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Abstract—While greybox fuzzing is routinely applied in
production environments with great success, directed greybox
fuzzing has struggled to gain real-world adoption—despite the
great (intuitive) promise and the many optimizations proposed
in literature. In practice, directed fuzzers struggle for three
critical issues. First, popular implementations build on and
compare to ancient baselines, often derived from AFLGo.
Unfortunately, none of the optimizations that are essential
for performance in modern greybox fuzzers are available in
these baselines. As a result, we find reported improvements
in directed fuzzing are often only “imaginary” and do not
lead to better performance on a modern baseline. Second,
directed fuzzing evaluations commonly ignore or misinterpret
important factors affecting fuzzing overhead—such as build
times and timeouts. As design decisions now build on
unreliable data, we find the directed fuzzers perform worse
than expected in practice. Third, while almost all directed
fuzzers rely on (expensive) analysis stacks, such as points-
to and reachability analysis components, they often opt for
very different implementations. Since these implementations
have their own unique benefits and drawbacks, we find
performance differences of directed fuzzers are frequently
due to these components rather than the proposed directed
fuzzing optimization.

In this paper, we investigate the practical impact of
these issues by means of an analysis and evaluation of a
representative set of popular directed greybox fuzzers. As
a way forward, we then present LIBAFLGO, a modular
directed fuzzing framework that addresses all three issues
and allows one to directly compare different directed fuzzing
policies on top of a modern fuzzing stack. Our experimental
results on state-of-the-art directed fuzzing policies provide two
main insights. First, the original AFLGo policies outperform
more recent directed fuzzing policies when testing on a
modern fuzzing stack. Second, none of the directed fuzzing
policies can favorably compete with (nondirected) LibAFL,
which scored better overall performance across benchmarks.
As such, the quest for efficient directed fuzzing policies must
continue.

Index Terms—fuzzing, directed fuzzing, guidelines

1. Introduction

Greybox fuzzing, which relies on feedback from
lightweight instrumentation to guide the exploration of the
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target program, has a pivotal role in vulnerability finding.
As a consequence, the research community has directed
tremendous efforts toward optimizing the efficiency of
modern greybox fuzzing frameworks. With success: as
production tools such as AFL++ [10] and LibAFL [11]
adopted a host of powerful optimizations, their proficiency
at finding bugs has far outgrown that of their simpler pre-
decessors, such as AFL [38]. Essential optimizations such
as CMPLOG, derived from RedQueen [10], MOPT [25],
and the widespread use of in-process fuzzing, are good
examples.

While greybox fuzzing in general is a huge success in
real-world testing [33], [2], this is not the case for directed
greybox fuzzing—using lightweight instrumentation feed-
back to purposefully force a fuzzer to focus on preselected
regions of the target program which are more likely to
contain bugs. Directed (greybox) fuzzing, as pioneered
in AFLGo [4], intuitively holds great promise—homing
in on error-prone code has the potential to minimize the
execution of uninteresting code paths. However, it is rarely
used in production, despite the plethora of improvements
described in the literature [5], [39], [20], [36], [13], [9],
[34], [16], [24], [14], [23].

In this paper, we show that there are three critical issues
that cripple the realism and usefulness of directed fuzzers
and their evaluations. We argue that these issues should be
addressed for directed fuzzing to become practical in real-
world fuzzing campaigns, or even competitive compared
to nondirected fuzzing.

First, there is a problem with the choice of the baseline
fuzzer. In particular, since AFLGo [4], the first directed
fuzzer, branched off from what is arguably the most influen-
tial nondirected fuzzer, AFL [38], these two major fuzzing
families have developed in virtual isolation. As a result,
the powerful improvements in nondirected fuzzing are not
even available in directed fuzzers. Indeed, many recent
directed fuzzers are still based on AFLGo or compare
directly with it in their evaluation, even though AFLGo
does not integrate the vast majority of improvements of
projects such as AFL++ and LibAFL. In addition, AFLGo
still uses a fork server, which sets it further apart from
real campaigns, where in-process fuzzing, popularized by
LibFuzzer [1], is more common and also much faster. As
a consequence, the interactions between in-process and
directed fuzzing are hitherto not explored.

This is an issue, since the performance of a fuzzer is
the result of a delicate balance between the benefits and
the overheads of all its components, and an optimization
that is useful in one scenario, for example in a slower



fuzzer, may well be detrimental at higher speeds. Ignoring
significant improvements in nondirected fuzzing may lead
to “imaginary” improvements—where a directed fuzzer
removes an inefficiency which, in a more realistic scenario
with modern fuzzing components, would not exist. At this
point, the gap between directed and nondirected fuzzing
is so wide that the settings in which the community com-
monly evaluates directed fuzzers is hardly representative
of real fuzzing campaigns. As a result, the data produced
in such evaluations is of little use for those considering the
adoption of newer directed fuzzing techniques. As we will
show in our evaluation, the recent popularity of pruning-
based directed fuzzers in the fuzzing literature [13], [36]
is likely a consequence of this phenomenon. The only way
to paint a more realistic picture is to build on a baseline
that is as recent and optimal as possible.

Second, we identify issues concerning the methodology
for evaluation of the fuzzer performance—in particular,
the erroneous omission of essential contributions to the
overhead in the performance numbers, and the improper
handling of censored data, i.e., when the value of observa-
tions may be only partially known, e.g., due to an obser-
vation timeout. The most glaring example of the former is
the omission of build times from evaluations. Since most
directed fuzzers require a (lengthy) recompilation after a
new target is selected, the time between the selection and
reaching of a target includes the build time. Thus, omitting
it from the evaluation “hides” part of the overhead. As
a consequence of this way of evaluation, recent directed
fuzzers have added a lot of analysis load to the compilation
phase, for instance in the form of points-to analysis, that
may incur long build times. The evaluation of whether the
benefits of these analyses outweigh the time it takes to
perform them is often lacking.

Improper handling of censored data, in turn, stems
from timeouts that occur during time-to-exposure (TTE)
measurements. In fuzzing, the correct use of statistical
techniques is critical for drawing scientifically sound
conclusions [18], [30]. However, directed fuzzing presents
a unique challenge because experiments that measure
TTE, typically used as a measure of success for directed
fuzzers, frequently result in timeouts that give rise to
censored data. The improper handling of such data, either
by omitting unknown values from the analysis or by
improperly replacing them with arbitrary values, leads
to a misrepresentation of the experimental results.

Finally, while the base for the implementation of the
fuzzers itself is fairly consistent, usually AFLGo, there is
a lot of variation in the analysis stack—the components
used in the compilation/analysis phase. These components,
such as points-to and reachability analysis, are crucial for
the performance of directed fuzzing. However, there are
many implementations to choose from—some based on
source code, others on intermediate representations, with
different views of the program etc. Since each of these
implementations yields unique benefits and drawbacks, the
performance differences in the evaluation may well be due
to the quality of the analysis components rather than that
of a directed fuzzing optimization.

In this paper, we first investigate the impact of these
issues by evaluating recent directed fuzzing policies from
the most representative solutions in the literature. As
a way forward, and to allow for better evaluation of
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Figure 1: A schematic representation of the workflow of a
fuzzer.

directed fuzzers with state-of-the-art components, we then
present LIBAFLGO, a modular directed greybox fuzzing
framework that addresses all three issues. In particular, it
uses state-of-the-art fuzzing components from LibAFL [11]
as a common, modern, baseline. It features an optimized
building phase, so that the build times for each of the
approaches can be considered in a proper evaluation.
Finally, it relies on shared analysis frameworks, with the
same view of the program, eliminating the variance in
the compilation phase. Surprisingly, our experiments show
not only that the original AFLGo policies outperform
more recent directed fuzzing policies when evaluated
on a modern fuzzing stack, but also that none of the
directed fuzzing policies favorably compete with a modern
nondirected fuzzer such as LibAFL, which scored better
overall performance across benchmarks.

In summary, we make the following contributions:

• We thoroughly analyze the issues that affect di-
rected greybox fuzzing prototypes and evaluations.

• We implement LIBAFLGO, a modern directed
greybox fuzzing framework which addresses these
issues and use it to implement a set of representa-
tive state-of-the-art directed fuzzers on a modern
baseline.

• We evaluate the performance of these fuzzers in
realistic settings and show (a) that the original
AFLGo policies outperform more recent solutions,
and (b) that none of the directed fuzzers performs
as well as a modern nondirected fuzzer across the
board.

• We will open-source LIBAFLGO and actively seek
mainline inclusion in LibAFL to ease development
of new directed fuzzers and move the field forward.

2. Background

We briefly discuss nondirected and directed greybox
fuzzing, highlighting modern reusable optimizations that
are often unacknowledged in directed fuzzing, where
systems implement their own, loosely related versions,
or lack them completely.

2.1. Phases in Fuzzing

As illustrated in Figure 1, fuzzing starts with the
creation of a harness—the code that allows the fuzzer



to run the target program. This phase can range from
a few minutes, when fuzzing a program that accepts
inputs from a file, to multiple hours, when aiming at
a specific function taking complex inputs in a binary
target. The second phase, the compilation of the harness,
is optional, but usually present even for binary targets
when the compilation of a small amount of harness code is
still necessary. However, it takes much longer for source-
based fuzzers which rebuild the whole target program.
The third phase, the beginning of the actual fuzzing loop,
includes all steps for the production of a new test case
either through generation from a grammar, or mutation
from an existing corpus. In the latter case, it includes test
case selection, power scheduling, and processing of the
results after an execution (e.g., coverage traces). The length
depends mostly on the fuzzer and its configuration, and
is largely independent of the target program. The fourth
phase concerns the execution of the target program with
the new test case as input–including all instrumentation
(e.g., for code coverage or fault detection). The length
is dependent on the target program and the amount of
analysis/instrumentation. The last phase is the reset of the
environment to restore it to the state prior to the execution
of the previous test case. For instance, a fork in case of
AFL’s [38] fork server, a snapshot restore operation as in
Nyx [31], or a manual reset with in-process fuzzing.

