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“Those that have an attitude of service towards others
are the beauty of society."

- Amma
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1 Introduction

Design �aws and implementation bugs are two di�erent types of security defects.

Studies estimate that design �aws, errors that occur at the design phase of the

product development lifecycle, constitute 50% of the vulnerabilities in computer

systems [105]. Often they are the results of features introduced by vendors and

product developers for improving the usability or performance of computer sys-

tems. On the other hand, implementation bugs are the errors introduced at the

implementation phase of the product development lifecycle. Design �aws and

implementation bugs can occur in both software and hardware components of

computer systems.

Today, a lot of research and tools exist to identify and mitigate implementa-

tion bugs. However, these tools cannot mitigate the security impacts of design

�aws because, unlike exploiting an error in the implementation like a memory

corruption bug, they are more about bad actors taking advantage of an unin-

tended consequence of a feature. Thus, it is typically di�cult to detect, and com-

plex to patch a design �aw when compared to an implementation bug — often

requiring solutions unique to each attack. Clearly, more research is desirable for

identifying and mitigating cyber threats stemmed from design �aws.

Motivation and Problem Statement

As the vendors and product developers are constantly introducing new features

for enhancing the usability and performance of the computer systems, increasing

the level of complexity, size and attack surface, the secure software development

process is becoming more and more challenging. Requirement gathering, de-

sign, implementation, and testing are the four common stages of the software

development lifecycle. Many organizations consider security only at later stages

of this software development lifecycle — especially at the implementation and

testing phase, where they can utilize static and dynamic analysis tools. However,

such tools can only �nd security defects (bugs) introduced in the implementation

1



2 CHAPTER 1. INTRODUCTION

Table 1.1. Design principles by Saltzer and Schroeder

Design Principle Description
Economy of mechanism A simpler design is easier to test and therefore the design should

be as simple and small as possible.
Fail-safe defaults Access should be denied by default and only be permi�ed when

explicit permission exists.
Complete mediation Every access to every object must be checked for authority.
Open design The security of a mechanism should not depend on the secrecy of

its design or implementation.
Separation of privilege Access should be granted based on more than one piece of informa-

tion. Protection mechanism that requires two keys are more robust
and flexible.

Least privilege Every process and user should be given the least set of privileges
that it needs in order to complete its task.

Least common mechanism The protection mechanism should be shared as li�le as possible
among users.

Psychological acceptability The protection mechanism should be easy to use.

phase, not the security defects introduced in the earlier stages of the product de-

velopment lifecycle (such as design �aws). Since it is more expensive and di�cult

to �x such security defects at a later stage, it would be a better approach to layer

security throughout the product development lifecycle and natively build into it

from the beginning.

We can classify any security defect into either an implementation bug or a de-
sign �aw, and such defects can occur at both hardware and software. However,

it is more expensive and sometimes impractical to �x a security defect that oc-

curred at the hardware-level. Hence, the hardware components should be even

more carefully designed and implemented than the software components.

An implementation error at the software level is typically called a software
bug. A software bug is a coding error that causes the program to behave in un-

intended ways. Most software contains such bugs — yet they are �xable. Nowa-

days, exploiting a software bug such as a memory-corruption bug to compromise

computers and gain access to organizations is all too common. A lot of research

has been already done on identifying and mitigating such threats. Similarly, an

implementation bug at the hardware level is known as a hardware bug. Typically,

they are much harder to �x. Sometimes the hardware is supported by embedded

�rmware (for instance, the microcode in CPUs). In that case, the hardware bug

may be mitigated by a �rmware update.

In contrast, an error that occurrs at the design phase of the software (or hard-

ware) development lifecycle is called a design �aw or logic �aw. Sometimes it

consists of an otherwise legitimate function or feature with unintended conse-
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Table 1.2. Design principles by Viega and McGraw

Design Principle Description
Secure the weakest link The level of security is only as strong as the weakest link

in the system.
Practice defense in depth Use multiple complementary security mechanisms, so

that a failure in one does not mean total insecurity.
Fail securely Design the system so it fails in a secure manner.
Follow the principle of least privilege Only the minimum access necessary to perform an op-

eration should be granted, and that access should be
granted only for the minimum amount of time.

Compartmentalize Segment a system into multiple components that are
protected independently to reduce the damage of an
a�ack.

Keep it simple Avoid unnecessary complexity by keeping the system as
simple as possible.

Promote privacy Promote privacy for the users and the system.
Remember that hiding secrets is hard This principle assumes that even the most secure systems

are amenable to inside a�acks.
Be reluctant to trust Instead of making assumptions that need to hold true,

you should be reluctant to extend trust.
Use your community resources Use well-known community resources that have been

widely scrutinized and used.

quences that attackers seek out to exploit. For instance, attackers can exploit

them to gain root access to highly secure systems, leading to data theft, disrup-

tion of critical infrastructure, and other serious consequences. Unlike bugs, a

design �aw is typically di�cult to patch; moreover, automated tools cannot al-

ways �nd such security defects easily.

Design principles are speci�c guidelines that can be followed during the de-

sign phase of the product development lifecycle to avoid such �aws. These prin-

ciples demonstrate what to consider to enhance security as well as to aid in the

development of a new computer system. In 1975, Saltzer and Schroeder [103] pre-

sented a series of design principles for secure systems, which apply especially to

protection mechanisms (see Table 1.1). Building on that later in 2001, Viega and

McGraw [106] also introduced a set of design principles to improve the secure

software development process (see Table 1.2).

Unfortunately, many developers either consider security only in the imple-

mentation phase or fail to adhere to these design principles thereby introducing

design �aws [122]. The Rowhammer bug is an example of a hardware level design

�aw. DRAM vendors are making DRAM chips denser to increase DRAM capacity

and the lower energy consumption. Unfortunately, this design choice to optimize

the cost-per-bit by cramming bits very close together increases the possibility of



4 CHAPTER 1. INTRODUCTION

memory errors in the DRAM chip owing to the smaller di�erence in charge be-

tween a "0" bit and a "1" bit. Previous research showed that it is possible to force

memory errors in DDR3 memory by activating a row many times in quick succes-

sion, causing capacitors in neighboring victim rows to leak their charge before

the memory controller has a chance to refresh them. This rapid activation of

memory rows to �ip bits in neighboring rows is known as the Rowhammer at-
tack. Subsequent research has shown that the bit �ips induced by Rowhammer

are highly reproducible and can be exploited in a multitude of ways. These bit

�ips/memory errors happen in hardware without any indication, hence the sys-

tem fails to detect such memory errors. This design of memory chips violates

the design principle called Fail securely (see Table 1.2). The basic idea behind Fail
securely is that when a system fails, it should do so securely; the con�dentiality

and integrity of a system should remain intact even though availability may have

been lost. The attackers must not be permitted to gain access rights to privileged

objects during a failure that are normally inaccessible. Clearly, the vendors did

not think of the security implications of such memory errors in the design phase.

This leads us to ask the following questions: (i) Do similar exploitable design

�aws also exist in modern software systems that deal with highly sensitive oper-

ations such as �nancial transactions? (ii) Can we still mitigate the cyber threats

stemming from these design �aws under the assumption that the �aws them-

selves cannot be �xed (for practical reasons)? (iii) Is the current set of design

principles comprehensive enough to prevent today’s cyber threats? These are

the overarching questions that we try to answer in this thesis. Of course, we can-

not solve all design �aws in hardware and software in a generic manner. We will

focus on two speci�c issues in this thesis, with very speci�c solutions. However,

they may serve as examples that even though the security problem is deep in the

design of the a system we may still be able to �x them later.

Research �estions

The goal of this work is to study and build computer defenses that primarily focus

on preventing exploitation based on design �aws. First, we focus on new cyber

threats that emerged from such design �aws at both the software and hardware

level. Then, we study whether the current set of design principles is comprehen-

sive enough to prevent today’s cyber threats. For the purpose of this study the

following research questions have been de�ned:

Question (1): Given that exploitable design �aws exist in hardware, can we also
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discover them in software that deals with highly sensitive operations such as �nan-
cial transactions?

Question (2): Given that it is harder to �x such a design/logical �aw when com-
pared to patching a typical software bug, can we still mitigate the cyber threat
stemming from the design �aw that we identi�ed as part of our �rst research ques-
tion under the assumption that the �aw itself cannot be �xed for practical reasons?
What will be the cost of such a solution?

Question (3): Given that it is often more complex to patch a design/logical �aw in
a hardware component, can we still mitigate the cyber threat originated from the
Rowhammer bug using a software-based solution? What will be the cost of such a
solution?

Question (4): Given that cyber attacks have evolved over time to become more
stealthy and complex, is the current set of design principles comprehensive enough
to prevent today’s cyber threats?

Organization

This dissertation makes several contributions, with results published in refereed

conferences and workshops (Page xv). The remainder is organized as follows:

• Chapter 2 presents Bandroid, an attack that exploits a design or logical

�aw at the software level to break mobile-based two-factor authentication

provided by a wide range of (�nancial) web services. In broad strokes, the

scenario is as follows. If attackers have control over the browser on the

PC of a user using Google services (like Gmail, Google+, etc.), they can

push any app with any permission on any of the user’s Android devices

using this remote install feature, and activate it — allowing one to bypass

two-factor authentication via the phone. Thus, we show that it is practical

to design a cyber-attack that exploits a design/logical �aw (which in this

case is the remote install feature). We conclude the chapter discussing the

design principle this usability feature violates.

I share �rst authorship on Bandroid with Victor van der Veen. In partic-

ular, I found the vulnerability in Google Play and built a proof of concept.

During the �rst years of my PhD, I strengthened the exploit for Android by

adding a name masquerading technique and developed an exploit for the
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iOS platform. Victor focused on generalizing my �ndings allowing us to

present a coherent story.

Chapter 2 appeared in the Proceedings of the 20th International Conference
on Financial Cryptography and Data Security (FC 2016) [44].

• Chapter 3 presents SecurePay, a software-based defense to mitigate the

Bandroid attack which is the result of a design �aw (as well as other at-

tacks on 2FA). In the previous chapter, we saw that the separation between

the factors has weakened by the remote install feature and one compro-

mised device may be enough to break current mobile-based 2FA mecha-

nisms. In this chapter, we identify the basic principles for securing any

transaction using mobile-based 2FA and build a defense against the Ban-

droid cyber attack. We argue that the computing system should not only

provide isolation between the two factors, but also the integrity of the

transaction while involving the user in con�rming the authenticity of the

transaction. We show for the �rst time how these properties can be pro-

vided on commodity mobile phones, securing 2FA-protected transactions

even when the operating system on the phone is fully compromised by a

cyber attack like the Bandroid attack. The design of SecurePay is deliber-

ately minimalistic to adhere to Saltzer and Schroeder’s design principles of

Economy of Mechanism, Least Common Mechanism, Least Authority, and

Privilege Separation [103].

As the �rst author of the paper, my focus was mainly on designing, imple-

menting and evaluating SecurePay.

Chapter 3 appeared in the Proceedings of the 5th IEEE European Symposium
on Security and Privacy (EuroS&P 2020) [42]. SecurePay won the Best Paper
Award at EuroS&P 2020.

• Chapter 4 presents ZebRAM, a novel and comprehensive software-level

protection against the Rowhammer attack which exploits a design �aw in

the memory hardware (DRAM). The vendor’s design choice to optimize the

cost-per-bit by cramming bits so close together increased the possibility of

memory errors. Kim et al. [39] show that intentionally activating a row

many times in a short duration (i.e., Rowhammering) can cause the charge

in the capacitors to leak in close-by rows. This rapid activation of memory

rows to �ip bits in neighboring rows is known as the Rowhammer attack.

As the bit �ips induced by Rowhammer happen without any indication, the



ORGANIZATION

IN
TR

O
D

U
C

TI
O

N

7

system fails to detect it. Subsequent research has shown that the bit �ips

induced by Rowhammer are highly reproducible and can be exploited in a

multitude of ways and even occur in the newer DDR4 memory chips [28].

ZebRAM isolates every DRAM row that contains data with guard rows

that absorb any Rowhammer induced bit �ips. This is the only way to pro-

tect against all forms of Rowhammer. Rather than leaving guard rows un-

used, ZebRAM improves performance by using the guard rows as e�cient,

integrity-checked and optionally compressed swap space. We conclude the

chapter by discussing the design principle this memory chip design violates

and the cost of the software-based solution.

As the �rst author of the paper, my focus was mainly on designing, im-

plementing and evaluating security provided by ZebRAM. Marco Oliverio,

the second author of the paper, evaluated the performance overhead of the

ZebRAM.

Chapter 4 appeared in the Proceedings of the 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 2018) [43].

• Chapter 5 presents MineSweeper, an in-depth study of a new class of cy-

ber threat called cryptojacking. This new class of cyber threats neither vi-

olates any of the current design principles nor exploits an implementation

bug. It does not break today’s widely-accepted security model known as

the CIA triad (standing for Con�dentiality, Integrity, and Availability); still

it is a very practical and stealthy cyber attack that monetizes of a victim’s

computational resources. In this chapter, we �rst perform a comprehensive

analysis on Alexa’s Top 1 Million websites to shed light on the prevalence

and pro�tability of cryptojacking. Then, we present possible countermea-

sures against this cyber threat. Finally, we conclude the chapter by proving

that we need to update the design principles to address this class of new

cyber threat.

As the �rst author of the paper, my focus was mainly on designing and

implementing the large-scale analysis framework and designing the coun-

termeasures.

Chapter 5 appeared in the Proceedings of the 25th ACM Conference on Com-
puter and Communications Security (CCS 2018) [45].

• Chapter 6 concludes this thesis, recapitulating our main results and dis-

cussing perspectives for future work.
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2 Killing Phone-Based
Two-Factor
Authentication
Exploiting a Design
Flaw

Exponential growth in smartphone usage combined with recent advances in mo-

bile technology is causing a shift in (mobile) app behavior: application vendors

no longer restrict their apps to a single platform, but rather add synchroniza-

tion options that allow users to conveniently switch from mobile to PC or vice

versa in order to access their services. This process of integrating apps among

multiple platforms essentially removes the gap between them. Current, state of

the art, mobile phone-based two-factor authentication (2FA) mechanisms, how-

ever, heavily rely on the existence of such separation. They are used in a variety

of segments (such as consumer online banking services) to protect against mal-

ware. For example, with 2FA in place, attackers should no longer be able to use

their PC-based malware to instantiate fraudulent banking transactions. Clearly,

the synchronization options are violation of the design principle called compart-
mentalize (see Table 1.2). In this chapter, we analyze the security implications

of diminishing gaps between platforms and show that the ongoing integration

and desire for increased usability results in violation of key principles for mobile

phone 2FA. As a result, we identify a new class of vulnerabilities dubbed 2FA
synchronization vulnerabilities. To support our �ndings, we present practical at-

tacks against Android and iOS that illustrate how a Man-in-the-Browser attack

can be elevated to intercept One-Time Passwords sent to the mobile phone and

thus bypass the chain of 2FA mechanisms as used by many �nancial services.

9
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2.1 Introduction

Approaching an impressive 1.25 billion sales in 2014 with an expected audience

of over 1.75 billion, smartphones have become an important factor in many peo-

ple’s day-to-day life [144, 206]. Daily activities performed on these mobile de-

vices include those that can be done on PC as well: accessing e-mail, searching

the web, social networking, or listening to music [148]. To enhance usability,

both application developers and platform vendors are making an e�ort to blur

boundaries between the two platforms. This is re�ected in synchronization fea-

tures like Firefox Sync and Samsung SideSync or sophisticated market places like

Google Play and Microsoft’s Windows Store that allow users to manage their mo-

bile phone remotely.

A second important trend in web computing is the increasing number of appli-

cations that provide the possibility to harden user accounts by enabling 2 Factor
Authentication (2FA) for them. 2FA is a form of multi-factor authentication and

provides unambiguous identi�cation of users by means of the combination of

two di�erent components, i.e., something the user knows (PIN code, password)

and something the user possesses (bank card, USB stick token). With 2FA en-

abled, if attackers steal a user’s password, they still require access to the second

component before they can impersonate the victim.

Not surprisingly, software vendors often embody the second component of

2FA in the form of a mobile phone. To authenticate, the web application sends

a one-time-valid, dynamic passcode to the user’s mobile phone (for instance via

SMS, e-mail, or a dedicated application), which must then be entered along with

the user’s credentials in order to complete the authentication. Since users usually

carry their phone all the time, Mobile Phone 2FA does not introduce additional

costs and can be implemented relatively easy. Examples of well-known compa-

nies that provide mobile phone 2FA include Amazon, Apple, Dropbox, Google,

Microsoft, Twitter, Yahoo, and many more, including a large number of �nancial

institutions
1
. The latter is represented by many of the biggest �nancial organiza-

tions in the world such as Bank of America, Wells Fargo, JP Morgan Chan, ICBC

in China, and ING in The Netherlands.

In this chapter, we analyze the security implications of Anywhere Computing
and show that seamless platform integration comes at the cost of weakening the

(commonly perceived) strong mobile phone 2FA mechanism. We de�ne a new

class of vulnerabilities dubbed 2FA synchronization vulnerabilities and show how

these can be exploited by an attacker. In particular, we present reliable attacks

1
http://twofactorauth.org

http://twofactorauth.org
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against both Android and iOS, two platforms that represent a combined market

share of over 90% [188]. Our threat model is the same as that of 2FA: we as-

sume that a victim’s PC has been compromised, allowing an attacker to perform

Man-in-the-Browser (MitB) attacks. In this scenario, mobile phone 2FA should

guarantee that the attacker cannot perform authorized operations without hav-

ing also access to the user’s phone. By exploiting certain 2FA synchronization

vulnerabilities, however, we show that mobile phone 2FA as used by many online

services for secure authentication, including �nancial institutions, can be easily

bypassed.

In more detail, our �rst attack utilizes Google Play’s remote app installation

feature to install a speci�cally crafted vulnerable app onto registered Android

devices of the victim which is then silently activated and used to hijack One-

Time Passwords (OTPs). Our iOS attack, on the other hand, exploits a new OS X

feature that enables the synchronization of SMS messages between iPhone and

Mac.

Although the security of 2FA has been subject of prior work [20], we believe

that our work is the �rst to address weaknesses relating to ongoing synchroniza-

tion and usability enhancement e�orts.

Contributions In summary, our contributions are the following:

1. We identify a new class of vulnerabilities, 2FA synchronization vulnerabili-
ties, that weaken the security guarantees of mobile phone 2FA.

2. We present practical attacks against Android and iOS that exploit multiple

2FA synchronization vulnerabilities and show how these can be used to

successfully bypass mobile phone 2FA.

3. We discuss the security implications of our �ndings and provide recom-

mendations for various stakeholders. Based on our �ndings, we conclude

that SMS-based 2FA should be considered unsafe.

The remainder of this chapter is organized as follows. In Section 2.2, we

outline current e�orts deployed by vendors that ease platform integration and

provide a de�nition of 2FA synchronization vulnerabilities. Section 2.3 details our

attacks against Android and iOS which can be used to bypass mobile phone 2FA.

We discuss security implications and recommendations in Section 2.4, followed

by a related work study on the evolution of Man-in-the-Browser attacks and 2FA

in Section 2.5. We conclude in Section 2.6.
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2.2 Synchronization

To maximize connectivity and to ensure that users never miss another status up-

date, vendors continuously come up with ways to close the gap between PC and

mobile devices. In this section, we separate these integration techniques into two

categories: (1) remote services as provided by mobile operating system vendors

and (2) integration of applications across the di�erent platforms using synchro-

nization features. Finally, we de�ne 2FA synchronization vulnerabilities in detail

and show example vulnerabilities that we later use to break mobile phone 2FA.

2.2.1 Remote Services

Mobile operating system market leader Google provides a remote install service

in its Play Store that allows users to install Android applications on any of their

phones or tablets, from a desktop computer. The process is painless and straight-

forward: a user (1) logs into the Google Play store, (2) picks an app of his interest,

(3) hits the install button, (4) accepts the app’s permissions, (5) chooses the device

on which this app should be installed, and (6) con�rms installation. The app is

now automatically pushed and installed onto the selected phone—as soon as it

has connectivity. Since all the app’s permissions are requested and con�rmed in

the browser already, the only trace left on the phone is a <app name> successfully
installed noti�cation message. Similar features have been deployed in app stores

of both Microsoft (Windows Phone) and Apple (iOS).

Naturally, platform vendors have adopted security policies to prevent ex-

ploitation of this feature. Focusing on Android, for example, Google, deployed

two: (1) silent remote install only works for apps on Google Play, which is ac-

tively monitored for malware by Google Bouncer; and (2) newly installed apps

default to a deactivated state which means that even if the app de�nes speci�c

event receivers (e.g., on BOOT_COMPLETED to start a service at boot-time, or SMS_-

RECEIVED to listen for incoming SMS text messages), it cannot use these until the

app is explicitly activated by the user. Activation is triggered by starting the app

for a �rst time, either by selecting it from the launcher or by sending it an intent

from another app (e.g., by opening a link from the mobile browser) [157].

In addition to remote install, platform vendors also provide features that help

users in locating or wiping a lost device [128, 158, 180].

2.2.2 App Synchronization

Besides remote services, developers try to increase usability even further by in-

corporating cross-platform synchronization features in their applications. This
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is best illustrated by looking at recent changes in browsers. Browsers once were

self-contained software pieces that ran on a single device. Popular browsers like

Google Chrome or Mozilla Firefox, however, nowadays o�er integrated synchro-

nization services. By using these features, users no longer have to con�gure

browsers individually, but can automatically synchronize all their saved pass-

words, bookmarks, open tabs, browser history and settings across multiple de-

vices [160, 184]. It is expected that Microsoft’s Edge introduces similar function-

ality soon [197].

Another example of application synchronization is Apple’s Continuity which

features, among others, synchronization of SMS text messages between iOS (8.1

and up) and Mac OS X (10.10 Yosemite and later): “with Continuity, all the SMS

and MMS text messages you send and receive on your iPhone also appear on

your Mac, iPad, and iPod touch” [129].

2.2.3 2FA Synchronization Vulnerabilities

Given the ongoing e�orts by both platform vendors and application developers to

bridge the gap between the end-user’s desktop and his or her mobile devices, we

identify a new class of vulnerabilities that, while increasing usability, jeopardize

2FA security guarantees.

De�nition A 2FA synchronization vulnerability is a usability feature that delib-
erately blurs the boundaries between devices, but, potentially combined with other
vulnerabilities, inadvertently weakens the security guarantees of 2FA.

As an example, consider the previously discussed remote app installation fea-

ture: a clear product of a design decision aiming to enhance usability. Although

such option successfully improves usability indeed—users can conveniently man-

age their mobile device from their browser—it comes with an obvious security

risk: if attackers manage to get control over a user’s browser, they can extend

control to the user’s mobile devices as well by pushing arbitrary apps to them.

We thus identify the remote install feature as a 2FA synchronization vulnerabil-

ity.

Focussing again on Android, Google’s deployed security measures make that

without additional vulnerabilities, attackers cannot abuse this synchronization

vulnerability alone to bypass mobile phone 2FA. Finding such vulnerabilities is

easy though. First, fundamental weaknesses in Google Bouncer expose multi-

ple ways to bypass malware detection, giving attackers a su�cient time window

to push malicious apps to Google Play and thus to mobile devices. Second, we

identify numerous ways to activate apps after installation, either by exploiting
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end-users’ curiosity (hey, what is this app?) or by relying on additional synchro-

nization vulnerabilities, for example in browser apps: previously discussed fea-

tures can be used by an attacker to synchronize malicious bookmarks or browser

tabs that, when opened on the mobile device, can activate deactive apps.

A second attack exploits the clear 2FA synchronization vulnerability intro-

duced in recent Mac OS X releases. If Continuity is enabled, there is no need

for attackers to control a victim’s phone: they can read SMS messages from an

infected Mac directly.

It is important to realize that 2FA synchronization vulnerabilities are not nec-

essarily caused by bad developer habits or con�guration mistakes. More often,

they will be the result of a design decision-making process. This means that it is

much harder to convince vendors of their mistakes: a 2FA synchronization vul-

nerability does not leak data or enable code execution, but must be considered

within the mobile phone 2FA threat model before it becomes a threat.

2.3 Exploiting 2FA Synchronization Vulnerabilities

By exploiting the synchronization vulnerabilities discussed in Section 2.2, we can

construct attacks that break mobile phone 2FA. In this section, we present prac-

tical implementations of such attacks against the two major mobile operating

systems: Google Android and Apple iOS. Additionally, we show that synchro-

nization vulnerabilities also imperil mobile phone 2FA implementations that use

a dedicated app to transfer the OTP.

Our attacks operate on the basic threat model of 2FA: we assume that the

attacker already has control over the victim’s PC, possibly including a MitB, and

is speci�cally interested in bypassing mobile phone 2FA.

2.3.1 Android

The intention of our Android attack is to exploit the remote install feature of

Google Play to push a malicious app onto the user’s mobile device. This app

can then intercept and forward OTPs sent as SMS messages to a server that is

controlled by the attacker. Given that the attackers have control over the user

credentials (stolen by the MitB), this gives them su�cient means to bypass 2FA.

Google’s deployed mitigation techniques slightly complicate our scenario. In

order to successfully break 2FA, we need to address two defenses: (1) we need to

bypass Google Bouncer before we can publish our SMS stealing app in Google

Play, and (2) we need the user to activate the app before it can intercept and

forward SMS messages.



2.3. EXPLOITING 2FA SYNCHRONIZATION VULNERABILITIES

B
A

N
D

R
O

ID

15

Bypassing Google Bouncer Since Google’s remote install feature only allows

app installation from trusted sources, attackers �rst need to get an SMS stealing

app published in Google Play. For this, they need to bypass Bouncer, Google’s

automated malware analysis tool that uses both static and dynamic analysis to

identify malicious behavior [0]. Once an application is uploaded to Google Play,

Bouncer starts analyzing it for known malware, spyware and trojans.

Although the inner workings of Bouncer are kept con�dential, prior work

has shown that it is easily circumvented [223, 67]. This is con�rmed by a recent

case study where Avast identi�ed a number of popular Play Store apps that had

over a million downloads to be in fact malware [136].

Orthogonal to recent work, our approach to trick Bouncer into accepting

rogue apps is publishing a vulnerable application [82]. By pushing a poorly coded

WebView application, for example, attackers no longer have to hide malicious

code from Bouncer, but can simply move it to a web server that will be contacted

by the app to display regular data [60]. An alternative, even harder to detect

scheme, involves exposing a backdoor in native code via a memory corruption

vulnerability [9].

To show the practicality of our attack, we successfully published an SMS

‘backup’ app in Google Play. Upon SMS reception, our app �rst writes the mes-

sage content to a �le, followed by loading a remote webpage inside a hidden

webview component. The prepared webview component, however, is made vul-

nerable by exposing a ProcessBuilder class via the addJavascriptInterface

API. This allows the remote webpage to execute arbitrary commands within the

app’s context using JavaScript.

Removing malicious code from the app makes it undetectable for Google

Bouncer’s static analysis. To also hide from dynamic analysis, we construct the

remote webpage in such a way that it does not serve malicious commands when

the incoming connection is made from a Google machine. In practice, to avoid

accidental misuse, we instructed the webpage to only serve malicious code if

accessed from an IP address that is under our control.

App Activation Once installed, Android puts new apps in a deactivated state.

While deactivated, an app will not run for any reason, except after (1) a man-

ual launch of its main activity via the launcher, or (2) an explicit intent from

another app (e.g., a clicked link from the mobile browser) [166]. Attackers must

thus somehow steer their victim into starting the app manually. We identify two

reliable approaches to achieve this.

1. The most naive method is to hide the malicious activity inside an attrac-
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tive container. By using a challenging or even provocative app name or

icon, a user may be tempted into opening the app manually, simply out of

curiosity.

