
Back to the Future: Fault-tolerant Live Update
with Time-traveling State Transfer

Cristiano Giuffrida Călin Iorgulescu Anton Kuijsten Andrew S. Tanenbaum
Vrije Universiteit, Amsterdam

{giuffrida, calin.iorgulescu, akuijst, ast}@cs.vu.nl

Abstract

Live update is a promising solution to bridge the need
to frequently update a software system with the pressing
demand for high availability in mission-critical environ-
ments. While many research solutions have been pro-
posed over the years, systems that allow software to be
updated on the fly are still far from reaching widespread
adoption in the system administration community. We
believe this trend is largely motivated by the lack of tools
to automate and validate the live update process. A ma-
jor obstacle, in particular, is represented by state transfer,
which existing live update tools largely delegate to the
programmer despite the great effort involved.

This paper presents time-traveling state transfer, a
new automated and fault-tolerant live update technique.
Our approach isolates different program versions into
independent processes and uses a semantics-preserving
state transfer transaction—across multiple past, future,
and reversed versions—to validate the program state of
the updated version. To automate the process, we com-
plement our live update technique with a generic state
transfer framework explicitly designed to minimize the
overall programming effort. Our time-traveling tech-
nique can seamlessly integrate with existing live update
tools and automatically recover from arbitrary run-time
and memory errors in any part of the state transfer code,
regardless of the particular implementation used. Our
evaluation confirms that our update techniques can with-
stand arbitrary failures within our fault model, at the cost
of only modest performance and memory overhead.

1 Introduction

In the era of pervasive and cloud computing, we are
witnessing a major paradigm shift in the way software
is developed and released. The growing demand for
new features, performance enhancements, and security
fixes translates to more and more frequent software up-

dates made available to the end users. In less than a
decade, we quickly transitioned from Microsoft’s “Patch
Tuesday” [39] to Google’s “perpetual beta” development
model [67] and Facebook’s tight release cycle [61], with
an update interval ranging from days to a few hours.

With more frequent software updates, the standard
halt-update-restart cycle is irremediably coming to an
impasse with our growing reliance on nonstop software
operations. To reduce downtime, system administrators
often rely on “rolling upgrades” [29], which typically
update one node at a time in heavily replicated software
systems. While in widespread use, rolling upgrades have
a number of important shortcomings: (i) they require re-
dundant hardware, which may not be available in particu-
lar environments (e.g., small businesses); (ii) they cannot
normally preserve program state across versions, limit-
ing their applicability to stateless systems or systems that
can tolerate state loss; (iii) in heavily replicated software
systems, they lead to significant update latency and high
exposure to “mixed-version races” [30] that can cause in-
sidious update failures. A real-world example of the lat-
ter has been reported as “one of the biggest computer er-
rors in banking history”, with a single-line software up-
date mistakenly deducting about $15 million from over
100,000 customers’ accounts [43].

Live update—the ability to update software on the
fly while it is running with no service interruption—
is a promising solution to the update-without-downtime
problem which does not suffer from the limitations of
rolling upgrades. A key challenge with this approach is
to build trustworthy update systems which come as close
to the usability and reliability of regular updates as possi-
ble. A significant gap is unlikely to encourage adoption,
given that experience shows that administrators are often
reluctant to install even regular software updates [69].

Surprisingly, there has been limited focus on automat-
ing and validating generic live updates in the litera-
ture. For instance, traditional live update tools for C
programs seek to automate only basic type transforma-

tions [62, 64], while more recent solutions [48] make lit-
tle effort to spare the programmer from complex tasks
like pointer transfer (§5). Existing live update validation
tools [45–47], in turn, are only suitable for offline testing,
add no fault-tolerant capabilities to the update process,
require manual effort, and are inherently update timing-
centric. The typical strategy is to verify that a given
test suite completes correctly—according to some man-
ually selected [45, 46] or provided [47] specification—
regardless of the particular time when the update is ap-
plied. This testing method stems from the extensive fo-
cus on live update timing in the literature [44].

Much less effort has been dedicated to automating and
validating state transfer (ST), that is, initializing the state
of a new version from the old one (§2). This is some-
what surprising, given that ST has been repeatedly rec-
ognized as a challenging and error-prone task by many
researchers [13, 22, 23, 57] and still represents a major
obstacle to the widespread adoption of live update sys-
tems. This is also confirmed by the commercial success
of Ksplice [11]—already deployed on over 100,000 pro-
duction servers [4]—explicitly tailored to small security
patches that hardly require any state changes at all (§2).

In this paper, we present time-traveling state trans-
fer (TTST), a new live update technique to automate
and validate generic live updates. Unlike prior live up-
date testing tools, our validation strategy is automated
(manual effort is never strictly required), fault-tolerant
(detects and immediately recovers from any faults in
our fault model with no service disruption), state-centric
(validates the ST code and the full integrity of the fi-
nal state), and blackbox (ignores ST internals and seam-
lessly integrates with existing live update tools). Further,
unlike prior solutions, our fault-tolerant strategy can be
used for online live update validation in the field, which
is crucial to automatically recover from unforeseen up-
date failures often originating from differences between
the testing and the deployment environment [25]. Unlike
commercial tools like Ksplice [11], our techniques can
also handle complex updates, where the new version has
significantly different code and data than the old one.

To address these challenges, our live update tech-
niques use two key ideas. First, we confine different pro-
gram versions into independent processes and perform
process-level live update [35]. This strategy simplifies
state management and allows for automated state reason-
ing and validation. Note that this is in stark contrast with
traditional in-place live update strategies proposed in the
literature [10–12,22,23,58,62,64], which “glue” changes
directly into the running version, thus mixing code and
data from different versions in memory. This mixed ex-
ecution environment complicates debugging and testing,
other than introducing address space fragmentation (and
thus run-time performance overhead) over time [35].

Second, we allow two process-level ST runs using the
time-traveling idea. With time travel, we refer to the
ability to navigate backward and forward across program
state versions using ST. In particular, we first allow a for-
ward ST run to initialize the state of the new version from
the old one. This is already sufficient to implement live
update. Next, we allow a second backward run which im-
plements the reverse state transformation from the new
version back to a copy of the old version. This is done to
validate—and safely rollback when necessary—the ST
process, in particular to detect specific classes of pro-
gramming errors (i.e., memory errors) which would oth-
erwise leave the new version in a corrupted state. To this
end, we compare the program state of the original ver-
sion against the final state produced by our overall trans-
formation. Since the latter is semantics-preserving by
construction, we expect differences in the two states only
in presence of memory errors caused by the ST code.

Our contribution is threefold. First, we analyze the
state transfer problem (§2) and introduce time-traveling
state transfer (§3, §4), an automated and fault-tolerant
live update technique suitable for online (or offline) val-
idation. Our TTST strategy can be easily integrated into
existing live update tools described in the literature, al-
lowing system administrators to seamlessly transition to
our techniques with no extra effort. We present a TTST
implementation for user-space C programs, but the prin-
ciples outlined here are also applicable to operating sys-
tems, with the process abstraction implemented using
lightweight protection domains [72], software-isolated
processes [53], or hardware-isolated processes and mi-
crokernels [50, 52]. Second, we complement our tech-
nique with a TTST-enabled state transfer framework
(§5), explicitly designed to allow arbitrary state transfor-
mations and high validation surface with minimal pro-
gramming effort. Third, we have implemented and eval-
uated the resulting solution (§6), conducting fault injec-
tion experiments to assess the fault tolerance of TTST.

2 The State Transfer Problem

The state transfer problem, rigorously defined by Gupta
for the first time [41], finds two main formulations in
the literature. The traditional formulation refers to the
live initialization of the data structures of the new ver-
sion from those of the old version, potentially operat-
ing structural or semantic data transformations on the
fly [13]. Another formulation also considers the execu-
tion state, with the additional concern of remapping the
call stack and the instruction pointer [40, 57]. We here
adopt the former definition and decouple state transfer
(ST) from control-flow transfer (CFT), solely concerned
with the execution state and subordinate to the particu-
lar update mechanisms adopted by the live update tool

--- a/ drivers /md/dm - crypt .c
+++ b/ drivers /md/dm - crypt .c
@@ -690,6 +690,8 @@ bad3:

bad2:
crypto_free_tfm (tfm);

bad1:
+ /* Must zero key material before freeing */
+ memset(cc, 0, sizeof(*cc) + cc->key size * sizeof(u8));

kfree (cc);
return -EINVAL ;

}
@@ -706,6 +708,9 @@ static void crypt dtr(...)

cc -> iv_gen_ops ->dtr(cc);
crypto_free_tfm (cc ->tfm);
dm_put_device (ti , cc ->dev);

+
+ /* Must zero key material before freeing */
+ memset(cc, 0, sizeof(*cc) + cc->key size * sizeof(u8));

kfree (cc);
}

Listing 1: A security patch to fix an information disclo-
sure vulnerability (CVE-2006-0095) in the Linux kernel.

considered—examples documented in the literature in-
clude manual control migration [40, 48], adaptive func-
tion cloning [58], and stack reconstruction [57].