2.2. Directed Fuzzing

Directed (greybox) fuzzing, which was first proposed
by AFLGo [4], directs the fuzzer to specific regions of
interest within a program. The ability to specify a few
targets within a program has various concrete applications,
such as patch testing in CI, or testing code regions that
are more likely to contain bugs.

Directed fuzzing can be subdivided in three broad
categories: distance-based [4], [5], [20], [9], [16], [24],
[23], pruning-based [13], [36], and mutation-based [39],
[14]. We illustrate the difference in a simplified example
in Listing 1. The first two approaches share a phase
where the compiler uses static analysis to estimate the
reachability of the target from every point in the program.
In our example, only line 11 cannot reach the target.
After this first step, a distance-based fuzzer establishes
a distance measure for each reachable location in the
program and injects the related function calls (in orange).
Upon executing the test case, it aggregates the various
distances along the execution path to calculate a distance
value for the test case. The goal, then, is to minimize the
distance value. In contrast, a pruning-based fuzzer uses
the reachability information to decide which locations in
the program definitely cannot reach the target and injects
marker instrumentation accordingly (in purple). Upon
reaching these locations, the fuzzer aborts the execution
and starts a new one. Finally, a mutation-based directed
fuzzer will try to infer the characteristics of test cases that
reach the target through the observation of the test cases
themselves. Observing test cases that satisfy the condition
at line 9, it may infer that n > 42. It will then modify
its mutation operators to execute only test cases that are
more likely to reach the target.

1 void func1(int n) {
2 __record_distance(2);
3 if (n < 82) {
4 __record_distance(1); func2();
5 } else {
6 __record_distance(1); func3();
7 }
8 if (n > 42) {
9 __record_target(); target();

10 } else {
11 __unreachable(); not_target();
12 }
13 }

Listing 1: Difference between distance-based (in orange)
and pruning-based (in blue) directed fuzzing instrumenta-
tions. Target instrumentation (in red) is shared by both.

2.3. Optimizations Missing in Directed Fuzzers

While relatively few optimizations proposed in aca-
demic papers have seen adoption in production-ready tools
such as AFL++ [10] and LibAFL [11], some have and a few
are even considered essential in modern fuzzing. Probably
the best examples of such ubiquitous optimizations are:
CMPLOG (derived from RedQueen [3]), and MOPT [25].
Often directed fuzzers do not reuse those optimizations
as some systems implement their own, loosely related
version (e.g., [9], [14], [23]); unfortunately those alternative
components have not been compared in isolation against
their nondirected counterparts.

2.3.1. CMPLOG. exploits the correspondence between
input and state, as values in the input are likely to be
loaded into variables, especially in parsers. Much like
dynamic taint analysis, this property allows the fuzzer to
identify, albeit with limited precision, which parts of the
input correspond to specific variables that the program
checks in comparison operations, simply by observing the
correspondence of their values. For instance, if the input
contains a value 0xdeadbeef, and the program compares
a variable with that value to the value 0xaabbccdd
during execution, it is likely that the variable originated in
those input bytes. Under CMPLOG, the mutation operator
will thus replace the sequence with 0xaabbccdd to
quickly satisfy the comparison and improve coverage. As
directed fuzzers also benefit from exploring the program
more easily, the optimization would be just as useful here—
except that it is not available.

2.3.2. MOPT. is a mutation operator scheduling algorithm
which favors mutations operators that are more likely to
produce interesting test cases. In detail, the algorithm
receives as input how often each mutation operator was
selected and how often it generated interesting test cases;
it then uses the particle-swarm algorithm to estimate the
best division of time between the mutation operators
to maximize the number of interesting test cases. This
algorithm is lightweight enough to be run repeatedly
while fuzzing, ensuring that the distribution is adapted
to both the program under test and the current phase of
the campaign. While “interesting” in nondirected fuzzing
means additional coverage, directed fuzzing could use the
exact same algorithm by using the distance to the target.



3. Issues in Directed Fuzzing Studies

In this section, we discuss in detail the issues we
identified in our analysis and formulate recommendations
to address them. We have limited our survey to what we
consider “true” directed greybox fuzzers (and competitors):
those that allow the user to specify a target position in
the program. This characteristic makes them usable for
the applications normally advertised for directed fuzzing,
such as patch testing. This decision excludes works such
as SAVIOR [6], ParmeSan [28] and UAFuzz [27], which
autonomously define their targets and can be considered
nondirected, although not exclusively coverage-guided. In
addition, we focus only critical directed fuzzing issues
that are not already covered in existing literature on
benchmarking in nondirected fuzzing [18], [26], [30].

3.1. Choice of Fuzzing Baseline

As shown in the “Prototype base” column in Table 1,
most of the literature on directed fuzzing derives from
either AFL [38] or AFLGo [4]. AFLGo itself was originally
developed as a fork of AFL, so the projects share most
of their code, but was then maintained independently.
Both projects are now unmaintained and have not received
significant updates for several years. It is likely that the
authors of the papers in Table 1 selected either AFL or
AFLGo as a base for their prototype to minimize the
implementation effort while maintaining scientific validity.
This allowed them to evaluate the main contribution of
their work, the directed fuzzing components, keeping the
remainder of the code the same. At first glance, this seems
to be the right thing to do.

The problem with the reuse of AFL-derived core
components is that directed fuzzers miss out on im-
portant advances in modern nondirected fuzzers, such
as AFL++ [10] or LibAFL [11], which have not been
backported to either AFL or AFLGo. This is problematic
because the performance of a fuzzer depends on achieving
a good balance between the various phases of the fuzzing
process, as described in Section 2.1. The effectiveness of
a new optimization depends greatly on how the balance
between the phases shifts: the same optimization may be
effective in one setting, and counter-effective in another.

In order to further clarify this concept, we explore how
modern optimizations and sanitizers (i.e., instrumentation-
based bug detection tools) could interact with directed
fuzzing components in the test case production, program
execution, and environment reset phases.

Phase 3 - Test case production. Both distance-based
and mutation-based directed fuzzers introduce changes in
this phase: the former by selecting test cases to mutate that
are closer to the target, the latter by generating mutants
that are more likely to reach the target. Both approaches
aim at reducing the number of executions required to reach
a specific target. However, modern nondirected fuzzers,
already perform well-established optimizations, notably
CMPLOG and MOPT, which serve a similar purpose:
reducing the number of executions required to explore new
portions of the program.

The directed fuzzing literature has proposed techniques
based on similar principles (e.g., [9], [14], [23]), but these
have not been compared directly with their undirected

counterpart and have not seen widespread adoption. As a
result, existing work has neglected the interaction between
such optimizations and the techniques employed by di-
rected fuzzers. While it is unlikely that their improvements
will simply sum up, their costs definitely will. For example,
if CMPLOG already “solves” a condition which we also
target with directed policies, we pay the cost of both
techniques when only one of them would have been
sufficient.

Optimizations acting on the number of executions aside,
there are many implementation tweaks, such as the use
of vector instructions, which make producing test cases
faster, but that are missing from the older fuzzers on
which directed fuzzers build. Having a slower base fuzzer
provides “better” results in a directed fuzzing evaluation,
simply because the additional overhead introduced by the
analysis or instrumentation represents a smaller portion
of a complete execution, but these benefits may disappear
with a faster baseline.

Observation 1: Each directed-fuzzing optimization
should strive to reuse the best core components avail-
able, enabling a fair and representative comparison
with a modern baseline.

Phase 4 - Program execution. Unlike distance-based
directed fuzzers which insert the (usually lightweight)
instrumentation needed for distance calculation, pruning-
based approaches aim to improve the fuzzer throughput by
cutting off executions as early as possible. While pruning
does make the execution faster, to the point of recovering
the cost of the pruning instrumentation, the gain depends on
the “weight” of this phase in a single execution. This in turn
depends on the detection instrumentation that is enabled, as
most of the overhead comes from the use of sanitizers, e.g.,
AddressSanitizer (ASAN) [32]. In production, practitioners
deploy sanitizers whenever possible, as finding subtle bugs
without them is excessively hard. However, this is not
reflected in the literature: sanitizers are commonly omitted,
typically for implementation-specific compatibility reasons.
The omission strongly reduces the value of the evaluations
to the point of making it impossible to assess the quality
of a directed fuzzing technique. In particular, it may bias
the evaluation, in this case toward lightweight techniques,
as higher overheads have more impact in a faster running
fuzzer.

Observation 2: Each optimization should be built
by preserving compatibility with sanitizers when the
objective is finding bugs.

Phase 5 - Environment reset. While directed fuzzers
usually do not directly modify this phase of the fuzzing
process, it is one of the most relevant towards their overall
performance. The technique to manage and reset the
fuzzing environment usually adds a fixed amount of time to
each single execution and determines the maximum speed
at which the fuzzer can run. Again, a fuzzer running at
lower speeds makes heavyweight techniques “look good”,
because their overhead takes up a smaller portion of each
execution. As shown in the “Env. reset” column in Table 1,
all the directed fuzzers we considered use a relatively
slow fork server to reset their environment. This technique,
pioneered by AFL, has been reused in AFLGo, pushing all



TABLE 1: Summary of the prototype features across the papers considered. The “Compile time analyses” and the
“Analysis stack” columns refer exclusively to compile time analyses. The “Build impact” column contains an educated
guess of the compile time analysis impact on the total build time. *WindRanger reports AFL as a base in the paper, but
the artifact is based on AFLGo.