2. Armed with both synchronization vulnerabilities and the victim’s Google

credentials obtained by the MitB, an attacker can manipulate saved book-

marks, recent tabs, or URLs used in e-mail, cloud documents, social media,

etcetera, in such a way that, when clicked, they redirect to a malicious

webpage. This page, controlled by the attacker, can then send the afore-

mentioned intent to activate the malicious app.

To prevent a user from detecting the rogue app after it has been activated, we

complement it with stealth features. Strictly abiding to the Android developers

guidelines, we constructed our app in such a way that, once activated, it removes

it’s main icon from the launcher. Additionally, we use a name masquerading

technique to maximize discretion: (1) the app name shown in the noti�cation

bar is di�erent from (2) the name of the app as found in the launcher, which

in its turn di�ers from (3) the o�cial app name as shown in the app overview
(accessible from the settings view). This works because (1) during app submis-

sion, the Google Developers Console does not check whether the provided app

name matches the o�cial app name as found in the uploaded .apk, and (2) the

<activity-alias> tag inside the app’s manifest allows us to declare additional

activity names.

The process of installing a vulnerable app and activating it is shown in Fig-

ure 2.1. The stealthy installation via bookmarks (or recent tabs or some other

object of synchronization) combined with name obfuscation makes it hard to tell

that an app is malicious, even for experienced users.

Breaking 2FA With the malicious/vulnerable app and activation methods in

place, attackers can start their attack from the hijacked browser by requesting

remote installation for the rogue app. We implemented a MitB trojan for the

Google Chrome browser that can do this. Once installed, our extension can use

Google session cookies to start remote app installation and prepare app activa-

tion. The plugin basically consists of three phases:

1. Hijack a Google session. Our plugin waits for a Google authentication

cookie to become available. This happens when the user logs into a Google

component (e.g., Gmail, YouTube, Drive, etcetera). Optionally, it forwards

the typed credentials or cookies over the network to the attacker.
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1. Request remote app install

2. Silent install

!
!

3. Activation
User click on:
- notification
- bookmark
- ...

Synchronization

Figure 2.1. Malicious app installation process. A�ackers (1) use their deployed MitB to request
the installation of a vulnerable app from Google Play, and replace all the browser’s
bookmarks with malicious variants. Google then (2) pushes the app onto the
mobile phone of the victim. Finally (3) the user is steered into activating the app.
Activation is achieved by exploiting browser features to synchronize the malicious
bookmarks to the phone, or by exploiting the user’s curiosity.

2. Remote install. Using the hijacked Google session, the trojan sends a

request to Google Play to retrieve a list of Device IDs of all Android de-

vices linked to this particular Google account. Next, for each device, the

plugin requests remote installation of the vulnerable app. Since app per-

missions are approved from within the PC-based browser only, the app

will be silently installed, leaving only a <app name> successfully installed
installation noti�cation on the device.

3. Activation. To allow app activation, our extension rewrites all stored

bookmarks and recent tabs so that they point to an attacker-controlled page

while the original URL is provided as parameter: http://mal.icio.us/proxy.

php?url=<original_url>. When opened using the mobile Chrome browser,

this page performs a redirect to rogueapp://<original_url> which triggers

activation of the rogue app. The app then immediately �res another intent

that redirects the mobile browser to <orignal_url>, leaving practically no

footprint.

Once activated, the malicious app can be used in conjunction with the PC-

based trojan to successfully bypass mobile phone 2FA. Fraudulent �nancial trans-

actions, for example, can be initiated by attackers once their PC-based trojan has

captured banking credentials of their victims. To con�rm such transaction, the

mobile component intercepts the OTP sent via SMS, and forwards it to the at-

tacker. This attack scenario is depicted in Figure 2.2.

http://mal.icio.us/proxy.php?url=<original_url>
http://mal.icio.us/proxy.php?url=<original_url>
rogueapp://<original_url>
<orignal_url>
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1. Initiate transaction

2. TAN code

!
RCE

€4. Intercepted TAN code

3. Intercepted TAN code
www.mal.icio.us

!

Figure 2.2. Completing fraudulent transactions while bypassing 2FA. A�er our app processes
the TAN code, it loads a remote webpage into a WebView component that allows
the a�acker to perform Remote Code Execution (RCE). This way, a�ackers can
hide their malicious activity from Google Play.

2.3.2 iOS

Similar to our Android attack, mobile phone 2FA on the iOS platform can be by-

passed by publishing a rogue app to Apple’s App Store and installing it from an

infected PC via the iTunes remote-install feature. Wang et. al., already demon-

strated how a vulnerable app could slip through Apple’s strict review process

and how such app can be used to access private APIs reserved for system apps

to read SMS messages [204, 82]. Additionally, Bosman and Bos showed how a

vulnerable app and sigreturn oriented programming allow to execute any set of

system calls needed to pull of any attack [9].

As of iOS 8.3, released in April 2015, however, it is no longer possible to

receive a so-called kCTMessageReceivedNotification to let an app act on in-

coming text messages without using a speci�c entitlement (similar to the An-

droid RECEIVE_SMS permission). Since this functionality stems from a so-called

private API, requesting such permission violates the App Store Review Guide-

lines and will result in an app rejection, e�ectively breaking this type of attack.

The recent release of Mac Os X 10.10 Yosemite, however, opens up a new attack

scenario.

As outlined in Section 2.2, Mac OS X Continuity features options to synchro-

nize SMS and MMS text messages between multiple Apple devices. When en-

abled, SMS messages that are received on a linked iPhone, are forwarded and

stored in plain-text in the ~/Library/Messages/chat.db �le on the Mac.

Breaking 2FA With Continuity enabled, attackers can break 2FA by instruct-

ing their MitB to monitor the chat.db database for changes and forward new
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1. Initiate transaction

2. TAN code

€4. Synchronized TAN code

3. Synchronized TAN code

!

Figure 2.3. Breaking 2FA on Apple Continuity. If enabled, Mac OS X 10.10 automatically
synchronizes SMS messages between di�erent Apple devices, breaking the second
factor.

messages to a remote server immediately after receipt. To show the practicality

of this attack, we implemented a Firefox extension that uses the FileUtils.jsm

API to read contents of synchronized SMS messages as soon as they are delivered

to the iPhone. The Continuity attack is illustrated in Figure 2.3.

2.3.3 Dedicated 2FA Apps

Many online and o�ine applications are in the process of complementing their

authentication mechanism with an optional 2FA step, often dubbed Two-Step

Veri�cation (2SV). Open source implementations are provided by Google (Google

Authenticator) and Microsoft (Azure Authenticator) and can already be enabled

for dozens of popular services, including Google, Microsoft Online, Amazon Web

Services, Dropbox, Facebook, WordPress, Joomla, and KeePass.

Due to sandboxing techniques, our previously described attacks cannot ac-

cess OTPs that are generated by 2SV authenticator apps. During the process of

setting up an authenticator app, however, users are advised to provide the un-

derlying system a backup phone number. The rationale behind this is that if,

for some reason, users fail to access the authenticator app, they can fallback to

requesting an OTP sent over SMS.

Assuming that many users provide a backup phone number that is used by the

same smartphone that runs the authenticator app, an attacker can easily bypass

these dedicated 2FA apps: (1) having access to stolen credentials harvested by the

MitB, an attacker initiates the login procedure; (2) for logins via the Google Au-

thenticator, for example, when prompted to enter a veri�cation code, the attacker

instructs the login page to try another way to sign in, followed by selecting the

Send a text message to your phone option. From here, our previously described at-
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Figure 2.4. Bypassing dedicated 2FA apps. The screenshot on the le� shows Google 2SV
requesting a verification code from the Google Authenticator. Note the Try another
way to sign in option near the bo�om of the window. When clicked, the right-hand
figure shows the fallback option to get a text message with an OTP sent over SMS.
An a�acker in control of the PC-browser is therefore able to dictate what 2FA
technique is used.

tacks can be used to completely bypass the 2FA mechanism. Figure 2.4 illustrates

how an attacker can fallback to SMS based OTPs when using Google Authenti-

cator.

2.4 Discussion

In the previous sections, we showed how an attacker can bypass a variety of mo-

bile phone 2FA mechanisms by exploiting synchronization vulnerabilities. We

now study feasibility and practicalities of our attacks in more detail. Additionally,

we discuss our e�orts regarding responsible disclosure, as well as recommenda-

tions for involved parties.

2.4.1 Feasibility

Reviewing our Android attack described in Section 2.3.1, we conclude that ex-

ploiting synchronization vulnerabilities to bypass 2FA can be done in a reliable

and stealthy way on Google’s mobile operating system. Attackers can reduce

their footprint to a bare minimum by breaking the attack down in di�erent steps:

(1) a preparation phase wherein attackers acquire access to infected PCs, pos-

sibly via a Malware as a Service-provider [13]; (2) an app-installation phase
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wherein attackers push a vulnerable app to Google Play and instruct their vic-

tims to remotely install it. Depending on the target audience of the attacker, this

can be done within a time window of only a couple of hours, after which the

rogue app can again be removed from Google’s servers; (3) an app-activation
phase wherein attackers gracefully wait until victims activate the malicious app.

Our app-hiding tricks make that attackers can safely wait days so that a large

group of victims get to activate the rogue app; and (4) an attack phase wherein

attackers perform an automated attack that requires access to OTPs sent over

SMS. One typical example of such attack is transferring funds from saving ac-

counts to an account that is controlled by the attackers.

Although more prerequisites must be met for our iOS attacks described in

Section 2.3.2, they complement each other nicely: the vulnerable app approach

does not work on iPhones running the latest iOS version, while our Continuity

attack requires that victims do use more up to date versions of iOS and Mac OS X.

The latter, however, also requires that (1) victims have enabled message synchro-

nization (which setup process requires interaction with both Mac and iPhone),

and (2) both devices are connected to the same wireless network. Although this

does not necessarily make the attack less feasible, it may slightly reduce its scala-

bility given that synchronization is o� by default and increase the detection rate

by attentive users (the content of received SMS messages will pop up on both

devices).

Finally, although the remote-install 2FA synchronization vulnerability is also

prevalent on the Windows Phone (WP) platform, Microsoft does not (yet) provide

an API for reading received SMS messages programmatically. Additionally, to the

best of our knowledge, WP does not provide SMS synchronization features like

Apple’s Continuity. It is because of this that we were unable to break mobile

phone 2FA on WP.

2.4.2 Recommendations and Future Work

An important step towards preventing the presented sophisticated MitB-based

attacks against mobile phone 2FA, is to raise awareness among the various stake-

holders. Mobile platform vendors should be aware that the release of new synchro-

nization features may introduce security risks for their end-users. As such, ven-

dors should be extremely careful when enabling new features by default instead

of making them optional. It is their obligation to inform end-users that enabling

or using certain synchronization features might jeopardize security guarantees

of mobile phone 2FA. Only then can the user make a considered decision to give

up security in favor of usability.
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Reviewing our proposed attacks, this means that Apple, for example, should

warn users about potential security risks when they set up Continuity. Moreover,

if the user decides to enable this feature, synchronizing only messages sent by

trusted phone numbers — those that are found in the user’s contact list — would

eliminate our attack scenario, assuming that TAN codes are sent by an unknown

sender or SMS gateway. Additionally, we recognize a major task for platform

vendors to safeguard their remote-install features. In our view, users should al-

ways be forced to explicitly approve new app installations on their mobile device.

This way, attackers can no longer silently push apps, but always require manual

user-interaction. Ignorant users may still be phished into approving unknown

install requests, of course, but such change would eradicate our completely auto-

mated attack scenario. We believe that the current app-activation security policy

alone as deployed by vendors is too weak, given that additional synchronization

vulnerabilities can be used to achieve activation.

Startled users who do not want to wait for a �x from their vendor, can protect

themselves from exploitation by using a separate account for each device. This

way, remote-install features have zero knowledge about which devices an app

can be pushed to. Naturally, the downside of such approach is losing the ability

to use synchronization features at all. Authenticator users, in addition, should

update their settings so that their backup is a phone number that is attached to

a dumb phone. These phones are remarkably harder to get infected.

Besides raising user-awareness, future work should focus on the detection

of SMS stealing apps at runtime, given that existing mobile Anti-Virus apps are

useless to this respect—they are con�ned to their own �lesystem sandbox and

thus cannot access directories of other apps, monitor the phone’s �le system, or

analyze dynamic behavior of installed applications [25]. Instead, system mod-

i�cations that can monitor the global smartphone state are required. To this,

the redesigned permission model of Android Marshmallow in which apps are

no longer automatically granted all of their speci�ed permissions at install time,

but rather prompt users to grant individual permissions at runtime, is promising.

Unfortunately, this model will only be used by applications that are speci�cally

compiled for Marshmallow and can thus still be bypassed.

As an ultimate resort, we recommend that �nancial institutions consider the

removal of mobile 2FA from their business processes and switch to token based

2FA instead—such token must of course be able to show transaction details, so

that Man-in-the-Middle attacks can be detected by the user during transaction

processing. Naturally, such switch will cause large expenses; each institution will

have to consider whether moving away from mobile 2FA is feasible by comparing
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costs, gained security, and risk analysis results. Even so, given the attack scenar-

ios we conclude that 2FA on smartphones is currently entirely compromised and

no safer than single factor authentication.

2.4.3 Responsible Disclosure

To show the practicality of bypassing Google Bouncer, we uploaded a �rst ver-

sion of our SMS stealing app to Google Play on July 8, 2015, where it has been

publicly available for over two months. The app got removed on September 10,

2015, only a few hours after we had shared its name and a video demonstration

of our attack with the head of Android Platform Security, while we already re-

ported our attack scenario and recommendations to the Android security team

months before the initial publication. Responses so far, unfortunately, indicate

that Google believes that our proposed attack is not feasible in practice, despite

all evidence to the contrary (including actual demos
2
).

We noti�ed Apple about our �ndings on November 30, 2015, but we did not

receive a technical response.

2.5 Background and Related Work

In this section, we provide a brief historical overview and related work discus-

sion of the two fundamental components covered in this chapter: Man-in-the-

Browser attacks and Two-Factor Authentication. Additionally, we discuss state-

of-the-art attacks against mobile-phone 2FA which rely on cross-platform infec-

tion. We focus on online banking schemes in particular, as this always was, and

still is, one of the services subject to a vast amount of criminal activity.

2.5.1 Man-in-the-Browser

At �rst, online �nancial services depended completely on single-factor authenti-

cation (e.g., by using a secret key). For attackers, keyloggers were enough to steal

credentials of associated users. However, they also generated vast amount of use-

less data, forcing the attacker to parse a huge amount of log output in order to

retrieve meaningful credentials. Parsing keylog data was considered a challeng-

ing and time consuming task for an attacker, as it is hard to automate. As an

alternative, cyber criminals deployed phishing campaigns, followed quickly by

form grabbing attacks. The latter proved to be an e�ective and robust mechanism

to steal useful information.

2
https://youtu.be/k1v_rQgS0d8

https://youtu.be/k1v_rQgS0d8
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Well known banking trojans like Zeus and SpyEye were the �rst to implement

form grabbing by hooking web browser APIs [170, 216]. The fundamental idea

behind form grabbing is to intercept all form information before it is sent to the

network via HTTP requests. Form grabbing can be implemented in di�erent

ways: (1) sni�ng all outgoing requests using a PCAP-based library—something

that has the disadvantage of only working for unencrypted data [205]; (2) API
hooking the browser’s dynamic library to steal all the requests and responses

made by the user before they get encrypted [205]; and (3) using amalicious plugin
to easily register callbacks within the browser for events like page load or �le
download in order to intercept any request or response.

Malicious plugins and API hooking techniques can be used to do more than

just form grabbing. Using a plugin, an attacker can modify HTTP responses

received by the browser or covertly perform illegitimate operations on behalf of

the user. This is commonly known as a Man-in-the-Browser (MitB) attack [164].

Guhring has identi�ed various ways of which a trojan can perform a MitB

attack and discusses pros and cons of various countermeasures that could be

taken [164]. Boutin studies how webinjects are used by a trojan in the browser

and discusses the underground economy behind selling webinjects [134]. Buescher

et al., analyzed di�erent types of hooking methods used by �nancial trojans [12].

They propose an approach for detecting and classifying trojans by looking at the

manipulations they perform on a browser. However, their approach is mainly

based on detecting API hooks. As a consequence, MitB attacks that are imple-

mented using plugins cannot be detected using this technique.

2.5.2 Two-Factor Authentication

Most account fraud and identity theft relate to accounts that use only single-

factor authentication [149]. To defend against MitB attacks, �nancial services

started using di�erent types of multi-factor authentication mechanisms. The

most elementary mechanism is that of a list of Transaction Authorization Num-

bers (TAN codes) as provided by the online service, from which the user can

choose one to perform a secure transaction. A more convenient method that has

been adopted by a majority of �nancial services is generating a new TAN code

for each transaction and sending this via an out-of-band channel to the user. Nat-

urally, SMS is a cheap and e�cient candidate channel: almost everybody owns a

mobile phone.

To defend against MitB attacks that hijack an ongoing transaction by modi-

fying its details (receiver’s bank account number or the amount of money trans-

ferred), �nancial services are starting to include transaction details along with
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the TAN code in the out-of-band SMS message. Users can then verify the trans-

action by inspecting these details in the SMS and only con�rm if these match

their expectation.

On August 8, 2001, the Federal Financial Institutions Examination Council

agencies (FFIEC) issued guidance entitled Authentication in an Electronic Banking
Environment [149]. FFIEC encourages �nancial institutions to use mobile phone-

based 2FA as described above to secure their user’s transactions.

Aloul et al., show how an app on a trusted mobile device can be used for gener-

ating one-time passwords, or how a mobile device itself can be used as a medium

for out-of-band communication to �nancial services [2]. This is what most cur-

rent deployed 2FA implementations use today. Mulliner analyzes attacks that

target SMS interception in general and shows how a smartphone trojan can steal

OTPs received via SMS. He proposes to use a dedicated channel which cannot be

controlled by normal applications for receiving the OTP [58]. This is based on

the assumption that mobile trojans do not have root privileges. Schartner et al.,

describe an attack against SMS based OTPs in the scenario where a transaction is

made from the mobile device itself [124]. Since the transaction involves a single

device (smartphone), a malware in the device can sni� both credentials and OTPs

received via SMS.

Konoth et al., describe how Google’s 2FA implementation can be bypassed

using a MitB attack on an untrusted device [46]. Dmitrienko et al., analyzed

2FA implementations of major online service providers such as Google, Twitter,

Dropbox and Facebook [20]. Their work identi�es various weaknesses in exist-

ing implementations that allow an attacker to bypass 2FA and also illustrates a

general attack against 2FA. However, unlike ours, their attack relies on complex

cross-platform infection.

2.5.3 Cross-platform infection

Cardtrap.A is the �rst discovered malware that features a cross-platform infec-

tion implementation. The trojan �rst infects a symbian smartphone. When the

user inserts the memory card of the mobile phone into a Windows PC, it at-

tempts to infect the PC [168]. In 2006, researchers found that it is possible for PC

malware to infect a smartphone by exploiting Microsoft’s ActiveSync synchro-

nization software [147]. Furthermore, Wang et al., explain how a sophisticated

adversary can spread malware to another device through a USB connection [84].

Finally, Dmitrienko et al., demonstrated via prototypes the feasibility of both

PC-to-mobile and mobile-to-PC cross platform attacks [20].
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2.6 Conclusion

With the ongoing integration of platforms—the result of a strong desire for en-

hanced usability—keeping our web accounts safe has become increasingly chal-

lenging. The synchronization features and cross-platform services that are inte-

grating di�erent platforms are clearly a violation of the design principle called

compartmentalize (see Table 1.2). The basic idea behind the compartmentalization
is to segment a system into multiple compartments or units that are protected

independently so that a vulnerability in one unit will not jeopardize the security

of the other units.

In this chapter, we showed how synchronization features and cross-platform

services can be used to elevate a regular PC-based Man-in-the-Browser to an ac-

companying Man-in-the-Mobile threat which can be used to successfully bypass

mobile phone 2FA. The root cause is that imprudent synchronization functional-

ity has obliterated the security boundaries on which 2FA solutions depend.

Due to the large number of �nancial institutions that rely on mobile phone

2FA for secure transaction processing, we expect that cyber criminals extend

their activities by implementing attacks similar to ours, putting those institutions

and their customers at risk.
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3 Resurrecting
Phone-Based
Two-Factor
Authentication Using a
So�ware-Based
Solution

Secure transactions on the Internet often rely on two-factor authentication (2FA)

using mobile phones. In most existing schemes, the separation between the fac-

tors is weak and a compromised phone may be enough to break 2FA. In this chap-

ter, we identify the basic principles for securing any transaction using mobile-

based 2FA. In particular, we argue that the computing system should not only

provide isolation between the two factors, but also the integrity of the transac-

tion, while involving the user in con�rming the authenticity of the transaction.

We show for the �rst time how these properties can be provided on commodity

mobile phones, securing 2FA-protected transactions even when the operating

system on the phone is fully compromised. We explore the challenges in the

design and implementation of SecurePay, and evaluate the �rst formally-veri�ed

solution that utilizes the ARM TrustZone technology to provide the necessary in-

tegrity and authenticity guarantees for mobile-based 2FA. For our evaluation, we

integrated SecurePay in ten existing apps, all of which required minimal changes

and less than 30 minutes of work. Moreover, if code modi�cations are not an op-

tion, SecurePay can still be used as a secure drop-in replacement for existing

(insecure) SMS-based 2FA solutions.

27
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3.1 Introduction

Today’s Two-Factor Authentication (2FA) schemes for secure online banking and

payment services often use smartphones for the second factor during initial au-

thentication or subsequent transaction veri�cation. As a result, all current solu-

tions are vulnerable to sophisticated attacks and o�er only weak security guar-

antees (see also Table 3.3). Speci�cally, attackers may compromise the phone

(including the kernel [156, 163, 217]) and break the second factor. This is true for

mobile-only banking services, but also for solutions that use a separate device

(typically, a PC) to initiate a transaction.

Starting with the former, users increasingly rely exclusively on mobile appli-

cations for using their bank services, purchasing products, or booking trips [133,

207]. Using web-based payment services through a smartphone brings conve-

nience, as users can now access them anytime and anywhere—even when access

to a personal computer is not possible. However, such convenience comes at a

cost to security guarantees o�ered by 2FA. Speci�cally, 2FA works if and only

if the two factors remain independent and isolated, because it requires a com-

promise of both factors to initiate fraudulent transactions—a di�cult task when

devices are decoupled. This is not the case, however, when a single device, such

as a smartphone, serves both factors, since the attacker needs to compromise

only the potentially vulnerable smartphone for breaking 2FA.

Worse, even PC-initiated transactions are not safe if the attacker obtains root

privileges on the mobile device. In that case, attackers can replace or tamper

with the mobile apps, intercept messages and display misleading information.

Unfortunately, compromising smartphones is a realistic threat especially given a

compromised PC, because even though the phone and PC are physically separate,

the devices are often not independent [44].

Surprisingly, despite ample proof that today’s phone-based 2FA is weak in

practice [20, 162, 44] and despite a range of proposed solutions [126, 182, 76, 85,

219, 93], this is not at all a solved problem. In practice, the issues may be as ba-

sic as a lack of separation between the two factors. However, even if there is a

strong separation, there are other, equally fundamental issues. For instance, even

research solutions tend to focus on a limited threat model that excludes fully com-

promised phones where an attacker obtains root access, infects the kernel and/or

the corresponding app. Given that 2FA is often used in high-value interactions

(e.g., banking) and full system compromises are a common occurrence [99, 192,

80, 81], such a limited threat model is wholly insu�cient.

Getting what appears to be a simple issue right is remarkably hard and we
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will show that even the most state-of-the-art solutions are lacking. When studied

closely, 2FA exhibits many subtle issues in both the bootstrap phase (generating

and registering keys) and operational phase (performing transaction). Given the

many failed attempts at secure solutions, verifying the correctness of a solution

in all possible corner cases is di�cult for a human analyst. Instead, we propose

the use of automated proofs to guarantee the security properties of our solution.

In terms of basic principles, we say that a transaction’s authenticity is ensured

if we prevent an attacker from initiating a transaction on behalf of the user (or

server) without being noticed. Meanwhile, a transaction’s integrity is preserved

if an attacker is not able to modify the content of the messages exchanged or

displayed. Given these basic principles, we argue that even if existing solutions

separate the two factors in 2FA, they tend to focus on authentication and ig-

nore integrity, even though secure transaction requires both authenticity and

integrity.

In this chapter, we present SecurePay, a novel, principled design to regain

the strength of 2FA even in the presence of fully compromised devices, while re-

taining the convenience of mobile devices by securing a minimal amount of core

functionality for handling the second factor in the secure world provided by the

Trusted Execution Environment (TEE). All other code runs in the normal world.

SecurePay applies both to mobile-only transactions and to transactions initiated

on a personal computer with the mobile device serving as the second factor only.

Unlike previous work [126, 145, 161, 182, 76, 85, 219], SecurePay builds on the

solid foundation of a minimalistic protocol for guaranteeing authenticity and in-

tegrity for any transaction-based system, for which we additionally provide a

formal security proof.

The protocol is deliberately minimalistic to adhere to Saltzer and Schroeder’s

principles of Economy of Mechanism, Least Common Mechanism, Least Author-

ity, and Privilege Separation [103]. It is the �rst solution to include just the min-

imum of generic 2FA functionality in the TEE to cater to all banking, payment,

and similar services—allowing each to secure their transactions with veri�able

OTPs (one-time passcodes) in a 2FA solution.

In particular, SecurePay’s secure world provides three essential functions.

First, it is responsible for generating SecurePay public-private key pairs. The

private key never leaves the secure world, while banking and similar services

will use the public key to encrypt the veri�cation OTPs for transactions. Second,

it will decrypt the veri�cation OTPs that it receives from banking and similar

services (via the mobile app in the normal world as an intermediary). Since the

SecurePay private key never leaves the TEE, it is the only entity capable of de-
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crypting these messages. Finally, it is capable of displaying the encrypted mes-

sages to the user in a secure and unforgeable manner. In other words, when users

see messages displayed by SecurePay’s trusted code, they can be certain that it

was generated by the trusted components and that it was not tampered with. Se-

curePay ensures this through a software-only solution based on a secret that is

shared between the user and the TEE.

These three functions allow any payment or similar service to implement se-

cure transactions. To back this up, we incorporated SecurePay in ten di�erent

apps with minimal e�ort. Moreover, on the client-side, SecurePay may also serve

as a drop-in replacement for existing (unsafe) solutions such as SMS—without

any code changes whatsoever. To the best of our knowledge, SecurePay is the

�rst generic system that supports arbitrary transaction services without requir-

ing additional hardware or signi�cant changes on the client side, while ensuring

the authenticity and integrity of the transactions initiated from a PC or smart-

phone, even in the case of fully compromised devices. We designed SecurePay as

an e�ective and practical solution, utilizing TEE features available in all modern

devices.

Contributions In summary, our contributions are the following:

1. We analyze current 2FA-based techniques for protecting Internet banking,

show why they are weak, and identify the key functionality that we need

to isolate.

2. We present SecurePay, a generic 2FA design capable of guaranteeing the

integrity and authenticity of any transaction (�nancial or otherwise) ini-

tiated from a mobile app or PC even in the face of a complete system

compromise—where current solutions target only authenticity for more

limited threat models.

3. We implemented and evaluated SecurePay on an actual smartphone
1
.

4. We provide a formal proof of SecurePay’s security guarantees.

1
While this sounds simple enough, TEEs in phones are normally not accessible to researchers. It was

only possible thanks to a vendor’s support.
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3.2 Background

In this section, we discuss the necessary background information for both our

threat model and the SecurePay design.

3.2.1 Mobile transactions and 2FA

Two-factor authentication (2FA) is a well-established mechanism for hardening

authentication schemes. Typical designs for web-based transactions require users

to demonstrate not only their knowledge of some secret credentials (such as

a password), but also their possession of some artifact (such as mobile phone).