We illustrate the state transfer problem with two up-
date examples. Listing 1 presents a real-world security
patch which fixes an information disclosure vulnerabil-
ity (detailed in CVE-2006-0095 [5]) in the md (Mul-
tiple Device) driver of the Linux kernel. We sampled
this patch from the dataset [3] originally used to evalu-
ate Ksplice [11]. Similar to many other common secu-
rity fixes, the patch considered introduces simple code
changes that have no direct impact on the program state.
The only tangible effect is the secure deallocation [24]
of sensitive information on cryptographic keys. As a re-
sult, no state transformations are required at live update
time. For this reason, Ksplice [11]—and other similar
in-place live update tools—can deploy this update online
with no state transfer necessary, allowing the new ver-
sion to reuse the existing program state as is. Redirecting
function invocations to the updated functions and resum-
ing execution is sufficient to deploy the live update.

Listing 2 presents a sample patch providing a reduced
test case for common code and data changes found in
real-world updates. The patch introduces a number of
type changes affecting a global struct variable (i.e.,
var)—with fields changed, removed, and reordered—
and the necessary code changes to initialize the new data
structure. Since the update significantly changes the in-
memory representation of the global variable var, state
transfer—using either automatically generated mapping
functions or programmer-provided code—is necessary to
transform the existing program state into a state compat-
ible with the new version at live update time. Failure to
do so would leave the new version in an invalid state af-
ter resuming execution. Section 5 shows how our state

--- a/ example .c
+++ b/ example .c
@@ -1,13 +1,12 @@
struct s {

int count ;
- char str[3];
- short id;
+ int id;
+ char str[2];

union u u;
- void *ptr;

int addr;
- short *inner ptr;
+ int *inner ptr;

} var;

void example_init (char *str) {
- snprintf(var.str, 3, "%s", str);
+ snprintf(var.str, 2, "%s", str);

}

Listing 2: A sample patch introducing code and data
changes that require state transfer at live update time.

transfer strategy can effectively automate this particular
update, while traditional live update tools would largely
delegate this major effort to the programmer.

State transfer has already been recognized as a hard
problem in the literature. Qualitatively, many researchers
have described it as “tedious implementation of the trans-
fer code” [13], “tedious engineering efforts” [22], “te-
dious work” [23]. Others have discussed speculative [14,
16, 37, 38] and practical [63] ST scenarios which are
particularly challenging (or unsolvable) even with pro-
grammer intervention. Quantitatively, a number of user-
level live update tools for C programs (Ginseng [64],
STUMP [62], and Kitsune [48]) have evaluated the ST
manual effort in terms of lines of code (LOC). Table 1
presents a comparative analysis, with the number of up-
dates analyzed, initial source changes to implement their
live update mechanisms (LU LOC), and extra LOC to
apply all the updates considered (ST LOC). In the last
column, we report a normalized ST impact factor (Norm
ST IF), measured as the expected ST LOC necessary af-
ter 100 updates normalized against the initial LU LOC.

As the table shows, the measured impacts are compa-
rable (the lower impact in Kitsune stems from the greater
initial annotation effort required by program-level up-
dates) and demonstrate that ST increasingly (and heav-
ily) dominates the manual effort in long-term deploy-

#Upd LU LOC ST LOC Norm ST IF

Ginseng 30 140 336 8.0x
STUMP 13 186 173 7.1x
Kitsune 40 523 554 2.6x

Table 1: State transfer impact (normalized after 100 up-
dates) for existing user-level solutions for C programs.

Reversed Version

TTST Control LibTTST Control Lib

ST Framework Lib

Instrumented Program

Live Update Lib

Future Version

TTST Control LibTTST Control Lib

ST Framework Lib

Instrumented Program

Live Update Lib
Past Version

TTST Control LibTTST Control Lib

ST Framework Lib

Instrumented Program

Live Update Lib

ST

CFT

5

ST

CFTSTART

TIME-TRAVELING

STATE TRANSFER COMPLETED

FORWARD

TRANSFER

1

2 5

4
3

6
7

9

8

STATE DIFF

10

BACKWARD

TRANSFER

BACK TO THE FUTURE

Figure 1: Time-traveling state transfer overview. The numbered arrows indicate the order of operations.

ment. Worse yet, any LOC-based metric underestimates
the real ST effort, ignoring the atypical and error-prone
programming model with nonstandard entry points, un-
conventional data access, and reduced testability and de-
buggability. Our investigation motivates our focus on au-
tomating and validating the state transfer process.

3 System Overview

We have designed our TTST live update technique with
portability, extensibility, and interoperability in mind.
This vision is reflected in our modular architecture,
which enforces a strict separation of concerns and can
support several possible live update tools and state trans-
fer implementations. To use TTST, users need to stat-
ically instrument the target program in preparation for
state transfer. In our current prototype, this is accom-
plished by a link-time transformation pass implemented
using the LLVM compiler framework [56], which guar-
antees pain-free integration with existing GNU build
systems using standard configure flags. We envision
developers of the original program (i.e., users of our
TTST technique) to gradually integrate support for our
instrumentation into their development model, thus re-
leasing live update-enabled software versions that can
be easily managed by system administrators using sim-
ple tools. For this purpose, our TTST prototype in-
cludes ttst-ctl, a simple command-line tool that trans-
parently interacts with the running program and allows
system administrators to deploy live updates using our
TTST technique with minimal effort. This can be sim-
ply done by using the following command-line syntax:
$ ttst-ctl `pidof program` ./new.bin
Runtime update functionalities, in turn, are imple-

mented by three distinct libraries, transparently linked
with the target program as part of our instrumentation

process. The live update library implements the update
mechanisms specific to the particular live update tool
considered. In detail, the library is responsible to pro-
vide the necessary update timing mechanisms [46] (e.g.,
start the live update when the program is quiescent [46]
and all the external events are blocked) and CFT imple-
mentation. The ST framework library, in turn, imple-
ments the logic needed to automate state transfer and ac-
commodate user-provided ST code. The TTST control
library, finally, implements the resulting time-traveling
state transfer process, with all the necessary mechanisms
to coordinate the different process versions involved.

Our TTST technique operates across three process in-
stances. The first is the original instance running the old
software version (past version, from now on). This in-
stance initiates, controls, and monitors the live update
process, in particular running the only trusted library
code in our architecture with respect to our fault model
(§4). The second is a newly created instance running
the new software version (future version, from now on).
This instance is instructed to reinitialize its state from the
past version. The third process instance is a clone of the
past version created at live update time (reversed version,
from now on). This instance is instructed to reinitialize
its state from the future version. Figure 1 depicts the re-
sulting architecture and live update process.

As shown in the figure, the update process is started
by the live update library in the past version. This hap-
pens when the library detects that an update is available
and all the necessary update timing restrictions (e.g., qui-
escence [46]) are met. The start event is delivered to
the past version’s TTST control library, which sets out
to initiate the time-traveling state transfer transaction.
First, the library locates the new program version on
the file system and creates the process instances for the
future and reversed versions. Next, control is given to
the future version’s TTST control library, requesting to

complete a forward state transfer run from the past ver-
sion. In response, the library instructs the live update and
ST framework libraries to perform ST and CFT, respec-
tively. At the end of the process, control is given to the
reversed version, where the TTST control library repeats
the same steps to complete a backward state transfer run
from the future version. Finally, the library notifies back
the past version, where the TTST control library is wait-
ing for TTST events. In response, the library performs
state differencing between the past and reversed version
to validate the TTST transaction and detect state corrup-
tion errors violating the semantics-preserving nature of
the transformation. In our fault model, the past version
is always immutable and adopted as a oracle when com-
paring the states. If the state is successfully validated
(i.e., the past and reversed versions are identical), con-
trol moves back to the future version to resume execu-
tion. The other processes are automatically cleaned up.

When state corruption or run-time errors (e.g.,
crashes) are detected during the TTST transaction, the
update is immediately aborted with the past version
cleaning up the other instances and immediately resum-
ing execution. The immutability of the past version’s
state allows the execution to resume exactly in the same
state as it was right before the live update process started.
This property ensures instant and transparent recovery
in case of arbitrary TTST errors. Our recovery strategy
enables fast and automated offline validation and, more
importantly, a fault-tolerant live update process that can
immediately and automatically rollback failed update at-
tempts with no consequences for the running program.

4 Time-traveling State Transfer

The goal of TTST is to support a truly fault-tolerant
live update process, which can automatically detect and
recover from as many programming errors as possible,
seamlessly support several live update tools and state
transfer implementations, and rely on a minimal amount
of trusted code at update time. To address these chal-
lenges, our TTST technique follows a number of key
principles: a well-defined fault model, a large state val-
idation surface, a blackbox validation strategy, and a
generic state transfer interface.

Fault model. TTST assumes a general fault model
with the ability to detect and recover from arbitrary run-
time errors and memory errors introducing state corrup-
tion. In particular, run-time errors in the future and re-
versed versions are automatically detected by the TTST
control library in the past version. The process abstrac-
tion allows the library to intercept abnormal termination
errors in the other instances (e.g., crashes, panics) using
simple tracing. Synchronization errors and infinite loops
that prevent the TTST transaction from making progress,

in turn, are detected with a configurable update timeout
(5s by default). Memory errors, finally, are detected by
state differencing at the end of the TTST process.

Our focus on memory errors is motivated by three key
observations. First, these represent an important class of
nonsemantic state transfer errors, the only errors we can
hope to detect in a fully automated fashion. Gupta’s for-
mal framework has already dismissed the possibility to
automatically detect semantic state transfer errors in the
general case [41]. Unlike memory errors, semantic er-
rors are consistently introduced across forward and back-
ward state transfer runs and thus cannot automatically be
detected by our technique. As an example, consider an
update that operates a simple semantic change: renum-
bering all the global error codes to use different value
ranges. If the user does not explicitly provide additional
ST code to perform the conversion, the default ST strat-
egy will preserve the same (wrong) error codes across
the future and the reversed version, with state differenc-
ing unable to detect any errors in the process.