Name Conference Open source Prototype base Env. reset Compile time analyses Build impact Analysis stack

AFLGo [4] CCS ’17 Yes AFL fork server distance minimal LLVM
Hawkeye [5] CCS ’18 No AFL reimpl. fork server points-to, distance significant LLVM, SVF
FuzzGuard [39] USENIX ’20 No AFLGo fork server pre-domination minimal LLVM
CAFL [20] USENIX ’21 No AFL fork server distance minimal LLVM
WindRanger [9] ICSE ’22 Yes AFLGo* fork server points-to, distance significant LLVM, SVF
Beacon [13] S&P ’22 Yes AFLGo, AFL++ fork server points-to, reachability, precondition significant LLVM, SVF
MC2 [34] CCS ’22 Partial - fork server - minimal -
SieveFuzz [36] ACSAC ’22 Yes AFL++ fork server points-to, reachability significant LLVM, SVF
DAFL [16] USENIX ’23 Yes AFL fork server points-to, reachability, dataflow distance significant sparrow
SelectFuzz [24] USENIX ’23 Yes AFLGo fork server points-to, reachability, distance significant LLVM, SVF
Halo [14] S&P ’24 No AFL++ fork server minimal -
DeepGo [23] NDSS ’24 No AFLGo fork server distance, sibling branches minimal LLVM

TABLE 2: Summary of the TTE-based experiments across the papers considered. The “Baseline” column considers only
other directed fuzzers. Multiple values in the “Timeout” and “Repetitions” columns refer to different experiments in the
papers. *SelectFuzz could be applying the Mann-Whitney U test incorrectly as the p-values are not reported pairwise in
the paper.

Name Baseline Timeout Repetitions Timeout handling Aggregation Effect size Statistical test

AFLGo [4] - 8h 20 upper bound mean Vargha-Delaney Mann-Whitney U
Hawkeye [5] AFLGo 8h, 4h 20, 8 upper bound mean Vargha-Delaney -
FuzzGuard [39] AFLGo 200h 1 upper bound - - -
CAFL [20] AFLGo 16h, 33h 3 excluded mean - -
WindRanger [9] AFLGo 24h, 8h 10, 20 not present mean Vargha-Delaney Mann-Whitney U
Beacon [13] AFLGo 120h 10 excluded mean - Mann-Whitney U
MC2 [34] AFLGo 6h 20 upper bound mean - Mann-Whitney U
SieveFuzz [36] AFLGo, Beacon 24h 10 excluded mean Vargha-Delaney -
DAFL [16] AFLGo, WindRanger, Beacon 24h 40 excluded median - -
SelectFuzz [24] AFLGo, Beacon 24h 5 unclear mean - Mann-Whitney U*
Halo [14] AFLGo, WindRanger, Beacon, Se-

lectFuzz
24h 10 excluded mean - Mann-Whitney U

DeepGo [23] AFLGo, WindRanger, Beacon 24h 5 upper bound + 1h mean Vargha-Delaney Mann-Whitney U

successors to adopt it, to ease implementation, minimize
setup time, and ensure comparability of the results.

However, whenever there is a tradeoff between setup
time and speed, practitioners usually pick performance: in
runs that last longer than a few minutes, a faster fuzzer
will always recover the additional setup time. In particular,
projects such as OSS-Fuzz [33] and FuzzBench [26]
highlight that practitioners will go the extra mile to write
harnesses for in-process fuzzing whenever possible, even
if doing so is significant effort. The harness executes in a
loop, running the code under test and resetting the state
of the process. As the reset code is customized for the
program under test and runs exclusively the operations
required, with virtually no overhead, this is always faster
than a generic solution such as a fork server.

However, resetting the environment through a harness,
also imposes a strong limitation: the harness should always
run top to bottom and without entering weird states, as may
arise due undefined behavior or prematurely terminated
executions. This means that (a) cutting executions short,
as pruning-based directed fuzzers do, is not possible, and
(b) sanitizers are essential to ensure consistency. When a
technique violates these requirements, it also forfeits the
performance benefits of harness-based resets. A downgrade
to snapshot-based reset methods is justified only when the
target itself is incompatible with harnesses, such as when
it is stateful or heavily multithreaded. The only way to
paint a realistic picture is thus to always use the fastest
reset method that is compatible with the technique being
evaluated and the context of application.

In summary, the choice for fork servers in recent
directed fuzzing solutions has created a significant gap
because newer techniques, while proven to work with
snapshot-based reset methods, are not even tested in
combination with harness-based in-process fuzzing—the
most commonly used environment reset method in practice.

Observation 3: Each optimization should be built
by striving for speed: it should use the fastest reset
method compatible, optimized as much as possible.

Some recent fuzzers, such as Beacon [13], Sieve-
Fuzz [36], and Halo [14], do base their prototype on
AFL++ [10], a modern nondirected fuzzer, in an effort
to avoid some of the issues we described. However, they
still use AFLGo-based directed fuzzers as a baseline for
their evaluation, as Table 2 shows. This is also problematic
because comparing two different fuzzing stacks prevents us
from drawing meaningful conclusions about the usefulness
of the directed fuzzing optimizations, as it unclear whether
improvements are due to the optimizations presented or
the more advanced fuzzing stack.

Observation 4: The fuzzers used as baseline in the
evaluation should also follow the recommendations
of Observations 1, 2, and 3.

3.2. Methodology for Evaluation

Directed fuzzing presents unique challenges for evalu-
ations because the guidelines provided by the nondirected



fuzzing literature [18], [26], [30] do not directly apply.
Indeed the effectiveness of a directed fuzzing technique is
commonly established by measuring the time-to-exposure
(TTE) for a preselected target/bug, while these guidelines
address experiments that target coverage-over-time or bugs-
over-time metrics. Examining how the results of TTE
experiments are presented in the directed fuzzing literature,
we identified two issues that may lead to misinterpretation
of the performance of a system. Observations 5 and 7,
along with our own experimental evaluations, align with
and reinforce findings from concurrent research [17].

3.2.1. Missing build times. The first issue we identify
is that build times for directed fuzzing techniques are
commonly not considered in TTE experiments. The prob-
lem with this practice is that it allows to move to the
compilation phase some of the overhead that other solutions
have to deal with at runtime, making it effectively disappear.
This is problematic because most directed fuzzers require
a recompilation for each new target selected, effectively
making the compilation phase part of the time needed
to reach that bug. As an example, suppose a fuzzer
requires 2 hours to build a large program due to complex
interprocedural analyses. If a specific target could be
reached with a nondirected fuzzer in a 1-hour run, it is
evident that, whatever the benefit brought by the directed
fuzzer, it will be nullified by its build times.

In order to assess the impact of this issue, we show
a summary of the analyses run at compile time by the
solutions considered in column “Compile time analyses”
in Table 1, as well as an estimate of the impact these
analyses have on the build times in the “Build impact
column”. It is evident that, out of the 6 papers that we
believe use techniques that significantly impact build times,
such as points-to and data-flow analyses, only 2 of them,
Beacon [13] and DAFL [16], attempt to evaluate their
impact. In order to provide an accurate assessment, it
is also necessary to consider software of various sizes,
including large projects such as php. In particular, relying
on predefined fuzzing test suites, such as FuzzBench [26]
or MAGMA [12], guarantees fairness in the evaluation.

Observation 5: Build times should be included in
all TTE experiments and evaluated across software
projects with various sizes.

One common reason we identify for the omission
of build time evaluations is that compilation pipelines
are not optimized for speed or memory usage. As an
example, the original implementation of AFLGo relies
on external programs and temporary files for distance
computation. As build times are commonly not evaluated,
this issue affects most of the later prototypes as well, where
operations that can be easily performed in the compiler
process are offloaded to external scripts. As a consequence,
when taking build times into account, it is necessary that
both the prototype under evaluation and the baseline have
reasonably optimized compilation pipelines.

Observation 6: In order to properly assess build
times in TTE experiments, both the new prototype
and the baseline should have an optimized compilation
pipeline.

3.2.2. Timeout handling. Randomness plays a large role
in fuzzing. As such, in order to draw scientifically sound
conclusions, an experiment has to be repeated multiple
times and its varying results need to be analyzed with
statistical tools. TTE experiments are no exception to this,
but present, again, a unique challenge because they can
result in timeouts if they do not complete in the allocated
time budget. TTE experiments thus produce results known
as Type I censored data in survival analysis, meaning that,
for some of the observations, we know only that their
value is above the timeout threshold [19].

As we show in the “Timeout handling” column in
Table 2, the two most common methods for handling cen-
sored data in the literature are dropping all the repetitions
of benchmarks that contains even a single timeout, or
assigning the timeout value to all experiments that time
out. The former solution, while sound, is very extreme
and may favor techniques that run better in smaller, faster
software, that has less risk of incurring timeouts. The latter
is conceptually incorrect and presents two pitfalls. The
first one is relying on the filler values to analyze data: a
common mistake, as shown in the “Aggregation” column,
is to aggregate data using the mean, as happens in three of
the papers. Indeed, the mean would be calculated including
values that are effectively unknown. The second pitfall is
to rely on the ordering of the filler data, which is also un-
known. This is the case when performing aggregation using
the median, showing the effect size with Vargha-Delaney
A12, and performing the Mann-Whitney U statistical test.