Since mobile phones are easily the most popular choice for a large class of 2FA

implementations, we limit ourselves to phones only. In virtually all such schemes,

after a user submits the credentials to a server, the server sends an OTP to the

user’s phone, often in the form of a short sequence of digits. The assumption is

that the ability to also submit the OTP proves possession of that phone. In princi-

ple, 2FA secures clients against the misuse of passwords that may have leaked [35,

98]. An adversary who steals a user’s password and/or compromises the user’s

personal computer is still unable to impersonate the victim, as long as the service

can transmit the second factor safely to the smartphone, that is assumed to be

non-compromised.

Besides initial authentication, 2FA also commonly protects sensitive transac-

tions, such as bank transfers. In particular, e-banking and e-commerce services

enforce a 2FA procedure whenever the already authenticated user performs a par-

ticular action, such as transferring money from one bank account to another, or

verifying an on-line purchase. For instance, the Bank of America’s SafePass o�ers

security based on 2FA. Without it, customers can transfer only small amounts of

money, while for higher-value transfers, the bank sends a 6-digit OTP as an SMS

text message to the user’s phone. In this context, 2FA no longer functions as an

enhanced user authentication mechanism, but rather as additional procedure to

verify the authenticity of the transaction. There is a subtle but important di�er-

ence between these two uses of 2FA. Speci�cally, for on-line transactions just

verifying the authenticity of the transaction is not enough, and integrity must be

preserved also, for instance to prevent strong and stealthy attackers from modi-

fying the user-issued transaction without the user’s knowledge.

Unfortunately, in the absence of strong guarantees of separation between the

factors, and authenticity and integrity of the transaction, an attacker who com-

promises the mobile can also intercept and/or tamper with the OTP. Worse, all

2FA solutions for mobile devices today are vulnerable to strong attackers capable
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of compromising the system completely by obtaining root access, infecting the

kernel, or replacing the banking app with a malicious repackaged version. Such

strong attackers may be able to initiate a transaction without the user’s knowl-

edge, breaking the authenticity of the transaction, or hijack the user’s transaction

by displaying misleading information on the display, breaking the integrity of the

transaction.

3.2.2 Separating the factors

Fortunately, modern devices o�er strong isolation primitives in the form of a TEE,

such as ARM’s TrustZone. As we shall see, if carefully used, they can restore

the isolation between the factors in a 2FA scheme. A TEE o�ers a hardware-

supported secure environment that protects both code and data from all other

code—with respect to authenticity and integrity. Even the kernel of the operating

system in the normal world is unable to view or tamper with anything in the

secure world.

However, even with a TEE, facilitating a secure transaction using 2FA in the

face of a strong attacker is deceptively di�cult, and all existing solutions show

weaknesses in important cases. For instance, in Section 3.6.6 we will see that so-

lutions such as the TrustPay design are vulnerable to man-in-the-mobile attacks

even though it uses a TEE, because isolation is only the �rst step; integrity and

authenticity of the transaction are equally important. Similarly, we will also dis-

cuss the weaknesses of VButton [50] design that result from the lack of a Trusted

UI indicator.

Moreover, the naive solution of simply allowing each and every bank, pay-

ment service, or transaction application to run custom code in the TEE is unde-

sirable, as doing so violates the Principle of Least Authority as well as that of

Privilege Separation [103], and increases both the number of bugs and the attack

surface in the TEE (jeopardizing the security of the entire system). Instead, we

should keep the amount of code running in the TEE to a minimum and o�er the

least amount of functionality possible to cater to all possible 2FA applications

(adhering to the Principle of Least Common Mechanism).

Besides TEEs, it is also possible to separate the factors by an additional (ex-

ternal) hardware device. For instance, the only solutions with a similar threat

model to ours, such as ZTIC [85], require such additional hardware in the form

of a USB stick. These devices need constant updates to support new service

providers. Moreover, ZTIC protects only PC-initiated transactions and previous

work has shown that extending it to mobile-only scenarios is di�cult [101].
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3.2.3 Trusted Execution Environment (TEE)

A TEE is a secure execution environment that runs in parallel with the operat-

ing system of a smartphone or similar device. Several hardware vendors have

introduced di�erent hardware-assisted TEEs: Intel Identity Protection Technol-

ogy, Intel Software Guard eXtension, ARM TrustZone etc. [72, 91]; however,

in this chapter we focus on TrustZone, as mobile devices tend to use ARM pro-

cessors. Most such devices support a TrustZone-based TEE [222], which they

implement using a set of proprietary methods. TEEs manage trusted applica-

tions which provide security services to untrusted applications running on the

commodity operating system of the mobile device. For this purpose, the Glob-

alPlatform (GP) consortium is developing a set of standards for TEEs [120, 22,

111]. It includes APIs for the creation of trusted applications [109], as well as for

interacting with other trusted applications securely [110]. Each trusted applica-

tion should be able to run independently and should be prevented from accessing

additional resources of other (trusted) applications. Nowadays, TEE developers

implement TEEs in compliance with the GP API speci�cations.

ARM TrustZone [118, 119, 86] provides a TEE by enabling the system to run in

two execution domains in parallel: the normal and the secure world (Figure 3.6).

The current state of the system is determined by the value of the Non Secure
(NS) bit of the secure con�guration register. The secure domain is privileged

to access all hardware resources like CPU registers, memory and peripherals,

while the normal world is constrained. There is an additional CPU mode called

monitor, which serves as a gatekeeper between the two domains. This moni-

tor mode is also privileged, regardless of the status of the NS bit. Likewise, the

memory address spaces is divided into regions, which are marked as secure or

non-secure using the TrustZone Address Space Controller. Finally, peripherals

can be marked as accessible to the secure world by programming the TrustZone

Protection controller.

To switch from the normal to the secure world, the system must initially

switch to monitor mode by executing a Secure Monitor Call (SMC). Essentially,

this allows the monitor mode to verify whether switching from one world to the

other should be permitted. If the request is determined valid, it modi�es the NS

bit accordingly and completes the world switch.

3.3 Threat model and assumptions

We assume a strong and stealthy attacker, who has obtained the user’s creden-

tials (e.g., via a password leak, or a compromised device), and fully compromised
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the user’s smartphone. In other words, all the code in the normal world, includ-

ing the operating system kernel, should be considered malicious. The attacker

seeks to perform malicious transactions on behalf of the victim. For example,

the attacker may replace the banking app in the user’s device with a malicious

one. While strong, this is a realistic threat model on today’s smartphones and

probably should be the threat model for highly sensitive applications such as pay-

ment systems. Many exploits exist that allow attackers to run malicious apps on

a user’s phone in a stealthy manner [143, 44, 214] and escalate the privilege to

root [192, 80, 81]. As we discuss in Section 3.8, previous work fails to protect

against such strong attacker models.

We also assume that users have secured their accounts with 2FA, so that the

attacker must bypass 2FA restrictions (stealthily) for every malicious transaction.

As the attackers have compromised the mobile device, they have access not just

to the user’s credentials, but also to the second factor OTP which we assume the

payment service to deliver only to the compromised device. As attackers may

have compromised the phone entirely, denial-of-service attacks are not relevant.

Hardware-level attacks such as bus snooping [108, 96] and cold boot [34, 57] are

out of scope as they require physical access to the phone.

Bootstrap We assume that TEE provides a secure boot process to ensure

the integrity of the executables running in the secure world. In fact all mod-

ern devices achieve the secure-boot by implementing a chain of trust [167, 115].

On a device-reset event, the boot code from ROM veri�es and loads the secure

bootloader. The secure bootloader initializes TEE and loads the non-secure boot-

loader – after verifying its integrity. Finally, the non-secure bootloader veri�es

and loads the normal world OS.

3.4 Design

In this section, we �rst describe the requirements for a secure and compatible

mobile-based 2FA before we explain SecurePay’s design.

3.4.1 Requirements for a secure and compatible design

Transaction-based systems use traditional phone-based 2FA solutions to guaran-

tee the authenticity of a transaction and the 2FA works only as long as one of the

factors is not completely compromised. The main weakness of such 2FA-based

solutions under our threat model is that the two factors are not su�ciently iso-

lated and as a result, these solutions cannot guarantee both the authenticity and

the integrity of the transaction.
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As an example, consider Alice, who uses e-banking (using either her mobile

phone or PC) to transfer some money to Bob. When Alice is about to make the

money transfer, in the ideal case her bank sends an additional short code (gener-

ally referred to as a One-Time Password or OTP) with the transaction summary

to Alice’s phone to verify the requested transaction. However, if the phone is

compromised, the attacker can (i) silently initiate a transaction, read the OTP

and send it to the bank to con�rm a fraudulent transaction breaking the authen-
ticity of the transaction, or (ii) display a falsi�ed transaction summary to the

user (that matches the user’s expectation) and trick her to con�rm a di�erent,

fraudulent transaction—breaking the integrity of the transaction.

Thus, we identify the following key requirements that must be satis�ed for

any design for secure 2FA:

1. Isolation: we must ensure the separation of the domains manipulating the

two factors in 2FA.

2. Integrity: attackers should not be able to tamper with (or read and display

in modi�ed form) a transaction’s OTP messages as sent by the payment

service.

3. Authenticity: users must be looped in to enforce the authenticity of the

transaction.

4. Secure bootstrapping: users must be able to securely register the device to

the service they wish to engage in 2FA authentication.

Besides these strict requirements, we increase both security and usefulness

of our solution by three additional constraints:

5. Least common mechanism: the TEE should support the minimum function-

ality needed to support most applications and no more [103].

6. Provable security: given the pivotal role of 2FA for many highly sensitive

services, we demand a formal proof of our design’s security guarantees.

7. Compatibility: to facilitate adoption, we demand that it should work with

existing services.

3.4.2 SecurePay

We propose SecurePay, our design of a secure and compatible 2FA solution that

satis�es all of the aforementioned requirements. To satisfy (1), SecurePay uses
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Figure 3.1. The work-flow of SecurePay-based transactions in transparent (drop-in replace-
ment) mode.

TEE, such as ARM’s TrustZone for creating a hardware-enforced isolated envi-

ronment. To satisfy (2), SecurePay uses o�-the-shelf public-key cryptography

and the TEE for protecting the integrity of the transaction. To satisfy (3), Se-

curePay relies on a software-based secure display implementation, the output of

which can only be produced by legitimate code which is recognizable as such

by the user. To satisfy (4), SecurePay provides a tamper-resistant mechanism en-

forced by the TEE that allows users to securely register with a service provider

that allows authentication through 2FA.

Furthermore, to satisfy our softer requirements, SecurePay provides a mini-

mal TCB that runs in the TEE (trusted app) and we have formally veri�ed that

its protocol provides authenticity and integrity for transactions. To provide com-

patibility, SecurePay is capable of utilizing SMS as the communication channel

between the user and service provider, and provides a normal-world component,

the SecurePay app, to communicate the received encrypted SMS to SecurePay’s

trusted app (TA) in the TEE. Thus the service providers do not have to modify

their mobile app to utilize SecurePay. Upon receiving the encrypted OTP and

transaction summary, the user can invoke the SecurePay app to display the de-

crypted message on the secure screen (fully controlled by the TEE).

To further explore the compatibility aspects, SecurePay provides two modes

of operation, one that is a fully transparent drop-in replacement for existing SMS-

based schemes, and another which requires a small modi�cation to the service

providers’ apps but o�ers full integration to simplify the user interaction.

For the drop-in replacement mode, Figure 3.1 shows the work�ow as a se-
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Figure 3.2. The work-flow for full integration of SecurePay (SecurePay integrated mode).

Table 3.1. Type of OTP used by di�erent services

Service Provider Type of OTP Length of OTP

Google digits 6

ING Bank digits 6

Bitfinex digits 5

Bank of America digits 6

Citibank digits 6

Deutsche Bank digits 6

Dhanlaxmi Bank digits 6

Axis Bank digits 6

Alpha Bank digits 6

TransferWise digits 6

quence of steps. First, the user initiates a transaction from an app on the phone

(or in the browser running on her PC as shown in Figure 3.4). The service

provider receives this request and responds with an SMS containing an encrypted

message (using the public key of the user’s SecurePay) that includes the trans-

action summary and an OTP. The SecurePay’s secure app receives this SMS and

launches the trusted UI to display the transaction summary and the OTP to the

user. Once the user veri�es the authenticity of the transaction, she can switch

to the service provider’s app and enter the OTP, exactly like she would do with

existing SMS-based OTPs. This OTP is then forwarded to the service provider

and if it matches the one sent by the provider earlier, the transaction completes

successfully. This version of SecurePay does not require any modi�cation on

the service provider’s app on the phone, but it does require the user to memo-
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Figure 3.3. Full integration of SecurePay: the user simply presses accept or cancel on the
trusted screen (SecurePay integrated mode).

rize (or note down) the OTP and enter it in the service provider’s mobile app (or

web interface) to con�rm the transaction. Fortunately, studies in psychology and

HCI [100] have shown that humans can remember without di�culty on average

7 items in their short memory. Table 3.1 shows that most services are using fewer

digits (5 to 6) as OTP.

SecurePay can lift this requirement and hide the OTP entirely with a small

modi�cation of the service provider’s app to fully integrate SecurePay. Figure 3.2

shows the necessary steps for con�rming a transaction in this version of Secure-

Pay. The main di�erence is that the service provider’s app directly communi-

cates with the SecurePay trusted app using the SecurePay library (discussed in

Section 3.5). Similar to the previous version, the user initiates a transaction us-

ing the service provider’s app. The service provider then sends an SMS with an

encrypted summary and an OTP to the phone. Given that we do not want to

increase SecurePay’s code base, we let the provider’s app (instead of SecurePay)

receive this information (via SMS or Internet) and forward it to the SecurePay

trusted app, which decrypts the message and shows the user the transaction sum-

mary (but no OTP). The only thing the user needs to do is accept or reject this

transaction after looking at the summary (see Figure 3.3). The SecurePay trusted

app then transparently signs the OTP and sends it to the service provider’s app,

which in turn forwards the signed OTP to the service provider. Upon receiving
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Figure 3.4. Shows how a SecurePay-enabled user issues transactions securely through a PC
even if both PC and associated mobile device are infected by malicious code.

the signed OTP, the provider completes the transaction if the OTP matches the

one sent earlier. This version of SecurePay provides more convenience for the

user, but requires a small modi�cation of the service provider’s app (around 20

lines of code on average and little e�ort, as we will show in our evaluation).

Next, we discuss implementation details of SecurePay before analyzing its

security guarantees and evaluating its performance.

3.5 Implementation

The architecture of SecurePay is depicted in Figure 3.6. In our prototype on An-

droid 8, the mobile operating system runs in the normal world and manages all

mobile apps, while Kinibi, Trustonic’s TEE, runs in the secure world and man-

ages all trusted apps. We tested a full implementation of SecurePay on a Samsung

Galaxy S8 mobile device. In this section, we �rst discuss the implementation of

SecurePay’s components, then introduce its secure bootstrapping process, and

�nally, explain in detail how a user can initiate and complete a transaction se-

curely even if all (normal-world) software on the user’s devices (both PC and

mobile) is fully compromised.

3.5.1 SecurePay components

SecurePay contains two main components: the SecurePay trusted app (TA) and

the SecurePay Android library that enables any mobile app to communicate to

the SecurePay TA. The SecurePay TA runs inside the secure world, beyond the

reach of normal apps running in the normal world. The mobile app, running
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in the normal world, can access the TA only through the APIs implemented by

SecurePay Android library.

The SecurePay Android library is an Android Archive (AAR) �le which

can be linked to any Android app. It implements the API that allows apps in the

normal world to access the functionalities provided by the SecurePay TA and

comprises 1,546 LoC. Internally, the library uses the Global Platform (GP) TEE

client API to implement these APIs.

For the drop-in replacement mode, we built the SecurePay mobile app, the

normal world component of the SecurePay (Figure 3.1), using the SecurePay An-

droid library. The end user can use the SecurePay mobile app to (i) generate the

key pair, (ii) retrieve the public key, and (iii) decrypt and display the SMS on the

secure screen. Once the secure screen is visible, the user is sure that the Secure-

Pay TA is in control and the content of the screen can be trusted. How SecurePay

implements its secure screen will be explained later in the section.

In SecurePay integrated mode, the SecurePay TA transparently sends the de-

crypted OTP back to the payment app (Figures 3.2 and 3.3), once the user veri�es

and accepts the transaction. This can be implemented using the SecurePay An-

droid library, but in this case, the service provider has to modify its app to receive

the encrypted transaction summary and OTP from the server, and to invoke the

SecurePay TA to decrypt and display it on the secure screen. In practice, doing

so took less than 30 minutes in all ten apps we tried (Section 5.6). Then, the user

can verify the transaction details and press accept or cancel on the secure screen

(Figures 3.3 and 3.2). If the user accepts the transaction, the SecurePay TA signs

the OTP with the private key and sends it back to the service provider. If not, the

SecurePay TA terminates the session. Note that the signing of the OTP by the

SecurePay TA serves to prevent the attacker from trying to guess or bruteforcing

the OTP reply to the server.

Note that in both modes, the OTP only leaves the secure world if the user

accepts the transaction by either clicking on the button on the secure screen

or entering the OTP in the normal world app. This is how SecurePay ensures

the authenticity of the transaction, while the integrity of the transaction is en-

sured using public-private cryptography, a secure screen and secure bootstrap-

ping (which we discuss in the next subsection).

The SecurePay trusted app The trusted core of SecurePay comprises 4,565

LoC running in the Kinibi secure world—a GP-compliant TEE which implements

secure storage APIs and many common cryptographic APIs. As a consequence,

SecurePay should work out of the box with any GP-compliant TEE.

Speci�cally, the TEE Internal API de�ned by the GlobalPlatform Association
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and implemented by Kinibi supports most common cryptographic functions such

as message digests, symmetric ciphers, message authentication codes (MAC), au-

thenticated encryption, asymmetric operations (encryption/decryption or sign-

ing/verifying), key derivation, and random data generation. On top of these prim-

itives, Kinibi implements a powerful secure storage layer which guarantees the

con�dentiality and integrity of sensitive general-purpose data, such as key ma-

terial, as well as the atomicity of all operations on secure storage.

Using these APIs, the SecurePay TA supports three minimal functions. First,

it can generate an asymmetric key pair of which the private key never leaves the

TEE. Second, it can display the QR code of the public key on the secure screen

(Figure 3.5). Third, it can decrypt messages encrypted with the public key when

requested to do so from an (unprivileged) user app in the normal world and se-

curely display it to the user on a secure display—with guaranteed authenticity

and integrity, even if the attacker has administrator access to the phone. We now

explain these functions in more detail.

Generate_keys(): The mobile OS automatically invokes this function at

�rst boot (or full device reset). When normal-world code invokes the function,

the SecurePay TA �rst checks whether a key pair already exists in its Kinibi-

enforced GP-compliant secure storage and only if the pair does not exist, will it

generate a new RSA key pair (using Kinibi’s cryptographic API). Of this keypair,

it returns only the public key to the normal world.

Display_public_key(): When invoked, the SecurePay TA checks whether

a key pair already exists in its secure storage. If it exists, it extracts the public

key component and displays its QR code on the secure screen (Figure 3.5).

Display_summary(): When invoked, the SecurePay TA decrypts a message

using the private key stored in secure storage and displays it on the secure screen.

It is used to handle the OTP from the transaction service (such as a bank). Recall

that after the user initiated a transaction and the mobile app has sent the transac-

tion details to, say, her bank, the banking service encrypts the transaction details

and a freshly generated OTP using the user’s public key and sends it back to the

mobile device. Now, the SecurePay mobile app invokes Display_summary() to

display the transaction summary and OTP on the secure screen. The API takes

a boolean input parameter which decides whether the trusted app should return

the signed OTP to the normal world if the user clicks on the accept button (Fig-

ure 3.3). To minimize confusion for the user, if the parameter is set to false, the

SecurePay TA only displays a return button instead of accept and cancel.

Secure screen The main challenge in realizing a trusted user interface (TU-

I/secure screen/trusted screen) is ensuring that users can tell if they are actually
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dealing with a trusted application, and not with a user interface injected and

controlled by a malicious app [72]. Since a switch from normal-world to secure

world code is done via a GP TEE client API which internally calls the SMC instruc-

tion, an attacker who has full control over the victim’s device can easily bypass

the switch and project an attacker-controlled user interface instead—tricking the

user into believing that the active interface is now the trusted one.

Existing approaches are not suitable for SecurePay and typically require ad-

ditional hardware. For instance, to realize a TUI, TrustOTP (TOTP) [76] shares

a single screen between the normal and the secure world, but with two di�erent

frame bu�ers, of which one is accessible only from the secure world. Moreover,

to make sure that the attacker cannot bypass world switching, TrustOTP uses a

separate non-maskable interrupt, triggered by a special button on the phone for

passing control to the secure world. Unfortunately, such solutions do not work

for SecurePay. Since the GP compliant TEE is expected to run multiple trusted

apps in the secure world, a single interrupt is insu�cient, while adding separate

hardware interrupts for each of them is impractical. In addition and equally im-

portant in practice, current COTS phones lack such special-purpose buttons to

begin with.

As an alternative, one could also use a single piece of additional hardware,

such as a specialized LED, as an indicator of whether the display is controlled

by the normal or the secure world [89]. By con�guring a GPIO port to be only

accessible from the secure world and connecting to a special LED on the phone,

the user knows that if the LED is on, the secure world is in control of the display.

Again, as smartphones today do not have such a LED-based indicator, this is not

a practical solution for our purposes either.

Hence, SecurePay implements a software-only solution whereby the trusted

code authenticates its output to the display by means of an easily recognizable

shared secret similar to previous work [53, 54]. The example secret is an image

or secret text that is known only to the user and the SecurePay TA. Examples are

shown in Figures 3.5 and 3.3, where the simple logo in the top left corner serves

as a simple example of a secret image and “S3cr3t” as an example of the secret

text (the “Trusted UI Indicator”) in the �gure. The secrets are explicitly loaded

into the TEE at �rst boot (or full system reset), when the device was assumed

to be in a pristine state and they are stored in the Kinibi’s secure storage layer

which guarantees both con�dentiality and integrity of the data. Since only the

trusted code knows the secrets, the user knows that if the device displays the

secret image and/or the text on screen, the trusted code must be in control of the

screen and the frame bu�er, and no other code can access it. Even the Android
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Figure 3.5. Registering with the bank by showing the QR code of public key on the trusted
screen

OS literally does not have any access to the hardware or the frame bu�er during

the period that the secure screen (TUI) is active — meaning that malware cannot

capture the data displayed on the screen or simulate touches, even if the phone

is rooted.

3.5.2 SecurePay registration and bootstrap

Enabling SecurePay with an actual service involves communicating the public

key to the service. In case the user owns several devices, all devices must register

with the SecurePay-protected service. Registration takes place when the user

installs the client part (i.e., the mobile application) on the device. For successful

registration, the user must communicate the public key securely to the service—

in terms of integrity, not necessarily con�dentiality.

Since we assume that the mobile device may be already compromised at reg-

istration time, we must prevent attackers from registering their own public keys

with a user’s account, either by initiating a binding request themselves, or by

replacing the public key with their own when the user’s binding request is in

transit. Like all secure transaction systems, SecurePay requires a secure boot-

strap procedure to handle this. Various solutions are possible, ranging from cus-

tom hardware extensions to in-person registration at a physical o�ce (whereby
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SecurePay TA

SecurePay 
mobile app

Figure 3.6. Multiple apps can use the same SecurePay TA.

a public key displayed on the phones secure display is manually bound to the

account number).

Initial registration in our design simply assumes the presence of a secure

terminal—for instance, at an ATM machine or a physical branch o�ce. After

installing the SecurePay mobile app, the user can invoke the SecurePay TA to

display the QR code of the public key on the trusted screen as shown in the �g-

ure 3.5. Note that the user has to make sure the display is currently controlled by

the trusted app by verifying the personalized image or secret text before sharing

it to the bank. Finally, the bank simply scans the QR code to retrieve the public

key safely from the user’s device.

Note that the registration for SecurePay is comparable to or simpler than

that of many other payment services. For example, to enable e-banking, many

banks require physical presence at a branch o�ce and/or hardware tokens. More

importantly, the threat model for SecurePay is considerably stronger than that

of existing systems—protecting the user against attacks launched from a fully

compromised device, where the attacker controls even the device’s operating

system kernel.

3.6 Evaluation

3.6.1 Security of mobile transactions

An attacker can get privileged access on a victim’s device in two ways: exploit

a software/hardware vulnerability or trick the user to install a repackaged ver-

sion of a mobile app. Many reports [130, 135] show that cyber criminals are

often successful in tricking the users into installing a repackaged version of �-
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nancial apps using social engineering techniques. For the purposes of this chap-

ter, we exploited a hardware vulnerability of the Nexus 5 phone [80] to get root

access and replace the o�cial �nancial app with a repackaged version. The lat-

ter hijacks transactions and sends money to attacker-controlled accounts. Once

a transaction is completed, the malicious app displays a fake transaction sum-

mary to the user on the infected device instead of the details of what actually

happened. Countering such attacks, that can take place when a bank transaction

is carried out solely by using a compromised device, is extremely hard.

SecurePay can help the user (victim) stop any hijacked transaction from even

happening in the �rst place. With SecurePay enabled, once the e-banking service

receives a user’s transaction, it encrypts the transaction details and a freshly

generated OTP with the user’s public key stored at the bank’s server and sends

back the result to the �nancial app. The repackaged version of the app receives

the encrypted message, but, unless the private key has leaked from the trusted

storage, decrypting it is not possible. The only way to decrypt the message is to

relay it to SecurePay, which, being in the secure world, controls the private key.

However, once SecurePay decrypts the message, it forwards the plain text to the

secure display. The user is able to inspect the modi�ed transaction and signal

an abort message to the e-banking service by entering an invalid OTP. Note that

the bank needs to generate a new OTP for every transaction request it receives

in order to prevent the attacker from reusing an old OTP.

3.6.2 Security of non-mobile transactions

Many well-known banking trojan horses like Zeus [216], Dyre [125], and Dridex

[121] use malicious plugins or API hooking techniques to modify the HTTP re-

sponses received by a browser or to silently perform illegal operations on behalf

of the user [170]. This is commonly known as a Man-in-the-Browser (MitB) at-

tack [164].

Let us assume that the user is making a �nancial transaction from an infected

(non-mobile) host, such as a PC, but SecurePay powers the user’s mobile device

and �nancial application. For example, Alice initiates a transaction to transfer

$100 to Bob using her browser running on her PC. An attacker, through a MitB at-

tack, modi�es the transaction to $1,000 to be transferred to an attacker-controlled

account. Once the e-banking service receives the transaction, it encrypts the

transaction summary and a freshly computed OTP, and sends the encrypted mes-

sage back to Alice’s smartphone, using a push noti�cation or SMS. Since Alice

runs the SecurePay mobile app, the message is handled by the SecurePay TA and

the transaction summary is displayed, along with the OTP, on the trusted dis-
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play. Alice reviews the transaction, and since it has been modi�ed, aborts the

transaction.

We stress that in this scenario, the attacker may well have full control over

the user’s mobile device and even her PC and web account credentials. How-

ever, in spite of this, thanks to SecurePay, it is still not possible for any hijacked

transaction to actually take place.

3.6.3 Verification using Tamarin

We formally veri�ed SecurePay’s authenticity and integrity security properties

using Tamarin v1.4.1 (see Appendix A). The Tamarin [56] prover supports the

automated, unbounded, symbolic analysis of security protocols. It features ex-

pressive languages for specifying protocols, adversary models, and properties,

and e�cient support for deduction and equational reasoning. A security proto-

col is speci�ed through multi-set rewrite rules and facts. A rewrite rule takes a

number of facts and rewrites them to other facts. Initially, the state contains no

facts and only rewrite rules that do not require input facts can be applied. An

exception is the generation of a fresh nonce, which is always possible.

