA,
and by the Netherlands Organisation for Scientific Research
through grants NWO 639.023.309 VICI “Dowsing”, NWO
639.021.753 VENI “PantaRhei”, and NWO 016.Veni.192.262.
This paper reflects only the authors’ view. The funding agen-
cies are not responsible for any use that may be made of the
information it contains.

REFERENCES

[1] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks
and countermeasures: the case of AES,” in Cryptogra-
phers’ Track at the RSA Conference. Springer, 2006,
pp. 1–20.

[2] Y. Yarom and K. Falkner, “FLUSH+ RELOAD: A High
Resolution, Low Noise, L3 Cache Side-Channel Attack,”
in USENIX Security Symposium, 2014, pp. 719–732.

[3] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Trans-
lation Leak-aside Buffer: Defeating Cache Side-channel
Protections with TLB Attacks,” in USENIX Security
Symposium, 2018.

[4] S. Van Schaik, C. Giuffrida, H. Bos, and K. Razavi,
“Malicious management unit: why stopping cache attacks
in software is harder than you think,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018, pp.
937–954.

[5] R. Hund, C. Willems, and T. Holz, “Practical timing side
channel attacks against kernel space ASLR,” in Security
and Privacy (SP), 2013 IEEE Symposium on. IEEE,
2013, pp. 191–205.



[6] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen,
“Prime+ Abort: A Timer-Free High-Precision L3 Cache
Attack using Intel TSX,” in 26th USENIX Security Sym-
posium (USENIX Security 17), 2017, pp. 51–67.

[7] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher,
R. Campbell, and J. Torrellas, “Attack Directories,
Not Caches: Side-Channel Attacks in a Non-Inclusive
World,” in IEEE Symposium on Security and Privacy,
2019.

[8] M. Oliverio, K. Razavi, H. Bos, and C. Giuffrida, “Secure
Page Fusion with VUsion: https://www. vusec. net/pro-
jects/VUsion,” in Proceedings of the 26th Symposium on
Operating Systems Principles. ACM, 2017, pp. 531–
545.

[9] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-
level Cache Side-channel Attacks are Practical,” in IEEE
Symposium on Security and Privacy, 2015.

[10] M. S. Inci, B. Gülmezoglu, G. I. Apecechea, T. Eisen-
barth, and B. Sunar, “Seriously, get off my cloud! Cross-
VM RSA Key Recovery in a Public Cloud,” IACR
Cryptology ePrint Archive, vol. 2015, no. 1-15, 2015.

[11] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar,
“Wait a minute! A fast, Cross-VM attack on AES,” in
International Workshop on Recent Advances in Intrusion
Detection. Springer, 2014, pp. 299–319.

[12] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand
Pwning Unit: Accelerating Microarchitectural Attacks
with the GPU,” in 2018 IEEE Symposium on Security
and Privacy (SP). IEEE, 2018, pp. 195–210.

[13] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida,
“ASLR on the Line: Practical Cache Attacks on the
MMU,” in NDSS, vol. 17, 2017, p. 13.

[14] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D.
Keromytis, “The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and their Implications,” in Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2015, pp. 1406–
1418.

[15] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,
and Y. Yarom, “Spectre Attacks: Exploiting Speculative
Execution,” arXiv preprint arXiv:1801.01203, 2018.

[16] M. Schwarz, M. Schwarzl, M. Lipp, and D. Gruss,
“NetSpectre: Read Arbitrary Memory over Network,”
arXiv preprint arXiv:1807.10535, 2018.

[17] D. J. Bernstein, “Cache-timing attacks on AES,” The
University of Illinois at Chicago, Tech. Rep., 2005.

[18] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal,
Y. Oren, and Y. Yarom, “Robust website fingerprinting
through the cache occupancy channel,” in USENIX Se-
curity, 2019.

[19] R. Huggahalli, R. Iyer, and S. Tetrick, “Direct Cache Ac-
cess for High Bandwidth Network I/O,” in 32nd Interna-
tional Symposium on Computer Architecture (ISCA’05).
IEEE, 2005, pp. 50–59.

[20] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich,

S. López-Buedo, and A. W. Moore, “Understanding PCIe
performance for end host networking,” in Proceedings of
the 2018 Conference of the ACM Special Interest Group
on Data Communication. ACM, 2018, pp. 327–341.