This is less problematic because these methods may
still provide the correct result when used with filler
data, depending on their construction: the median, for
example, will be calculated correctly if the timeouts are
less than 50% of all observations. However, to avoid these
pitfalls altogether, survival analysis offers tools that are
better suited for the handling of censored data [17]. As
proposed in MAGMA [12], TTE experiments can be better
represented plotting a survivability function constructed
with the Kaplan-Meier estimator [15].

In addition we argue that, when data is presented in
tabular form, providing the median survival time, i.e., the
time for which the survival probability function first drops
to 50%, with confidence intervals is the most suitable
solution because it is well defined in the presence of
censored data. With regards to the statistical test, we
recommend using the logrank statistical test, which does
not assume that the complete ordering of the observations
is known. With regards to the effect size, instead, we rec-
ommend performing a Cox proportional hazards regression
analysis [7], which allows to collect information on the
effect size using its hazard ratio.

Observation 7: The results of experiments observing
time-to-exposure (TTE), should be analyzed using
techniques suitable for handling censored data, such
as the Kaplan-Meier estimator, the logrank statistical
test, and the hazard ratio.

3.3. Choice of Analysis Stack

As shown in Table 1, directed fuzzers commonly build
on some kind of interprocedural reachability analysis to
understand if there is a path that leads to the target from a



specific point in the program. This information serves as
the basis for distance measurements or for pruning. Such
reachability analysis is nontrivial as it requires taking
into account indirect edges, and is commonly offloaded
to a separate module, such as SVF [37], some other
existing solution [16], or a home-grown analysis. We
present a summary of the components used in such phase
in the “Analysis stack” column in Table 1. The level of
abstraction at which the module operates differs from
solution to solution. For instance, SVF is based on LLVM
IR, while DAFL [16] employs a source-based framework.
The variance in such modules, or in their often unreported
versions and configurations, easily leads to significant
differences in the results, which in turn influence the overall
performance of a directed fuzzer. This variance should thus
be eliminated.

Observation 8: Analysis modules that support (but
are not part of) the optimization under evaluation,
should remain constant across all evaluated solutions.

4. Design

To address the development and evaluation challenges
outlined in Section 3, we used our Observations as guid-
ance to develop LIBAFLGO: a fuzzing library which builds
on the work done by the LibAFL [11] project to obtain a
uniform, reliable platform on which to build new directed
fuzzers and to evaluate them against the state of the art in
both directed and nondirected fuzzers.

4.1. Fuzzing Baseline

In order to satisfy Observation 1 and reuse the best
core components available, we have decided to base
our work on LibAFL. Indeed, it is currently the best
performing, actively maintained, fuzzing library according
to independent benchmarks, such as FuzzBench [26]. This
guarantees that any evaluation will be closer to a real
fuzzing scenario. In addition, LibAFL’s model of separate,
replaceable modules for each core component makes it
easier to keep our implementations up to date and allows
easy integration of the latest advances in the state of the
art of nondirected fuzzing—including CMPLOG, MOPT,
and possible future optimizations.

To satify Observation 2, we ensured that our implemen-
tations, like LibAFL, are compatible with sanitizers, such
as AddressSanitizer. This also ensures that LIBAFLGO
retains one of the main requirements for in-process fuzzing.

Furthermore, using LibAFL we satisfy Observation 3
because it supports in-process fuzzing, which allowed us
to design high performance prototypes. In addition to
adopting the fastest reset technique available, we ensured
compatibility with the highest optimization levels available
in our compiler. Commonly, directed fuzzers, in partic-
ular AFLGo and its successors, have issues with higher
optimization levels because their target selection system,
based on (file, line) pairs, relies on debug information.
Unfortunately, debug information is not very reliable
under higher optimization levels. We solved this issue
by devolving target selection from the instrumentation. In
particular, to guarantee the preservation of target locations,
the instrumentation associates the list of (file, line) pairs

to the corresponding basic blocks before running the
optimization pipeline—modifying only the target basic
blocks. The distance-tracing instrumentation, present in all
basic blocks in the program, will then be injected only at
the very end, after link-time optimization. In this way, all
possible optimizations that do not interfere with the target
locations execute normally, while the targets are preserved.

Finally, we satisfy Observation 4 regarding the quality
of the baseline used by following LibAFL’s framework
structure. Indeed, the ability of combining reusable mod-
ules to compose fuzzers ensures that our prototypes run
different code only for their differentiating features.

4.2. Build Optimization

To satisfy Observation 6 and make the evaluation on
build times fair, it is necessary to optimize the implementa-
tion of the components that run at build time. Commonly,
directed fuzzers that have a significant impact on build
time first run an interprocedural analysis for distance or
reachability calculation and then an instrumentation pass
to inject distance recording or pruning callbacks.

Among these two phases, the most expensive is the
analysis because directed fuzzing requires, by definition, a
full view of the control flow graph in order to establish the
distance or the reachability of the target from all locations
in the program. This implies that the distance analysis has
to be interprocedural and execute after the program has
been fully linked. In other words, it cannot be conducted
on compilation units in isolation. Additionally, the analysis
stack often performs auxiliary analyses to further refine
and enhance the control flow graph representation for
reachability. These commonly include a points-to analysis
to resolve indirect edges. Indirect edges are prevalent in
C and especially C++ programs. Omitting them in the
analysis frequently leads to control flow graphs with many
small connected components—thwarting the effectiveness
of any reachability analysis.

One of the most efficient ways to run an interprocedural
analysis that considers the whole program is to do so as part
of the link-time optimization (LTO) pipeline. LIBAFLGO
therefore runs both the analysis and the instrumentation
phase at the very end of the LTO pipeline, implementing
them as a linker plugin. To the best of our knowledge,
LIBAFLGO is the first directed fuzzer prototype to do so.
As a result, it is also the first framework where build times
can reasonably be considered.

Moreover, our implementation performs all analysis in
memory, without disk interactions or temporary files to
avoid slowing down the build process. Temporary files are
commonly used in prototypes that do not rely on LTO (such
as AFLGo and its descendants), but this slows down the
build process enormously. LIBAFLGO’s choice imposes a
requirement on the program under test to support LTO, but
this is commonly the case for actively maintained projects.
An additional requirement in the analysis phase is that our
prototype should fit in the available RAM during linking.
We believe that this is a reasonable requirement because the
alternative, using large temporary files, would require such
long build times that the technique would be ineffective.



4.3. Analysis Stack

To satisfy Observation 8 and make the analysis stacks
uniform across our framework, we agree with the majority
of the literature: for pointer analysis, SVF [37] is the right
tool as it is the best maintained and LLVM no longer
provides such functionality. In addition, it can be easily
integrated in LLVM plugins, which are arguably the best
way to optimize build times. By making LIBAFLGO open
source, we allow authors to verify which configuration was
used in our evaluation and also to adjust it to their needs.
This also allows for the evaluation of analysis algorithms
which should, however, be conducted separately from those
of the directed fuzzing optimizations.

5. Existing Fuzzers on LIBAFLGO

To evaluate the impact of the issues described earlier,
we reimplemented a representative set of existing directed
fuzzing policies in LIBAFLGO. In this section, we describe
the solutions considered and motivate the selection.

5.1. Reimplemented Solutions

Among the directed fuzzers discussed in Section 3, we
chose to reimplement three solutions that arguably provide
a good representation of the state of the art: AFLGo,
Hawkeye, and DAFL.

5.1.1. AFLGo. We selected AFLGo because it effectively
represents the simplest implementation of a directed fuzzer
that was proven to be effective. In addition, AFLGo does
not rely on auxiliary analyses, reducing its build time
impact to a minimum. We reimplemented the original
approach by changing both the instrumentation and the
fuzzer code, but preserved all the original functionality. The
main difference is that we moved the entire compilation
pipeline in a single linker plugin that runs at LTO time.
This guarantees the fastest possible build times. As opposed
to the original AFLGo, the instrumentation is based on
callbacks, similarly to how the LLVM SanitizerCoverage
instrumentation operates. This may make the execution
slightly slower, but guarantees compatibility with sanitizers
and limits the size of the generated binary.

5.1.2. Hawkeye. We selected Hawkeye because it is the
first fuzzer to rely on a points-to analysis, while introducing
a new distance metric that represents an improvement over
the one used by AFLGo. This allows us to evaluate both the
importance of distance metrics and points-to analysis in our
modern fuzzing environment. We excluded from the imple-
mentation the “adaptive” mutation algorithm presented in
the original paper as it would have conflicted with MOPT.
The latter is preferable, because the original algorithm
performs a static power allocation based on magic constants
without adapting to the program under test, as MOPT
does. Our substitution reinforces the “adaptive mutation”
concept and should provide better performance [25]. As the
original implementation of the fuzzer is not available and
was based on an older version of SVF, we decided to base
the pointer analysis on the current AndersenWaveDiff
module [21]. As for the AFLGo instrumentation, we moved
the pointer analysis to the LTO plugin to guarantee the
best results.

5.1.3. DAFL. Finally, we selected DAFL because it is one
of the most recent open source distance-based directed
fuzzers proposed in the literature. It adopts dataflow-
based techniques and selective instrumentation, which are
also employed in the similar WindRanger and SelectFuzz.
Among the three, we chose DAFL because its evaluation
reports improvements over WindRanger. SelectFuzz is
concurrent work, but uses a similar approach. Following
Observation 8, we reimplemented DAFL using LLVM
and SVF as an analysis stack in place of the original
source-based framework. DAFL’s core idea is to calculate
distances on the Def-Use Graph (DUG) after applying thin
slicing [35]. Unfortunately, the slicing rules were originally
devised to be applied at source level on a Java-like
language, so they do not immediately translate to LLVM IR.
For this reason, we approximated thin slicing by applying
normal slicing on LLVM IR after heavily optimizing it.
This structurally ignores most data dependencies through
(trivial) pointer dereferences, as required by thin slicing,
because those are aggressively removed by optimizations.
Finally, to improve the accuracy of the DUG, DAFL uses
the same pointer analysis as Hawkeye.