Second, memory errors can lead to insidious la-
tent bugs [32]—which can cause silent data corrup-
tion and manifest themselves potentially much later—
or even introduce security vulnerabilities. These errors
are particularly hard to detect and can easily escape the
specification-based validation strategies adopted by all
the existing live update testing tools [45–47].

Third, memory errors are painfully common in patho-
logically type-unsafe contexts like state transfer, where
the program state is treated as an opaque object which
must be potentially reconstructed from the ground up, all
relying on the sole knowledge available to the particular
state transfer implementation adopted.

Finally, note that, while other semantic ST errors can-
not be detected in the general case, this does not pre-
clude individual ST implementations from using addi-
tional knowledge to automatically detect some classes of
errors in this category. For example, our state transfer
framework can detect all the semantic errors that violate
automatically derived program state invariants [33] (§5).

State validation surface. TTST seeks to validate the
largest possible portion of the state, including state ob-
jects (e.g., global variables) that may only be accessed
much later after the live update. To meet this goal,
our state differencing strategy requires valid forward and
backward transfer functions for each state object to val-
idate. Clearly, the existence and the properties of such
functions for every particular state object are subject to
the nature of the update. For example, an update drop-
ping a global variable in the new version has no de-
fined backward transfer function for that variable. In
other cases, forward and backward transfer functions ex-
ist but cannot be automatically generated. Consider the
error code renumbering update exemplified earlier. Both

State Diff Fwd ST Bwd ST Detected

Unchanged 3 STF STF Auto
Structural chg 3 STF STF Auto
Semantic chg 3 User User 1 Auto 1

Dropped 3 - - Auto
Added 7 Auto/User - STF

1Optional

Table 2: State validation and error detection surface.

the forward and backward transfer functions for all the
global variables affected would have to be manually pro-
vided by the user. Since we wish to support fully auto-
mated validation by default (mandating extra manual ef-
fort is likely to discourage adoption), we allow TTST to
gracefully reduce the state validation surface when back-
ward transfer functions are missing—without hampering
the effectiveness of our strategy on other fully transfer-
able state objects. Enforcing this behavior in our de-
sign is straightforward: the reversed version is originally
cloned from the past version and all the state objects that
do not take part in the backward state transfer run will
trivially match their original counterparts in the state dif-
ferencing process (unless state corruption occurs).

Table 2 analyzes TTST’s state validation and error de-
tection surface for the possible state changes introduced
by a given update. The first column refers to the nature
of the transformation of a particular state object. The
second column refers to the ability to validate the state
object using state differencing. The third and fourth col-
umn characterize the implementation of the resulting for-
ward and backward transfer functions. Finally, the fifth
column analyzes the effectiveness in detecting state cor-
ruption. For unchanged state objects, state differenc-
ing can automatically detect state corruption and transfer
functions are automatically provided by the state transfer
framework (STF). Note that unchanged state objects do
not necessarily have the same representation in the dif-
ferent versions. The memory layout of an updated ver-
sion does not generally reflect the memory layout of the
old version and the presence of pointers can introduce
representation differences for some unchanged state ob-
jects between the past and future version. State objects
with structural changes exhibit similar behavior, with a
fully automated transfer and validation strategy. With
structural changes, we refer to state changes that affect
only the type representation and can be entirely arbi-
trated from the STF with no user intervention (§5). This
is in contrast with semantic changes, which require user-
provided transfer code and can only be partially auto-
mated by the STF (§5). Semantic state changes high-
light the tradeoff between state validation coverage and
the manual effort required by the user. In a traditional

live update scenario, the user would normally only pro-
vide a forward transfer function. This behavior is seam-
lessly supported by TTST, but the transferred state ob-
ject will not be considered for validation. If the user pro-
vides code for the reverse transformation, however, the
transfer can be normally validated with no restriction. In
addition, the backward transfer function provided can be
used to perform a cold rollback from the future version
to the past version (i.e., live updating the new version
into the old version at a later time, for example when the
administrator experiences an unacceptable performance
slowdown in the updated version). Dropped state objects,
in turn, do not require any explicit transfer functions and
are automatically validated by state differencing as dis-
cussed earlier. State objects that are added in the update
(e.g., a new global variable), finally, cannot be automat-
ically validated by state differencing and their validation
and transfer is delegated to the STF (§5) or to the user.

Blackbox validation. TTST follows a blackbox val-
idation model, which completely ignores ST internals.
This is important for two reasons. First, this provides the
ability to support many possible updates and ST imple-
mentations. This also allows one to evaluate and com-
pare different STFs. Second, this is crucial to decouple
the validation logic from the ST implementation, mini-
mizing the amount of trusted code required by our strat-
egy. In particular, our design goals dictate the minimiza-
tion of the reliable computing base (RCB), defined as the
core software components that are necessary to ensure
correct implementation behavior [26]. Our fault model
requires four primary components in the RCB: the update
timing mechanisms, the TTST arbitration logic, the run-
time error detection mechanisms, and the state differenc-
ing logic. All the other software components which run
in the future and reversed versions (e.g., ST code and
CFT code) are fully untrusted thanks to our design.

The implementation of the update timing mechanisms
is entirely delegated to the live update library and its size
subject to the particular live update tool considered. We
trust that every reasonable update timing implementation
will have a small RCB impact. For the other TTST com-
ponents, we seek to reduce the code size (and complex-
ity) to the minimum. Luckily, our TTST arbitration logic
and run-time error detection mechanisms (described ear-
lier) are straightforward and only marginally contribute
to the RCB. In addition, TTST’s semantics-preserving
ST transaction and structural equivalence between the fi-
nal (reversed) state and the original (past) state ensure
that the memory images of the two versions are always
identical in error-free ST runs. This drastically simpli-
fies our state differencing strategy, which can be imple-
mented using trivial word-by-word memory comparison,
with no other knowledge on the ST code and marginal
RCB impact. Our comparison strategy examines all the

function STATE DIFF(pid1, pid2)
a← addr start
while a < shadow start do

m1← IS MAPPED WRITABLE(a, pid1)
m2← IS MAPPED WRITABLE(a, pid2)
if m1 or m2 then

if m1 6= m2 then
return true

if MEMPAGECMP(a, pid1, pid2) 6= 0 then
return true

a← a+ page size
return f alse

Figure 2: State differencing pseudocode.

writable regions of the address space excluding only pri-
vate shadow stack/heap regions (mapped at the end of
the address space) in use by the TTST control library.
Figure 2 shows the pseudocode for this simple strategy.

State transfer interface. TTST’s state transfer inter-
face seeks to minimize the requirements and the effort to
implement the STF. In terms of requirements, TTST de-
mands only a layout-aware and user-aware STF seman-
tic. By layout-aware, we refer to the ability of the STF to
preserve the original state layout when requested (i.e., in
the reversed version), as well as to automatically identify
the state changes described in Table 2. By user-aware,
we refer to the ability to allow the user to selectively
specify new forward and backward transfer functions
and candidate state objects for validation. To reduce
the effort, TTST offers a convenient STF programming
model, with an error handling-friendly environment—
our fault-tolerant design encourages undiscriminated use
of assertions—and a generic interprocess communica-
tion (IPC) interface. In particular, TTST implements an
IPC control interface to coordinate the TTST transaction
and an IPC data interface to grant read-only access to
the state of a given process version to the others. These
interfaces are currently implemented by UNIX domain
sockets and POSIX shared memory (respectively), but
other IPC mechanisms can be easily supported. The cur-
rent implementation combines fast data transfer with a
secure design that prevents impersonation attacks (access
is granted only to the predetermined process instances).

5 State Transfer Framework

Our state transfer framework seeks to automate all the
possible ST steps, leaving only the undecidable cases
(e.g., semantic state changes) to the user. The imple-
mentation described here optimizes and extends our prior
work [33–36] to the TTST model. We propose a STF
design that resembles a moving, mutating, and interpro-

cess garbage collection model. By moving, we refer to
the ability to relocate (and possibly reallocate) static and
dynamic state objects in the next version. This is to al-
low arbitrary changes in the memory layout between ver-
sions. By mutating, we refer to the ability to perform
on-the-fly type transformations when transferring every
given state object from the previous to the next version.
Interprocess, finally, refers to our process-level ST strat-
egy. Our goals raise 3 major challenges for a low-level
language like C. First, our moving requirement requires
precise object and pointer analysis at runtime. Second,
on-the-fly type transformations require the ability to dy-
namically identify, inspect, and match generic data types.
Finally, our interprocess strategy requires a mechanism
to identify and map state objects across process versions.

Overview. To meet our goals, our STF uses a combi-
nation of static and dynamic ST instrumentation. Our
static instrumentation, implemented by a LLVM link-
time pass [56], transforms each program version to gen-
erate metadata information that surgically describes the
entirety of the program state. In particular, static meta-
data, which provides relocation and type information
for all the static state objects (e.g., global variables,
strings, functions with address taken), is embedded di-
rectly into the final binary. Dynamic metadata, which
provides the same information for all the dynamic state
objects (e.g., heap-allocated objects), is, in turn, dy-
namically generated/destroyed at runtime by our allo-
cation/deallocation site instrumentation—we currently
support malloc/mmap-like allocators automatically
and standard region-based allocators [15] using user-
annotated allocator functions. Further, our pass can dy-
namically generate/destroy local variable metadata for a
predetermined number of functions (e.g., main), as dic-
tated by the particular update model considered. Finally,
to automatically identify and map objects across process
versions, our instrumentation relies on version-agnostic
state IDs derived from unambiguous naming and contex-
tual information. In detail, every static object is assigned
a static ID derived by its source name (e.g., function
name) and scope (e.g., static variable module). Every
dynamic object, in turn, is assigned a static ID derived
by allocation site information (e.g., caller function name
and target pointer name) and an incremental dynamic ID
to unambiguously identify allocations at runtime.