With regards to SecurePay we have two such initiator rules. The �rst rule

models the initiation of a binding request for a new device. In this case, the fresh

nonce is the private key of the device to be added. Since this rule can always be

applied, the proof is performed for in�nitely many devices. The second rule is

the initiation of a new transaction, which can also be performed in�nitely many

times. The nonce is the transaction data, which is the initial input from the user

to perform a transaction. This also means that the models hold for in�nitely

many transactions.

There are two �avors of facts. Persistent facts remain part of the state after

they are consumed by a rewrite rule, hence they can never be removed. Linear

facts are removed from the state when they are consumed by a rewrite rule. The

latter may be used to model multiple steps of a role. Each rewrite step produces

a linear fact that is consumed by the successor step. We give an example:

rule step 1 :
[ Fr ( ~nonce ) ]
==>
[ Step1Completed ( ) , Out ( ~nonce ) ]

rule step 2 :
[ Step1Completed ( ) , In ( response ) ]
==>
[ Step2Completed ( ) ]



3.6. EVALUATION

SE
C

U
R

EP
AY

47

The �rst rewrite rule generates a fresh nonce and sends it into the network using

the fact Out (~nonce). The second step waits for a response from the network

using the fact In (response). The second rewrite rule is only ready to be per-

formed after the �rst rewrite rule has been performed (modelled using the fact

Step1Completed). Furthermore, persistent facts can be used to model the com-

pletion of a SecurePay binding request. Upon completion of the binding request

the bank will create the fact !PublicKeyForAccount (account, publicKey).

This fact can be consumed (many times) to encrypt messages sent from the bank

to the device holder. The usage of persistent facts in the model allows that the

complete SecurePay protocol (binding requests and transactions) can be veri�ed

in a single model.

The adversary model employed by Tamarin is the well-known Dolev-Yao

model [21]. The intruder learns every message which is sent over the network,

can change its content and may generate new messages from the knowledge

obtained so far. In terms of Tamarin this means that an intruder observes all

In-facts and can produce an arbitrary number of Out-facts. All other facts are

not observable by the intruder. Perfect encryption is assumed, meaning that

the intruder does not learn anything from an encrypted message for which she

does not own the key. Since in SecurePay the normal world is compromised,

all messages to or from the normal world are compromised. We model this fact

by exposing all messages that are traversing through the normal world to the

network, i.e. the intruder.

We identify the following entities, which are involved in the protocol: i) the

human performs binding requests and transactions, ii) the trusted app generates

key pairs and displays messages on the secure screen, and iii) the bank processes

binding requests and veri�es transactions.

Our Tamarin speci�cation of SecurePay separates the multi-set rewrite rules

of the trusted zone, the bank and the human entity by pre�xing all rule names.

An overview of all rewrite rules and their intended relations are depicted in Fig-

ure 3.7 (some facts are omitted for readability). Rewrite rules that do not consume

any fact can be executed arbitrarily many times, hence we consider in�nitely

many devices and accounts. Similarly, because the fact HumanInitiatesTransaction

only consumes persistent facts, it can be executed arbitrarily many times if we

witness a single HumanOpensAccount. It follows that we also consider arbitrar-

ily many transactions. Note that the rewrite rules may not appear in the same

order in every trace. Because the intruder can create an arbitrary number of

messages from previously obtained knowledge, we consider a multitude of rule

interleavings. We veri�ed the security properties for all possible cases.
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NewDevice Human
OpensAccount

HumanInitiates 
RegistrationRequest

BankCompletes
RegistrationRequest

HumanInitiatesTransaction

BankReceivesTransaction

TrustedZoneDisplaySummary

HumanConfirmsTransaction

BankCompletesTransaction

Figure 3.7. A visualization of the Tamarin specification of SecurePay. Boxes denote rewrite
rules. Arrows between boxes denote facts, pointing from producer to consumer.
Double lines denote persistent facts. Yellow arrows depict messages sent through
the network or the normal world, i.e. interceptable by the intruder. Black lines are
other linear facts, not observable by the intruder. Dashed arrows depict facts that
denote a successor step within a role.

Unlike many security protocols, SecurePay has a control �ow. Namely, for

each transaction, the user decides to input the correct or a wrong OTP and the

bank decides to accept or reject a transaction based on the received OTP. We

model this behavior by restricting the application of rewrite rules using equality

reasoning. An example for the above is BankCompletesTransaction. This rule

can only be executed if the OTP contained in the network message matches the

one that is generated by the fact BankReceivesTransaction.

Tamarin imposes the security properties on a global view by inspecting the

trace. Additional to input and output facts, rewrite rules can specify action facts.

Whenever a rule is applied, the action facts are appended to the initially empty

trace. The trace is used to verify security properties, which are called lemmas

in Tamarin. Lemmas are expressed using �rst-order logic formulas which must

hold in all traces that are reachable from the initial con�guration. To prove au-

thentication and integrity, we specify lemma 3.1.

∀t.T ransactionCompleted(t)→
(∃.HonestTransactionInitiated(t))

(3.1)

Both HonestTransactionInitiated and TransactionCompleted are facts
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and contain the transaction details including the account owner. Intuitively, the

lemma means that a transaction must only complete if it was initiated by the

account owner.

Tamarin automatically veri�es security properties, expressed in �rst-order

logic, for all possible execution traces, in a backward fashion. Hereby it em-

ploys constraint solving. It is either concluded that a given property holds for

all execution traces that are possible from the initial protocol con�guration, or

a counter-example is produced. Since this veri�cation problem is undecidable,

inevitably such a backward run may not terminate. To achieve termination, the

user may formulate and, with the help of Tamarin, prove so-called source lem-

mas that construct the possible sources for a fact. Source lemmas are solved using

induction on the trace length.

To achieve termination of SecurePay’s veri�cation, one source lemma was

needed. The lemma shows all possible sources for the encrypted message that is

decrypted by the trusted zone. For all messages concerning a transaction, either

the message comes from the bank or the intruder must know the OTP (that is

contained in it). Using induction, Tamarin can prove this lemma automatically.

To prove that replay attacks are not possible, we specify lemma 3.2.

∀t, t′, i, j.T ransactionCompleted(t)@i∧
TransactionCompleted(t′)@j ∧ i 6= j

→
(∃k, l.HonestTransactionInitiated(t)@k∧

HonestTransactionInitiated(t′)@l ∧ k 6= l)

(3.2)

The variables i, j, k, l are time variables of the logical clock that is part of

Tamarin. They uniquely identify the respective facts, that are proceeding the @

symbol. By de�nition, two facts cannot occur at the same time. Using inequality,

we assume two arbitrary but distinct transactions and verify that the account

owner(s) must have initiated two distinct transactions. We make no assumptions

about t and t′, therefore, we also verify replay attacks accross di�erent accounts.

Using Tamarin, we veri�ed authentication for SecurePay: every transaction

must be initiated by the human that owns the account. Furthermore, we veri�ed

integrity: a transaction can only complete if both the human and the bank agree

on the transaction details. The proof holds for an unlimited number of devices

and transactions. Additionally, we veri�ed that a replay attack is not possible.
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Table 3.2. Open-source apps modified to utilize SecurePay

Android apps LoC added Time taken

Wordpress login 20 < 30 minutes

InboxPager login 20 < 30 minutes

Openshop.io login 20 < 30 minutes

OpenRedmine login 20 < 30 minutes

�ill login 20 < 30 minutes

Yaaic login 20 < 30 minutes

Seadriod login 20 < 30 minutes

Slide login 20 < 30 minutes

Kandriod login 20 < 30 minutes

Photobook login 20 < 30 minutes

3.6.4 Performance evaluation

We evaluate the performance overhead of our system by integrating the Secure-

Pay normal-world library into a native library and then bundling it with a cus-

tom Android banking app. Since transactions are relatively infrequent events,

throughput is not of paramount importance. Instead, we demand that each op-

eration involved in registration and transaction veri�cation takes a “reasonable”

time—no longer than one or two seconds, say. For this, we measure the time

taken by the core operations of SecurePay using the System.nanoTime() func-

tion, available in the Java library. We invoke each core operation 1,000 times and

report the average value in seconds. We conduct this experiment on a Samsung

Galaxy S8.

SecurePay takes 1.34 seconds to generate a 2,048 bit RSA key pair and to re-

trieve the public key from the secure world, and 1.91 seconds to generate an RSA

key pair and the display QR code of the public key on a trusted screen. Note that

key generation happens only once. Finally, it takes 1.29 seconds to decrypt and

display a transaction summary of 100 bytes on the trusted screen, including SMS

retrieval from the inbox, a world switch, decrypting and displaying the message.

The performance of SecurePay is directly proportional to the performance of

each component in the TEE (such as the cryptographic services, secure-storage

services, trusted UI, etc.). We expect that for all practical applications, SecurePay

can be enabled on commodity smartphones with little additional overhead.
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3.6.5 Integration e�ort

Any mobile vendor implementing a TEE according to the GP speci�cation can use

the SecurePay TA [153]. Financial app developers can easily integrate SecurePay

into their apps by linking the provided user-space library.

The apps that are already using SMS-based mobile 2FA do not require any

change in their mobile app. However, the developers need to add 45 lines of

code on the server side to encrypt the transaction summary and/or OTP using

the user’s public key. For the developers who want to use the second (fully inte-

grated) model, we measured the e�ort that it requires to integrate SecurePay in

a mobile application. For this purpose, we picked 10 open-source Android apps

that have a login activity from Github [152, 228] and recorded the time required

for a full integration of SecurePay. To ensure the diversity we picked the apps

randomly from the following categories: shopping, business, social network, pro-

ductivity, etc.

Table 3.2 shows that the app developer can link the SecurePay Android library

and fully integrate SecurePay using only 20 LoC. 16 of these LoC are to con�gure

the app to use the SecurePay TA, while 4 are to invoke the relevant SecurePay

API (mentioned in the implementation section 3.5.1). The table also shows that

it took one researcher (unfamiliar with the target app) less than 30 minutes to

add SecurePay support to any app.

3.6.6 Comparison with similar e�orts

TrustPAY [93] proposes a design to ensure security and to protect the privacy of

a mobile payment (m-payment); however, under the threat model considered in

the current chapter, it fails to protect both. In this part, we explain how TrustPAY

works, possible attacks against it and how SecurePay successfully deals with such

problems. We depict the underlying protocol of TrustPay in Figure 3.8 (taken di-

rectly and unmodi�ed from TrustPAY) for protecting an m-payment transaction.

In short, TrustPAY works as follows. Any normal world (NW) app can use Trust-

PAY to make a secure m-payment following a series of steps:

1. The TrustPAY component of the NW app requests a new/existing RSA key

pair to the TrustPAY trusted app (TA), which runs inside the secure world

(TA checks for an existing key pair; in case this is not found, it generates a

new RSA key pair).

2. TA saves the newly generated private key (T_RSAPRI) inside the secure

world and shares the public key (T_RSAPUB) at the NW app.
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Figure 3.8. TrustPAY for m-payments.

3. Once the user places an order, the �nancial app in NW encrypts the order

information using T_RSAPUB key and sends the encrypted order informa-

tion to the TA.

4. The TA decrypts the order information using its T_RSAPRI key and displays

it on the Trusted UI.

5. TrustPAY requests the bank for its public key by sharing T_RSAPUB.

6. The bank encrypts its public key (R_RSAPUB) with T_RSAPUB and sends it

to the TA.

7. The user can now verify the order details displayed on the Trusted UI and

if she wants to pay the order, the user needs to enter the account number,

password and veri�cation code on the same Trusted UI.

8. Finally, the TA encrypts the user’s private data with the public key of the

bank, and sends the information back to the bank.

Let us analyze how an attacker can leak the user’s private data (for example

the account number or password) and hijack an in principle TrustPAY-protected

transaction. We consider TrustPAY and the threat model assumed in this chapter,

i.e., the attacker already has root access on the device. In this case, when Trust-

PAY requests the bank’s public key, the attacker can send an attacker-controlled

RSA public key to the TA (instead of the bank’s public key). This means that,
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Table 3.3. Comparison: SecurePay ensures the integrity and authenticity of a transaction,
protects from man-in-the-mobile (MitM) and MitB a�acks, supports both PC and
mobile platforms, requires no change of the client for supporting a new service
provider, and does not require additional hardware.

2FA Soln. Authen-
ticity

Integrity MitM MitB Mobile PC Generic
client

No
hard-
ware
cost

TOTP [76]
3 7

7 7 3 3
7 3

TrustPAY [93]
3 7

7 7 3 7
7 3

VBu�on
3 3

7 7 3 7
7 3

ZTIC [85]
3 3

7 3 7 3
7 7

RSA SecurID [145]
3 7

7 7 3 3
7 7

Yubikey [219]
3 7

7 7 3 3
7 7

E.dentifier2 [126]
3 7

7 7 7 3
7 7

Authenticator [161, 182]
3 7

7 7 3 3
7 3

SecurePay
3 3

3 3 3 3
3 3

when the user con�rms the payment, TA encrypts the user’s private data and

con�rmation status of the order using the attacker-controlled public key. Now

the attacker can decrypt the user’s private data, modify the transaction/order

con�rmation status, and encrypt it with the bank’s public key, before the normal

app relays it to the remote server. The remote server then decrypts the request

with the bank’s private key and con�rms the fraudulent m-payment. Moreover,

it should be noted that the attacker can also display the user-expected transac-

tion/order details on the Trusted UI by just encrypting it with TA’s public key

(T_RSAPUB), which is accessible to NW. As we have already discussed above, Se-

curePay can protect the user from such man-in-the-mobile attacks. Moreover,

SecurePay can also be used for PC-initiated �nancial transactions, which are not

supported by TrustPAY.

In concurrent work, VButton [50] provides a system for enabling a mobile

service provider to verify the authenticity of a user-driven operation originated

from an untrusted client device. VButton requires integration at both client- and

server-side to validate each user-driven operation. Moreover, it neither provides

a Trusted UI indicator nor a secure way to register the public key to the service

provider/attestation server. Without a Trusted UI indicator and a secure boot-



54 CHAPTER 3. SECUREPAY

strap protocol, VButton is susceptible to timing-based and MitB attacks. In the

timing-based attack, an attacker can show a di�erent value to the user in the

untrusted UI and switch to the Trusted UI with the correct value right before the

user con�rms the transaction. This can be mitigated with a check by the devel-

oper to ensure the user has had enough time in the Trusted UI, but this is not

explored in the paper. In the MitB attack, the attacker could register their own

public keys with a user’s account, either by initiating a binding request them-

selves or by replacing the public key with their own when the user’s binding

request is in transit. Furthermore, the lack of a secure registration process also

makes VButton vulnerable to relay attack as mentioned in the paper [50]. Com-

pared to VButton, SecurePay’s design is simple, complete, practical and formally

proven to be secure. SecurePay can even be used as a secure drop-in replacement

for existing (insecure) SMS-based 2FA without requiring any code change at the

client-side.

Most of the hardware-based solutions [6, 145, 219] that are available in the

market also fail to protect users from the aforementioned attacks, because these

solutions can only be used to ensure the authenticity of the action and ignore its

integrity properties. Moreover, these solutions have a variety of drawbacks. First,

most of them are only for PCs. Second, hardware solutions are cumbersome in

�rmware upgrades. Third, they typically cost tens of dollars per token [146] and,

fourth, they are inconvenient to carry around.

ZTIC [85] proposes a hardware-based solution for defending against man-in-
the-middle. Compared to SecurePay, ZTIC ensures the integrity of PC-initiated

banking transactions only. Furthermore, ZTIC requires a predetermined list of

banks and additional modi�cations to the client, such as installing HTTP parsing

pro�les, user credentials, and X.509 certi�cates for supporting each new service.

SecurePay does not require changes of the client code, requires no extra hard-

ware, and protects both PC-initiated and mobile-initiated transactions.

We depict how SecurePay compares to related solutions using a series of key

properties in Table 3.3. To the best of our knowledge, SecurePay is the only

system that (1) requires no change at the client side to support a new �nancial

service, (2) ensures the integrity and authenticity of transactions even for fully

compromised clients, (3) does not require any additional hardware (beyond the

TEE already present in almost all smartphones today), and �nally, (4) protects

from strong attack vectors such as MitB and MitM.
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3.7 Discussion

We discuss other security aspects of SecurePay.

Availability: SecurePay does not guarantee availability at all. We assume

that the mobile app runs on a compromised device. For instance, attackers can

simply turn o� the code that implements the SecurePay API. In that case, any

forthcoming transactions will fail. Even so, no malicious transactions are possi-

ble.

Replay attack: We assume that (i) the remote service generates a unique

OTP for each transaction request it receives, (ii) the remote service accepts the

OTP only once, and (iii) the OTP expires after a short period to protect from re-

play attack. In Section 3.6.3 we formally veri�ed that SecurePay is not vulnerable

to replay attack.

SIM-jacking: SIM-jacking is an attack where the attacker convinces a vic-

tim’s carrier to switch victim’s phone number over to a SIM card that the at-

tacker owns to bypass the current phone-based 2FA. SIM-jacking attacks have

been widely used to hack into social media accounts, steal cryptocurrencies, and

break into bank accounts [132, 150, 171]. SecurePay is not vulnerable to such

attacks because SecurePay is not dependent on the SIM card.

Insecure TEEs: SecurePay assumes a secure implementation of TEE. If the

TEE implementation has bugs, the attackers can exploit them to steal the private

key from the TEE. Orthogonal to this work, formal veri�cation can be used to

ensure TEE is free of software bugs [40].

Microarchitectural attacks onTEEs: Defending against microarchitectural

attacks on TEE is orthogonal to this research. Currently, SecurePay assumes a

secure implementation of TEE. For instance, precautions such as constant-time

software and microarchitectural resource �ushing are known techniques again

cache and speculation attacks. The attacks based on power/voltage glitching can

be mitigated by following the standard practice of disallowing access to power/-

voltage regulators from the normal world. In the case of Rowhammer [27, 28, 80,

81], to the best of our knowledge, there is no real-world attack that can compro-

mise TEE. The only known attack triggers uncontrolled �ips in TEE only when

normal world’s memory is allocated next to TEE. This is almost never the case in

real devices (including our test phone). Nevertheless, even this weak attack can

be mitigated by adding guard rows [11, 43].
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3.8 Related work

2FA has been used to authenticate and protect �nancial transactions for many

years. Multiple di�erent ways to implement 2FA have been used: SMS-based,

software-based, and hardware-based.

The most widely adopted approach nowadays is SMS-based Mobile 2FA
2
,

probably because it has practical advantage over some other methods in that

it requires no additional hardware to store and handle the secondary authentica-

tion token. Services using SMS-based 2FA send an OTP and transaction summary

in the form of an SMS to the user’s mobile device, so that the user can verify the

transaction details and con�rm the transaction by entering the received OTP.

Recently, the National Institute of Standards and Technology at the US De-

partment of Commerce stated that since SMS messages can be intercepted and

redirected, implementers should consider an alternative authentication mecha-

nism [162].

Besides SMS, over the last few years software-based 2FA implementations for

authentication and transaction veri�cation have become very popular. Software-

based OTPs are usually generated by means of a form of software application.

This could be an app running on the smartphone that generates OTPs from

the seed record along with the device clock and an OTP generating algorithm.

Google’s Authenticator [161] and Microsoft’s Azure Authenticator [182] are ex-

amples of such solutions and can be enabled for dozens of web services like

Google, Microsoft Online, WordPress, Joomla, Amazon Web Services, Facebook

and Dropbox. However, as we discussed earlier, software-based 2FA solutions

cannot protect the user in the scenario where her mobile device is compromised.

As an alternative to such systems, hardware-based 2FA solutions rely on a sep-

arate piece of hardware, equipped with a small screen that is capable of generat-

ing OTP and displaying it. Today, several hardware-based solutions are available

in the market, such as Yubikey [219], RSA SecurID [145] and E.denti�er2 [126].

Hardware-based 2FA is considered to be better than SMS-based and software-

based solutions. However, it comes with an additional cost and causes inconve-

nience. Moreover, these solutions are used for authentication purposes – not for

ensuring the integrity of a transaction.

Alexandra et al. [20] analyzed potential attacks against mobile 2FA and pro-

vided possible solutions against those attacks. Research [44] has shown how

synchronization features and cross-platform services can be used to elevate a

regular PC-based Man-in-the-Browser to an accompanying Man-in-the-Mobile

2
https://twofactorauth.org/

https://twofactorauth.org/
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threat and bypass SMS-based 2FA. Our work provides protection from all these

attack vectors.

Marforio et. al. [53, 54] addressed the problem of how to securely set up a per-

sonalized security indicator in mobile banking to protect from phishing attacks.

SecurePay uses a similar approach to implement secret-based trusted-UI. How-

ever, SecurePay assumes that the underlying mobile OS is fully compromised

at the time of the transaction. Lenin et al. [75] propose a design for secure e-

commerce transactions, but fail to protect from MitM attacks. Note that since

the underlying Nizza architecture provides a software-level secure execution do-

main, one could port SecurePay to it to support any type of electronic commerce

application (in addition to AppCore’s cart-based ones). Norman et al. [26] demon-

strate how to implement a secure graphical user interface to provide isolation

between clients to prevent spying on each other, but does not protect users from

MitB/MitM. The problem for SecurePay is di�erent, since here we assume the

entire (normal world) system may be compromised, including even the operat-

ing system kernel, and the objective is to guarantee that the user can distinguish

outputs from the trusted app from those of regular programs.

A series of academic e�orts involve the development of trusted applications

for security solutions. Azab et al. [4] propose a system that provides real-time

protection of the OS kernel using TrustZone (TZ). Santos et al. [74] use TrustZone

to build a trusted-language runtime to protect the con�dentiality and integrity

of .NET mobile applications running in the normal world. Li et al. [49] propose a

veri�able mobile advertisement framework to detect and prevent advertisement

frauds using TrustZone. Marforio et al. [52] propose a location-based second-

factor authentication mechanisms for payment at point-of-sale. Pirker at al. [66]

propose a framework to protect the privacy of the user when a payment is made

by mobile apps. In contrast, our work ensures authenticity and integrity of a

transaction–rather than privacy. Truz-Droid [89] proposes a design to integrate

the TEE with the mobile operating system to allow any app to leverage the TEE

and builds a prototype on a Hikey board. Unlike SecurePay, Truz-Droid requires

modi�cation of the operating system, additional hardware support (a LED con-

trolled by the TEE), and still, neither provides an easily adoptable drop-in solu-

tion for the banking apps nor supports PC-initiated transactions.

TrustOTP [76] has shown how to convert smartphones into secure OTP to-

kens. TrustOTP can be used to protect authenticity of any transaction but un-

like our work, it does not also protect the integrity of a �nancial transaction.

Moreover, TrustOTP has to be updated with the OTP generating algorithm used

by each service provider, while SecurePay is decoupled from the OTP generat-
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ing algorithm used by the service provider. Meanwhile, TrustPAY [93] proposes

a payment system to ensure security and to protect privacy of mobile transac-

tions. However, as we discussed in section 5.6 in more detail, certain �aws in

their design allow the OS running in the normal world to leak the user’s private

information and to modify transaction details. Similarly, as discussed in the sec-

tion 5.6, VButton proposes a system to enable a mobile service provider to verify

the authenticity of user-driven operation; however, it lacks the Trusted UI indica-

tor and the secure public-key registration process which are required to protect

from timing-based, MitB and relay attacks.

Kellner et al. [38] claim that there is tremendous popularity among regular

users for customizing their devices through jailbreaks. Jailbreaks remove vital

security mechanisms, which are necessary to ensure a trusted environment that

allows to protect sensitive data, such as login credentials and transaction num-

bers (TANs). The study shows that all but one banking app, available in the App

Store, can be fully compromised by trivial means without reverse-engineering,

manipulating the app, or other sophisticated attacks. Hence, the study pleads

for more advanced defensive measures for protecting user data. The formally

veri�ed SecurePay design is a practical solution for this problem.

Finally, regarding the TEE, various vendors o�er their own TEEs: OP-TEE [177],

Trustonic [212], QSEE [195], SierraTEE [201], T6 [211], and MobiCore [151], and

each of these TEEs comes with an SDK which helps developers to build trusted

apps for the secure world.

3.9 Conclusions

In this chapter, we explored the risks associated with using a single mobile device

for payments, even when enhanced authentication, such as 2FA is in place. We

stressed that strong attackers can compromise the potentially vulnerable device

and render 2FA completely useless. In parallel, we argued that sensitive applica-

tions, such as payment systems, gain limited security with using 2FA for several

actions—not just for signing in, but also for issuing sensitive transactions. Follow-

ing up, we de�ned a strong threat model, where stealthy attackers compromise

smartphones for hijacking user-initiated payments that are otherwise protected

with 2FA. We therefore identi�ed the necessary requirements for facilitating a

system, that leverages 2FA for securing the user’s actions, even when compro-

mised. The key property of our analysis is that 2FA should not be considered for

protecting authenticity only, but also for the integrity of individual actions (i.e.,

the contents of a �nancial transaction). We, �nally, presented SecurePay, a fully
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working prototype, based on commodity technologies such as ARM’s TrustZone,

for realizing smartphones that allow users to perform Internet banking (and sim-

ilar transaction activities) securely, even when their device is compromised.





ZE
B

R
A

M

4 So�ware Protection for
a Hardware-level
Design Flaw
(Rowhammer Bug)

Vendors are packing an ever-increasing number of transistors in memory chips in

response to consumer demands. Unfortunately, this design choice increases the

possibility of memory errors in DRAM chips owing to the smaller di�erence in

charge between a "0" bit and a "1" bit. As a result, it is possible to force memory

errors in DDR3 memory by activating a row many times in quick succession,

causing capacitors in neighboring victim rows to leak their charge before the

memory controller has a chance to refresh them. This rapid activation of memory

rows to �ip bits in neighboring rows is known as the Rowhammer attack. As

these bits �ips/memory errors happen without any indication, the system fails

to detect such memory errors. As a result, attackers are able to corrupt sensitive

data structures (such as page tables, cryptographic keys, object pointers, or even

instructions in a program), and circumvent all existing defenses.

This chapter introduces ZebRAM, a novel and comprehensive software-level

protection against Rowhammer. ZebRAM isolates every DRAM row that con-

tains data with guard rows that absorb any Rowhammer-induced bit �ips; the

only known method to protect against all forms of Rowhammer. Rather than leav-

ing guard rows unused, ZebRAM improves performance by using the guard rows

as e�cient, integrity-checked and optionally compressed swap space. ZebRAM

requires no hardware modi�cations and builds on virtualization extensions in

commodity processors to transparently control data placement in DRAM. Our

evaluation shows that ZebRAM provides strong security guarantees while utiliz-

ing all available memory.

61
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4.1 Introduction

The Rowhammer vulnerability, a defect in DRAM chips that allows attackers to

�ip bits in memory at locations to which they should not have access, has evolved

from a mere curiosity to a serious and very practical attack vector for compromis-

ing PCs [10], VMs in clouds [71, 87], and mobile devices [27, 80]. Rowhammer al-

lows attackers to �ip bits in DRAM rows simply by repeatedly reading neighbor-

ing rows in rapid succession. Existing software-based defenses have proven in-

e�ective against advanced Rowhammer attacks [3, 11], while hardware defenses

are impractical to deploy in the billions of devices already in operation [123]. This

chaper introduces ZebRAM, a comprehensive software-based defense preventing

all Rowhammer attacks by isolating every data row in memory with guard rows

that absorb any bit �ips that may occur.

Practical Rowhammer a�acks Rowhammer attacks can target a variety of

data structures, from page table entries [225, 80, 81, 87] to cryptographic keys [71],

and from object pointers [10, 27, 79] to opcodes [31]. These target data structures

may reside in the kernel [225, 80], other virtual machines [71], the same pro-

cess address space [10, 27], and even on remote systems [79]. The attacks may

originate in native code [225], JavaScript [10, 32], or from co-processors such

as GPUs [27] and even DMA devices [79]. The objective of the attacker may

be to escalate privileges [10, 80], weaken cryptographic keys [71], compromise

remote systems [79], or simply lock down the processor in a denial-of-service

attack [37].