5.2. Motivation of Selected Fuzzers

Our selection clearly represents the distinct and inter-
esting design solutions in our scope, while deliberately
excluding directed fuzzers outside of it, as motivated below.

In line with Observation 3, we exclude from our
framework all pruning-based directed fuzzers, as they rely
on significantly slower snapshot-based reset techniques.
We also had to exclude MC2 [34] as its Monte Carlo
executions enter, by definition, weird states that make it
incompatible with our faster in-process design since the
state of the process cannot be reset with a harness. To
demonstrate the soundness of this choice, we will show in
Section 6 how the raw speed achievable with in-process
fuzzing far outweighs the benefits of these techniques.

In addition, we could not include mutation-based
directed fuzzers: FuzzGuard is not open source and not
compatible with our hardware. Halo acts exclusively on
mutation operators, entering in direct conflict with MOPT,
one of most effective nondirected fuzzing optimizations.
We leave the evaluation of this technique against MOPT
as future work, when Halo is released open source.

Finally, we excluded CAFL [20], as its interface is
different from all the other fuzzers evaluated, allowing the
specification of target sequences that are generated based
on tool reports. While this approach is valuable, it would
be unfair to compare it directly to others in the literature
because we would have to provide CAFL with additional
information on the targets, giving it an unfair advantage.

6. Evaluation

To understand the impact of the issues we identified
in this paper, we evaluated 5 different fuzzers (LibAFL,
Beacon, and our re-implementations dubbed LibAFLGo,
LibHawkeye and LibDAFL). We use LibAFL as a modern
fuzzing baseline in accordance with Observation 4. In our
evaluation, we will answer the following questions:



TABLE 3: Benchmarks included in MAGMA.

Project Test harness In-process

libpng libpng_read_fuzzer ✓

libsndfile sndfile_fuzzer ✓

libtiff
tiff_read_rgba_fuzzer ✓
tiffcp

libxml2
libxml2_xml_read_mem... ✓
xmllint

lua lua

openssl

asn1 ✓
asn1parse ✓
bignum ✓
client ✓
server ✓
x509 ✓

php

json ✓
exif ✓
parser ✓
unserialize ✓

poppler
pdf_fuzzer ✓
pdfimages
pdftoppm

sqlite3 sqlite3_fuzz ✓

Q1 Does directed fuzzing outperform nondirected
fuzzing, given a modern analysis and in-process
fuzzing stack?

Q2 Is the performance reported for directed greybox
fuzzers in the literature realistic in practice?

Q3 Is the cost of heavyweight (pointer) analysis at
build time recovered by the improved runtime
performance when compared to in-process fuzzers?

6.1. Benchmark Suite

For meaningful evaluation, we require a benchmark
suite of real-world programs with real bugs, across a
range of binary sizes and build times and representative
complexity (e.g., in the ratio of indirect call sites). Instead
of selecting an ad-hoc set of programs as previously done
in the literature, we decided to rely on the well-established
MAGMA [12] dataset. In this section, we will describe it
and motivate our choice comparing it to the dataset used
in DAFL [16], the most recent work we reimplemented.

MAGMA contains frontports of real bugs that occurred
in a dataset of 9 open-source projects. Such projects are
chosen from the Google OSS-Fuzz supported programs,
which are actively maintained. Each one of these bugs is
tagged separately and is thus clearly identifiable, making
it easier to measure time to exposure (TTE).

Table 4 shows MAGMA’s benchmark evaluates fuzzers
using diverse binaries, with sizes spanning 1.2–77.2 MB
(median 22.4 MB) including real-world applications like
openssl and php. DAFL’s benchmark uses smaller
binaries (median 2.4 MB, max 12.8 MB), highlighting
MAGMA’s improved scalability testing and revealing
lengthy builds (hours) for large binaries––absent in DAFL’s
smaller targets. Moreover, MAGMA’s indirect call com-
plexity mirrors realistic software, with 12–3059 sites
(median 1661, 1.8% of calls) versus DAFL’s 44–2768
sites (median 713, 4.6%). While DAFL emphasizes relative

density, MAGMA’s absolute counts better reflect real-world
challenges. C++ binaries like poppler demonstrate how
pervasive indirect calls affect fuzzing.

Finally, MAGMA’s inclusion of projects like php
highlights build-time impacts on CI pipelines. As Table 7
shows, php builds take minutes with LibAFLGo versus
hours for complex-analysis fuzzers, proving lightweight
methods enable practical CI integration.

6.2. Methodology

Each target project in MAGMA can have multiple
harness programs, but only a subset of these is suitable
for in-process fuzzing. MAGMA provides shims to allow
fork-based fuzzers to work with harnesses designed for in-
process fuzzing, but not the other way around. As shown
in Table 3, only lua lacks a suitable harness and hence
we excluded it from our evaluation.

To avoid unnecessary noise from other bugs, we execute
our experiments one bug at a time, using the respective
patch provided in MAGMA. As patches can span multiple
lines and some fuzzers, namely DAFL and Beacon, only
support a single line as target, we select (only) the first
line that calls the MAGMA canary.

We first explore which bugs are reachable from which
harness to avoid unnecessary but costly experiments with
directed fuzzers. In particular, MAGMA does not provide
information on whether a harness is able to reach a specific
bug, leaving us with 138 harness-bug pairs that we would
need to test individually for each fuzzer (Table 5). However,
as different harnesses exercise different parts of the code
base, many of these pairs associate a harness with a bug
unreachable from it. To filter out these pairs, we executed
a preliminary campaign with LibAFL, the base for all our
prototypes, on each harness with all the project’s bugs
compiled in, and selected all bugs that could be reached
in this analysis for our full evaluation.

This procedure is sound because directed fuzzers do
not improve the exploration capabilities of fuzzers, they
simply prioritize some code region over others. If given
enough resources to reach saturation, a nondirected fuzzer
is able to reach all code regions an equivalent directed
fuzzer would be able to target. To guarantee saturation
is reached, we set a 7 days timeout for this preliminary
analysis, while the timeout in our full evaluation is set
to 1 day. We also repeated the experiment 10 times and
kept bugs reached in any of the runs. This allowed us to
reduce the number of harness-bug pairs to test to 40. Only
two bugs, SSL001 and SSL002 were reachable through
multiple harnesses.

All fuzzing campaigns were seeded with the corpus
provided by MAGMA, except for sqlite3 where we
noticed that the corpus did not comprise SQL statements
(the expected format of its test harness), but rather scripts
of sqlite3’s test suite to execute SQL statements. As
the original source code of sqlite3 also contains some
databases containing further SQL statements used in testing,
we extract these statements and use those as seeds, ensuring
the fuzzers are properly seeded with the correct format.
We run all evaluations on machines with AMD Ryzen
Threadripper 2990WX and 128 GB of RAM. All further
experiments have a set time limit of 24 hours and are
repeated 16 times to account for randomness, as prescribed



TABLE 4: Statistics of the MAGMA and DAFL datasets computed on the LLVM IR.

Dataset Size (MB) Call Sites Indirect Call Sites ICS/CS

Min Median Max Min Median Max Min Median Max

MAGMA 1.2 22.4 77.2 3816 98185 263282 12 1661 3059 1.84%
DAFL 1.0 2.4 12.8 4799 15585 35466 44 713 2768 4.61%

TABLE 5: BT is the total number of available bugs in
MAGMA, each associated with a project. BM is the
number of bugs reachable from each harness, limited to
those MAGMA classifies as supporting in-process fuzzers.
BL are reachable bugs according to our 7 days campaigns
with LibAFL.

BT BM BL

libpng libpng_read_f... 7 4 4
libsndfile sndfile_fuzzer 18 0 8
libtiff tiff_read_rgb... 14 6 5
libxml2 libxml2_xml_r... 17 7 3

openssl

asn1 20 1 2
client 20 1 1
server 20 3 2
x509 20 2 2

php exif 16 3 3
poppler pdf_fuzzer 22 8 5
sqlite3 sqlite3_fuzz 20 8 5

Total 138 43 40

by literature’s best practices [18]. Each fuzzer runs within
its own Linux container, with a single CPU core exclusively
assigned to it, and simultaneous multithreading disabled.

MAGMA uses hard-coded compiler options to disable
all optimizations (i.e., -O0). Following Observation 3, we
tried experimenting with more aggressive optimization
levels (i.e., -O3), well-supported by LIBAFLGO, but this
broke MAGMA’s bug detection functionality. To work
around this issue, we run the evaluation with compiler
optimizations disabled, in accordance with settings already
present in MAGMA. To measure the impact of this
choice, we evaluated LibAFL on targets compiled with and
without optimizations. The average performance penalty
for running without compiler optimizations is 0.74×, as
shown in Table 6.

We run Beacon in its default configuration, paired with
AFLGo. It is the only fuzzer in our evaluation that, being
pruning-based, uses a fork server. We preferred it over
SieveFuzz, also pruning-based, due to SieveFuzz’s high
memory usage. Beacon uses necessary data preconditions
and reachability analysis on the CFG to decide which
execution paths to preempt. To improve the accuracy of
the CFG, Beacon uses SVF and we make sure to use
the same version as the other fuzzers for reachability.
The precondition inference component instead, is tightly
integrated with an older version of SVF. In this case, we
use the version of SVF originally used by Beacon. As this
version is quite old, it does not support AddressSanitizer.
We therefore disable AddressSanitizer for Beacon. While
this gives an obvious advantage to Beacon, we will show
that it is negligible compared to the performance of the
other fuzzers. Note that this does not affect our ability to
measure precise TTEs as this relies on MAGMA’s canaries.