Our ID-based naming scheme fulfills TTST’s layout-
awareness goal: static IDs are used to identify state
changes and to automatically reallocate dynamic objects
in the future version; dynamic IDs are used to map dy-
namic objects in the future version with their existing
counterparts in the reversed version. The mapping pol-
icy to use is specified as part of generic ST policies,
also implementing other TTST-aware extensions: (i)
randomization (enabled in the future version): perform

Next Version

Shared Libraries

ST Framework Lib

Metadata
Data

Instrumented Code

Previous Version

Shared Libraries
Data

ST Framework Lib

Metadata

Instrumented Code

R
un

 ti
m

e

Li
nk

 ti
m

e

Instrumented Program

Instrumented Code
ST Framework Lib

Data
Metadata

Instrumented Code

Original Program

Data
Code

Static Instrumentation

Metadata Transfer

INIT
DONE

Shared Lib DataTransfer

Data Transfer

INIT
1

2

5

3

4

Figure 3: State transfer framework overview.

fine-grained address space randomization [34] for all the
static/dynamically reallocated objects, used to amplify
the difference introduced by memory errors in the over-
all TTST transaction; (ii) validation (enabled in the re-
versed version): zero out the local copy of all the mapped
state objects scheduled for automated transfer to detect
missing write errors at validation time.

Our dynamic instrumentation, included in a preloaded
shared library (ST framework library), complements the
static pass to address the necessary run-time tasks: type
and pointer analysis, metadata management for shared
libraries, error detection. In addition, the ST framework
library implements all the steps of the ST process, as de-
picted in Figure 3. The process begins with an initializa-
tion request from the TTST control library, which spec-
ifies the ST policies and provides access to the TTST’s
IPC interface. The next metadata transfer step transfers
all the metadata information from the previous version
to a metadata cache in the next version (local address
space). At the end, the local state objects (and their meta-
data) are mapped into the external objects described by
the metadata cache and scheduled for transfer according
to their state IDs and the given ST policies. The next
two data transfer steps complete the ST process, trans-
ferring all the data to reinitialize shared library and pro-
gram state to the next version. State objects scheduled
for transfer are processed one at a time, using metadata
information to locate the objects and their internal repre-
sentations in the two process versions and apply pointer
and type transformations on the fly. The last step per-
forms cleanup tasks and returns control to the caller.

State transfer strategy. Our STF follows a well-
defined automated ST strategy for all the mapped state
objects scheduled for transfer, exemplified in Figure 4.
As shown in the figure—which reprises the update exam-
ple given earlier (§ 2)—our type analysis automatically
and recursively matches individual type elements be-

tween object versions by name and representation, iden-
tifying added/dropped/changed/identical elements on the
fly. This strategy automates ST for common structural
changes, including: primitive type changes, array ex-
pansion/truncation, and addition/deletion/reordering of
struct members. Our pointer analysis, in turn, imple-
ments a generic pointer transfer strategy, automatically
identifying (base and interior) pointer targets in the previ-
ous version and reinitializing the pointer values correctly
in the next version, in spite of type and memory layout
changes. To perform efficient pointer lookups, our anal-
ysis organizes all the state objects with address taken in a
splay tree, an idea previously explored by bounds check-
ers [9, 27, 70]. We also support all the special pointer
idioms allowed by C (e.g., guard pointers) automatically,
with the exception of cases of “pointer ambiguity” [36].

To deal with ambiguous pointer scenarios (e.g.,
unions with inner pointers and pointers stored as inte-
gers) as well as more complex state changes (e.g., se-
mantic changes), our STF supports user extensions in the
form of preprocessor annotations and callbacks. Figure 4
shows an example of two ST annotations: IXFER (force
memory copying with no pointer transfer) and PXFER
(force pointer transfer instead of memory copying). Call-
backs, in turn, are evaluated whenever the STF maps or
traverses a given object or type element, allowing the
user to override the default mapping behavior (e.g., for
renamed variables) or express sophisticated state trans-
formations at the object or element level. Callbacks can
be also used to: (i) override the default validation poli-
cies, (ii) initialize new state objects; (iii) instruct the STF
to checksum new state objects after initialization to de-
tect memory errors at the end of the ST process.

Shared libraries. Uninstrumented shared libraries
(SLs) pose a major challenge to our pointer transfer strat-
egy. In particular, failure to reinitialize SL-related point-
ers correctly in the future version would introduce er-

struct s,{,//old
memcpy

ptrcpy

int,count;

char,str[3];

short id;

PXFER(int),addr;

void,*ptr;

union IXFER(u),u;

short,*inner_ptr;

ptrcpy

castcpy

memcpy

0

7

4a\04

0

0x...7f

{12,32}

mvar.id

},var;

int,count;

int id;,

char,str[2];

int new_element;

PXFER(int),addr;

union IXFER(u),u;

int,*inner_ptr;

*

struct s,{,//new

},var;

0

4aa\04

7

0x...4f

0x...3f

{12,32}

mvar.id

x

Figure 4: Automated state transfer example for the data structure presented in Listing 2.

rors after live update. To address this challenge, our STF
distinguishes 3 scenarios: (i) program/SL pointers into
static SL state; (ii) program/SL pointers into dynamic
SL state; (iii) SL pointers into static or dynamic program
state. To deal with the first scenario, our STF instructs
the dynamic linker to remap all the SLs in the future ver-
sion at the same addresses as in the past version, allow-
ing SL data transfer (pointer transfer in particular) to be
implemented via simple memory copying. SL reloca-
tion is currently accomplished by prelinking the SLs on
demand when starting the future version, a strategy sim-
ilar to “retouching” for mobile applications [19]. To ad-
dress the second scenario, our dynamic instrumentation
intercepts all the memory management calls performed
by SLs and generates dedicated metadata to reallocate
the resulting objects at the same address in the future
version. This is done by restoring the original heap lay-
out (and content) as part of the SL data transfer phase.
To perform heap randomization and type transformations
correctly for all the program allocations in the future ver-
sion, in turn, we allow the STF to deallocate (and re-
allocate later) all the non-SL heap allocations right af-
ter SL data transfer. To deal with the last scenario, we
need to accurately identify all the SL pointers into the
program state and update their values correctly to re-
flect the memory layout of the future version. Luckily,
these cases are rare and we can envision library devel-
opers exporting a public API that clearly marks long-
lived pointers into the program state once our live up-
date technique is deployed. A similar API is desirable
to mark all the process-specific state (e.g., libc’s cached
pids) that should be restored after ST—note that share-
able resources like file descriptors are, in contrast, au-
tomatically transferred by the fork/exec paradigm. To
automate the identification of these cases in our current
prototype, we used conservative pointer analysis tech-
niques [17, 18] under stress testing to locate long-lived
SL pointers into the program state and state differencing
at fork points to locate process-specific state objects.

Error detection. To detect certain classes of seman-
tic errors that escape TTST’s detection strategy, our

STF enforces program state invariants [33] derived
from all the metadata available at runtime. Unlike
existing likely invariant-based error detection tech-
niques [6,28,31,42,68], our invariants are conservatively
computed from static analysis and allow for no false pos-
itives. The majority of our invariants are enforced by our
dynamic pointer analysis to detect semantic errors during
pointer transfer. For example, our STF reports invariant
violation (and aborts ST by default) whenever a pointer
target no longer exists or has its address taken (accord-
ing to our static analysis) in the new version. Another
example is a transferred pointer that points to an illegal
target type according to our static pointer cast analysis.

6 Evaluation

We have implemented TTST on Linux (x86), with sup-
port for generic user-space C programs using the ELF
binary format. All the platform-specific components,
however, are well isolated in the TTST control library
and easily portable to other operating systems, archi-
tectures, and binary formats other than ELF. We have
integrated address space randomization techniques de-
veloped in prior work [34] into our ST instrumentation
and configured them to randomize the location of all the
static and dynamically reallocated objects in the future
version. To evaluate TTST, we have also developed a
live update library mimicking the behavior of state-of-
the-art live update tools [48], which required implement-
ing preannotated per-thread update points to control up-
date timing, manual control migration to perform CFT,
and a UNIX domain sockets-based interface to receive
live update commands from our ttst-ctl tool.