Today’s defenses are ine�ective Existing hardware-based Rowhammer defenses

fall into three categories: refresh rate boosting, target row refresh, and error

correcting codes. Increasing the refresh rate of DRAM [39] makes it harder

for attackers to leak su�cient charge from a row before the refresh occurs, but

cannot prevent Rowhammer completely without unacceptable performance loss

and power consumption increase. The target row refresh (TRR) defense, pro-

posed in the LPDDR4 standard, uses hardware counters to monitor DRAM row

accesses and refreshes speci�c DRAM rows suspected to be Rowhammer victims.

However, TRR is not widely deployed; it is optional even in DDR4 [113]. More-

over, researchers still regularly observe bit �ips in memory that is equipped with

TRR [224]. As for error correcting codes (ECC), the �rst Rowhammer publication

already argued that even ECC-protected DRAM is susceptible to Rowhammer at-

tacks that �ip multiple bits per memory word [39]. While this is complicating
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attacks, they do not stop fully stop them as shown by the recent ECCploit at-

tack [17]. Furthermore, ECC memory is unavailable on most consumer devices.

Software defenses do not su�er from the same deployment issues as hardware

defenses. These solutions can be categorized into primitive weakening, detection,

and isolation.

Primitive weakening makes some of the steps in Rowhammer attacks more

di�cult, for instance by making it harder to obtain physically contiguous un-

cached memory [225], or to create the cache eviction sets required to access

DRAM in case the memory is cached. Research has already shown that these

solutions do not fundamentally prevent Rowhammer [27].

Rowhammer detection uses heuristics to detect suspected attacks and refresh

victim rows before they succumb to bit �ips. For instance, ANVIL uses hard-

ware performance counters to identify likely Rowhammer attacks [3]. Unfortu-

nately, hardware performance counters are not available on all CPUs, and some

Rowhammer attacks may not trigger unusual cache behavior or may originate

from unmonitored devices [27].

A �nal, and potentially very powerful defense against Rowhammer is to iso-
late the memory of di�erent security domains in memory with unused guard
rows that absorb bit �ips. For instance, CATT places a guard row between ker-

nel and user memory to prevent Rowhammer attacks against the kernel from

user space [11]. Unfortunately, CATT does not prevent Rowhammer attacks

between user processes, let alone attacks within a process that aim to subvert

cryptographic keys [71]. Moreover, the lines between security domains are of-

ten blurry, even in seemingly clear-cut cases such as the kernel and user-space,

where the shared page cache provides ample opportunity to �ip bits in sensitive

memory areas and launch devastating attacks [31].

ZebRAM: isolate everything from everything Given the di�culty of correctly

delineating security domains, the only guaranteed approach to prevent all forms

of Rowhammer is to isolate all data rows with guard rows that absorb bit �ips,

rendering them harmless. The guard rows, however, break compatibility: buddy

allocation schemes (and certain devices) require physically-contiguous memory

regions. Furthermore, the drawback of this approach is obvious—sacri�cing 50%

of memory to guard rows is extremely costly. This chapter introduces ZebRAM,

a novel, comprehensive and compatible software protection against Rowhammer

attacks that isolates everything from everything else without sacri�cing memory

consumed by guard rows. To preserve compatibility, ZebRAM remaps physical

memory using existing CPU virtualization extensions. To utilize guard rows,
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ZebRAM implements an e�cient, integrity-checked and optionally compressed

swap space in memory.

As we show in Section 4.7, ZebRAM incurs an overhead of 5% on the SPEC

CPU 2006 benchmarks. While ZebRAM remains expensive in the memory-intensive

redis instance, our evaluation shows that ZebRAM’s in-memory swap space

signi�cantly improves performance compared to our basic solution that leaves

the guard rows unused, in some cases eliminating over half of the observed per-

formance degradation. In practice, the recent Meltdown/Spectre vulnerabilities

show that for a su�ciently serious threat, even expensive �xes are accepted [189].

First and foremost, however, this work investigates an extreme point in the de-

sign space of Rowhammer defenses: the �rst complete protection against all

forms of Rowhammer, without sacri�cing memory, at a cost that is a function

of the workload.

Contributions In summary, our contributions are the following:

1. We describe ZebRAM, the �rst comprehensive software protection against

all forms of Rowhammer.

2. We introduce a novel technique to utilize guard rows as fast, memory-based

swap space, signi�cantly improving performance compared to solutions

that leave guard rows unused.

3. We implement ZebRAM and show that it achieves both practical perfor-

mance and e�ective security in a variety of benchmark suites and work-

loads.

4. ZebRAM is open source to support future work.

4.2 Background

This section discusses background on DRAM organization, the Rowhammer bug,

and existing defenses.

4.2.1 DRAM Organization

We now discuss how DRAM chips are organized internally, which is important

knowledge for launching an e�ective Rowhammer attack. Figure 4.1 illustrates

the DRAM organization.

The most basic unit of DRAM storage is a cell that can hold a single bit of

information. Each DRAM cell consists of two components: a capacitor and a
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Figure 4.1. DRAM organization and example mapping of two consecutive addresses.

transistor. The capacitor stores a bit by retaining electrical charge. Because this

charge leaks away over time, the memory controller periodically (typically every

64 ms) reads each cell and rewrites it, restoring the charge on the capacitor. This

process is known as refreshing.

DRAM cells are grouped into rows that are typically 1024 cells (or columns)
wide. Memory accesses happen at row granularity. When a row is accessed, the

contents of that row are put in a special bu�er, called the row bu�er, and the row

is said to be activated. After the access, the activated row is written back (i.e.,

recharged) with the contents of the row bu�er.

Multiple rows are stacked together to form banks, with multiple banks on a

DRAM integrated circuit (IC) and a separate row bu�er per bank. In turn, DRAM

ICs are grouped into ranks. DRAM ICs are accessed in parallel; for example, in a

DIMM that has eight ICs of 8 bits wide each, all eight ICs are accessed in parallel

to form a 64 bit memory word.

To address a memory word within a DRAM rank, the system memory con-

troller uses three addresses for the bank, row and column, respectively. Note that

the mapping between a physical memory address and the corresponding rank-

index, bank-index and row-index on the hardware module is nonlinear. Conse-

quently, two consecutive physical memory addresses can be mapped to memory
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(a) Single-sided Rowhamamer attack (b) Double-sided Rowhammer attack

Figure 4.2. Flipping a bit in a neighboring DRAM row through single-sided (a) and double-
sided (b) Rowhammer a�acks.

cells that are located on di�erent ranks, banks, or rows (see Figure 4.1). As ex-

plained next, knowledge of the address mapping is vital to e�ective Rowhammer.

4.2.2 The Rowhammer Bug

As DRAM chips become denser, the capacitor charge reduces, allowing for in-

creased DRAM capacity and lower energy consumption. Unfortunately, this in-

creases the possibility of memory errors owing to the smaller di�erence in charge

between a “0” bit and a “1” bit.

Research shows that it is possible to force memory errors in DDR3 mem-

ory by activating a row many times in quick succession, causing capacitors in

neighboring victim rows to leak their charge before the memory controller has

a chance to refresh them [39]. This rapid activation of memory rows to �ip bits

in neighboring rows is known as the Rowhammer attack. Subsequent research

has shown that bit �ips induced by Rowhammer are highly reproducible and can

be exploited in a multitude of ways, including privilege escalation attacks and

attacks against co-hosted VMs in cloud environments [10, 32, 70, 71, 225, 80, 87].

The original Rowhammer attack [225] is now known as single-sided Rowham-

mer. As Figure 4.2 shows, it uses many rapid-�re memory accesses in one aggres-
sor row k− 1 to induce bit �ips in a neighboring victim row k. A newer variant

called double-sided Rowhammer hammers rows k − 1 and k + 1 on both sides

of the victim row k, increasing the likelihood of a bit �ip (see Figure 4.2). Recent

research shows that bit �ips can also be induced by hammering only one mem-

ory address [31] (one-location hammering). Regardless of the type of hammering,

Rowhammer can only induce bit �ips on directly neighboring DRAM rows.

In contrast to single-sided Rowhammer, the double-sided variant requires

knowledge of the mapping of virtual and physical addresses to memory rows.
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Since DRAM manufacturers do not publish this information, this necessitates

reverse engineering the DRAM organization.

4.2.3 Rowhammer Defenses

Research has produced both hardware- and software-based Rowhammer defenses.

The original Rowhammer work [39, 59] explores multiple hardware-based de-

fenses, some of which already deployed: the hardware manufacturer, Lenovo [174],

deployed �rmware updates that double refresh rates as a Rowhammer defense.

Unfortunately, this has been proven insu�cient to defend against Rowhammer [3].

Other suggested defense is error-correcting DRAM chips (ECC memory), which

can detect and correct a 1-bit error per ECC word (64-bit data). Unfortunately,

ECC memory cannot correct multi-bit errors [1, 17, 123] and is not readily avail-

able in consumer hardware. Probabilistic Adjacent Row Refresh (PARA) [39, 59]

refreshes adjacent rows of an activated row with a small probability to mitigate

Rowhammer. PARA requires hardware modi�cation, complicating its deploy-

ment at scale. Similar to PARA, the new LPDDR4 standard [112] speci�es two

features which together defend against Rowhammer: Target Row Refresh (TRR)
enables the memory controller to refresh rows adjacent to a certain row, and

Maximum Activation Count (MAC) speci�es a maximum row activation count

before adjacent rows are refreshed. Despite these defenses, Gruss et al. [224] still

report bit �ips in TRR memory.

ANVIL [3], a software defense, uses Intel’s performance monitoring unit (PMU)

to detect physical addresses that cause many cache misses indicative of Rowham-

mer.
1

It then recharges suspected victim rows by accessing them. Unfortunately,

the PMU does not accurately capture memory accesses through DMA, and not

all CPUs feature PMUs. Moreover, the current implementation of ANVIL does

not accurately take into account DRAM address mapping and has been reported

to be ine�ective because of it [78].

Another software-based defense, B-CATT [94], implements a bootloader ex-

tension to blacklist all the locations vulnerable to Rowhammer, thus wasting the

memory. However, Gruss et al. [31] show that this approach is not practical as

it may blacklist over 95% of memory locations; similar results were reported by

Tatar et al. [78] showing DIMMs with 99+% vulnerable memory locations. In ad-

dition, in our experiments, we have observed di�erent bit �ip patterns over time

for the same module, making B-CATT incomplete.

Yet another software-based defense called CATT [11] proposes an alterna-

1
Rowhammer attacks repeatedly clear hammered rows from the CPU cache to ensure that they hammer

DRAM memory, not the cache.
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Figure 4.3. Hammering even-numbered rows can only induce bit flips in odd-numbered rows
and vice versa.

tive memory allocator for the Linux kernel that isolates user and kernel space

in physical memory, thus ensuring that user-space attackers cannot �ip bits in

kernel memory. However, CATT does not defend against attacks between user-

space processes, and previous work [31] shows that CATT can be bypassed by

�ipping bits in the code of the sudo program.

4.3 Threat Model

The Rowhammer attacks found in prior research aim for privilege escalation [10,

32, 70, 71, 225, 80, 87], compromising co-hosted virtual machines [71, 87] or even

attacks over the network [79]. Our approach, ZebRAM, addresses all these at-

tacks through its principle of isolating memory rows from each other. Our pro-

totype implementation of ZebRAM focuses only on virtual machines, stopping

all of the aforementioned attacks launched from or at a victim virtual machine,

assuming the hypervisor is trusted. We discuss possible alternative implementa-

tions (e.g., native) in Section 4.9.2.

4.4 Design

To build a comprehensive solution against Rowhammer attacks, we should con-

sider Rowhammer’s fault model: bit �ips only happen in adjacent rows when

a target row is hammered as shown in Figure 4.3. Given that any row can po-

tentially be hammered by an attacker, all rows in the system can be abused. To

protect against Rowhammer in software, we can follow two approaches: we ei-

ther need to protect the entire memory against Rowhammer or we need to limit

the rows that the attacker can access. Protecting the entire memory is not secure
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 DRAM Address
       Space

 

Figure 4.4. Spli�ing the memory into safe and unsafe regions using even and odd rows in a
zebra pa�ern.

even in hardware [123, 80] and software attempts have so far been shown to be

insecure [31]. Instead, we aim to design a system where an attacker can only

hammer a subset of rows directly.

Basic ZebRAM In order to make sure that Rowhammer bit �ips cannot target

any data, we should enforce the invariant that all adjacent rows are unused. This

can be done by making sure that either all odd or all even rows are unused by

the system. Assuming odd rows are unused, all even rows will create a safe
region in memory; it is not possible for an attacker to �ip bits in this safe regions

simply because all the odd rows are inaccessible to the attacker. The attacker

can, however, �ip bits in the odd rows by hammering the even rows in the safe

region. Hence, we call the odd rows the unsafe region in memory. Given that

the unsafe region is unused, the attacker cannot �ip bits in the data used by the

system. This simple design with its zebra pattern shown in Figure 4.4 already

stops all Rowhammer attacks. It however has an obvious downside: it wastes

half of the memory that makes up the unsafe region. We address this problem

later when we explain our complete ZebRAM design.

A more subtle downside in this design is incompatibility with the Buddy page

allocation scheme used in commodity operating systems such as Linux. Buddy

allocation requires contiguous regions of physical memory in order to operate

e�ciently and forcing the system not to use odd rows does not satisfy this re-

quirement. Ideally, our design should utilize the unsafe region while providing

(the illusion of) a contiguous physical address space for e�cient buddy allocation

as shown on the right side of Figure 4.4. To address this downside, our design

should provide a translation mechanism that creates a linear physical address

space out of the safe region.
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Figure 4.5. ZebRAM logically divides system memory into a safe region for normal use, a
swap space made from the unsafe region, and a swap cache to protect the safe
region from accesses made to the unsafe region.

ZebRAM If we can �nd a way to securely use the unsafe region, then we can

gain back the memory wasted in the basic ZebRAM design. We need to enforce

two invariants if we want to make use of the unsafe region for storing data. First,

we need to make sure that we properly handle potential bit �ips in the unsafe

region. Second, we need to ensure that accessing the unsafe region does not

trigger bit �ips in the safe region. Our proposed design, ZebRAM, shown in Fig-

ure 4.5 satis�es all these requirements. To handle bit �ips in the unsafe region,

ZebRAM performs software integrity checks and error correction whenever data

in the unsafe region is accessed. To protect the safe region from accesses to the

unsafe region, ZebRAM uses a cache in front of the unsafe region. This cache is

allocated from the safe region and ZebRAM is free to choose its size and replace-

ment policy in a way that protects the safe region. Finally, to provide backward-

compatibility with memory management in commodity systems, ZebRAM can

employ translation mechanisms provided by hardware (e.g., virtualization exten-

sions in commodity processors) to translate even rows into a contiguous physical

address space for the guest.

To maintain good performance, ZebRAM ensures that accesses to the safe

region proceed without interposition. As mentioned earlier, this can potentially

cause bit �ips in the unsafe region. Hence, all accesses to the unsafe region should

be interposed for bit �ip detection and correction. To this end, ZebRAM exposes

the unsafe region as a swap device to the protected operating system. With this

design, ZebRAM reuses existing page replacement policies of the operating sys-

tem to decide which memory pages should be evicted to the swap (i.e., unsafe

region). Given that most operating systems use some form of Least Recently

Used (LRU), the working set of the system remains in the safe region, preserving

performance. Once the system needs to access a page from the unsafe region,
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Figure 4.6. ZebRAM Components.

the operating system selects a page from the safe region (e.g., based on LRU) and

creates necessary meta data for bit �ip detection (and/or correction) using the

contents of the page and writes it to the unsafe region. At this point, the system

can bring the page to the safe region from the unsafe region. But before that, it

uses the previously calculated meta data to perform bit �ip detection and correc-

tion. Note that the swap cache (for protecting the safe region) is essentially part

of the safe region and is treated as such by ZebRAM.

Next, we discuss our implementation of ZebRAM’s design before analyzing

its security guarantees and evaluating its performance.

4.5 Implementation

In this section, we describe a prototype implementation of ZebRAM on top of

the Linux kernel. Our prototype protects virtual machines against Rowhammer

attacks and consists of the following four components: the Memory Remapper,
the Integrity Manager, the Swap Manager, and the Cache Manager, as shown in
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Figure 4.6. Our prototype implements Memory Remapper in the hypervisor and

the other three components in the guest OS. It is possible to implement all the

components in the host to make ZebRAM guest-transparent. We discuss alter-

native implementations and their associated trade-o�s in Section 4.9.2. We now

discuss these components as implemented in our prototype.

4.5.1 ZebRAM Prototype Components

Memory Remapper implements the split of physical memory into a safe and

unsafe region. One region contains all the even-numbered rows, while the other

contains all the odd-numbered rows. Note that because hardware vendors do

not publish the mapping of physical addresses to DRAM addresses, we need to

reverse engineer this mapping following the methodology established in prior

work [65, 78, 87].

Because Rowhammer attacks only a�ect directly neighboring rows, a Rowham-

mer attack in one region can only incur bit �ips in the other region, as shown in

Figure 4.3. In addition, ZebRAM supports the conservative option of increasing

the number of guard rows to defend against Rowhammer attacks that target a

victim row not directly adjacent to the aggressor row. However, our experience

with a large number of vulnerable DRAM modules shows that with the correct

translation of memory pages to DRAM locations, bit �ips trigger exclusively in

rows adjacent to a row that is hammered.

Integrity Manager protects the integrity of the unsafe region. Our software

design allows for a �exible choice for error detection and correction. For error

correction, we use a commonly-used Single-Error Correction and Double-Error

Detection (SECDED) code. As shown in recent work [17], SECDED and other

similar BCH codes can still be exploited on DIMMs with large number of bit �ips.

Our database of Rowhammer bit �ips from 14 vulnerable DIMMs [78] shows

that only 0.00015% of all memory words with bit �ips can bypass our SECDED

code (found in 2 of the 14 vulnerable DIMMs) and 0.13% of them can cause a

detectable corruption (found in 7 of the 14 vulnerable DIMMs). To provide strong

detection guarantees, while providing correction possibilities, ZebRAM provides

the possibility to mix SECDED with collision resistant hash functions such as

SHA-256 at the cost of extra performance overhead.

Swap Manager uses the unsafe region to implement an e�cient swap disk in

memory, protected by the Integrity Manager and accessible only by the OS. Us-

ing the unsafe region as a swap space has the advantage that the OS will only
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access the slow, integrity-checked unsafe region when it runs out of fast safe

memory. As with any swap disk, the OS uses e�cient page replacement tech-

niques to minimize access to it. To maximize utilization of the available memory,

the Swap Manager also implements a compression engine that optionally com-

presses pages stored in the swap space.

Note that ZebRAM also supports con�gurations with a dedicated swap disk

(such as a hard disk or SSD) in addition to the memory-based swap space. In

this case, ZebRAM swap is prioritized above any other swap disks to maximize

e�ciency.

Cache Manager implements a fully associative cache that speeds up access to the

swap space while simultaneously preventing Rowhammer attacks against safe

rows by reducing the access frequency on memory rows in the unsafe region.

The swap cache is faster than the swap disk because it is located in the safe

region and does not require integrity checks or compression. Because attackers

must clear the swap cache to be able to directly access rows in the unsafe region,

the cache prevents attackers from e�ciently hammering guard rows to induce

bit �ips in safe rows.

Because the cache layer sits in front of the swap space, pages swapped out by

the OS are �rst stored in the cache, in uncompressed format. Only if the cache

is full does the Cache Manager �ush the least-recently-added (LRA) entry to the

swap disk. The LRA strategy is important, because it ensures that attackers must

clear the entire cache after every row access in the unsafe region.

4.5.2 Implementation Details

We implemented ZebRAM in C on an Intel Haswell machine running Ubuntu

16.04 with kernel v4.4 on top a Qemu-KVM v2.11 hypervisor. Next we provide

further details on the implementation various components in the ZebRAM pro-

totype.

Memory Remapper To e�ciently partition memory into guard rows and safe

rows, we use Second Level Address Translation (SLAT), a hardware virtualization

extension commonly available in commodity processors. To implement the Mem-

ory Remapper component, we patched Qemu-KVM’s mmap function to expose the

unsafe memory rows to the guest machine as a contiguous memory block start-

ing at physical address 0x3ffe0000. We use a translation library similar to that

of Throwhammer [79] for assigning memory pages to odd and even rows in the

Memory Remapper component.
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Integrity Manager The Integrity Manager and Cache Manager are implemented

as part of the ZebRAM block device, and comprise 369 and 192 LoC, respec-

tively. The Integrity Manager uses SHA-256 algorithm for error detection, im-

plemented in mainline Linux, to hash swap pages, and keeps the hashes in a

linear array stored in safe memory. Additionally, the Integrity Manager by de-

fault uses an ECC derived from the extended Hamming(63,57) code [97], expur-

gated to have a message size an integer multiple of bytes. The obtained ECC

is a [64, 56, 4]2 block code, providing single error correction and double error

detection (SECDED) for each individual (64-bit) memory word—functionally on

par with hardware SEC-DED implementations.

Swap Manager The Swap Manager is implemented as a Loadable Kernel Mod-

ule (LKM) for the guest OS that maintains a stack containing the Page Frame

Numbers (PFNs) of free pages in the swap space. It exposes the RAM-based swap

disk as a readable and writable block device that we implemented by extending

the zram compressed RAM block device commonly available in Linux distribu-

tions. We changed zram’s zsmalloc slab memory allocator to only use pages

from the Swap Manager’s stack of unsafe memory pages. To compress swap

pages, we use the LZO algorithm also used by zram [230]. The Swap Manager

LKM contains 456 LoC while our modi�cations to zram and zsmalloc comprise

437 LoC.

Cache Manager The Cache Manager implements the swap cache using a linear

array to store cache entries and a radix tree that maps ZebRAM block device page

indices to cache entries. By default, ZebRAM uses 2% of the safe region for the

swap cache.

Guest Modifications The guest OS is unchanged except for a minor modi�ca-

tion that uses Linux’s boot memory allocator API (alloc_bootmem_low_pages)

to reserve the unsafe memory block as swap space at boot time. Our changes to

Qemu-KVM comprise 2.6K lines of code (LoC), while the changes to the guest

OS comprise only 4 LoC. Furthermore, the Linux kernel may eagerly write dirty

pages into the swap device based on its swappiness tunable. In ZebRAM, we

use a swappiness of 10 instead of the default value of 60 to reduce the number of

unnecessary writes to the unsafe region.
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Table 4.1. ZebRAM’s e�ectiveness defending against a ZebRAM-aware Rowhammer exploit.

1 bit flip 2 bit flips Total ZebRAM detection performance
Run no. in 64 bits in 64 bits bit flips Detected bit flips Corrected bit flips

1 4,698 2 4,702 4,702 4,698
2 5,132 0 5,132 5,132 5,132
3 2,790 0 2,790 2,790 2,790
4 4,216 1 4,218 4,218 4,216
5 3,554 0 3,554 3,554 3,554

4.6 Security Evaluation

This section evaluates ZebRAM’s e�ectiveness in defending against traditional

Rowhammer exploits. Additionally, we show that ZebRAM successfully defends

even against more advanced ZebRAM-aware Rowhammer exploits. We evalu-

ated all attacks on a Haswell i7-4790 host machine with 16GB RAM running our

ZebRAM-based Qemu-KVM hypervisor on Ubuntu 16.04 64-bit. The hypervisor

runs a guest machine with 4GB RAM and Ubuntu 16.04 64-bit with kernel v4.4,

containing all necessary ZebRAM patches and LKMs.

4.6.1 Traditional Rowhammer Exploits

Under ZebRAM’s memory model, traditional Rowhammer exploits on system

memory only hammer the safe region, and can therefore trigger bit �ips only in

the integrity-checked unsafe region by construction. We tested the most popu-

lar real-world Rowhammer exploit variants to con�rm that ZebRAM correctly

detects these integrity violations.

In particular, we ran the single-sided Rowhammer exploit published by Google’s

Project Zero,
2

as well as the one-location
3

and double-sided
4

exploits published

by Gruss et al. on our testbed for a period of 24 hours. During this period

the single-sided Rowhammer exploit induced two bit �ips in the unsafe region,

while the one-location and double-sided exploits failed to produce any bit �ips.

ZebRAM successfully detected and corrected all of the induced bit �ips.

The double-sided Rowhammer exploit failed due to ZebRAM’s changes in the

DRAM geometry, alternating safe rows with unsafe rows. Conventional double-

sided exploits attempt to exploit a victim row k by hammering the rows k − 1

and k + 1 below and above it, respectively. Under ZebRAM, this fails because

the hammered rows are not really adjacent to the victim row, but remapped to

2
https://github.com/google/rowhammer-test

3
https://github.com/IAIK/�ip�oyd

4
https://github.com/IAIK/rowhammerjs/tree/master/native

https://github.com/google/rowhammer-test
https://github.com/IAIK/flipfloyd
https://github.com/IAIK/rowhammerjs/tree/master/native
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be separated from it by unsafe rows. Unaware of ZebRAM, the exploit thinks

otherwise based on the information gathered from the Linux’ pagemap—due to

the virtualization-based remapping layer—and essentially behaves like an unop-

timized single-sided exploit. Fixing this requires a ZebRAM-aware exploit that

hammers two consecutive rows in the safe region to induce a bit �ip in the unsafe

region. As described next, we developed such an exploit and tested ZebRAM’s

ability to thwart it.

4.6.2 ZebRAM-aware Exploits

To further demonstrate the e�ectiveness of ZebRAM, we developed a ZebRAM-

aware double-sided Rowhammer exploit. This section explains how the exploit

attempts to hammer both the safe and unsafe regions, showing that ZebRAM

detects and corrects all the induced bit �ips.

4.6.2.1 A�acking the Unsafe Region

To induce bit �ips in the unsafe region (where the swap space is kept), we modi-

�ed the double-sided Rowhammer exploit published by Gruss et al. [32] to ham-

mer every pair of two consecutive DRAM rows in the safe region (assuming the

attacker is armed with an ideal ZebRAM-aware memory layout oracle) and ran

the exploit �ve times, each time for 6 hours. As Table 4.1 shows, the �rst exploit

run induced a total of 4,702 bit �ips in the swap space, with 4,698 occurrences

of a single bit �ip in a 64-bit data word and 2 occurrences of a double bit �ip

in a 64-bit word. ZebRAM successfully corrected all 4,698 single bit �ips and de-

tected the double bit �ips. As shown in Table 4.1, the other exploit runs produced

similar results, with no bit �ips going undetected. Note that ZebRAM can also

detect more than two errors per 64-bit word due to its combined use of ECC and

hashing, although our experiments produced no such cases.

4.6.2.2 A�acking the Safe Region

In addition to hammering safe rows, attackers may also attempt to hammer un-

safe rows to induce bit �ips in the safe region. To achieve this, an attacker must

trigger rapid writes or reads of pages in the swap space. We modi�ed the double-

sided Rowhammer exploit to attempt this by opening the swap space with the

open system call with the O_DIRECT �ag, followed by repeated preadv system

calls to directly read from the ZebRAM swap disk (bypassing the Linux page

cache).

Because the swap disk only supports page-granular reads, the exploit must
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read an entire page on each access. Reading a ZebRAM swap page results in at

least two memory copies; �rst to the kernel block I/O bu�er, and next to user

space. The exploit evicts the ZebRAM swap cache before each swap disk read to

ensure that it accesses rows in the swap disk rather than in the cache (which is

in the safe region). After each page read, we use a clflush instruction to evict

the cacheline we use for hammering purposes. Note that this makes the exploit’s

job easier than it would be in a real attack scenario, where the exploit cannot

use clflush because the attacker does not own the swap memory. A real attack

would require walking an entire cache eviction bu�er after each read from the

swap disk.

We ran the exploit for 24 hours, during which time the exploit failed to trig-

ger any bit �ips. This demonstrates that the slow access frequency of the swap

space—due to its page granularity, integrity checking, and the swap cache layer—

successfully prevents Rowhammer attacks against the safe region.