[21] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kamin-
sky, D. G. Andersen, O. Seongil, S. Lee, and P. Dubey,
“Architecting to Achieve a Billion Requests Per Second
Throughput on a Single Key-Value Store Server Plat-
form,” in ACM SIGARCH Computer Architecture News,
vol. 43, no. 3. ACM, 2015, pp. 476–488.

[22] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage,
“Hey, You, Get Off of My Cloud: Exploring Information
Leakage in Third-Party Compute Clouds,” in Proceed-
ings of the 16th ACM conference on Computer and
communications security. ACM, 2009, pp. 199–212.

[23] M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice,
and S. Mangard, “Practical Keystroke Timing Attacks
in Sandboxed JavaScript,” in European Symposium on
Research in Computer Security. Springer, 2017, pp.
191–209.

[24] D. Brumley and D. Boneh, “Remote timing attacks are
practical,” Computer Networks, vol. 48, no. 5, pp. 701–
716, 2005.

[25] M. Neve, J.-P. Seifert, and Z. Wang, “Cache time-
behavior analysis on aes,” Selected Area of Cryptology,
2006.

[26] Intel, “Intel Data Direct I/O Technology (Intel DDIO):
A Primer,” https://www.intel.com/content/dam/www/
public/us/en/documents/technology-briefs/data-direct-i-
o-technology-brief.pdf, 2012, [Accessed: 24.03.2019].

[27] Intel., “Intel Data Direct I/O Technology Overview,”
https://www.intel.co.jp/content/dam/www/public/us/en/
documents/white-papers/data-direct-i-o-technology-
overview-paper.pdf, 2012, [Accessed: 24.03.2019].

[28] Microsoft, “Azure High performance compute VM
sizes,” https://docs.microsoft.com/en-us/azure/virtual-
machines/windows/sizes-hpc, [Accessed: 24.03.2019].

[29] Oracle, “HPC on Oracle Cloud Infrastructure,” https://
cloud.oracle.com/iaas/hpc, [Accessed: 24.03.2019].

[30] Huawei, “Huawei Cloud Service Combination,”
https://www.huaweicloud.com/en-us/solution/solution-
high-mb/mb1.html, [Accessed: 24.03.2019].

[31] Alibaba, “Alibaba Cloud Super Computing Cluster,”
https://www.alibabacloud.com/product/scc, [Accessed:
24.03.2019].

[32] Microsoft, “SMB-Direct,” https://docs.microsoft.com/
en-us/windows-server/storage/file-server/smb-direct,
[Accessed: 24.03.2019].

[33] RedHat, “NFS OVER RDMA,” https:
//access.redhat.com/documentation/
en-us/red_hat_enterprise_linux/6/html/
storage_administration_guide/nfs-rdma, [Accessed:
24.03.2019].
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APPENDIX A
FORWARD SELECTION ALGORITHM

Algorithm 1 Forward Selection

//Let M be a pool of page-aligned addresses
while No Eviction Detected do

//Select n addresses from address pool M
S ← selectFromAddressPoolM(n)

//Write S and do a timed access on all elements of S
rdmaWrite(S)
for i in S.size() do

latencies[i]← rdmaTimedRead(S[i])
//Take address with highest time as potential x
x← argmax(latencies)

//Cache hit time for x
rdmaWrite(x)
t1← rdmaTimedRead(x)

//Potential read from main memory for x
rdmaWrite(S \ x)
t2← rdmaTimedRead(x)

//Determine if x got evicted from S \ x
if t2− t1 > threshold then

S ← S \ x
break

else
n← n+ 1



APPENDIX B
BACKWARD SELECTION ALGORITHM

Algorithm 2 Backward Selection

//Let S be the set of address from the forward selection
which evict address x
for k do

//Select n addresses to be potentially removed from S
n← min(n, S.size()/2)
Srm ← selectFromS(n)

//Cache hit time for x
rdmaWrite(x)
t1← rdmaTimedRead(x)

//Potential read from main memory for x
rdmaWrite(S \ Srm)
t2← rdmaTimedRead(x)

//Determine if x got evicted from S \ Srm

if t2− t1 > threshold then
S ← S \ Srm

n← n+ 10
else

n← n− 1

APPENDIX C
ONLINE TRACKING ALGORITHM

Algorithm 3 Online Tracking

//Let pos be the start position of the ring buffer pointer
while Measurement do

//Eviction sets around pos with window size w
es← getEvictionSets(pos, w)
Prime(es)
while True do