We evaluated the resulting solution on a workstation
running Linux v3.5.0 (x86) and equipped with a 4-core
3.0Ghz AMD Phenom II X4 B95 processor and 8GB of
RAM. For our evaluation, we first selected Apache httpd
(v.2.2.23) and nginx (v0.8.54), the two most popular
open-source web servers. For comparison purposes, we
also considered vsftpd (v1.1.0) and the OpenSSH dae-

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80 90 100

U
pd

at
e

tim
e

(m
s)

Type transformation coverage (%)

Apache httpd (TTST)
nginx (TTST)
vsftpd (TTST)

OpenSSH (TTST)

Figure 5: Update time vs. type transformation coverage.

mon (v3.5p1), a popular open-source ftp and ssh server,
respectively. The former [23,45,48,49,57,63,64] and the
latter [23,45,64] are by far the most used server programs
(and versions) in prior work in the field. We annotated all
the programs considered to match the implemented live
update library as described in prior work [45, 48]. For
Apache httpd and nginx, we redirected all the calls to
custom allocation routines to the standard allocator in-
terface (i.e., malloc/free calls), given that our current
instrumentation does not yet support custom allocation
schemes based on nested regions [15] (Apache httpd) and
slab-like allocations [20] (nginx). To evaluate our pro-
grams, we performed tests using the Apache benchmark
(AB) [1] (Apache httpd and nginx), dkftpbench [2] (vs-
ftpd), and the provided regression test suite (OpenSSH).
We configured our programs and benchmarks using the
default settings. We repeated all our experiments 21
times and reported the median—with negligible standard
deviation measured across multiple test runs.

Our evaluation answers five key questions: (i) Perfor-
mance: Does TTST yield low run-time overhead and
reasonable update times? (ii) Memory usage: How much
memory do our instrumentation techniques use? (iii)
RCB size: How much code is (and is not) in the RCB?
(iv) Fault tolerance: Can TTST withstand arbitrary fail-
ures in our fault model? (v) Engineering effort: How
much engineering effort is required to adopt TTST?

Performance. To evaluate the run-time overhead im-
posed by our update mechanisms, we first ran our bench-
marks to compare our base programs with their instru-
mented and annotated versions. Our experiments showed
no appreciable performance degradation. This is ex-
pected, since update points only require checking a flag
at the top of long-running loops and metadata is ef-
ficiently managed by our ST instrumentation. In de-
tail, our static metadata—used only at update time—
is confined in a separate ELF section so as not to dis-
rupt locality. Dynamic metadata management, in turn,
relies on in-band descriptors to minimize the overhead

Type httpd nginx vsftpd OpenSSH

Static 2.187 2.358 3.352 2.480
Run-time 3.100 3.786 4.362 2.662
Forward ST 3.134 5.563 6.196 4.126
TTST 3.167 7.340 8.031 5.590

Table 3: TTST-induced memory usage (measured stati-
cally or at runtime) normalized against the baseline.

on allocator operations. To evaluate the latter, we in-
strumented all the C programs in the SPEC CPU2006
benchmark suite. The results evidenced a 4% aver-
age run-time overhead across all the benchmarks. We
also measured the cost of our instrumentation on 10,000
malloc/free and mmap/munmap repeated glibc alloca-
tor operations—which provide worst-case results, given
that common allocation patterns generally yield poorer
locality. Experiments with multiple allocation sizes
(0-16MB) reported a maximum overhead of 41% for
malloc, 9% for free, 77% for mmap, and 42% for
munmap. While these microbenchmark results are useful
to evaluate the impact of our instrumentation on alloca-
tor operations, we expect any overhead to be hardly vis-
ible in real-world server programs, which already strive
to avoid expensive allocations on the critical path [15].

When compared to prior user-level solutions, our
performance overhead is much lower than more intru-
sive instrumentation strategies—with worst-case mac-
robenchmark overhead of 6% [64], 6.71% [62], and
96.4% [57]—and generally higher than simple binary
rewriting strategies [10, 23]—with worst-case function
invocation overhead estimated around 8% [58]. Unlike
prior solutions, however, our overhead is strictly isolated
in allocator operations and never increases with the num-
ber of live updates deployed over time. Recent program-
level solutions that use minimal instrumentation [48]—
no allocator instrumentation, in particular—in turn, re-
port even lower overheads than ours, but at the daunting
cost of annotating all the pointers into heap objects.

We also analyzed the impact of process-level TTST
on the update time—the time from the moment the up-
date is signaled to the moment the future version re-
sumes execution. Figure 5 depicts the update time—
when updating the master process of each program—as
a function of the number of type transformations oper-
ated by our ST framework. For this experiment, we im-
plemented a source-to-source transformation able to au-
tomatically change 0-1,327 type definitions (adding/re-
ordering struct fields and expanding arrays/primitive
types) for Apache httpd, 0-818 type definitions for nginx,
0-142 type definitions for vsftpd, and 0-455 type defini-
tions for OpenSSH between versions. This forced our ST
framework to operate an average of 1,143,981, 111,707,

Component RCB Other

ST instrumentation 1,119 8,211
Live update library 235 147
TTST control library 412 2,797
ST framework 0 13,311
ttst-ctl tool 0 381

Total 1,766 24,847

Table 4: Source lines of code (LOC) and contribution to
the RCB size for every component in our architecture.

1,372, and 206,259 type transformations (respectively)
at 100% coverage. As the figure shows, the number of
type transformations has a steady but low impact on the
update time, confirming that the latter is heavily domi-
nated by memory copying and pointer analysis—albeit
optimized with splay trees. The data points at 100%
coverage, however, are a useful indication of the upper
bound for the update time, resulting in 1263 ms, 180 ms,
112 ms, and 465 ms (respectively) with our TTST update
strategy. Apache httpd reported the longest update times
in all the configurations, given the greater amount of state
transferred at update time. Further, TTST update times
are, on average, 1.76x higher than regular ST updates
(not shown in figure for clarity), acknowledging the im-
pact of backward ST and state differencing on the update
time. While our update times are generally higher than
prior solutions, the impact is bearable for most programs
and the benefit is stateful fault-tolerant version updates.

Memory usage. Our state transfer instrumentation
leads to larger binary sizes and run-time memory foot-
prints. This stems from our metadata generation strategy
and the libraries required to support live update. Table 3
evaluates the impact on our test programs. The static
memory overhead (235.2% worst-case overhead for vs-
ftpd) measures the impact of our ST instrumentation on
the binary size. The run-time overhead (336.2% worst-
case overhead for vsftpd), in turn, measures the impact of
instrumentation and support libraries on the virtual mem-
ory size observed at runtime, right after server initial-
ization. These measurements have been obtained start-
ing from a baseline virtual memory size of 234 MB for
Apache httpd and less than 6 MB for all the other pro-
grams. The third and the fourth rows, finally, show
the maximum virtual memory overhead we observed
at live update time for both regular (forward ST only)
and TTST updates, also accounting for all the transient
process instances created (703.1% worst-case overhead
for vsftpd and TTST updates). While clearly program-
dependent and generally higher than prior live update
solutions, our measured memory overheads are modest
and, we believe, realistic for most systems, also given
the increasingly low cost of RAM in these days.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Branch Uninit. Pointer Overflow Leakage

Fa
ul

t I
nj

ec
tio

n
R

es
ul

ts
 (%

) Successful Update
 Timeout
 Abnormal Termination
 State Differences

Figure 6: TTST behavior in our automated fault injec-
tion experiments for varying fault types.

RCB size. Our TTST update technique is carefully de-
signed to minimize the RCB size. Table 4 lists the LOC
required to implement every component in our architec-
ture and the contributions to the RCB. Our ST instru-
mentation requires 1,119 RCB LOC to perform dynamic
metadata management at runtime. Our live update library
requires 235 RCB LOC to implement the update tim-
ing mechanisms and interactions with client tools. Our
TTST control library requires 412 RCB LOC to arbitrate
the TTST process, implement run-time error detection,
and perform state differencing—all from the past ver-
sion. Our ST framework and ttst-ctl tool, in contrast,
make no contribution to the RCB. Overall, our design
is effective in producing a small RCB, with only 1,766
LOC compared to the other 26,613 non-RCB LOC. En-
couragingly, our RCB is even substantially smaller than
that of other systems that have already been shown to be
amenable to formal verification [54]. This is in stark con-
trast with all the prior solutions, which make no effort to
remove any code from the RCB.

Fault tolerance. We evaluated the fault tolerance
of TTST using software-implemented fault injection
(SWIFI) experiments. To this end, we implemented an-
other LLVM pass which transforms the original program
to inject specific classes of software faults into predeter-
mined code regions. Our pass accepts a list of target pro-
gram functions/modules, the fault types to inject, and a
fault probability φ—which specifies how many fault lo-
cations should be randomly selected for injection out of
all the possible candidates found in the code. We config-
ured our pass to randomly inject faults in the ST code,
selecting φ = 1%—although we observed similar results
for other φ values—and fault types that matched com-
mon programming errors in our fault model. In detail,
similar to prior SWIFI strategies that evaluated the ef-
fectiveness of fault-tolerance mechanisms against state
corruption [65], we considered generic branch errors
(branch/loop condition flip or stuck-at errors) as well as

Updates Changes Engineering effort

LOC Fun Var Ty ST Ann LOC Fwd ST LOC Bwd ST LOC

Apache httpd 5 10,844 829 28 48 79 302 151
nginx 25 9,681 711 51 54 24 335 0
vsftpd 5 5,830 305 121 35 0 21 21
OpenSSH 5 14,370 894 84 33 0 135 127

Total 40 40,725 2,739 284 170 103 793 299

Table 5: Engineering effort for all the updates analyzed in our evaluation.

common memory errors, such as uninitialized reads (em-
ulated by missing initializers), pointer corruption (em-
ulated by corrupting pointers with random or off-by-1
values), buffer overflows (emulated by extending the size
passed to data copy functions, e.g., memcpy, by 1-100%),
and memory leakage (emulated by missing deallocation
calls). We repeated our experiments 500 times for each
of the 5 fault types considered, with each run starting a
live update between randomized program versions and
reporting the outcome of our TTST strategy. We report
results only for vsftpd—although we observed similar re-
sults for the other programs—which allowed us to collect
the highest number of fault injection samples per time
unit and thus obtain the most statistically sound results.