To further verify the reliability of our approach, we re-tested our exploit with

the swap disk’s cache layer, compression engine, and integrity checking modules

disabled, thus providing overly optimistic access speeds (and security guarantees)

to the swap space for the Rowhammer exploit. Even in this scenario, the page-

granular read enforcement of the swap device alone proved su�cient to prevent

any bit �ips. Our time measurements using rdtsc show that even in this opti-

mistic scenario, memory dereferences in the swap space take 2,435 CPU cycles,

as opposed to 200 CPU cycles in the safe region, removing any possibility of a

successful Rowhammer attack against the safe region.

4.7 Performance Evaluation

This section measures ZebRAM’s performance in di�erent con�gurations com-

pared to an unprotected system under varying workloads. We test several di�er-

ent kinds of applications, commonly considered for evaluation by existing sys-

tems security defenses. First, we test ZebRAM on the SPEC CPU2006 benchmark

suite to measure its performance for CPU-intensive applications. We also bench-

mark ZebRAM the popular nginx and Apache web servers, as well as the redis

in-memory key-value store. Additionally, we present microbenchmark results to

better understand the contributing factors to ZebRAM’s overhead.

Testbed Similar to our security evaluation, we conduct our performance eval-

uation on a Haswell i7-4790 machine with 16GB RAM running Ubuntu 16.04 64-

bit with our modi�ed Qemu-KVM hypervisor. We run the ZebRAM modules and
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Figure 4.7. SPEC CPU 2006 performance results.

the benchmarked applications in an Ubuntu 16.04 guest VM with kernel v4.4 and

4GB of memory using a split of 2GB for the safe region and 2GB for the unsafe

region. To establish a baseline, we use the same guest VM with an unmodi�ed

kernel and 4GB of memory. In the baseline measurements, the guest VM has di-

rect access to all its memory, while in the ZebRAM performance measurements

half of the memory is dedicated to the ZebRAM swap space. In all reported mem-

ory usage �gures we include memory used by the Integrity Manager and Cache

Manager components of ZebRAM. For our tests of server applications, we use a

separate Skylake i7-6700K machine as the client. This machine has 16GB RAM

and is linked to the ZebRAM machine via a 100Gbit/s link. We repeat all our

experiments multiple times and observe marginal deviations across runs.

SPEC 2006 We compare performance scores of the SPEC 2006 benchmark suite

in three di�erent setups: (i) unmodi�ed, (ii) ZebRAM con�gured to use only ECC,

and (iii) ZebRAM con�gured to use ECC and SHA-256. The ZebRAM (ECC) and

ZebRAM (ECC and SHA-256) show a performance overhead over the unmodi�ed

baseline of 4% and 5%, respectively (see Figure 4.7). The reason behind this per-

formance overhead is that as the ZebRAM splits the memory in a zebra pattern,

the OS can no longer bene�t from huge pages. Also, note that certain bench-

marks, such as mcf, exhibits more than 5% overhead because they use ZebRAM’s

swap memory as their working set do not �t in the safe region.
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Figure 4.8. Nginx and Apache throughput at saturation.

Web servers We evaluate two popular web servers: nginx (1.10.3) and Apache

(2.4.18). We con�gure the virtual machine to use 4 VCPUs. To generate load to

the web servers we use the wrk2 [233] benchmarking tool, retrieving a default

static HTML page of 240 characters. We set up nginx to use 4 workers, while

we set up Apache with the prefork module, spawning a new worker process for

every new connection. We also increase the maximum number of clients allowed

by Apache from 150 to 500. We con�gured the wrk2 tool to use 32 parallel keep-

alive connections across 8 threads. When measuring the throughput we check

that CPU is saturated in the server VM. We discard the results of 3 warmup

rounds, repeat a one-minute run 11 times, and report the median across runs.

Figure 4.8 shows the throughput of ZebRAM under two di�erent con�gurations:

(i) ZebRAM con�gured to use only ECC, and (ii) ZebRAM con�gured to use ECC

and SHA-256. Besides throughput, we want to measure ZebRAM’s latency im-

pact. We use wrk2 to throttle the load on the server (using the rate parameter)

and report the 99th percentile latency as a function of the client request rate in

Figure 4.9.

The baseline achieves 182k and 50k requests per second on Nginx and Apache

respectively. The ZebRAM’s �rst con�guration (only ECC) reaches 172k and 49k

while the second con�guration reaches 166k and 49k.
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Figure 4.9. Nginx and Apache latency (99th percentile).

Before saturation, the results show that ZebRAM imposes no overhead on

the 99th percentile latency. After then, both con�gurations of ZebRAM show a

similar trend with linearly higher 99th percentile response time.

Overall, ZebRAM’s performance impact on both web servers and SPEC bench-

marks is low and mostly due to the inability to e�ciently use Linux’ THP support.

This is expected, since as long as the working set can comfortably �t in the safe

region (e.g., around 400MB for our web server experiments) the unsafe memory

management overhead is completely masked. We isolate and study such over-

head in more detail in the following.

Microbenchmarks To drill down the overhead of each single feature of ZebRAM,

we measure the latency of swapping in a page from the ZebRAM device under

di�erent con�gurations. To measure the latency, we use a small binary that se-

quentially writes on every page of a large eviction bu�er in a loop. This ensures
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Table 4.2. Page swap-in latency from the ZebRAM device.

Configuration median (ns) 90th (ns) 99th (ns)

copy 2,362.0 4,107.0 8,167.0
SHA-256 13,552.0 14,209.0 17,092.0
cache + comp + SHA-256 8,633.0 13,191.0 18,678.0
cache + comp + SHA-256 + ECC 9,862.0 15,118.0 20,794.0

that, between two accesses to the same page, we touch the entire bu�er, evicting

that page from memory. To be sure that Linux swaps in just one page for every

access, we set the page-cluster con�guration parameter to 0. In this experiment,

two components interact with ZebRAM: our binary triggers swap-in events from

the ZebRAM device while the kswapd kernel thread swaps pages to the ZebRAM

device to free memory. The interaction between them is completely di�erent

if the binary uses exclusively loads to stress the memory. This is because the

kernel would optimize out unnecessary �ushes to swap and batch together TLB

invalidations. Hence, we choose to focus on stores to study the performance in

the worst-case scenario and because read-only workloads are less common than

mixed workloads.

We reserve a core exclusively for the binary so that kswapd does not (directly)

steal CPU cycles from it. We measure 1,000,000 accesses for each di�erent con-

�guration. Table 4.2 presents our results. We also run the binary in a loop and

pro�le its execution with the perf Linux tool to measure the time spent in di�er-

ent functions. Due to function inlining, it is not always trivial to map a symbol

to a particular feature. Nevertheless, perf can provide insights into the over-

head at a �ne granularity. In the �rst con�guration, we disable the all features

of ZebRAM and perform only memory copies into the ZebRAM device. As the

copy operation is fast, the perf tool reports that just 4% percent of CPU cycles

are spent copying. Interestingly, 47% of CPU cycles are spent serving Inter Pro-

cess Interrupts from other cores. This is because, while we are swapping in,

kswapd on another core is busy freeing memory. For this purpose, kswapd needs

to unmap pages that are on their way to be swapped out from the process’s page

tables. This introduces TLB shootdowns (and IPIs) to invalidate other cores’ TLB

stale entries. It is important to notice that the faster we swap in pages, the faster

kswapd needs to free memory. This unfortunately results in a negative feedback

loop that represent one of the major sources of overhead when the large number

of swap-in events continuously force kswapd to wake up.

Adding hashing (SHA-256) on top of the previous con�guration shows an in-

crease in latency, which is also re�ected in the CPU cycles breakdown. The perf
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Figure 4.10. Redis throughput at saturation.

tool reports that 55% of CPU cycles are spent swapping in pages (copy + hash-

ing), while serving IPIs accounts for 29%. Adding cache and compression on top

of SHA-256 decreases the latency median and increases the 99th percentile. This

is because, on a cache hit, the ZebRAM only needs to copy the page to userspace;

however, on a cache miss, it has to verify the hash of the page and decompress

the page too. The perf tool reports 42% of CPU cycles are spent in the decom-

pression routine and 26% in serving IPI requests for other cores and less than

5% in hashing and copying. This con�rms the presence of the swap-in/swap-out

feedback loop under high memory pressure. Adding ECC marginally increases

the latency, the perf tool reports similar CPU usage breakdown for the version

without ECC.

Larger working sets As expected, ZebRAM’s overheads are mostly associated

to swap-in/swap-out operations, which are masked when the working set can �t

in the safe region but naturally become more prominent as we grow the working

set. In this section, we want to evaluate the impact of supporting increasingly

larger working sets compared to a more traditional swap implementation. For

this purpose, we evaluate the performance of a key-value store in four di�erent
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Figure 4.11. Redis latency (99th percentile). The working set size is 50% of RAM (top) and
70% of RAM (bo�om).

setups: (i) unmodifed system, (ii) the basic version of ZebRAM (iii) ZebRAM

con�gured with ECC, and (iv) ZebRAM con�gured with ECC and SHA-256. The

basic version of ZebRAM uses just one of the two domains in which ZebRAM

splits the RAM and swaps to a fast SSD disk when the memory used by the OS

does not �t into it. We use YCSB[18] to generate load and induce a target working

set size against a redis (4.0.8) key-value store. We setup YCSB to use 1KB objects

and perform a 90/10 read/write operations ratio. Each test runs for 20 seconds

and, for each con�guration, we discard the results of 3 warmup rounds and report

the median across 11 runs. We con�gure YCSB to access the dataset key space

uniformly and we measure the throughput at saturation for di�erent data set

sizes.
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Figure 4.10 depicts the reported normalized execution time as a function of

the working set size (in percentage compared to the total RAM size). As shown

in the �gure, when the working set size is small enough (e.g., 44%) the OS hardly

reclaims any memory, hence the unsafe region remains unutilized and the nor-

malized execution time is only 1.08x for the basic version of ZebRAM while the

normalized execution time is between 1.04x and 1.10x for all other con�gurations

of ZebRAM. As we increase the working set size, the OS starts reclaiming pages

and the normalized execution time increases accordingly. However, the increase

is much more gentle for ZebRAM compared to the basic version of ZebRAM and

the gap becomes more signi�cant for larger working set sizes. For instance, for a

fairly large working set size (e.g., 70%), ZebRAM (ECC) has 3.00x normalized ex-

ecution time, and ZebRAM (ECC and SHA-256) has 3.90x, compared to the basic

version of ZebRAM at 30.47x.

To study the impact of ZebRAM on latency, we �x the working set size to 50%

and 70% of the total RAM and repeat the same experiment while varying the load

on the server. Figure 4.11 presents our results for the 99th latency percentile. At

50%, results of (i) the ZebRAM con�gured with ECC, (ii) the ZebRAM con�gured

with ECC and SHA-256, and (iii) baseline (unmodi�ed) follow the same trend.

The ZebRAM’s �rst con�guration (only ECC) reports a 99th latency percentile

of 138us for client request rates below 80,000, compared to 584us for ZebRAM

(basic). At 70%, the gap is again more prominent, with ZebRAM reporting a 99th

latency percentile of 466us and ZebRAM (basic) reporting 6,887us.

Overall, ZebRAM can more gracefully reduce performance for larger working

sets compared to a traditional (basic ZebRAM) swap implementation, thanks to

its ability to use an in-memory cache and despite the integrity checks required

to mitigate Rowhammer. As our experiments demonstrate, given a target per-

formance budget, ZebRAM can support much larger working sets compared to

the ZebRAM’s basic implementation, while providing a strong defense against

arbitrary Rowhammer attacks. This is unlike the basic ZebRAM implementation,

which optimistically provides no protection against similar bit �ip-based attacks.

Unfortunately, such attacks, which have been long-known for DRAM [39], have

recently started to target �ash memory as well [14, 47].

4.8 Related work

This section summarizes related work on Rowhammer attacks and defenses.
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A�acks In 2014, Kim et al. [39] were the �rst to show that it is possible to �ip

bits in DDR3 memory on x86 CPUs simply by accessing other parts of memory.

Since then, many studies have demonstrated the e�ectiveness of Rowhammer as

a real-world exploit in many systems.

The �rst practical Rowhammer-based privilege escalation attack, by Seaborn

and Dullien [225], targeted the x86 architecture and DDR3 memory, hammering

the memory rows by means of the native x86 clflush instruction that would

�ush the cache and allow high-frequency access to DRAM. By �ipping bits in

page table entries, the attack obtained access to privileged pages.

Not long after these earliest attacks, researchers greatly increased the threat

of Rowhammer attacks by showing that is possible to launch them from JavaScript

also, allowing attackers to gain arbitrary read/write access to the browser address

space from a malicious web page [10, 32].

Moreover, newer attacks started �ipping bits in memory areas other than

page table entries, such as object pointers (to craft counterfeit objects [10]), op-

codes [31], and even application-level sensitive data [71].

For instance, Flip Feng Shui demonstrated a new attack on VMs in cloud

environments that �ipped bits in RSA keys in victim VMs to make them easy

to factorize, by massaging the physical memory of the co-located VMs to land

the keys on a page that was hammerable by the attacker. Around the same time,

other researchers independently also targeted RSA keys with Rowhammer but

now for fault analysis [5]. Concurrently, also, Xiao et al. [87] presented another

cross-VM attack that manipulates page table entries in Xen.

Where the attacks initially focused on PCs with DDR3 con�gurations, later

research showed that ARM processors and DDR4 memory chips are also vulner-

able [80]. While this opened the way for Rowhammer attacks on smartphones,

the threat was narrower than on PCs, as the authors were not yet able to launch

such attacks from JavaScript. This changed recently, when research described a

new way to launch Rowhammer attacks from JavaScript on mobile phones and

PC, by making use of the GPU. Hammering directly from the GPU by way of

WebGL, the authors managed to compromise a modern smart phone browser in

under two minutes. Moreover, this time the targeted data structures are doubles

and pointers: by �ipping a bit in the most signi�cant bytes, the attack can turn

pointers into doubles (making them readable) and doubles into pointers (yielding

arbitrary read/write access).

All Rowhammer attacks until that point required local code execution. Re-

cently, however, researchers demonstrated that even remote attacks on servers

are possible [79], by sending network tra�c over high-speed network to a victim
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process, using RDMA NICs. As the server that is receiving the network packets

is using DMA to write to its memory, the remote attacker is able to �ip bits in

the server. By carefully manipulating the data in a key-value store, they show

that it is possible to completely compromise the server process.

It should be clear that Rowhammer exploits have spread from a narrow and

arcane threat to target two of the most popular architectures, in all common

computing environments, di�erent types of memory (and arguably �ash [14]),

while covering most common threat models (local privilege escalation, hosted

JavaScript, and even remote attacks). ZebRAM protects against all of the above

attacks.

Defenses Kim et al. [39] propose multiple defenses against Rowhammer. These

defenses have proven insu�cient [3, 17] and infeasible to deploy on the required

massive scale. The new LPDDR4 standard [112] speci�es two features which to-

gether defend against Rowhammer: TRR and MAC. Despite these defenses, van

der Veen et al. still report bit �ips on a Google pixel phone with LPDDR4 mem-

ory [226] and Gruss et al. [224] report bit �ips in TRR memory. While nobody

has demonstrated Rowhammer attacks against ECC memory yet, the real prob-

lem with such hardware solutions is that most systems in use today do not have

ECC, and replacing all DRAM in current devices is simply infeasible.

In order to protect from Rowhammer attacks, many vendors simply disabled

features in their products to make life harder for attackers. For instance, Linux

disabled unprivileged access to the pagemap [225], Microsoft disabled memory

deduplication [181] to defend from the Dedup Est Machina attack [10], and Google

disabled [209] the ION contiguous heap in response to the Drammer attack [80]

on mobile ARM devices. Worryingly, not a single defence is currently deployed to

protect from the recent GPU-based Rowhammer attack on mobile ARM devices

(and PCs), even though it o�ers attackers a huge number of vulnerable devices.

Finally, researchers have proposed targeted software-based solutions against

Rowhammer. ANVIL [3] relies on Intel’s performance monitoring unit (PMU)

to detect and refresh likely Rowhammer victim rows. An improved version of

ANVIL requires specialized Intel PMUs with a �ne-grained physical to DRAM

address translation. Unfortunately, Intel’s (and AMD’s) PMUs do not capture pre-

cise address information when memory accesses bypass the CPU cache through

DMA. Hence, this version of ANVIL is vulnerable to o�-CPU Rowhammer at-

tacks. Unlike ANVIL, ZebRAM is secure against o�-CPU attacks, since device

drivers transparently allocate memory from the safe region.

CATT [11] isolates (only) user and kernel space in physical memory so that
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user-space attackers cannot trigger bit �ips in kernel memory. However, re-

search [31] shows CATT to be bypassable by �ipping opcode bits in the sudo

program code. Moreover, CATT does not defend against attacks that target co-

hosted VMs at all [11]. In contrast, ZebRAM protects against co-hosted VM at-

tacks, attacks against the kernel, attacks between (and even within) user-space

processes and attacks from co-processors such as GPUs.

Other recent software-based solutions have targeted speci�c Rowhammer at-

tack variants. GuardION isolates DMA bu�ers to protect mobile devices against

DMA-based Rowhammer attacks [81]. ALIS isolates RDMA bu�ers to protect

RDMA-enabled systems against Throwhammer [79]. Finally, VUSion random-

izes page frame allocation to protect memory deduplication-enabled systems

against Flip Feng Shui [62].

4.9 Discussion

This section discusses feature and performance tradeo�s between our ZebRAM

prototype and alternative ZebRAM implementations.

4.9.1 Prototype

Because the ZebRAM prototype relies on the hypervisor to implement safe/un-

safe memory separation, and on a cooperating guest kernel for swap manage-

ment, both host and guest need modi�cations. In addition, the guest physical

address space will map highly non-contiguously to the host address space, pre-

venting the use of huge pages. The guest modi�cations, however, are small and

self-contained, do not touch the core memory management implementation and

are therefore highly compatible with mainline and third party LKMs.

4.9.2 Alternative Implementations

In addition to our implementation presented in Section 4.5, several alternative

ZebRAM implementations are possible. Here, we compare our ZebRAM im-

plementation to alternative hardware-based, OS-based, and guest-transparent

virtualization-based implementations.

Hardware-based Implementing ZebRAM at the hardware level would require

a physical-to-DRAM address mapping where sets of odd and even rows are mapped

to convenient physical address ranges, for instance an even lower-half and an

odd upper-half. This can be achieved with by a fully programmable memory con-

troller, or implemented as a con�gurable feature in existing designs. With such a
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mapping in place, the OS can trivially separate memory into safe and unsafe re-

gions. In this model, the Swap Manager, Cache Manager and Integrity Manager

are implemented as LKMs just as in the implementation from Section 4.5. In

contrast to other implementations, a hardware implementation requires no hy-

pervisor, allows the OS to make use of (transparent) huge pages and requires min-

imal modi�cations to the memory management subsystem. While a hardware-

supported ZebRAM implementation has obvious performance bene�ts, it is cur-

rently infeasible to implement because memory controllers lack the required fea-

tures.

OS-based Our current ZebRAM prototype implements the Memory Remap-

per as part of a hypervisor. Alternatively, the Memory Remapper can be imple-

mented as part of the bootloader, using Linux’ boot memory allocator to reserve

the unsafe region for use as swap space. While this solution obviates the use of

a hypervisor, it also results in a non-contiguous physical address space that pre-

cludes the use of huge pages and breaks DMA in older devices. In addition, it is

likely that this approach requires invasive changes to the memory management

subsystem due to the very fragmented physical address space.

Transparent Virtualization-based While our current ZebRAM implementa-

tion requires minor changes to the guest OS, it is also possible to implement

a virtualization-based variant of ZebRAM that is completely transparent to the

guest. This entails implementing the ZebRAM swap disk device in the host and

then exposing the disk to the guest OS as a normal block device to which it can

swap out. The drawback of this approach is that it degrades performance by

having the hypervisor interposed between the guest OS and unsafe memory for

each access to the swap device, a problem which does not occur in our current

implementation. The clear advantage to this approach is that it is completely

guest-agnostic: guest kernels other than Linux, including legacy and proprietary

ones are equally well protected, enabling existing VM deployments to be near-

seamlessly transitioned over to a Rowhammer-safe environment.

4.10 Conclusion

The root cause of the Rowhammer bug is the vendor’s design choice to optimize

the cost-per-bit by cramming bits so close together. As the bit �ips/memory

errors induced by Rowhammer happen without any indication, the system fails

to detect it. Clearly, this design of memory chips violates the design principle
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called Fail securely (see Table 1.2). The basic idea behind the Fail securely is that

when a system fails, it should do so securely; the con�dentiality and integrity

of a system should remain even though availability has been lost. The attackers

must not be permitted to gain access rights to privileged objects that are normally

inaccessible during a failure.

In this chapter, we have introduced ZebRAM, the �rst comprehensive soft-

ware defense against all forms of Rowhammer. ZebRAM uses guard rows to

isolate all memory rows containing user or kernel data, protecting these from

Rowhammer-induced bit �ips. Moreover, ZebRAM implements an e�cient integrity-

checked memory-based swap disk to utilize the memory sacri�ced to the guard

rows. Since Rowhammer’s root cause is vendors optimizing the cost-per-bit by

cramming bits so close together that an access can �ip bits in adjacent cells, no

reliable solution to undo such e�ects will be free of cost. Nevertheless, our eval-

uation shows ZebRAM to be a strong defense able to use all available memory at

a cost that is a function of the workload. To aid future work, we release ZebRAM

as open source.
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5 An In-depth Look into
a Modern Cyber Threat
(Cryptojacking)

A wave of alternative coins that can be e�ectively mined without specialized

hardware, and a surge in cryptocurrencies’ market value has led to the develop-

ment of cryptocurrency mining (cryptomining) services, such as Coinhive, which

can be easily integrated into websites to monetize the computational power of

their visitors. While legitimate website operators are exploring these services

as an alternative to advertisements, they have also drawn the attention of cy-

bercriminals: drive-by mining (also known as cryptojacking) is a new web-based

attack, in which an infected website secretly executes JavaScript code and/or a

WebAssembly module in the user’s browser to mine cryptocurrencies without

her consent.

This new class of cyber threat neither violates any of the current design prin-

ciples nor exploits an implementation bug. It does not break today’s widely-

accepted security model called CIA triad (standing for Con�dentiality, Integrity,

and Availability); but, still is a very practical and stealthy cyber attack that mon-

etizes of victim’s computational resources. In this chapter, we perform a compre-

hensive analysis on Alexa’s Top 1 Million websites to shed light on the prevalence

and pro�tability of this attack. We study the websites a�ected by drive-by min-

ing to understand the techniques being used to evade detection, and the latest

web technologies being exploited to e�ciently mine cryptocurrency. As a result

of our study, which covers 28 Coinhive-like services that are widely being used

by drive-by mining websites, we identi�ed 20 active cryptomining campaigns.

Motivated by our �ndings, we investigate possible countermeasures against

this type of attack. We discuss how current blacklisting approaches and heuris-

tics based on CPU usage are insu�cient, and present MineSweeper, a novel
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detection technique that is based on the intrinsic characteristics of cryptomining

code, and, thus, is resilient to obfuscation. Our approach could be integrated into

browsers to warn users about silent cryptomining when visiting websites that do

not ask for their consent.
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5.1 Introduction

Ever since its introduction in 2009, Bitcoin [187] has attracted the attention of cy-

bercriminals due to the possibility to perform and receive anonymous payments.

In addition, the �nancial reward for using computing power for mining has incen-

tivized criminals to experiment with silent cryptocurrency miners (cryptominers),
which gained popularity among malware authors who were, after all, already in

the business of compromising PCs and herding large numbers of them in botnets.

However, as Bitcoin mining became too di�cult for regular machines, the pro�ts

of mining botnets dwindled, and Bitcoin-mining botnets declined: an analysis by

McAfee in 2014 suggested that malicious miners are not pro�table on PCs and

certainly not on mobile devices [173].

Since then, a wave of alternative coins (altcoins) has been introduced: the

market now counts over 1,500 cryptocurrencies, out of which more than 600 see

an active trade. At the time of writing, they represent over 50% of the cryp-

tocurrency market [95]. Unlike Bitcoin, many of them are still mineable without

specialized hardware. Furthermore, miners can organize themselves into mining
pools, which allow members to distribute mining tasks and share the rewards.

These new currencies, and an overall surge in market value across cryptocurren-

cies at the end of 2017 [24], has renewed interest in cryptominers and led to the

proliferation of cryptomining services, such as Coinhive [140], which can eas-

ily be integrated into a website to mine on its visitors’ devices from within the

browser.

For cybercriminals, these services provide a low-e�ort way to monetize web-

sites as part of drive-bymining (or cryptojacking) attacks: they either compromise

webservers (through exploits [131, 175, 191, 203, 208], or taking advantage of mis-

con�gurations [190]) and install JavaScript-based miners, distribute their miners

through advertisements (including Google’s DoubleClick on YouTube [155] and

the AOL advertising platform [178]), or compromise third-party libraries [215]

included in numerous websites. Attackers also have come up with creative tactics

to conceal their attack, for example by using “pop-under” windows [154] (to max-

imize the time a victim spends on the mining website), or by abusing Coinhive’s

URL shortening service [221]. Finally, rogue WiFi hotspots [137] and compro-

mised routers [169] allow attackers to inject the mining payload on a large scale

into any website that their users visit.

However, in-browser mining is not malicious per-se: charities, such as UNICEF

[176], launched dedicated websites to mine for donations, and legitimate web-

sites are exploring mining in an attempt to monetize their content in the presence
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of ad blockers [196]. Whether users accept cryptocurrency miners as an alterna-

tive to invasive advertisements, which raise privacy concerns due to wide-spread

targeting and tracking [16, 55, 63], remains to be seen. For them, in-browser

mining degrades their system’s performance and increases its power consump-

tion [102]. Therefore, the key distinction between these use cases and drive-by

mining attacks is user consent and whether a website discloses its mining activ-

ity or not. For example, as a way to enforce user consent for in-browser min-

ing, Coinhive launched AuthedMine [107], which explicitly requires user input.

However, a related study has found that this API has not yet found widespread

adoption [199]. Related work also suggested the introduction of a “do not mine”

HTTP header [23], which, however, websites do not necessarily need to honor.

To study the prevalence of drive-by mining attacks, i.e., in-browser mining

without requiring any user interaction or consent, we performed a comprehen-

sive analysis of Alexa’s Top 1 Million websites [127]. As a result of our study,

which covers 28 Coinhive-like services, we identi�ed 20 active cryptomining

campaigns. In contrast to a previous study, which found cryptomining on low-

value targets, such as parked websites, and concluded that cryptomining was

not very pro�table [23], we �nd that cryptomining can indeed make economic

sense for an attacker. We identi�ed several video players used by popular video

streaming websites that include cryptomining code and which maximize the time

users spend on a website mining for the attacker—potentially earning more than

US$ 30,000 a month. Furthermore, we found that instead of JavaScript-based at-

tacks, drive-by mining now largely takes advantage of WebAssembly (Wasm) to

e�ciently mine cryptocurrencies and maximize pro�ts.

As a countermeasure, browsers [138, 213, 218], dedicated browser extensions

[229, 232], and ad blockers have started to use blacklists. However, maintain-

ing a complete blacklist is not scalable, and it is prone to false negatives. These

blacklists are often manually compiled and are easily defeated by URL randomiza-

tion [198] and domain generation algorithms (DGAs), which are already actively

being used in the wild [220]. Other detection attempts look for high CPU usage

as an indicator that cryptocurrency mining is taking place. This not only causes

false positives for other CPU-intensive use cases, but also causes false negatives,

as cryptocurrency miners have started to throttle their CPU usage to evade de-

tection [23].