Since we are compiling the targets with optimizations
disabled, we cannot rely on compiler optimizations to

TABLE 6: Performance penalty / improvement in terms
of executions per second for LibAFL when compiling the
target without optimizations vs. aggressive optimizations
(∆O0) and without AddressSanitizer stack instrumentation
vs. full instrumentation (∆NoStack).

∆O0 ∆NoStack

libpng_read_fuzzer

PNG001 0.63 0.96
PNG003 0.56 0.93
PNG006 0.93 1.06
PNG007 0.63 1.02

sndfile_fuzzer

SND001 0.66 0.75
SND005 0.80 0.97
SND006 0.73 1.00
SND007 0.77 1.15
SND016 0.73 0.98
SND017 0.88 1.24
SND020 0.79 1.08
SND024 0.75 1.12

tiff_read_rgba_fuzzer

TIF002 0.75 1.05
TIF007 0.67 0.98
TIF008 0.82 1.03
TIF012 1.06 1.16
TIF014 0.76 1.03

libxml2_xml_read_memo...
XML003 1.03 1.07
XML009 1.01 1.05
XML017 0.86 0.97

asn1
SSL001 0.66 1.14
SSL003 0.74 1.12

client SSL002 0.59 1.10

server
SSL002 0.64 1.12
SSL020 0.65 1.10

x509
SSL001 0.73 1.08
SSL009 0.72 1.08

exif
PHP004 0.79 1.06
PHP009 0.63 1.11
PHP011 0.74 0.98

pdf_fuzzer

PDF010 0.45 1.02
PDF011 0.67 1.05
PDF016 0.61 1.20
PDF018 0.63 1.11
PDF021 0.65 1.08

sqlite3_fuzz

SQL002 0.85 1.19
SQL012 0.84 1.14
SQL014 0.78 1.14
SQL018 0.73 1.06
SQL020 0.85 1.15

Mean 0.74 1.07

implement the approximation of DAFL’s static analysis
component described in Section 5.1. Therefore, when
instrumenting targets with DAFL, we implement two
compilation steps: first we compile the target with aggres-
sive optimizations (i.e., -O3), execute the static analysis
component, export the results to disk, and then apply the
results on code produced with a second compilation step
with optimizations disabled. When measuring build times,
though, we take into account only the first compilation step,
including the execution of the static analysis component,
but we ignore the second compilation step.

Another limitation of external tooling is that SVF is



TABLE 7: Build times. Benchmarks that could not be
compiled for a certain fuzzer are marked as n/a. The time
for LibDAFL is measured up to the end of static analysis.

LibAFL LibAFLGo LibHawkeye LibDAFL Beacon

PDF010 63 s 78 s 61m 14m 11h
PDF011 64 s 80 s 61m 14m 11h
PDF016 62 s 81 s 61m 15m 11h
PDF018 61 s 79 s 61m 14m 11h
PDF021 62 s 79 s 61m 14m 11h
PHP004 2.5m 6.0m n/a 3.9h n/a
PHP009 2.4m 5.9m n/a 3.6h n/a
PHP011 2.5m 5.9m n/a 3.4h n/a
PNG001 17 s 20 s 22 s 28 s 92 s
PNG003 17 s 20 s 24 s 27 s 88 s
PNG006 17 s 19 s 24 s 27 s 83 s
PNG007 19 s 19 s 24 s 29 s 1.8m
SND001 53 s 53 s 76 s 74 s 7.1m
SND005 61 s 54 s 77 s 75 s 6.7m
SND006 53 s 53 s 75 s 81 s 7.1m
SND007 53 s 53 s 72 s 74 s 6.2m
SND016 54 s 57 s 72 s 82 s 7.4m
SND017 60 s 56 s 76 s 81 s 7.2m
SND020 53 s 56 s 72 s 76 s 7.1m
SND024 61 s 53 s 71 s 75 s 6.3m
SQL002 37 s 72 s 2.1h 9.2m 94m
SQL012 40 s 74 s 2.1h 9.6m 97m
SQL014 39 s 75 s 2.1h 9.2m 95m
SQL018 41 s 73 s 2.1h 8.7m 92m
SQL020 40 s 74 s 2.1h 9.1m 94m
SSL001 14 s 52 s 2.1h 44m 40h
SSL002 14 s 53 s 2.1h 49m n/a
SSL003 14 s 52 s 2.0h 46m 36h
SSL009 14 s 51 s 2.1h 44m 35h
SSL020 14 s 52 s 2.0h 45m n/a
TIF002 35 s 55 s 3.1m 3.4m 6.6m
TIF007 32 s 53 s 3.0m 3.3m 7.2m
TIF008 32 s 53 s 3.2m 3.3m 7.2m
TIF012 35 s 53 s 3.1m 3.3m 7.4m
TIF014 31 s 52 s 3.1m 3.3m 7.1m
XML003 40 s 70 s 9.7m 7.7m 2.1h
XML009 39 s 70 s 9.7m 7.0m 2.1h
XML017 44 s 68 s 9.4m 7.7m 2.1h

incompatible with AddressSanitizer’s stack instrumentation,
due to the pointer arithmetic instructions that AddressSan-
itizer produces and inserts into the code. More specifi-
cally, SVF does not support ptrtoint and inttoptr
LLVM IR instructions. Because of this we had to disable
AddressSanitizer’s stack instrumentation for all fuzzers
that use AddressSanitizer in our evaluation (i.e., all but
Beacon). This reduces the performance penalty of using
AddressSanitizer, so we estimated the performance impact
of this setting with an experiment on LibAFL. In this
case, we compile all targets without compiler optimizations
and patch LibAFL with AddressSanitizer without stack
instrumentation against LibAFL with full AddressSani-
tizer. The mean performance improvement when disabling
AddressSanitizer stack instrumentation is 1.07× (Table 6).

6.3. Directed vs. Nondirected

Table 10 reports the results of our experiments, taking
into account build times in accordance with Observation 5.
It shows, following Observation 7, the median survival
time calculated using the Kaplan-Meier estimator, and
the proportion of repetitions in which each bug was
found. We additionally incorporate a speedup column,
based on the median, to facilitate enhanced interpretation
of survival times. The column incorporates statistical
significance thresholds (p-value < 0.05) computed from
the Cox proportional hazards model. Looking at this
column, we can reply to Q1 by observing how directed

TABLE 8: Hazard ratio when comparing LIBAFLGO
against the other directed fuzzers considered. Highlights
correspond to statistically significant entries (p-value <
0.05). Cases where neither fuzzer could ever trigger the bug
are marked as n/r; cases where the model is not applicable
are marked as n/a. The timings include the build times
listed in Table 7. Bugs reachable from multiple harnesses
are marked with *.

LibHawkeye LibDAFL Beacon

PDF010 3.53 15.12 n/a
PDF011 n/r n/r n/r
PDF016 n/a n/a n/a
PDF018 0.65 n/a n/a
PDF021 0.11 n/a n/a
PHP004 n/a n/a n/a
PHP009 n/a n/a n/a
PHP011 n/a n/a n/a
PNG001 3.36 n/a 6.70
PNG003 1.97 n/a n/a
PNG006 n/a n/a n/a
PNG007 26.33 n/a 32.44
SND001 0.69 0.14 n/a
SND005 7.85 0.36 1.24
SND006 0.02 6.66 n/a
SND007 3.49 0.47 n/a
SND016 n/a n/a n/a
SND017 1.41 n/a 25.89
SND020 1.98 0.60 n/a
SND024 2.64 0.57 n/a
SQL002 n/a 60.48 n/a
SQL012 n/r n/r n/r
SQL014 n/a n/a n/a
SQL018 n/a n/a n/a
SQL020 n/a n/a n/a
SSL001* n/r n/r n/r
SSL001* 2.32 33.86 n/a
SSL002* n/a n/a n/a
SSL002* n/a n/a n/a
SSL003 n/a n/a n/a
SSL009 n/r n/r n/r
SSL020 1.07 1.63 n/a
TIF002 1.42 n/a n/a
TIF007 n/a n/a n/a
TIF008 1.85 n/a n/a
TIF012 3.12 n/a n/a
TIF014 2.59 n/a n/a
XML003 0.74 26.55 n/a
XML009 2.09 n/a n/a
XML017 n/a n/a n/a

fuzzers mostly exhibit detrimental performance compared
to our nondirected configuration.

LibAFLGo, our state-of-the-art reimplementation of
AFLGo, augments the median survival time in a statistically
significant manner only in 1 case, while it makes the
survival time worse in 6. However, examining the TTEs,
half of the cases with negative results are due to the limited
duration required to trigger the corresponding bug, (e.g.,
PNG003). Despite the negligible disparity in build time
between LibAFL and LibAFLGo (Table 7), if the TTE
is very small, a slight increase in build time is enough
to generate statistically significant negative results. We
believe that this observation can be generalized: with in-
process fuzzing, the discovery times are significantly lower
than with fork servers, so many bugs are likely to be highly
sensitive to build times. Nevertheless, we argue that such
small differences have little impact when the tool is used
in a real campaign. Significant differences, amounting
to several hours, are present only in two benchmarks:



TABLE 9: Hazard ratio when comparing LibAFL against
the directed fuzzers considered. Highlights correspond to
statistically significant entries (p-value < 0.05). Cases
where neither fuzzer could ever trigger the bug are marked
as n/r; cases where the model is not applicable are marked
as n/a. The timings include the build times listed in Table 7.
Bugs reachable from multiple harnesses are marked with *.