Figure 6 presents our results breaking down the data
by fault type and distribution of the observed outcomes—
that is, update succeeded or automatically rolled back af-
ter timeout, abnormal termination (e.g., crash), or past-
reversed state differences detected. As expected, the dis-
tribution varies across the different fault types consid-
ered. For instance, branch and initialization errors pro-
duced the highest number of updates aborted after a time-
out (14.6% and 9.2%), given the higher probability of in-
finite loops. The first three classes of errors considered,
in turn, resulted in a high number of crashes (51.1%,
on average), mostly due to invalid pointer dereferences
and invariants violations detected by our ST framework.
In many cases, however, the state corruption introduced
did not prevent the ST process from running to comple-
tion, but was nonetheless detected by our state differenc-
ing technique. We were particularly impressed by the
effectiveness of our validation strategy in a number of
scenarios. For instance, state differencing was able to
automatically recover from as many as 471 otherwise-
unrecoverable buffer overflow errors. Similar is the case
of memory leakages—actually activated in 22.2% of the
runs—with any extra memory region mapped by our
metadata cache and never deallocated immediately de-
tected at state diffing time. We also verified that the fu-
ture (or past) version resumed execution correctly after
every successful (or aborted) update attempt. When sam-
pling the 533 successful cases, we noted the introduction

of irrelevant faults (e.g., missing initializer for an unused
variable) or no faults actually activated at runtime. Over-
all, our TTST technique was remarkably effective in de-
tecting and recovering from a significant number of ob-
served failures (1,967 overall), with no consequences for
the running program. This is in stark contrast with all the
prior solutions, which make no effort in this regard.

Engineering effort. To evaluate the engineering ef-
fort required to deploy TTST, we analyzed a number
of official incremental releases following our original
program versions and prepared the resulting patches for
live update. In particular, we considered 5 updates for
Apache httpd (v2.2.23-v2.3.8), vsftpd (v1.1.0-v2.0.2),
and OpenSSH (v3.5-v3.8), and 25 updates for nginx
(v0.8.54-v1.0.15), given that nginx’s tight release cycle
generally produces incremental patches that are much
smaller than those of the other programs considered.
Table 5 presents our findings. The first two grouped
columns provide an overview of our analysis, with the
number of updates considered for each program and the
number of lines of code (LOC) added, deleted, or mod-
ified in total by the updates. As shown in the table,
we manually processed more than 40,000 LOC across
the 40 updates considered. The second group shows the
number of functions, variables, and types changed (i.e.,
added, deleted, or modified) by the updates, with a to-
tal of 2,739, 284, and 170 changes (respectively). The
third group, finally, shows the engineering effort in terms
of LOC required to prepare our test programs and our
patches for live update. The first column shows the one-
time annotation effort required to integrate our test pro-
grams with our ST framework. Apache httpd and nginx
required 79 and 2 LOC to annotate 12 and 2 unions with
inner pointers, respectively. In addition, nginx required
22 LOC to annotate a number of global pointers using
special data encoding—storing metadata information in
the 2 least significant bits. The latter is necessary to en-
sure precise pointer analysis at ST time. The second and
the third column, in turn, show the number of lines of
state transfer code we had to manually write to complete
forward ST and backward ST (respectively) across all the
updates considered. Such ST extensions were necessary

to implement complex state changes that could not be
automatically handled by our ST framework.

A total of 793 forward ST LOC were strictly neces-
sary to prepare our patches for live update. An extra 299
LOC, in turn, were required to implement backward ST.
While optional, the latter is important to guarantee full
validation surface for our TTST technique. The much
lower LOC required for backward ST (37.7%) is easily
explained by the additive nature of typical state changes,
which frequently entail only adding new data structures
(or fields) and thus rarely require extra LOC in our back-
ward ST transformation. The case of nginx is particularly
emblematic. Its disciplined update strategy, which limits
the number of nonadditive state changes to the minimum,
translated to no manual ST LOC required to implement
backward ST. We believe this is particularly encouraging
and can motivate developers to deploy our TTST tech-
niques with full validation surface in practice.

7 Related Work

Live update systems. We focus on local live update
solutions for generic and widely deployed C programs,
referring the reader to [7, 8, 29, 55, 74] for distributed
live update systems. LUCOS [22], DynaMOS [58], and
Ksplice [11] have applied live updates to the Linux ker-
nel, loading new code and data directly into the run-
ning version. Code changes are handled using binary
rewriting (i.e., trampolines). Data changes are handled
using shadow [11, 58] or parallel [22] data structures.
OPUS [10], POLUS [23], Ginseng [64], STUMP [62],
and Upstare [57] are similar live update solutions for
user-space C programs. Code changes are handled us-
ing binary rewriting [10, 23], compiler-based instrumen-
tation [62,64], or stack reconstruction [57]. Data changes
are handled using parallel data structures [23], type
wrapping [62, 64], or object replacement [57]. Most
solutions delegate ST entirely to the programmer [10,
11, 22, 23, 58], others generate only basic type trans-
formers [57, 62, 64]. Unlike TTST, none of these so-
lutions attempt to fully automate ST—pointer transfer, in
particular—and state validation. Further, their in-place
update model hampers isolation and recovery from ST
errors, while also introducing address space fragmenta-
tion over time. To address these issues, alternative update
models have been proposed. Prior work on process-level
live updates [40, 49], however, delegates the ST burden
entirely to the programmer. In another direction, Kit-
sune [48] encapsulates every program in a hot swappable
shared library. Their state transfer framework, however,
does not attempt to automate pointer transfer without
user effort and no support is given to validate the state or
perform safe rollback in case of ST errors. Finally, our
prior work [34,35] demonstrated the benefits of process-

level live updates in component-based OS architectures,
with support to recover from run-time ST errors but no
ability to detect a corrupted state in the updated version.

Live update safety. Prior work on live update safety
is mainly concerned with safe update timing mecha-
nisms, neglecting important system properties like fault
tolerance and RCB minimization. Some solutions rely
on quiescence [10–13] (i.e., no updates to active code),
others enforce representation consistency [62, 64, 71]
(i.e., no updated code accessing old data). Other re-
searchers have proposed using transactions in local [63]
or distributed [55, 74] contexts to enforce stronger tim-
ing constraints. Recent work [44], in contrast, suggests
that many researchers may have been overly concerned
with update timing and that a few predetermined update
points [34, 35, 48, 49, 62, 64] are typically sufficient to
determine safe and timely update states. Unlike TTST,
none of the existing solutions have explicitly addressed
ST-specific update safety properties. Static analysis pro-
posed in OPUS [10]—to detect unsafe data updates—
and Ginseng [64]—to detect unsafe pointers into updated
objects—is somewhat related, but it is only useful to dis-
allow particular classes of (unsupported) live updates.

Update testing. Prior work on live update testing [45–
47] is mainly concerned with validating the correctness
of an update in all the possible update timings. Correct
execution is established from manually written specifica-
tions [47] or manually selected program output [45, 46].
Unlike TTST, these techniques require nontrivial man-
ual effort, are only suitable for offline testing, and fail to
validate the entirety of the program state. In detail, their
state validation surface is subject to the coverage of the
test programs or specifications used. Their testing strat-
egy, however, is useful to compare different update tim-
ing mechanisms, as also demonstrated in [45]. Other re-
lated work includes online patch validation, which seeks
to efficiently compare the behavior of two (original and
patched) versions at runtime. This is accomplished by
running two separate (synchronized) versions in paral-
lel [21, 51, 59] or a single hybrid version using a split-
and-merge strategy [73]. These efforts are complemen-
tary to our work, given that their goal is to test for errors
in the patch itself rather than validating the state trans-
fer code required to prepare the patch for live update.
Complementary to our work are also efforts on upgrade
testing in large-scale installations, which aim at creat-
ing sandboxed deployment-like environments for testing
purposes [75] or efficiently testing upgrades in diverse
environments using staged deployment [25]. Finally,
fault injection has been previously used in the context of
update testing [29, 60, 66], but only to emulate upgrade-
time operator errors. Our evaluation, in contrast, presents
the first fault injection campaign that emulates realistic
programming errors in the ST code.

8 Conclusion

While long recognized as a hard problem, state transfer
has received limited attention in the live update literature.
Most efforts focus on automating and validating update
timing, rather than simplifying and shielding the state
transfer process from programming errors. We believe
this is a key factor that has discouraged the system ad-
ministration community from adopting live update tools,
which are often deemed impractical and untrustworthy.

This paper presented time-traveling state transfer, the
first fault-tolerant live update technique which allows
generic live update tools for C programs to automate and
validate the state transfer process. Our technique com-
bines the conventional forward state transfer transforma-
tion with a backward (and logically redundant) trans-
formation, resulting in a semantics-preserving manipu-
lation of the original program state. Observed deviations
in the reversed state are used to automatically identify
state corruption caused by common classes of program-
ming errors (i.e., memory errors) in the state transfer (li-
brary or user) code. Our process-level update strategy, in
turn, guarantees detection of other run-time errors (e.g.,
crashes), simplifies state management, and prevents state
transfer errors to propagate back to the original version.
The latter property allows our framework to safely re-
cover from errors and automatically resume execution in
the original version. Further, our modular and blackbox
validation design yields a minimal-RCB live update sys-
tem, offering a high fault-tolerance surface in both online
and offline validation runs. Finally, we complemented
our techniques with a generic state transfer framework,
which automates state transformations with minimal pro-
gramming effort and can detect additional semantic er-
rors using statically computed invariants. We see our
work as the first important step toward truly practical and
trustworthy live update tools for system administrators.