In this work, we focus on Wasm-based mining, the most e�cient and widespread

technique for drive-by mining attacks. We propose MineSweeper, a drive-by

mining defense that is based on identifying the intrinsic characteristics of the

mining itself: the execution of its hashing function. Our �rst approach is to per-
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form static analysis on the Wasm code and to identify the hashing code based on

the cryptographic operations it performs. Currently, attackers avoid heavy ob-

fuscation of the Wasm code as it comes with performance penalties, and hence

decreases pro�ts. To deal with future evasion techniques, we present a second,

more obfuscation-resilient detection approach: by monitoring CPU cache events

at run time we can identify cryptominers based on their memory access patterns.

As browsers are currently struggling to �nd a suitable alternative to black-

lists [159], the techniques used by MineSweeper could be adopted as a defense

mechanism against drive-by mining, for example by warning users and enforc-

ing their consent before allowing mining scripts to execute or blocking mining

scripts altogether.

Contributions In summary, our contributions are the following:

1. We perform the �rst in-depth assessment of drive-by mining.

2. We discuss why current defenses based on blacklisting and CPU usage are

ine�ective.

3. We propose MineSweeper, a novel detection approach based on the identi-

�cation of cryptographic functions through static analysis and monitoring

of cache events during run time.

In the spirit of open science, we make the collected datasets and the code we de-

veloped for this work publicly available at https://github.com/vusec/minesweeper.

5.2 Background

A cryptocurrency is a medium of exchange much like the Euro or the US Dollar,

except that it uses cryptography and blockchain technology to control the cre-

ation of monetary units and to verify the transaction of a fund. Bitcoin [187] was

the �rst such decentralized digital currency. A cryptocurrency user can trans-

fer money to another user by forming a transaction record and committing it

to a distributed write-only database called blockchain. The blockchain is main-

tained by a peer-to-peer network of miners. A miner collects transaction data

from the network, validates it, and inserts it into the blockchain in the form of

a block. When a miner successfully adds a valid block to the blockchain, the

network compensates the miner with cryptocurrency (e.g., Bitcoins). In the case

of Bitcoin, this process is called Bitcoin mining, and this is how new Bitcoins en-

https://github.com/vusec/minesweeper


96 CHAPTER 5. MINESWEEPER

ter circulation. Bitcoin transactions are protected with cryptographic techniques

that ensure only the rightful owner of a Bitcoin wallet address can transfer funds

from it.

To add a block (i.e., a collection of transaction data) to the blockchain, a miner

has to solve a cryptographic puzzle based on the block. This mechanism prevents

malicious nodes from trying to add bogus blocks to the blockchain and earn the

reward illegitimately. A valid block in the blockchain contains a solution to a

cryptographic puzzle that involves the hash of the previous block, the hash of

the transactions in the current block, and a wallet address to credit with the

reward.

5.2.1 Cryptocurrency Mining Pools

The cryptographic puzzle is designed such that the probability of �nding a solu-

tion for a miner is proportional to the miner’s computational power. Due to the

nature of the mining process, the interval between mining events exhibits high

variance from the point of view of a single miner. Consequently, miners typically

organize themselves into mining pools. All members of a pool work together to

mine each block, and share the reward when one of them successfully mines a

block.

The protocol used by miners to reliably and e�ciently fetch jobs from mining

pool servers is known as Stratum [116]. It is a cleartext communication proto-

col built over TCP/IP, using a JSON-RPC format. Stratum prescribes that miners

who want to join the mining pool �rst send a subscription message, describing

the miner’s capability in terms of computational resources. The pool server then

responds with a subscription response message, and the miner sends an authoriza-
tion request message with its username and password. After successful authoriza-

tion, the pool sends a di�culty noti�cation that is proportional to the capability

of the miner—ensuring that low-end machines get easier jobs (i.e., puzzles) than

high-end ones. Finally, the pool server assigns these jobs by means of job noti�-
cations. Once the miner �nds a solution, it sends it to the pool server in the form

of a share. The pool server rewards the miner in proportion to the number of

valid shares it submitted and the di�culty of the jobs.

5.2.2 In-browser Cryptomining

The idea of cryptomining by simply loading a webpage using JavaScript in a

browser exists since Bitcoin’s early days. However, with the advent of GPU- and

ASIC-based mining, browser-based Bitcoin mining, which is 1.5x slower than na-
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tive CPU mining [23], became unpro�table. Recently, the cause for the decline of

JavaScript-based cryptocurrency miners has subsided: due to new CPU-mineable

altcoins and increasing cryptocurrency market value, it is now pro�table to mine

cryptocurrencies with regular CPUs again. In 2017, Coinhive was the �rst to re-

visit the idea of in-browser mining. They provide APIs to website developers

for implementing in-browser mining on their websites and to use their visitors’

CPU resources to mine the altcoin Monero. Monero employs the CryptoNight

algorithm [200] as its cryptographic puzzle, which is optimized towards mining

by regular CPUs and provides strong anonymity; hence, it is ideal for in-browser

cryptomining.
1

Moreover, the development of new web technologies that have

been happening in parallel allows for more e�cient—and thus pro�table—mining

in the browser.

5.2.3 Web Technologies

Web developers continuously strive to deploy performance-critical parts of their

application in the form of native code and run it inside the browser securely. As

such, there are on-going research and development e�orts to improve the per-

formance of native code execution in the web browser [33, 104]. Naturally, the

developers of JavaScript-based cryptominers started exploiting these advance-

ments in web technologies to speed up drive-by mining, thus taking advantage

of two web technologies: asm.js and WebAssembly.

In 2013, Mozilla introduced asm.js, which takes C/C++ code to generate a

subset of JavaScript code with annotations that the JavaScript engine can later

compile to native code. To improve the performance of native code in the browser

even further, in 2017, the World Wide Web Consortium developed WebAssembly

(Wasm). Any C/C++/Rust-based application can be easily converted to Wasm, a

binary instruction format for a stack-based virtual machine, and executed in the

browser at native speed by taking advantage of standard hardware capabilities

available on a wide range of platforms. Today, all four major browsers (Firefox,

Chrome, Safari, and Edge) support Wasm.

The main di�erence between asm.js andWasm is in the way in which the code

is optimized. In asm.js, the JavaScript Just-in-Time (JIT) compiler of the browser

converts the JavaScript to an Abstract Syntax Tree (AST). Then, it compiles the

AST to non-optimized native code. Later, at run time, the JavaScript JIT engine

looks for slow code paths and tries to re-optimize this code at run time. The

1
Note that Monero is not the only altcoin that uses the CryptoNight algorithm: most CPU-mineable

coins that exist today, such as Bytecoin, Bitsum, Masari, Stellite, AEON, Graft, Haven Protocol, Intense

Coin, Loki, Electroneum, BitTube, Dero, LeviarCoin, Sumokoin, Karbo, Dinastycoin, and TurtleCoin are

based on CryptoNight.
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detection and re-optimization of slow code paths consume a substantial amount

of CPU cycles. In contrast, Wasm performs the optimization of the whole module

only once, at compile time. As a result, the JIT engine does not need to parse

and analyze the Wasm module to re-optimize it. Rather, it directly compiles the

module to native code and starts executing it at native speed.

5.2.4 Existing Defenses against Drive-by Mining

Until now, there is no reliable mechanism to detect drive-by mining. The devel-

opers of CoinBlockerLists [227] maintain a blacklist of mining pools and proxy

servers that they manually collect from reports on security blogs and Twitter.

Dr. Mine [231] attempts to block drive-by mining by means of explicitly black-

listed URLs (based on for example CoinBlockerLists). In particular, it detects

JavaScript code that tries to connect to blacklisted mining pools. MinerBlock [229]

further combines blacklists with detecting potential mining code inside loaded

JavaScript �les. Both approaches su�er from high false negatives: as we show in

our analysis, most of the drive-by mining websites are using obfuscated JavaScript

and randomized URLs to evade the aforementioned detection techniques.

Google engineers from the Chromium project recently acknowledged that

blacklisting does not work and that they are looking for alternatives [159]. Specif-

ically, they considered adding an extra permission to the browser to throttle code

that runs the CPU at high load for a certain amount of time. Related studies also

found high CPU usage from the website as an indicator of drive-by mining [186].

At the same time, another recent study shows that many drive-by miners are

throttling their CPU usage to around 25% [23] and simply considering the CPU

usage alone as the indicator of drive-by mining su�ers from high false negatives.

Even without taking the CPU throttling to such extremes, drive-by miners can

blend in with other browsing activity, potentially leading to false positives for

other CPU-intensive use cases, such as games [198].

Making matters worse, in-browser mining service providers, such as Coin-

hive, have no incentives to disrupt drive-by mining attacks: Coinhive keeps 30%

of the cryptocurrency that is mined with its code. In reaction to abuse com-

plaints, they reportedly keep all of the pro�ts of campaigns, whose members

still keep mining cryptocurrency even after their site key (i.e., the campaign’s

account identi�er with Coinhive) has been terminated [172].
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Figure 5.1. Overview of a typical drive-by mining a�ack.

5.3 Threat Model

We consider only drive-by mining rather than legitimate browser-based mining

in our threat model, i.e., we measure only the prevalence of mining without users’

consent. A website may host stealthy miners for many reasons. Some website

owners knowingly include them on their sites without informing the users to

monetize their sites on the sly. However, it is also possible that the owners are

unaware that their site is stealing CPU cycles from their visitors. For instance,

silent cryptocurrency miners may ship with advertisements or third-party ser-

vices. In some cases, the attackers install the miners after they compromise a

victim site. In this research, we measure, analyze, and detect all these cases of

drive-by mining.

Figure 5.1 illustrates a typical drive-by mining attack. A cryptocurrency min-

ing script contains two components: the orchestrator and the mining payload.

When a user visits a drive-by mining website, the website (1) serves the orches-

trator script, which checks the host environment to �nd out how many CPU

cores are available, (2) downloads the highly-optimized cryptomining payload

(as either Wasm or asm.js) from the website or an external server, (3) instan-

tiates a number of web workers [117], i.e., spawns separate threads, with the

mining payload, depending on how many CPU cores are available, (4) sets up

the connection with the mining pool server through a WebSocket proxy server,

and, (5) �nally, fetches work from the mining pool and submits the hashes to

the mining pool through the WebSocket proxy server. The protocol used for this

communication with the mining pool is usually Stratum.
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Table 5.1. Summary of our dataset and key findings.

Crawling period March 12, 2018 – March 19, 2018
# of crawled websites 991,513
# of drive-by mining websites 1,735 (0.18%)
# of drive-by mining services 28
# of drive-by mining campaigns 20
# of websites in biggest campaign 139
Estimated overall profit US$ 188,878.84
Most profitable/biggest campaign US$ 31,060.80
Most profitable website US$ 17,166.97

5.4 Drive-by Mining in the Wild

The goals of our large-scale analysis of active drive-by mining campaigns in the

wild are two-fold: �rst, we investigate the prevalence and pro�tability of this

threat to show that it makes economic sense for cybercriminals to invest in this

type of attack—being a low e�ort heist with potentially high rewards. Second,

we evaluate the e�ectiveness of current drive-by mining defenses, and show that

they are insu�cient against attackers who are already actively using obfuscation

to evade detection. Based on our �ndings, we propose an obfuscation-resilient

detection system for drive-by mining websites in Section 5.5.

As part of our analysis, we �rst crawl Alexa’s Top 1 Million websites, log and

analyze all code served by each website, monitor side e�ects caused by executing

the code, and capture the network tra�c between the visited website and any

external server. Then, we proceed to detect cryptomining code in the logged

data and the use of the Stratum protocol for communicating with mining pool

servers in the network tra�c of each website. Finally, we correlate the results

from all websites to answer the following questions:

1. How prevalent is drive-by mining in the wild?

2. How many di�erent drive-by mining services exist currently?

3. Which evasion tactics do drive-by mining services employ?

4. What is the modus operandi of di�erent types of campaigns?

5. How much pro�t do these campaigns make?

6. Can we �nd common characteristics across di�erent drive-by mining ser-

vices that we can use for their detection?
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Table 5.2. Types of mining services in our initial dataset and their keywords.

Mining Service Keywords

Coinhive new CoinHive\.Anonymous | coinhive.com/lib/coinhive.min.js | authedmine.com/lib/
CryptoNoter minercry.pt/processor.js | \.User\(addr
NFWebMiner new NFMiner | nfwebminer.com/lib/
JSECoin load.jsecoin.com/load
Webmine webmine.cz/miner
CryptoLoot CRLT\.anonymous | webmine.pro/lib/crlt.js
CoinImp www.coinimp.com/scripts | new CoinImp.Anonymous | new Client.Anonymous |

freecontent.stream | freecontent.data | freecontent.date
DeepMiner new deepMiner.Anonymous | deepMiner.js
Monerise apin.monerise.com | monerise_builder
Coinhave minescripts\.info’
Cpufun snipli.com/[A-Za-z]+\" data-id=’
Minr abc\.pema\.cl | metrika\.ron\.si | cdn\.rove\.cl | host\.dns\.ga | static\.hk\.rs | hal-

laert\.online | st\.kjli\.fi | minr\.pw | cnt\.statistic\.date | cdn\.static-cnt\.bid | ad\.g-
content\.bid | cdn\.jquery-uim\.download’

Mineralt ecart\.html\?bdata= | /amo\.js\"> | mepirtedic\.com’

Table 5.1 summarizes our dataset and key �ndings. We start by discussing our

data collection approach in Section 5.4.1, explain how we identify drive-by min-

ing websites in Section 5.4.2, explore websites and campaigns in-depth, as well as

estimate their pro�t in Section 5.4.3, and �nally summarize characteristics that

are common across the identi�ed drive-by mining services in Section 5.4.4.

5.4.1 Data Collection

As the basis for our analysis, we built a web crawler for visiting Alexa’s Top

1 Million websites and collecting data related to drive-by mining. During our

preliminary analysis, we observed that many malicious websites serve a mining

payload only when the user visits an internal webpage. Thus, in contrast to re-

lated studies [185, 102, 73] that based their analysis only on the websites’ landing

pages,
2

we con�gured the crawler to visit three random internal pages of each

website. The crawler stayed for four seconds on each visited page. Moreover,

we con�gured it to passively collect data from each visited website without sim-

ulating any user interactions. That is, the crawler did not give any consent for

cryptomining.

2
PublicWWW [194] only recently started indexing internal pages: https://twitter.com/bad_packets/

status/1029553374897696768 (August 14, 2018)

https://twitter.com/bad_packets/status/1029553374897696768
https://twitter.com/bad_packets/status/1029553374897696768
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Listing 5.1. Example usage of the Coinhive mining service.

<script src="https://coinhive.com/lib/coinhive.min.js">
</script>
<script>

var miner = new CoinHive.Anonymous('CLIENT-ID',
{throttle: 0.9});

miner.start();
</script>

5.4.1.1 Cryptomining Code

To identify the cryptomining payloads that the drive-by mining website serves

to client browsers, the web crawler saves the webpage, any embedded JavaScript,

and all the requests originating from and responses served to the webpage. Then,

our o�ine analyzer parses these logs to identify known drive-by mining services

(such as Coinhive or Mineralt). As a �rst approximation, it does so using string

matches, similar to existing defenses (see Section 5.2.4). However, this is only the

�rst step in our analysis: as we show later, relying on pattern matching alone to

detect drive-by mining easily leads to false negatives.

As explained in the previous section, the mining code consists of two compo-

nents: the orchestrator and the optimized hash generation code (i.e., the mining

payload), which we can both identify independently of each other.

Identification of the orchestrator Usually, websites embed the orchestrator

script in the main webpage, which we can detect by looking for speci�c string

patterns. For instance, Listing 5.1 shows a website using Coinhive’s service for

drive-by mining by including the orchestrator component (coinhive.min.js)

inside the <script> HTML tag. In this case, searching for keywords such as

CoinHive.Anonymous or coinhive.min.js is enough to identify whether a web-

site is using this particular drive-by mining service. We manually collected key-

words for 13 well-known mining services (see Table 5.2) to identify the websites

that are using them.

Identification of the mining payload. The orchestrator �rst checks whether

the browser supports Wasm. If not, the browser loads the optimized hash gen-

eration mining payload in the web worker using asm.js, otherwise, the mining

payload (Wasm module) is served to the client in one of the following three ways:

(i) the code is stored in the orchestrator script in a text format, which is com-

piled at run time to create the Wasm module, (ii) the orchestrator script retrieves

a pre-compiled Wasm module at run time from an external server, or (iii) the

web worker itself directly downloads a compiled Wasm module from an exter-
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nal server and executes it. For all three cases, we could have used the Chrome

browser (which supports Wasm) with the --dump-wasm-module �ag to dump

the Wasm module that the JIT engine (V8) executes. However, this �ag is not

o�cially documented [210] and at the time of our large-scale analysis we were

not aware of this feature. Hence, we detect the Wasm-based mining payload

in the following way: First, we dump all the JavaScript code and search for key-

words, such as cryptonight_hash and CryptonightWasmWrapper; the existence

of these keywords in the JavaScript implies the mining payload is served in text

format. We detect the second and third way of serving the payload by logging

and analyzing all the network requests and responsens from and to the browser’s

web worker.

Code obfuscation. We noticed that many drive-by mining services obfuscate

both the strings used in the orchestrator script and in the Wasm module to defeat

such keyword-based detection. Hence, we also look for other indicators for cryp-

tomining and store the Wasm module for further analysis. In this way, we can

estimate the number of drive-by mining services that employ code obfuscation

during our in-depth analysis in Section 5.4.3.3.

5.4.1.2 CPU Load as a Side E�ect

A cryptominer is a CPU-intensive program; hence, execution of the mining pay-

load usually results in a high CPU load. However, websites may also intentionally

throttle their CPU usage, either to evade detection or an attempt to conserve a

visitor’s resources. As part of our analysis, we investigate how many websites

keep the CPU usage lower than a certain threshold. To this end, we con�gured

the web crawler to log the CPU usage of each core and aggregate the usage across

cores.

5.4.1.3 Mining Pool Communication

Typically, a miner talks to a mining pool to fetch the block’s headers to start com-

puting hashes. Stratum is the most commonly used protocol to authenticate with

the mining pool or the proxy server to receive the job that needs to be solved, and,

if the correct hash is computed, to announce the result. Most drive-by mining

websites use WebSockets for this type of communication. As processes running

in a browser sandbox are not permitted to open system sockets, WebSockets were

designed to allow full-duplex, asynchronous communication between code run-

ning on a webpage and servers. As a result of using WebSockets, the operators
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Table 5.3. Stratum protocol commands and their keywords.

Command Keywords

Authentication type:auth | command:connect |
identifier:handshake | command:info

Authentication accepted type:authed | command:work
Fetch job identifier:job | type:job | command:work | command:get_job | command:set_-

job
Submit solved hash type:submit | command:share
Solution accepted command:accepted
Set CPU limits command:set_cpu_load

of drive-by mining services need to set up WebSocket servers to listen for con-

nections from their miners, and either process this data themselves if they also

operate their own mining pool or unwrap the tra�c and forward it to a public

pool.

Consequently, we log all the WebSocket frames which are sent and received

by the browser, as well as the AJAX request/response from the webpage. Then,

we analyze the logged data to detect any mining pool communication by search-

ing for command and keywords that are used by the Stratum protocol (listed

in Table 5.3). During this analysis, we also observed that some websites are ob-

fuscating the communication with the mining pool to evade detection. Thus, if

the logged data does not include any text but only binary content, we mark the

WebSocket communication as obfuscated.

Extraction of pools, proxies and site keys. The communication between a

cryptominer and the proxy server contains two interesting pieces of information:

the proxy server address and the client identi�er (also known as the site key). We

also found several drive-by mining services that include the public mining pool

and associated cryptocurrency wallet address that the proxy should use.

Clustering miners based on the proxy to which they connect gives us insights

on the number of di�erent drive-by mining services that are currently active.

Additionally, clustering miners based on their site key can be used to identify

campaigns. Finally, we can leverage information from public mining pool to

estimate the pro�tability of di�erent campaigns.

We extract this information by looking for keywords in each request sent

from the cryptominer and its response. Table 5.3 lists the keywords commonly

associated with each request/response pair in the Stratum protocol. For instance,

if the request sent from the miner contains keywords related to authentication,

we extract the site key from it.
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5.4.1.4 Deployment and Dataset

We deployed our web crawler in Docker containers running on Kubernetes in an

un�ltered network. We ran 50 Docker containers in parallel for one week mid-

March 2018 to collect data from Alexa’s Top 1 Million websites (as of February

28, 2018). Around 1% of the websites were o�ine or not responding, and we

managed to crawl 991,513 of them. This process resulted in a total of 4.6 TB raw

data, and a 550 MB database for the extracted information on identi�ed miners,

CPU load, and mining pool communication.

5.4.2 Data Analysis and Correlation

We �rst analyze the di�erent artifacts produced by the data collection individ-

ually, i.e., the cryptomining code itself, the CPU load as a side e�ect, and the

mining pool communication. We discuss how relying on each of these artifacts

alone can lead to both false positives and false negatives, and therefore correlate

our results across all three dimensions.

5.4.2.1 Cryptomining Code

We identi�ed 13 well-known cryptomining services using the keywords listed in

Table 5.2 and present our results in Table 5.4. We detected 866 websites (0.09%)

that are using these 13 services without obfuscating the orchestrator code in the

webpage. The majority of websites (59.35%) is using the Coinhive cryptomining

service. We also found 65 websites using multiple cryptomining services.

We revisited this analysis after our data correlation (described in 5.4.2.4) and

manually analysed part of the mining payloads of websites that we detected

based on other signals. In this way, we extended our initial list of keywords

for detecting unobfuscated payloads with hash_cn, cryptonight, WASMWrapper,

and crytenight, and we were able to identify mining services that were not part

of our initial dataset, but that are using CryptoNight-based payloads. In total, we

could identify 1,627 websites based on either keywords in the orchestrator or in

the mining payload.

However, similar to current blacklist-based approaches, keyword-based analysis

alone su�ers from false positives and false negatives. In terms of false positives,

this approach does not consider user consent, i.e., whether a website waits for a

user’s consent before executing the mining code. In terms of false negatives, this

approach cannot detect drive-by mining websites that use code obfuscation and

URL randomization, which we detected being applied in some form or another

by 82.14% of the services in our dataset (see Section 5.4.3.3).
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Table 5.4. Distribution of well-known cryptomining services.

Mining Service Number of Websites Percentage

Coinhive 514 59.35%

CoinImp 94 10.85%

Mineralt 90 10.39%

JSECoin 50 5.77%

CryptoLoot 39 4.50%

CryptoNoter 31 3.58%

Coinhave 14 1.62%

Minr 13 1.50%

Webmine 8 0.92%

DeepMiner 5 0.58%

Cpufun 4 0.46%

Monerise 2 0.23%

NF WebMiner 2 0.23%

Total 866 100%

5.4.2.2 CPU Load as a Side E�ect

Even though we logged the CPU load for each website during our crawl, we

ultimately do not use these measurements to detect drive-by mining websites for

the following reasons: First, since we were running the experiments in Docker

containers, the other processes running on the same machine could a�ect and

arti�cially in�ate our CPU load measurement. Second, the crawler spends only

four seconds on each webpage, thus, the page loading itself might lead to higher

CPU loads.

We can, however, use these measurements to speci�cally look for drive-by

mining websites with low CPU usage to give a lower bound for the pervasiveness

of CPU throttling across miners and the false negatives that a detection approach

solely relying on high CPU loads would cause.

5.4.2.3 Mining Pool Communication

Overall, 59,319 (5.39%) out of Alexa’s Top 1 Million websites use WebSockets to

communicate with external servers. Out of these, we identi�ed 1,008 websites

that are communicating with mining pool servers using the Stratum protocol

based on the keywords shown in Table 5.3. We also found that 2,377 websites

are encoding the data (as Hex code or salted Base64) that they send and receive
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through the WebSocket, in which case we could not determine whether they are

mining cryptocurrency.

Even though we successfully identi�ed 1,008 drive-by mining websites using

this method, this detection method su�ers from the following two drawbacks,

causing false negatives: drive-by mining services may use a custom communica-

tion protocol (that is, di�erent keywords than the ones presented in Table 5.3),

or they may be obfuscating their communication with the mining pool.

5.4.2.4 Data Correlation

In our preliminary analysis based on keyword search, we identi�ed 866 websites

using 13 well-known cryptomining services. To determine how many of these

websites start mining without waiting for a user to give her consent, for example

by clicking a button (which our web crawler was not equipped to do), we leverage

the identi�cation of the Stratum protocol: we identify 402 websites, based on

both their cryptomining code and the communication with external pool servers,

that initiate the mining process without requiring a user’s input. The remaining

464 websites either wait for the user’s consent, circumvent our Stratum protocol

detection, or did not initiate the Stratum communication within the timeframe

our web crawler spent on the website.

To extend our detection to miners that evade keyword-based detection, we

combine the collected information from the following sources:

• Mining payload: Websites identi�ed based on keywords found in the min-

ing payload.

• Orchestrator : Websites identi�ed based on keywords found in the orches-

trator code.

• Stratum: Websites identi�ed as using the Stratum communication protocol.

• WebSocket communication: Websites that potentially use an obfuscated com-

munication protocol.

• Number of web workers: All the in-browser cryptominers use web worker

threads to generate hashes, while only 1.6% of all websites in our dataset

use more than two web worker threads.

We identify drive-by mining websites by taking the union of all websites for

which we identi�ed the mining payload, orchestrator, or the Stratum protocol.

We further add websites for which we identi�ed WebSocket communication with

an external server and more than two web worker threads.
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As a result, we identify 1,735 websites as mining cryptocurrency, out of which

1,627 (93.78%) could be identi�ed based on keywords in the cryptomining code,

1,008 (58.10%) use the Stratum protocol in plaintext, 174 (10.03%) obfuscate the

communication protocol, and all the websites (100.00%) use Wasm for the crypto-

mining payload and open a WebSocket. Furthermore, at least 197 (11.36%) web-

sites throttle their CPU usage to less than 50%, while for only 12 (0.69%) min-

ing websites we observed a CPU load of less than 25%. In other words, relying

on high CPU loads (e.g., ≥50%) for detection would result in 11.36% false neg-

atives in this case (in addition to potentially causing false positives for other

CPU-intensive loads, such as games and video codecs). Similarly, relying only

on pattern matching on the payload would result in 6.23% false negatives.

Finally, in addition to the 13 well-known drive-by mining services that we

started our analysis with (see Table 5.4), we also discovered 15 new drive-by

mining services (see Section 5.4.3.6), for a total of 28 drive-by mining services in

our dataset.

5.4.3 In-depth Analysis and Results

Based on the drive-by mining websites we detected during our data correlation,

we now answer the questions posed at the beginning of this section.

5.4.3.1 User Notification and Consent

We consider cryptomining as abuse unless a user explicitly consents, e.g., by

clicking a button. While one of the �rst court cases on in-browser mining sug-

gests a more lenient de�nition of consent and only requires websites to provide

a clear noti�cation about the mining behavior to the user [165], we �nd that very

few websites in our dataset do so.

To locate any noti�cations, we searched for mining-related keywords (such as

CPU, XMR, Coinhive, Crypto and Monero) in the identi�ed drive-by mining web-

site’s HTML content. In this way, we identi�ed 67 out of 1,735 (3.86%) websites

that inform their users about their use of cryptomining. These websites include

51 proxy servers to the Pirate Bay, as well as 16 unrelated websites, which, in

some cases, justify the use of cryptomining as an alternative to advertisements.
3

We acknowledge that our �ndings only represent a lower bound of websites that

notify their users, as the noti�cations could also be stored in other formats, for

3
Examples: “If ads are blocked, a low percentage of your CPU’s idle processing power is used to solve

complex hashes, as a form of micro-payment for playing the game.” (dogeminer2.com) and “This website

uses some of your CPU resources to mine cryptocurrency in favor of the website owner. This is a some

[sic] sort of donation to thank the website owner for the work done, as well as to reduce the amount of

advertising on the website.” (crypticrock.com)

dogeminer2.com
crypticrock.com
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example as images, or be part of a website’s terms of service. However, locating

and parsing these terms is out of scope for this work.