//Send network packet if many unsynchronized
//measurements or if synchronization point failed
if unsynced > 2 || send == 1 then

SendPacketToServer()
injected = 1

latencies← Probe(es)
if latencies[pos] > threshold || injected == 1 then

break

if latencies[pos] > threshold || injected == 1 then
//Reached Synchronization state
pos← ExtractNextPos(latencies)
unsynced← 0
send← 0
syncStatus← 1

else
if injected == 1 then

//Missed Synchronization State
pos← RecoverPos(latencies)
send← 1
syncStatus← 2

else
//Unsynchronized Measurement
unsynced← unsynced+ 1
send← 0
syncStatus← 0

//Export current measurements
Save(latencies, syncStatus)

APPENDIX D
FULL EVALUATION RESULTS



TABLE III: Full end-to-end evaluations of the word classification for the keyboard data, the network data from tcpdump and from the cache
measurement.

Keyboard tcpdump DDIO

Subject
Traces
Training
Set

Traces
Test
Set

Total
Unique
Words

Accuracy
%

Top-10
Accuracy
%

AVG
Distance

Median
Distance

Accuracy
%

Top-10
Accuracy
%

AVG
Distance

Median
Distance

Accuracy
%

Top-10
Accuracy
%

AVG
Distance

Median
Distance

s019 420 146 259 31.51 82.19 6.84 2.0 30.82 76.03 8.45 4.0 21.23 54.79 25.16 9.0
s021 298 80 191 36.25 85.0 5.59 3.0 30.0 76.25 7.67 4.5 26.25 67.5 16.09 7.0
s027 314 103 187 33.98 84.47 6.31 3 33.98 83.5 6.77 4 31.07 69.9 15.32 5
s033 509 166 305 33.73 86.75 6.73 3.0 26.51 71.69 9.83 5.0 21.69 60.24 22.28 7.5
s039 363 110 248 35.45 82.73 5.86 3.5 31.82 72.73 7.72 5.0 25.45 60.0 21.09 8.0

s040 319 86 208 40.7 89.53 4.94 2.5 36.05 77.91 6.84 3.5 24.42 68.6 15.49 5.5
s043 364 119 230 41.18 89.08 4.57 2 36.97 77.31 6.77 4 31.93 65.55 14.24 4
s046 474 171 248 40.35 88.89 5.06 2 36.84 73.68 7.77 4 23.98 54.97 19.94 8
s062 344 103 224 33.98 80.58 6.5 4 30.1 67.96 8.69 6 24.27 55.34 19.7 9
s063 369 116 229 28.45 78.45 6.82 3.0 28.45 76.72 7.63 4.0 16.38 55.17 20.88 9.0

s067 309 96 198 38.54 92.71 4.53 2.0 35.42 78.12 11.27 4.0 26.04 57.29 23.09 7.5
s070 313 89 199 42.7 94.38 3.34 2 40.45 82.02 5.89 4 26.97 65.17 15.89 5
s071 616 227 304 35.24 87.67 6.11 3 29.96 71.37 9.78 6 16.74 42.29 41.04 15
s085 386 142 207 31.69 83.1 5.58 2.0 30.99 78.17 7.51 3.0 22.54 60.56 19.09 6.0
s087 366 117 234 34.19 86.32 6.25 3 30.77 73.5 8.5 5 26.5 64.1 15.86 7

s089 377 112 244 37.5 85.71 5.36 3.0 38.39 74.11 7.65 5.0 25.0 49.11 30.85 11.0
s091 315 87 202 29.89 82.76 6.37 4 25.29 77.01 7.43 5 18.39 62.07 20.01 7
s092 301 87 196 33.33 83.91 5.64 3 28.74 77.01 7.45 5 25.29 60.92 17.79 7
s093 352 108 231 40.74 84.26 5.59 3.0 35.19 77.78 7.07 5.0 21.3 50.0 23.63 10.5
s094 416 155 230 34.84 86.45 5.15 3 31.61 73.55 7.75 5 24.52 55.48 20.41 9

Average 376.25 121.0 228.7 35.71 85.75 5.66 2.8 32.42 75.82 7.92 4.55 24.0 58.95 20.89 7.85
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