9 Acknowledgments

We would like to thank our shepherd, Mike Ciavarella,
and the anonymous reviewers for their comments. This
work has been supported by European Research Council
under grant ERC Advanced Grant 2008 - R3S3.

References

[1] Apache benchmark (AB). http://httpd.apache.
org/docs/2.0/programs/ab.html.

[2] dkftpbench. http://www.kegel.com/dkftpbench.

[3] Ksplice performance on security patches.
http://www.ksplice.com/cve-evaluation.

[4] Ksplice Uptrack. http://www.ksplice.com.

[5] Vulnerability summary for CVE-2006-0095.
http://web.nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2006-0095.

[6] ADVE, S. V., ADVE, V. S., AND ZHOU, Y. Using likely
program invariants to detect hardware errors. In Proc.
of the IEEE Int’l Conf. on Dependable Systems and Net-
works (2008).

[7] AJMANI, S., LISKOV, B., AND SHRIRA, L. Scheduling
and simulation: How to upgrade distributed systems. In
Proc. of the Ninth Workshop on Hot Topics in Operating
Systems (2003), vol. 9, pp. 43–48.

[8] AJMANI, S., LISKOV, B., SHRIRA, L., AND THOMAS,
D. Modular software upgrades for distributed systems.
In Proc. of the 20th European Conf. on Object-Oriented
Programming (2006), pp. 452–476.

[9] AKRITIDIS, P., COSTA, M., CASTRO, M., AND HAND,
S. Baggy bounds checking: An efficient and backwards-
compatible defense against out-of-bounds errors. In Proc.
of the 18th USENIX Security Symp. (2009), pp. 51–66.

[10] ALTEKAR, G., BAGRAK, I., BURSTEIN, P., AND

SCHULTZ, A. OPUS: Online patches and updates for
security. In Proc. of the 14th USENIX Security Symp.
(2005), vol. 14, pp. 19–19.

[11] ARNOLD, J., AND KAASHOEK, M. F. Ksplice: Auto-
matic rebootless kernel updates. In Proc. of the Fourth
ACM European Conf. on Computer Systems (2009),
pp. 187–198.

[12] BAUMANN, A., APPAVOO, J., WISNIEWSKI, R. W.,
SILVA, D. D., KRIEGER, O., AND HEISER, G. Reboots
are for hardware: Challenges and solutions to updating
an operating system on the fly. In Proc. of the USENIX
Annual Tech. Conf. (2007), pp. 1–14.

[13] BAUMANN, A., HEISER, G., APPAVOO, J., DA SILVA,
D., KRIEGER, O., WISNIEWSKI, R. W., AND KERR,
J. Providing dynamic update in an operating system. In
Proc. of the USENIX Annual Tech. Conf. (2005), p. 32.

[14] BAZZI, R. A., MAKRIS, K., NAYERI, P., AND SHEN, J.
Dynamic software updates: The state mapping problem.
In Proc. of the Second Int’l Workshop on Hot Topics in
Software Upgrades (2009), p. 2.

[15] BERGER, E. D., ZORN, B. G., AND MCKINLEY, K. S.
Reconsidering custom memory allocation. In Proc. of the
17th ACM Conf. on Object-Oriented Programming, Sys-
tems, Languages, and Applications (2002), pp. 1–12.

[16] BLOOM, T., AND DAY, M. Reconfiguration and mod-
ule replacement in Argus: Theory and practice. Software
Engineering J. 8, 2 (1993), 102–108.

[17] BOEHM, H.-J. Space efficient conservative garbage col-
lection. In Proc. of the ACM SIGPLAN Conf. on Pro-
gramming Language Design and Implementation (1993),
pp. 197–206.

[18] BOEHM, H.-J. Bounding space usage of conservative
garbage collectors. In Proc. of the 29th ACM SIGPLAN-
SIGACT Symp. on Principles of Programming Languages
(2002), pp. 93–100.

http://httpd.apache.org/docs/2.0/programs/ab.html
http://httpd.apache.org/docs/2.0/programs/ab.html
http://www.kegel.com/dkftpbench
http://www.ksplice.com/cve-evaluation
http://www.ksplice.com
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2006-0095
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2006-0095

[19] BOJINOV, H., BONEH, D., CANNINGS, R., AND

MALCHEV, I. Address space randomization for mobile
devices. In Proc. of the Fourth ACM Conf. on Wireless
network security (2011), pp. 127–138.

[20] BONWICK, J. The slab allocator: An object-caching ker-
nel memory allocator. In Proc. of the USENIX Summer
Technical Conf. (1994), p. 6.

[21] CADAR, C., AND HOSEK, P. Multi-version software up-
dates. In Proc. of the Fourth Int’l Workshop on Hot Topics
in Software Upgrades (2012), pp. 36–40.

[22] CHEN, H., CHEN, R., ZHANG, F., ZANG, B., AND

YEW, P.-C. Live updating operating systems using vir-
tualization. In Proc. of the Second Int’l Conf. on Virtual
Execution Environments (2006), pp. 35–44.

[23] CHEN, H., YU, J., CHEN, R., ZANG, B., AND YEW, P.-
C. POLUS: A POwerful live updating system. In Proc.
of the 29th Int’l Conf. on Software Eng. (2007), pp. 271–
281.

[24] CHOW, J., PFAFF, B., GARFINKEL, T., AND ROSEN-
BLUM, M. Shredding your garbage: Reducing data life-
time through secure deallocation. In Proc. of the 14th
USENIX Security Symp. (2005), pp. 22–22.

[25] CRAMERI, O., KNEZEVIC, N., KOSTIC, D., BIAN-
CHINI, R., AND ZWAENEPOEL, W. Staged deployment
in Mirage, an integrated software upgrade testing and dis-
tribution system. In Proc. of the 21st ACM Symp. on Op-
erating Systems Principles (2007), pp. 221–236.

[26] DÖBEL, B., HÄRTIG, H., AND ENGEL, M. Operating
system support for redundant multithreading. In Proc.
of the 10th Int’l Conf. on Embedded software (2012),
pp. 83–92.

[27] DHURJATI, D., AND ADVE, V. Backwards-compatible
array bounds checking for C with very low overhead. In
Proc. of the 28th Int’l Conf. on Software Eng. (2006),
pp. 162–171.

[28] DIMITROV, M., AND ZHOU, H. Unified architectural
support for soft-error protection or software bug detec-
tion. In Proc. of the 16th Int’l Conf. on Parallel Architec-
ture and Compilation Techniques (2007), pp. 73–82.

[29] DUMITRAS, T., AND NARASIMHAN, P. Why do up-
grades fail and what can we do about it?: Toward depend-
able, online upgrades in enterprise system. In Proc. of the
10th Int’l Conf. on Middleware (2009), pp. 1–20.

[30] DUMITRAS, T., NARASIMHAN, P., AND TILEVICH, E.
To upgrade or not to upgrade: Impact of online upgrades
across multiple administrative domains. In Proc. of the
ACM Conf. on Object-Oriented Programming, Systems,
Languages, and Appilcations (2010), pp. 865–876.

[31] ERNST, M. D., COCKRELL, J., GRISWOLD, W. G.,
AND NOTKIN, D. Dynamically discovering likely pro-
gram invariants to support program evolution. In Proc. of
the 21st Int’l Conf. on Software Eng. (1999), pp. 213–224.

[32] FONSECA, P., LI, C., AND RODRIGUES, R. Finding
complex concurrency bugs in large multi-threaded appli-
cations. In Proc. of the Sixth ACM European Conf. on
Computer Systems (2011), pp. 215–228.

[33] GIUFFRIDA, C., CAVALLARO, L., AND TANENBAUM,
A. S. Practical automated vulnerability monitoring using
program state invariants. In Proc. of the Int’l Conf. on
Dependable Systems and Networks (2013).

[34] GIUFFRIDA, C., KUIJSTEN, A., AND TANENBAUM,
A. S. Enhanced operating system security through ef-
ficient and fine-grained address space randomization. In
Proc. of the 21st USENIX Security Symp. (2012), p. 40.

[35] GIUFFRIDA, C., KUIJSTEN, A., AND TANENBAUM,
A. S. Safe and automatic live update for operating sys-
tems. In Proceedings of the 18th Int’l Conf. on Architec-
tural Support for Programming Languages and Operat-
ing Systems (2013), pp. 279–292.

[36] GIUFFRIDA, C., AND TANENBAUM, A. Safe and auto-
mated state transfer for secure and reliable live update. In
Proc. of the Fourth Int’l Workshop on Hot Topics in Soft-
ware Upgrades (2012), pp. 16–20.

[37] GIUFFRIDA, C., AND TANENBAUM, A. S. Cooperative
update: A new model for dependable live update. In Proc.
of the Second Int’l Workshop on Hot Topics in Software
Upgrades (2009), pp. 1–6.

[38] GIUFFRIDA, C., AND TANENBAUM, A. S. A taxonomy
of live updates. In Proc. of the 16th ASCI Conf. (2010).