LibAFLGo LibHawkeye LibDAFL Beacon

PDF010 1.63 n/a 20.82 n/a
PDF011 n/r n/r n/r n/r
PDF016 2.60 n/a n/a n/a
PDF018 1.18 0.83 n/a n/a
PDF021 2.04 0.23 n/a n/a
PHP004 1.36 n/a n/a n/a
PHP009 2.21 n/a n/a n/a
PHP011 n/a n/a n/a n/a
PNG001 1.40 4.90 n/a 9.50
PNG003 5.89 n/a n/a n/a
PNG006 n/a n/a n/a n/a
PNG007 0.77 23.92 n/a 15.47
SND001 1.83 1.33 0.20 n/a
SND005 0.63 6.49 n/a 0.43
SND006 4.28 0.04 20.55 n/a
SND007 0.44 1.69 0.25 n/a
SND016 2.12 n/a n/a n/a
SND017 1.52 2.62 n/a 32.44
SND020 1.05 2.00 0.97 n/a
SND024 0.45 1.34 0.32 n/a
SQL002 2.06 n/a n/a n/a
SQL012 n/r n/r n/r n/r
SQL014 1.02 17.61 n/a n/a
SQL018 1.99 n/a n/a n/a
SQL020 0.25 n/a n/a n/a
SSL001* 2.31 4.83 46.47 n/a
SSL001* n/r n/r n/r n/r
SSL002* n/a n/a n/a n/a
SSL002* 2.12 n/a n/a n/a
SSL003 n/a n/a n/a n/a
SSL009 n/a n/a n/a n/a
SSL020 0.48 0.31 0.72 n/a
TIF002 0.69 0.97 n/a n/a
TIF007 2.24 n/a n/a n/a
TIF008 0.56 1.10 n/a n/a
TIF012 1.11 4.42 n/a n/a
TIF014 0.78 2.27 n/a n/a
XML003 1.15 0.81 47.09 n/a
XML009 1.18 2.22 n/a n/a
XML017 n/a n/a n/a n/a

SND006 and SSL001, both of which are negative results.
In this case, we believe that AFLGo heuristics are simply
leading the fuzzer astray. In answer to Q1, we conclude that
on a diverse test suite neither a reimplementation of AFLGo
on a modern stack, nor any of the more recent directed
greybox fuzzers, outperforms a modern nondirected fuzzer.

In reply to Q2 and Q3, we now consider LibHawkeye
and LibDAFL, as they apply complex compile-time anal-
yses. The large increase in build times, in all bugs apart
from PNG* and SND*, severely hurts their performance:
sometimes they introduce an overhead of several hours for
a bug that is found in minutes (e.g., SQL002). From their
speedups, it is evident how the majority of positive results
are for SND* bugs, i.e., on a small project that takes little
time to build. This proves that, while these directed fuzzing
techniques work, they are not able to compensate for their
build cost on large projects (Q3). There is one instance
that escapes this pattern: SSL020 for LibHawkeye. In this
case, LibAFL takes several hours to find the bug, giving
the LibHawkeye heuristics enough time to recuperate their

cost. As this is an exception, we conclude that, contrary to
what the literature reports, fuzzers with heavy build-time
analyses struggle on large projects, but see more success
in smaller projects that can be built quickly (Q2).

Beacon, the only pruning-based fuzzer included in our
evaluation, struggles to build large projects, such as PHP
and SSL, and incurs timeouts in more than 50% of the
experiments—precluding the calculation of the median
survival probability entirely. In the few cases where it is
possible, the only statistically significant results are nega-
tive. Even when not considering build times (see Table 11
in Appendix), Beacon is able to outperform LibAFL only in
one instance, in SND005, while it statistically significantly
underperforms in 4 others. This shows that sacrificing the
in-process harness for pruning techniques is not convenient
because they often cannot cover the performance loss.

Table 9 provides the hazard ratios for this experiment,
when they could be estimated with the Cox proportional
hazards model [7]—in accordance with Observation 7. This
model is not applicable to experiments where the data is
separated, i.e., when one fuzzer always finds the bug and
the other one never does. The value of the hazard ratio
represents the relationship between the two Kaplan-Meier
survival curves: if HR > 1 the LibAFL curve is lower,
so better performing, while if HR < 1, the same is true
for the directed fuzzer considered. The higher the number,
the further apart the two curves are and so the higher the
advantage produced by the technique. Overall, the behavior
matches the observations made on Table 10, despite the
good performance reported in the literature (Q2).

6.4. Directed Fuzzer Comparison

Apart from the data in Table 10, we aid the comparison
among directed fuzzers with Table 8, which shows the
hazard ratios and p-values obtained comparing LibAFLGo
to the other directed fuzzers in the test suite, with the
same caveats reported for Table 9. Given the similarity of
LibAFLGo with LibAFL described in the previous section,
the patterns are similar: both LibHawkeye and LibDAFL
remain burdened by their long build times. This means that,
when the Cox model can be applied, LibAFLGo is able to
beat LibHawkeye in 9 instances, while performing worse
only in 2. LibDAFL, instead, produces negative results for
5 bugs, while generating positive ones for 3, all belonging
to libsndfile. While success in SND* bugs can be
simply attributed to the fact that the library can be built
quickly with all fuzzers, PDF021 represents the only case
in which LibHawkeye outperforms all other prototypes:
this bug appears difficult to reach as all other fuzzers
have at most 12% recall for it. LibHawkeye instead is
able to reach 44% recall, providing significantly improved
performance. We attribute this to the fact that PDF* bugs
belong to the poppler project, which is implemented in
C++ and thus is likely to contain a significant amount of
indirect edges in its control flow graph. As a result, the
points-to analysis by LibHawkeye is beneficial.

In this comparison, Beacon again does not appear
capable of producing statistically significant positive results.
All the runs in our experiment time out for at least 50%
of the bugs and, when the bugs are reached, this happens
significantly later than the competition. These results can
be attributed to two features of pruning-based fuzzers: first,
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the requirement of using a fork server which, together with
the long build times, slows down the discovery process;
second, the possibility of overpruning, eliminating essential
parts of the program necessary to reach the target. This
latter observation justifies the high number of experiments
for which the fuzzer is never able to reach the bug and
matches the findings in [36]. Still, we believe pruning-
based directed fuzzing is likely to shine in contexts where
harness-based fuzzing cannot be implemented.

In further answer to Q2, we conclude that the reported
performance of directed greybox fuzzers in the literature
does not accurately reflect the actual performance in prac-
tice, when evaluated rigorously, in a modern environment.

With respect to Q3, we additionally observe that the
performance claims of fuzzers with heavy build time
analyses hold up only when considering small projects with
short build times. In the case of larger projects, lightweight
build analyses are more likely to provide better results.
In addition, we observe that distance-based fuzzers with
in-process harnesses improve their performance so much
that fork server-based techniques cannot keep up.

6.5. Takeaways

In conclusion, we make three observations. First, per-
formance for directed fuzzers reported in the literature is
not an accurate reflection of their performance in practice
(Q2). Second, while on small projects with short build
times directed fuzzers (such as LibDAFL) may have
an advantage, the original AFLGo reimplemented on a
modern stack outperforms its more recent counterparts,
due to its lightweight nature (Q3). Third, and most surpris-
ing, we find that, overall, nondirected fuzzing (LibAFL)
outperforms all directed greybox fuzzers, even given a
similar state-of-the-art analysis and fuzzing stack (Q1). Its
performance is on par with the best directed fuzzers, while
offering more flexibility—it requires no recompilation for
each new target and can even test multiple targets at the
same time without performance loss.

Our evaluation indicates that future research could
benefit from expanding the focus beyond run time alone
by exploring a balance between compile- and run-time
analyses. In particular, efforts to accelerate compile-time
processing may lead to more efficient fuzzing by allowing
the incorporation of more precise, albeit computationally
demanding, analyses—provided their additional overhead
is compensated by a reduction in run time. Adjusting the
evaluation methodology to account for these factors is
expected to incentivize solutions that optimally distribute
the computational workload across both phases.

We identify another interesting research direction in
adapting undirected optimization techniques to directed
fuzzers. In this work, we preserved the original logic of
each optimization as much as possible, but directed fuzzers
have access to additional feedback, i.e., distance and target
reachability, that could be exploited. As an example, in our
prototypes MOPT takes distance into account indirectly,
as part of the general feedback loop, but it is unaware
of whether the target has been reached. Integrating that
information directly in the MOPT algorithm, similarly to
how Hawkeye does with its mutation algorithm, could
improve mutation scheduling performance.

7. Related Work

The classification presented in Section 2, which divides
directed fuzzers in distance-based, pruning-based, and
mutation-based, has a single exception: MC2 [34]. This
fuzzer first establishes a path to reach the target and then
enforces it on all executions while attempting to generate
a test case that satisfies all conditions on that path. While
this could be considered an extreme take on pruning, the
fact that this fuzzer purposely deviates executions from
their intended flow makes it unique in the directed fuzzing
context. The only other work to adopt a similar approach
is T-Fuzz [29] which is, however, a nondirected fuzzer.

Various efforts in the literature discuss fuzzing evalua-
tions, targeting two main goals: devising a comprehensive
benchmarking suite [8], [26], [12], [22] and improving
evaluation practices [18], [26], [30]. None of these efforts
discuss the unique challenges posed by directed fuzzing
and offer solutions to address them, as done in this paper.

Multiple authors categorize their solutions as directed
(greybox) fuzzers because they define targets that are then
used to direct the fuzzing process [28], [6], [27]. We have
not included them in our analysis because these techniques
are orthogonal to directed fuzzing policies themselves:
their effectiveness depends mostly on how they define
their targets, not in how they reach them. For this reason,
these solutions can typically be reimplemented on top of
a different directed fuzzing stack, which was instead the
focus of our analysis.