[39] GOODFELLOW, B. Patch tuesday. http://www.
thetechgap.com/2005/01/strongpatch_tue.html.

[40] GUPTA, D., AND JALOTE, P. On-line software version
change using state transfer between processes. Softw.
Pract. and Exper. 23, 9 (1993), 949–964.

[41] GUPTA, D., JALOTE, P., AND BARUA, G. A formal
framework for on-line software version change. IEEE
Trans. Softw. Eng. 22, 2 (1996), 120–131.

[42] HANGAL, S., AND LAM, M. S. Tracking down software
bugs using automatic anomaly detection. In Proc. of the
24th Int’l Conf. on Software Eng. (2002), pp. 291–301.

[43] HANSELL, S. Glitch makes teller machines take twice
what they give. The New York Times (1994).

[44] HAYDEN, C., SAUR, K., HICKS, M., AND FOSTER, J.
A study of dynamic software update quiescence for multi-
threaded programs. In Proc. of the Fourth Int’l Workshop
on Hot Topics in Software Upgrades (2012), pp. 6–10.

[45] HAYDEN, C., SMITH, E., HARDISTY, E., HICKS, M.,
AND FOSTER, J. Evaluating dynamic software update
safety using systematic testing. IEEE Trans. Softw. Eng.
38, 6 (2012), 1340–1354.

[46] HAYDEN, C. M., HARDISTY, E. A., HICKS, M., AND

FOSTER, J. S. Efficient systematic testing for dynam-
ically updatable software. In Proc. of the Second Int’l
Workshop on Hot Topics in Software Upgrades (2009),
pp. 1–5.

[47] HAYDEN, C. M., MAGILL, S., HICKS, M., FOSTER,
N., AND FOSTER, J. S. Specifying and verifying the
correctness of dynamic software updates. In Proc. of the
Fourth Int’l Conf. on Verified Software: Theories, Tools,
Experiments (2012), pp. 278–293.

http://www.thetechgap.com/2005/01/strongpatch_tue.html
http://www.thetechgap.com/2005/01/strongpatch_tue.html

[48] HAYDEN, C. M., SMITH, E. K., DENCHEV, M., HICKS,
M., AND FOSTER, J. S. Kitsune: Efficient, general-
purpose dynamic software updating for C. In Proc. of the
ACM Conf. on Object-Oriented Programming, Systems,
Languages, and Appilcations (2012).

[49] HAYDEN, C. M., SMITH, E. K., HICKS, M., AND FOS-
TER, J. S. State transfer for clear and efficient runtime
updates. In Proc. of the Third Int’l Workshop on Hot Top-
ics in Software Upgrades (2011), pp. 179–184.

[50] HERDER, J. N., BOS, H., GRAS, B., HOMBURG, P.,
AND TANENBAUM, A. S. Reorganizing UNIX for relia-
bility. In Proc. of the 11th Asia-Pacific Conf. on Advances
in Computer Systems Architecture (2006), pp. 81–94.

[51] HOSEK, P., AND CADAR, C. Safe software updates via
multi-version execution. In Proc. of the Int’l Conf. on
Software Engineering (2013), pp. 612–621.

[52] HÄRTIG, H., HOHMUTH, M., LIEDTKE, J., WOLTER,
J., AND SCHÖNBERG, S. The performance of
microkernel-based systems. In Proc. of the 16th ACM
Symp. on Oper. Systems Prin. (1997), pp. 66–77.

[53] HUNT, G. C., AND LARUS, J. R. Singularity: Rethink-
ing the software stack. SIGOPS Oper. Syst. Rev. 41, 2
(2007), 37–49.

[54] KLEIN, G., ELPHINSTONE, K., HEISER, G., AN-
DRONICK, J., COCK, D., DERRIN, P., ELKADUWE,
D., ENGELHARDT, K., KOLANSKI, R., NORRISH, M.,
SEWELL, T., TUCH, H., AND WINWOOD, S. seL4: For-
mal verification of an OS kernel. In Proc. of the 22nd
ACM Symp. on Oper. Systems Prin. (2009), pp. 207–220.

[55] KRAMER, J., AND MAGEE, J. The evolving philoso-
phers problem: Dynamic change management. IEEE
Trans. Softw. Eng. 16, 11 (1990), 1293–1306.

[56] LATTNER, C., AND ADVE, V. LLVM: A compilation
framework for lifelong program analysis & transforma-
tion. In Proc. of the Int’l Symp. on Code Generation and
Optimization (2004), p. 75.

[57] MAKRIS, K., AND BAZZI, R. Immediate multi-threaded
dynamic software updates using stack reconstruction. In
Proc. of the USENIX Annual Tech. Conf. (2009), pp. 397–
410.

[58] MAKRIS, K., AND RYU, K. D. Dynamic and adaptive
updates of non-quiescent subsystems in commodity oper-
ating system kernels. In Proc. of the Second ACM Euro-
pean Conf. on Computer Systems (2007), pp. 327–340.

[59] MAURER, M., AND BRUMLEY, D. TACHYON: Tandem
execution for efficient live patch testing. In Proc. of the
21st USENIX Security Symp. (2012), p. 43.

[60] NAGARAJA, K., OLIVEIRA, F., BIANCHINI, R., MAR-
TIN, R. P., AND NGUYEN, T. D. Understanding and
dealing with operator mistakes in internet services. In
Proc. of the 6th USENIX Symp. on Operating Systems De-
sign and Implementation (2004), pp. 5–5.

[61] NEAMTIU, I., AND DUMITRAS, T. Cloud software up-
grades: Challenges and opportunities. In Proc. of the Int’l
Workshop on the Maintenance and Evolution of Service-
Oriented and Cloud-Based Systems (2011), pp. 1–10.

[62] NEAMTIU, I., AND HICKS, M. Safe and timely updates
to multi-threaded programs. In Proc. of the ACM SIG-
PLAN Conf. on Programming Language Design and Im-
plementation (2009), pp. 13–24.

[63] NEAMTIU, I., HICKS, M., FOSTER, J. S., AND

PRATIKAKIS, P. Contextual effects for version-consistent
dynamic software updating and safe concurrent program-
ming. In Proc. of the ACM SIGPLAN Conf. on Pro-
gramming Language Design and Implementation (2008),
pp. 37–49.

[64] NEAMTIU, I., HICKS, M., STOYLE, G., AND ORIOL,
M. Practical dynamic software updating for C. In Proc.
of the ACM SIGPLAN Conf. on Programming Language
Design and Implementation (2006), pp. 72–83.

[65] NG, W. T., AND CHEN, P. M. The systematic improve-
ment of fault tolerance in the Rio file cache. In Proc. of
the 29th Int’ll Symp. on Fault-Tolerant Computing (1999),
p. 76.

[66] OLIVEIRA, F., NAGARAJA, K., BACHWANI, R., BIAN-
CHINI, R., MARTIN, R. P., AND NGUYEN, T. D. Un-
derstanding and validating database system administra-
tion. In Proc. of the USENIX Annual Tech. Conf. (2006),
pp. 213–228.

[67] O’REILLY, T. What is Web 2.0. http://oreilly.
com/pub/a/web2/archive/what-is-web-20.html.

[68] PATTABIRAMAN, K., SAGGESE, G. P., CHEN, D.,
KALBARCZYK, Z. T., AND IYER, R. K. Automated
derivation of application-specific error detectors using dy-
namic analysis. IEEE Trans. Dep. Secure Comput. 8, 5
(2011), 640–655.

[69] RESCORLA, E. Security holes... who cares? In Proc. of
the 12th USENIX Security Symp. (2003), vol. 12, pp. 6–6.

[70] ROWASE, O., AND LAM, M. S. A practical dynamic
buffer overflow detector. In Proc. of the 11th Annual
Symp. on Network and Distr. System Security (2004),
pp. 159–169.

[71] STOYLE, G., HICKS, M., BIERMAN, G., SEWELL, P.,
AND NEAMTIU, I. Mutatis mutandis: Safe and pre-
dictable dynamic software updating. ACM Trans. Pro-
gram. Lang. Syst. 29, 4 (2007).

[72] SWIFT, M. M., BERSHAD, B. N., AND LEVY, H. M.
Improving the reliability of commodity operating sys-
tems. ACM Trans. Comput. Syst. 23, 1 (2005), 77–110.

[73] TUCEK, J., XIONG, W., AND ZHOU, Y. Efficient on-
line validation with delta execution. In Proc. of the 14th
Int’l Conf. on Architectural support for programming lan-
guages and operating systems (2009), pp. 193–204.

[74] VANDEWOUDE, Y., EBRAERT, P., BERBERS, Y., AND

D’HONDT, T. Tranquility: A low disruptive alternative
to quiescence for ensuring safe dynamic updates. IEEE
Trans. Softw. Eng. 33, 12 (2007), 856–868.

[75] ZHENG, W., BIANCHINI, R., JANAKIRAMAN, G. J.,
SANTOS, J. R., AND TURNER, Y. JustRunIt:
Experiment-based management of virtualized data cen-
ters. In Proc. of the USENIX Annual Tech. Conf. (2009),
p. 18.

http://oreilly.com/pub/a/web2/archive/what-is-web-20.html
http://oreilly.com/pub/a/web2/archive/what-is-web-20.html

	Introduction
	The State Transfer Problem
	System Overview
	Time-traveling State Transfer
	State Transfer Framework
	Evaluation
	Related Work
	Conclusion
	Acknowledgments