8. Conclusion

We analyzed the causes of the (under)performance of
directed greybox fuzzers in realistic settings and identified
3 critical issues: improper baselines, improper evaluation
methodologies, and lack of common performant analysis
stacks. These issues hurt performance, but also prevent de-
velopers from meaningfully evaluating and thus improving
their directed fuzzing designs. In particular, some directed
fuzzers (e.g., those based on pruning), are not competitive
for in-process fuzzing, others do not outperform even
the original AFLGo reimplemented on a modern frame-
work, and no directed fuzzer currently beats performant
nondirected fuzzers across the board. Our directed fuzzing
framework, LIBAFLGO, avoids these issues, enabling a
fair comparative evaluation of directed fuzzing policies,
and providing an impetus to future research.
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Appendix A.
Data Availability

Upon acceptance, we plan to make LIBAFLGO pub-
licly available in a GitHub repository. In addition, we plan
to seek mainline inclusion in LibAFL so that both the
academic community and practitioners will have a well
maintained directed fuzzing baseline they can build on.
Finally, we are open to provide the disaggregated data of
all our experiments, the ones that were used to produce
the tables in this paper, upon request.
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TABLE 12: Hazard ratio and its corresponding p-value when comparing LibAFL against each of the considered directed
fuzzers. Highlights correspond to statistically significant entries (i.e., p-value < 0.05). Cases where neither fuzzer could
ever trigger the bug are marked as n/r; cases where the model is not applicable are marked as n/a. The timings do not
include the build times. Entries are sorted by bug and harness name; bugs reachable from multiple harnesses are marked
with *.

LibAFLGo LibHawkeye LibDAFL Beacon

HR p-value HR p-value HR p-value HR p-value

PDF010 1.62 0.214 0.55 0.113 19.38 0.000 n/a n/a
PDF011 n/r n/r n/r n/r n/r n/r n/r n/r
PDF016 2.42 0.024 0.76 0.444 n/a n/a n/a n/a
PDF018 1.18 0.735 0.81 0.658 n/a n/a n/a n/a
PDF021 2.04 0.560 0.23 0.066 n/a n/a n/a n/a
PHP004 1.16 0.676 n/a n/a 24.10 0.000 n/a n/a
PHP009 1.60 0.212 n/a n/a 2.67 0.012 n/a n/a
PHP011 1.11 0.767 n/a n/a 9.70 0.000 n/a n/a
PNG001 1.40 0.437 4.90 0.007 n/a n/a 9.50 0.003
PNG003 1.52 0.247 1.17 0.662 0.81 0.568 1.52 0.247
PNG006 1.00 1.000 1.00 1.000 1.00 1.000 n/a n/a
PNG007 0.77 0.460 23.92 0.000 n/a n/a 15.47 0.000
SND001 1.83 0.113 0.81 0.560 0.02 0.000 n/a n/a
SND005 0.64 0.217 6.25 0.000 n/a n/a 0.20 0.003
SND006 4.28 0.002 0.04 0.000 20.44 0.000 n/a n/a
SND007 0.44 0.039 1.60 0.205 0.23 0.000 n/a n/a
SND016 2.12 0.386 n/a n/a n/a n/a n/a n/a
SND017 1.52 0.258 2.23 0.035 n/a n/a 20.34 0.000
SND020 0.91 0.788 1.43 0.326 0.26 0.003 0.95 0.898
SND024 0.46 0.059 1.27 0.516 0.30 0.004 n/a n/a
SQL002 1.75 0.167 2.78 0.020 n/a n/a n/a n/a
SQL012 n/r n/r n/r n/r n/r n/r n/r n/r
SQL014 1.02 0.954 2.12 0.057 n/a n/a n/a n/a
SQL018 1.16 0.681 0.85 0.673 n/a n/a n/a n/a
SQL020 0.25 0.086 2.14 0.535 n/a n/a n/a n/a
SSL001* 2.31 0.035 3.23 0.006 46.47 0.000 n/a n/a
SSL001* n/r n/r n/r n/r n/r n/r n/r n/r
SSL002* 0.74 0.415 0.65 0.236 n/a n/a n/a n/a
SSL002* 0.56 0.129 0.53 0.083 0.04 0.000 n/a n/a
SSL003 n/a n/a n/a n/a n/a n/a n/a n/a
SSL009 n/a n/a n/a n/a n/a n/a n/a n/a
SSL020 0.48 0.051 0.23 0.001 0.63 0.210 n/a n/a
TIF002 0.69 0.475 0.97 0.961 n/a n/a n/a n/a
TIF007 0.93 0.847 0.86 0.683 1.56 0.234 n/a n/a
TIF008 0.56 0.309 1.10 0.875 n/a n/a n/a n/a
TIF012 1.09 0.806 3.51 0.007 n/a n/a n/a n/a
TIF014 0.77 0.486 2.10 0.058 n/a n/a n/a n/a
XML003 1.15 0.701 0.42 0.023 46.01 0.000 49.73 0.000
XML009 1.13 0.732 1.68 0.182 n/a n/a 47.09 0.000
XML017 1.00 1.000 0.80 0.530 7.09 0.000 n/a n/a



TABLE 13: p-values for the hazard ratios reported in
Table 8. Highlights correspond to statistically significant
entries (p-value < 0.05). Cases where neither fuzzer could
ever trigger the bug are marked as n/r; cases where the
model is not applicable are marked as n/a. The timings
include the build times listed in Table 7. Bugs reachable
from multiple harnesses are marked with *.

LibHawkeye LibDAFL Beacon

PDF010 0.001 0.000 n/a
PDF011 n/r n/r n/r
PDF016 n/a n/a n/a
PDF018 0.377 n/a n/a
PDF021 0.042 n/a n/a
PHP004 n/a n/a n/a
PHP009 n/a n/a n/a
PHP011 n/a n/a n/a
PNG001 0.042 n/a 0.014
PNG003 0.073 n/a n/a
PNG006 n/a n/a n/a
PNG007 0.000 n/a 0.000
SND001 0.335 0.001 n/a
SND005 0.000 0.035 0.594
SND006 0.000 0.000 n/a
SND007 0.002 0.043 n/a
SND016 n/a n/a n/a
SND017 0.355 n/a 0.000
SND020 0.065 0.245 n/a
SND024 0.024 0.130 n/a
SQL002 n/a 0.000 n/a
SQL012 n/r n/r n/r
SQL014 n/a n/a n/a
SQL018 n/a n/a n/a
SQL020 n/a n/a n/a
SSL001* n/r n/r n/r
SSL001* 0.041 0.001 n/a
SSL002* n/a n/a n/a
SSL002* n/a n/a n/a
SSL003 n/a n/a n/a
SSL009 n/r n/r n/r
SSL020 0.846 0.177 n/a
TIF002 0.518 n/a n/a
TIF007 n/a n/a n/a
TIF008 0.281 n/a n/a
TIF012 0.006 n/a n/a
TIF014 0.020 n/a n/a
XML003 0.432 0.000 n/a
XML009 0.056 n/a n/a
XML017 n/a n/a n/a

TABLE 14: p-values for the hazard ratios reported in
Table 9. Hazard ratio when comparing LibAFL against
the directed fuzzers considered. Highlights correspond to
statistically significant entries (p-value < 0.05). Cases
where neither fuzzer could ever trigger the bug are marked
as n/r; cases where the model is not applicable are marked
as n/a. The timings include the build times listed in Table 7.
Bugs reachable from multiple harnesses are marked with *.

LibAFLGo LibHawkeye LibDAFL Beacon

PDF010 0.207 n/a 0.000 n/a
PDF011 n/r n/r n/r n/r
PDF016 0.016 n/a n/a n/a
PDF018 0.735 0.693 n/a n/a
PDF021 0.560 0.066 n/a n/a
PHP004 0.405 n/a n/a n/a
PHP009 0.040 n/a n/a n/a
PHP011 n/a n/a n/a n/a
PNG001 0.437 0.007 n/a 0.003
PNG003 0.000 n/a n/a n/a
PNG006 n/a n/a n/a n/a
PNG007 0.460 0.000 n/a 0.000
SND001 0.113 0.424 0.003 n/a
SND005 0.204 0.000 n/a 0.064
SND006 0.002 0.000 0.000 n/a
SND007 0.039 0.158 0.001 n/a
SND016 0.386 n/a n/a n/a
SND017 0.258 0.014 n/a 0.000
SND020 0.888 0.061 0.935 n/a
SND024 0.054 0.426 0.006 n/a
SQL002 0.081 n/a n/a n/a
SQL012 n/r n/r n/r n/r
SQL014 0.954 0.000 n/a n/a
SQL018 0.063 n/a n/a n/a
SQL020 0.086 n/a n/a n/a
SSL001* 0.035 0.000 0.000 n/a
SSL001* n/r n/r n/r n/r
SSL002* n/a n/a n/a n/a
SSL002* 0.051 n/a n/a n/a
SSL003 n/a n/a n/a n/a
SSL009 n/a n/a n/a n/a
SSL020 0.051 0.008 0.365 n/a
TIF002 0.475 0.961 n/a n/a
TIF007 0.030 n/a n/a n/a
TIF008 0.309 0.875 n/a n/a
TIF012 0.765 0.002 n/a n/a
TIF014 0.505 0.036 n/a n/a
XML003 0.696 0.565 0.000 n/a
XML009 0.649 0.038 n/a n/a
XML017 n/a n/a n/a n/a