We also found a number of websites that include Coinhive’s AuthedMine [107]

in addition to drive-by mining. AuthedMine is not part of our threat model, as

it requires user opt-in, and as such, we did not include websites using it in our

analysis. Still, at least four websites (based on a simple string search) include the

authedmine.min.js script, while starting to mine right away with a separate

mining script that does not require user input: three of these websites include

the miners on the same page, while the fourth (cnhv.co, a proxy to Coinhive),

includes AuthedMine on the landing page, and a non-interactive miner on an

internal page.

5.4.3.2 Mining from Internal Pages

We found 744 out of 1,735 websites (42.88%) stealing the visitor’s computational

power only when she visits one of their internal pages, validating our decision

to not only crawl the landing page of a website but also some internal pages.

From the manual analysis of these websites, we found that most of them are

video streaming websites: the websites start cryptomining when the visitor starts

watching a video by clicking the links displayed on the landing page.

5.4.3.3 Evasion Techniques

We have identi�ed three evasion techniques, which are widely used by the drive-

by mining services in our dataset.

Code obfuscation. For each of the 28 drive-by mining services in our dataset

we manually analyzed some of the corresponding websites, which we identi�ed

as mining, but for which we could not �nd any of the keywords in their crypto-

mining code. In this way, we identi�ed 23 (82.14%) of drive-by mining services

using one or more of the following obfuscation techniques in at least one of the

websites that are using them:

• Packed code: The compressed and encoded orchestrator script is decoded

using a chain of decoding functions at run time.

• CharCode: The orchestrator script is converted to charCode and embedded

in the webpage. At run time, it is converted back to a string and executed

using JavaScript’s eval() function.

cnhv.co
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• Name obfuscation: Variable names and functions names are replaced with

random strings.

• Dead code injection: Random blocks of code, which are never executed, are

added to the script to make reverse engineering more di�cult.

• Filename and URL randomization: The name of the JavaScript �le is ran-

domized or the URL it is loaded from is shortened to avoid detection based

on pattern matching.

We mainly found these obfuscation techniques applied to the orchestrator code

and not to the mining payload. Since the performance of the cryptomining pay-

load is crucial to maximize the pro�t from browser-based mining, the only ob-

fuscation currently performed on the mining payload is name obfuscation.

Listing 5.2. Anti-debugging trick used by 139 websites.

function check() {
before = new Date().getTime();
debugger;
after = new Date().getTime();
if (after-before > minimalUserResponseInMiliseconds) {

document.write(" Dont open Developer Tools. ");
self.location.replace('https:' +

window.location.href.substring(window.
location.protocol.length));

} else {
before = null;
after = null;
delete before;
delete after;

}
setTimeout(check, 100);

}

Obfuscated Stratum communication We only identi�ed the Stratum protocol

in plaintext (based on the keywords in Table 5.3) for 1,008 (58.10%) websites. We

manually analyzed the WebSocket communication for the remaining 727 (41.90%)

websites and found the following: (1) A common strategy to obfuscate the min-

ing pool communication found in 174 (10.03%) websites is to encode the request,

either as Hex code, or with salted Base64 encoding (i.e., adding a layer of encryp-

tion with the use of a pre-shared passphrase), before transmitting it through the

WebSocket. (2) We could not identify any pool communication for the remaining

553 websites, either due to other encodings, or due to slow server connections,

i.e., we were not able to observe any pool communication during the time our
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Table 5.5. Identified campaigns based on site keys, number of participating websites (#), and
estimated profit per month.

Site Key # Main Pool Type Profit (US$)

“428347349263284” 139 weline.info Third party (video) $31,060.80

OT1CI[..]oDWOri06 53 coinhive.com Torrent portals $8,343.18

ricewithchicken 32 datasecu.download Advertisement-based $1,078.27

jscustomkey2 27 207.246.88.253 Third party (counter12.com) $86.98

CryptoNoter 27 minercry.pt Advertisement-based $20.35

489dj[..]c1X8ADsu 24 datasecu.download Compromised websites $142.40

first 23 cloud�ane.com Compromised websites $120.02

vBaNY[..]8rnZEl00 20 hemnes.win Third party (video) $303.14

45CQj[..]23p5SkMN 17 rand.com.ru Compromised websites $306.60

Tumblr 14 count.im Third party $11.31

ClmAX[..]1uDYdJ8F 12 coinhive.com Third party (night-skin.com) $14.36

web crawler spent on a website, which could also be used by malicious websites

as a tactic to evade detection by automated tools.

Anti-debugging tricks We found 139 websites (part of a campaign targeting

video streaming websites) that employ the following anti-debugging trick (see

Listing 5.2): The code periodically checks whether the user is analyzing the code

served by the webpage using developer tools. If the developer tools are open in

the browser, it stops executing any further code.

5.4.3.4 Private vs. Public Mining Pools

All the drive-by mining websites in our dataset connect to WebSocket proxy

servers that listen for connections from their miners, and either process this data

themselves (if they also operate their own mining pool), or unwrap the tra�c and

forward it to a public pool. That is, the proxy server could be connecting to a pub-

lic mining or private mining pool. We identi�ed 159 di�erent WebSocket proxy

servers being used by the 1,735 drive-by mining websites and only six of them

are sending the public mining pool server address and the cryptocurrency wal-

let address (used by the pool administrator to reward the miner) associated with

the website to the proxy server. These six websites use the following public min-

ing pools: minexmr.com, supportxmr.com, moneroocean.stream, xmrpool.eu,

minemonero.pro, and aeon.sumominer.com.

weline.info
coinhive.com
datasecu.download
207.246.88.253
minercry.pt
datasecu.download
cloudflane.com
hemnes.win
rand.com.ru
count.im
coinhive.com
minexmr.com
supportxmr.com
moneroocean.stream
xmrpool.eu
minemonero.pro
aeon.sumominer.com


112 CHAPTER 5. MINESWEEPER

Table 5.6. Identified campaigns based on proxies, number of participating websites (#), and
estimated profit per month.

WebSocket Proxy # Type Profit (US$)
advisorstat.space 63 Advertisement-based $321.71
zenoviaexchange.com 37 Advertisement-based $1,516.08
stati.bid 20 Compromised websites $34.94
staticsfs.host 20 Compromised websites $384.91
webmetric.loan 17 Compromised websites $181.32
insdrbot.com 7 Third party (video) $1,689.26
1q2w3.website 5 Third party (video) $2,012.90
streamplay.to 5 Third party (video) $239.71
estream.to 4 Third party (video) $872.72

5.4.3.5 Drive-by Mining Campaigns

To identify drive-by mining campaigns we rely on site keys and WebSocket proxy

servers. If a campaign uses a public web mining service, the attacker uses the

same site key and proxy server for all websites belonging to this campaign. If

the campaign uses an attacker-controlled proxy server, the websites do not need

to embed a site key, but the websites still connect to the same proxy. Hence, we

use two approaches to �nd drive-by campaigns: First, we cluster websites that

are using the same site key and proxy. We discovered 11 campaigns using this

method (see Table 5.5). Second, we cluster the websites only based on the proxy

and then manually veri�ed websites from each cluster to see which mining code

they are using and how they are including it. We identi�ed nine campaigns using

this method (see Table 5.6). In total, we identi�ed 20 drive-by mining campaigns

in our dataset. These campaigns include 566 websites (32.62%), for the remaining

1,169 (67.38%) websites we could not identify any connection.

We manually analyzed websites from each campaign to study their modus

operandi. Based on this analysis, we classify the campaigns into the following

categories based on their infection vector: miners injected through third-party

services, miner injected through advertisement networks, and miners injected by

compromising vulnerable websites. We also captured proxy servers to the Pirate

Bay, which does not ask for users’ explicit consent for mining cryptocurrency, but

openly discusses this practice on its blog [193]. For each campaign, we estimate

the number of visitors per month and their monthly pro�t (details on how we

perform these estimations can be found in Section 5.4.3.7).

Third-party campaigns The biggest campaigns we found target video stream-

ing websites: we identi�ed nine third-party services that provide media players

advisorstat.space
zenoviaexchange.com
stati.bid
staticsfs.host
webmetric.loan
insdrbot.com
1q2w3.website
streamplay.to
estream.to
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that are embedded in other websites and which include a cryptomining script in

their media player.

Video streaming websites usually present more than one link to a video, also

known as mirrors. A click on such a link either loads the video in an embed-

ded video player provided by the website, if it is hosting the video directly, or

redirects the user to another website. We spotted suspicious requests originat-

ing from many such embedded video players which lead us to the discovery of

eight third-party campaigns: Hqq.tv, Estream.to, Streamplay.to, Watchers.to,

bitvid.sx, Speedvid.net, FlashX.tv and Vidzi.tv are the streaming websites that

embed cryptomining scripts through embedded video players. The biggest cam-

paign in our dataset is Hqq player, which we found on 139 websites through the

proxy weline.info. We estimate that around 2,500 streaming websites are includ-

ing the embedded video players from these eight services, attracting more than

250 million viewers per month. An independent study from AdGuard also re-

ported similar campaigns in December 2017 [179], however, we could not �nd

any indication that the video streaming websites they identi�ed were still mining

at the time of our analysis.

As part of third-party campaigns unrelated to video streaming, we found 14

pages on Tumblr under the domain tumblr[.]com mining cryptocurrency. The

mining payload was introduced in the main page by the domain fontapis[.]com.

We also found 39 websites were infected by using libraries provided by counter12.

com and night-skin.com.

Advertisement-based campaigns We found four advertisement-based cam-

paign in our dataset. In this case, attackers publish advertisements that include

cryptomining scripts through legitimate advertisement networks. If a user vis-

its the infected website and a malicious advertisement is displayed, the browser

starts cryptomining. The ricewithchicken campaign was spreading through the

AOL advertising platform, which was recently also reported in an independent

study by TrendMicro [178]. We also identi�ed three campaigns spreading through

the oxcdn.com, zenoviaexchange.com and moradu.com advertisement networks.

Compromised websites. We also identi�ed �ve campaigns that exploited web

application vulnerabilities to inject miner code into the compromised website.

For all of these campaigns, the same orchestrator code was embedded at the bot-

tom of the main HTML page (and not loaded from any external libraries) in a

similar fashion. Moreover, we could not �nd any relationship between the web-

sites within the campaigns: they are hosted in di�erent geographic locations and

Hqq.tv
Estream.to
Streamplay.to
Watchers.to
bitvid.sx
Speedvid.net
FlashX.tv
Vidzi.tv
weline.info
tumblr[.]com
fontapis[.]com
counter12.com
counter12.com
night-skin.com
oxcdn.com
zenoviaexchange.com
moradu.com
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Table 5.7. Additional cryptomining services we discovered, number of websites (#) using them,
and whether they provide a private proxy and private mining pool (X).

Mining Service # Main Pool Private?

CoinPot 43 coinpot.co

NeroHut 10 gnrdomimplementation.com X

Webminerpool 13 metamedia.host

CoinNebula 6 1q2w3.website X

BatMine 6 whysoserius.club X

Adless 5 adless.io X

Moneromining 5 moneromining.online X

Afminer 3 afminer.com X

AJcryptominer 4 ajplugins.com X

Crypto Webminer 4 anisearch.ru

Grindcash 2 ulnawoyyzbljc.ru

Mining.Best 1 mining.best X

WebXMR 1 webxmr.com X

CortaCoin 1 cortacoin.com X

JSminer 1 jsminer.net X

registered to di�erent organizations. One of the campaigns was using the public

mining pool server minexmr.com.
4

We checked the status of the wallet address

on the mining pool’s website and found that the wallet address had already been

blacklisted for malicious activity.

Torrent portals We found a campaign targeting 53 torrent portals, all but two

of which are proxies to the Pirate Bay. We estimate that all together these web-

sites attract 177 million users a month.

5.4.3.6 Drive-by Mining Services

We started our analysis with 13 drive-by mining services. By analyzing the clus-

ters based on WebSocket proxy servers, we discovered 15 more Coinhive-like

services (see Table 5.7). We classify these services into two categories: the �rst

category only provides a private proxy; however, the client can specify the min-

ing pool address that the proxy server should use as the mining pool. Grindcash,

Crypto Webminer, and Webminerpool belong to this category. The second cate-

gory provides a private proxy and a private mining pool. The remaining services

listed in Table 5.7 belong to this category, except for CoinPot, which provides a

private proxy but uses Coinhive’s private mining pool.

4
site key: 489djE22mdZ3j34vhES98tCzfVn57Wq4fA8JR6uzgHqYCfYE2nmaZxmjepwr3-

GQAZd3qc3imFyGPHBy4PBWLb4tc1X8ADsu

coinpot.co
gnrdomimplementation.com
metamedia.host
1q2w3.website
whysoserius.club
adless.io
moneromining.online
afminer.com
ajplugins.com
anisearch.ru
ulnawoyyzbljc.ru
mining.best
webxmr.com
cortacoin.com
jsminer.net
minexmr.com
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Table 5.8. Hash rate (H/s) on various mobile devices and laptops/desktops using Coinhive’s
in-browser miner.

Device Type Hash Rate (H/s)

M
ob

ile
D

ev
ic

e

Nokia 3 5
iPhone 5s 5
iPhone 6 7
Wiko View 2 8
Motorola Moto G6 10
Google Pixel 10
OnePlus 3 12
Huawei P20 13
Huawei Mate 10 Lite 13
iPhone 6s 13
iPhone SE 14
iPhone 7 19
OnePlus 5 21
Sony Xperia 24
Samsung Galaxy S9 Plus 28
iPhone 8 31
Mean 14.56

La
pt

op
D

es
kt

op Intel Core i3-5010U 16
Intel Core i7-6700K 65
Mean 40.50

5.4.3.7 Profit Estimation

All of the 1,735 drive-by mining websites in our dataset mine the CryptoNight-

based Monero (XMR) cryptocurrency using mining pools. Almost all of them

(1,729) use a site key and a WebSocket proxy server to connect to the mining

pool; hence, we cannot determine their pro�t based on their wallet address and

public mining pools.

Instead, we estimate the pro�t per month for all 1,735 drive-by mining web-

sites in the following way: we �rst collect statistics on monthly visitors, the type

of the device the visitor uses (laptop/desktop or mobile) and the time each vis-

itor spends on each website on average from SimilarWeb [202]. We retrieved

the average of these statistics for the time period from March 1, 2018 to May 31,

2018. SimilarWeb did not provide data for 30 websites in our dataset, hence, we

consider only the remaining 1,705 websites.

We further need to estimate the average computing power, i.e., the hash rate

per second (H/s), of each visitor. Since existing hash rate measurements [142]

only consider native executables and are thus higher than the hash rates of in-

browser miners—Coinhive states their Wasm-based miner achieves 65% of the
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Figure 5.2. Profit estimation and visitor numbers for the 142 drive-by mining websites earning
more than US$ 250 a month.

performance of their native miner [140],—we performed our own measurements.

Table 5.8 shows our results: According to our experiments, an Intel Core i3 ma-

chine (laptop) is capable of at least 16 H/s, while an Intel Core i7 machine (desk-

top) is capable of at least 65 H/s using the CryptoNight-based in-browser miner

from Coinhive. We use their hash rates (40.50 H/s) as the representative hash

rate for laptops and desktops. For the mobile devices, we calculated the mean of

the hash rates (14.56 H/s) that we observed on 16 di�erent devices. Finally, we

use the API provided by MineCryptoNight [183] to calculate the mining reward

in US$ for these hash rates and estimate the pro�t based on SimilarWeb’s visitor

statistics.

When looking at the pro�t of individual websites (see Figure 5.2 for the most

pro�table ones), we estimate that the two most pro�table websites are earning

US$ 17,166.97 and US$ 10,667.82 a month from 29.13 million visitors (tumangaonline.

com, average visit of 18.12 minutes) and 47.91 million visitors (xx1.me, aver-

age visit of 7.45 minutes), respectively. However, there is a long tail of websites

with very low pro�ts: on average, each of the 1,705 websites earned US$ 110.77

a month, and 900, around half of the websites in our dataset, earned less than

US$ 10.

Still, drive-by mining can provide a steady income stream for cybercriminals,

especially when considering that many of these websites are part of campaigns.

We present the results, aggregated per campaign, in Table 5.5 and Table 5.6: the

most pro�table campaign, spread over 139 websites, potentially earned US$ 31,060.80

a month. In total, we estimate the pro�t of all 20 campaigns at US$ 48,741.12.

However, almost 70% of websites in our dataset were not part of any campaign,

and we estimate the total pro�t across all websites and campaigns at US$ 188,878.85.

Note that we only estimated the pro�t based on the websites and campaigns

captured by crawling Alexa’s Top 1 Million websites, and the same campaigns

could make additional pro�t through websites not part of this list. As a point

of reference, concurrent work [73] calculated the total monthly pro�t of only

tumangaonline.com
tumangaonline.com
xx1.me
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the Coinhive service and including legitimate mining, i.e., user-approved min-

ing through for example AuthedMine, at US$ 254,200.00 (at a market value of

US$ 200) in May 2018. We base our estimations on Monero’s market values

on May 3, 2018 (1 XMR = US$ 253) [183]. The market value of Monero, as for

any cryptocurrency, is highly volatile and �uctuated between US$ 488.80 and

US$ 45.30 in the last year [141], and, thus pro�ts may vary widely based on the

current value of the currency.

5.4.4 Common Drive-by Mining Characteristics

Based on our analysis, we found the following common characteristics among

all the identi�ed drive-by mining services: (1) All services use CryptoNight-

based cryptomining implementations. (2) All identi�ed websites use a highly-

optimized Wasm implementation of the CryptoNight algorithm to execute the

mining code in the browser at native speed.
5

Moreover, our manual analysis of

the Wasm implementation showed that the only obfuscation performed on Wasm

modules is name obfuscation (all strings are stripped); any further code obfusca-

tion applied to the Wasm module would degrade the performance (and hence

negatively impact the pro�t). (3) All drive-by mining websites use WebSockets

to communicate with the mining pool through a WebSocket proxy server.

We use our �ndings as the basis for MineSweeper, a detection system for

Wasm-based drive-by mining websites, which we describe in the next section.

5.5 Drive-by Mining Detection

Building on the �ndings of our large-scale analysis, we propose MineSweeper, a

novel technique for drive-by mining detection, which relies neither on blacklists

nor on heuristics based on CPU usage. In the arms race between defenses trying

to detect the miners and miners trying to evade the defenses, one of the few

gainful ways forward for the defenders is to target properties of the mining code

that would be impossible or very painful for the miners to remove. The more

fundamental the properties, the better.

To this end, we characterize the key properties of the hashing algorithms used

by miners for speci�c types of cryptocurrencies. For instance, some hashing

algorithms, such as CryptoNight, are fundamentally memory-hard. Distilling

the measurable properties from these algorithms allows us to detect not just one

5
We also identi�ed JSEminer in our dataset, which only supports asm.js; however, unlike the other

services, the orchestrator code provided by this service always asks for a user’s consent. For this reason,

we do not classify the 50 websites using JSEminer as drive-by mining websites.
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speci�c variant, but all variants, obfuscated or not. The idea is that the only way

to bypass the detector is to cripple the algorithm.

MineSweeper takes the URL of a website as the input. It then employs three

approaches for the detection of Wasm-based cryptominers, one for miners using

mild variations or obfuscations of CryptoNight (Section 5.5.3.1), one for detect-

ing cryptographic functions in a generic way (Section 5.5.3.2), and one for more

heavily obfuscated (and performance-crippled) code (Section 5.5.3.3). For the �rst

two approaches, MineSweeper statically analyses the Wasm module used by the

website, for the third one it monitors the CPU cache events during the execution

of the Wasm module. During the Wasm-based analysis, MineSweeper analyses

the module for the core characteristics of speci�c classes of the algorithm. We

use a coarse but e�ective measure to identify cryptographic functions in general,

by measuring the number of cryptographic operations (as re�ected by XOR, shift,

and rotate operations). We focus on the CryptoNight algorithm and its variants,

since it is used by all of the cryptominers we observed so far, but it is trivial to

add other algorithms.

5.5.1 Cryptomining Hashing Code

The core component of drive-by miners, i.e., the hashing algorithm, is instan-

tiated within the web workers responsible for solving the cryptographic puzzle.

The corresponding Wasm module contains all the corresponding computationally-

intensive hashing and cryptographic functions. As mentioned, all of the miners

we observed mine CryptoNight-based cryptocurrencies. In this section, we dis-

cuss the key properties of this algorithm.

The original CryptoNight algorithm [200] was released in 2013 and repre-

sents, at heart, a memory-hard hashing function. The algorithm is explicitly

amenable to cryptomining on ordinary CPUs, but ine�cient on today’s special

purpose devices (ASICs). Figure 5.3 summarizes the three main components of

the CryptoNight algorithm, which we describe below:

Scratchpad initialization. First, CryptoNight hashes the initial data with the

Keccak algorithm (i.e., SHA-3), with the parameters b = 1600 and c = 512.

Bytes 0–31 of the �nal state serve as an AES-256 key and expand to 10 round

keys. Bytes 64–191 are split into 8 blocks of 16 bytes, each of which is encrypted

in 10 AES rounds with the expanded keys. The result, a 128-byte block, is used

to initialize a scratchpad placed in the L3 cache through several AES rounds of

encryption.
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Figure 5.3. Components of the CryptoNight algorithm [200].

Memory-hard loop. Before the main loop, two variables are created from the

XORed bytes 0–31 and 32–63 of Keccak’s �nal state. The main loop is repeated

524,288 times and consists of a sequence of cryptographic and read and write

operations from and to the scratchpad.

Final result calculation. The last step begins with the expansion of bytes 32–

63 from the initial Keccak’s �nal state into an AES-256 key. Bytes 64-191 are

used in a sequence of operations that consists of an XOR with 128 scratchpad

bytes and an AES encryption with the expanded key. The result is hashed with

Keccak-f (which stands for Keccak permutation) with b = 1600. The lower 2 bits

of the �nal state are then used to select a �nal hashing algorithm to be applied

from the following: BLAKE-256, Groestl-256, and Skein-256.

There exist two CryptoNight variants made by Sumokoin and AEON, cryptonight-
heavy and cryptonight-light, respectively. The main di�erence between these

variants and the original design is the dimension of the scratchpad: the light ver-

sion uses a scratchpad size of 1 MB, and the heavy version a scratchpad size of

4 MB.
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5.5.2 Wasm Analysis

To prepare a Wasm module for analysis, we use the WebAssembly Binary Toolkit

(WABT) debugger [234] to translate it into linear assembly bytecode. We then

perform the following static analysis steps on the bytecode:

Function identification We �rst identify functions and create an internal rep-

resentation of the code for each function. If the names of the functions are

stripped, as part of common name obfuscation, we assign them an identi�er with

an increasing index.

Cryptographic operation count In the second step, we inspect the identi�ed

functions one by one in order to track the appearance of each relevant Wasm

operation. More precisely, we �rst determine the structure of the control �ow

by identifying the control constructs and instructions. We then look for the pres-

ence of operations commonly used in cryptographic operations (XOR, shift and

rotate instructions). In many cryptographic algorithms, these operations take

place in loops, so we speci�cally use the knowledge of the control �ow to track

such operations in loops. However, doing so is not always enough. For instance,

at compile time, the Wasm compiler unrolls some of the loops to increase the

performance. Since we aim to detect all loops, including the unrolled ones, we

identify repeated �exible-length sequences of code containing cryptographic op-

erations and mark them as a loop if a sequence is repeated for more than �ve

times.

5.5.3 Cryptographic Function Detection

Based on our static analysis of the Wasm modules, we now detect the Cryp-

toNight’s hashing algorithm. We describe three approaches: one for mild vari-

ations or obfuscations of CryptoNight, one for detecting any generic crypto-

graphic function, and one for more heavily obfuscated code.

5.5.3.1 Detection Based on Primitive Identification

The CryptoNight algorithm uses �ve cryptographic primitives, which are all

necessary for correctness: Keccak (Keccak 1600-512 and Keccak-f 1600), AES,

BLAKE-256, Groestl-256, and Skein-256. MineSweeper identi�es whether any

of these primitives are present in the Wasm module by means of �ngerprinting.

It is important to note that the CryptoNight algorithm and its two variants must

use all of these primitives in order to compute a correct hash; by detecting the
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use of any of them, our approach can also detect payload implementation split

across modules.

We create �ngerprints of the primitives based on their speci�cation, as well

as the manual analysis of 13 di�erent mining services (as presented in Table 5.2).

The �ngerprints essentially consist of the count of cryptographic operations in

functions, and more speci�cally within regular and unrolled loops. We then look

for the closest match of a candidate function in the bytecode to each of the prim-

itive �ngerprints based on the cryptographic operation count. To this end, we

compare every function in the Wasm module one by one with the �ngerprints

and compute a “similarity score” of how many types of cryptographic instruc-

tions that are present in the �ngerprint are also present in the function, and a

“di�erence score” of discrepancies between the number of each of those instruc-

tions in the function and in the �ngerprint. As an example, assume the �nger-

print for BLAKE-256 has 80 XOR, 85 left shift, and 32 right shift instructions.

Further assume, the function foo(), which is an implementation of BLAKE-256,

that we want to match against this �ngerprint, contains 86 XOR, 85 left shift, and

33 right shift instructions. In this case, the similarity score is 3, as all three types

of instructions are present in foo(), and the di�erence score is 2, because foo()

contains an extra XOR and an extra shift instruction.

Together, these scores tell us how close the function is to the �ngerprint.

Speci�cally, for a match we select the functions with the highest similarity score.

If two candidates have the same similarity score, we pick the one with the lowest

di�erence score. Based on the similarity score and di�erence score we calculated

for each identi�ed functions, we classify them in three categories: full match,

good match, or no match. For a full match, all types of instructions from the

�ngerprint are also present in the function, and the di�erence score is 0. For a

good match, we require at least 70% of the instruction types in the �ngerprint to

be contained in the function, and a di�erence score of less than three times the

number of instruction types.

We then calculate the likelihood that the Wasm module contains a Cryp-

toNight hashing function based on the number of primitives that successfully

matched (either as a full or a good match). The presence of even one of these

primitives can be used as an indicator for detecting potential mining payloads,

but we can also set more conservative thresholds, such as �agging a Wasm mod-

ule as a CryptoNight miner if only two or three out of the �ve cryptographic

primitives are fully matched. We evaluate the number of primitives that we can

match across di�erent Wasm-based cryptominer implementations in Section 5.6.
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5.5.3.2 Generic Cryptographic Function Detection

In addition to detecting the cryptographic primitives speci�c to the CryptoNight

algorithm, our approach also detects the presence of cryptographic functions in

a Wasm module in a more generic way. This is useful for detecting potential

new CryptoNight variants, as well as other hashing algorithms. To this end, we

count the number of cryptographic operations (XOR, shift, and rotate operations)

inside loops in each function of the Wasm module, and �ag a function as a cryp-

tographic function if this number exceeds a certain threshold.

5.5.3.3 Detection Based on CPU Cache Events

While not yet an issue in practice, in the future, cybercriminals may well decide

to sacri�ce pro�ts and highly obfuscate their cryptomining Wasm modules in

order to evade detection. In that case, the previous algorithm is not su�cient.

Therefore, as a last detection step, MineSweeper also attempts to detect crypto-

mining code by monitoring CPU cache events during the execution of a Wasm

module—a fundamental property for any reasonably e�cient hashing algorithm.

In particular, we make use of how CryptoNight explicitly targets mining on

ordinary CPUs rather than on ASICs. To achieve this, it relies on random accesses

to slow memory and emphasizes latency dependence. For e�cient mining, the

algorithm requires about 2 MB of fast memory per instance.

This is favorable for ordinary CPUs for the following reasons [200]:

1. Evidently, 2 MB do not �t in the L1 or L2 cache of modern processors. How-

ever, they �t in the L3 cache.

2. 1 MB of internal memory is unacceptable for today’s ASICs.

3. Moreover, even GPUs do not help. While they may run hundreds of code in-

stances concurrently, they are limited in their memory speeds. Speci�cally,

their GDDR5 memory is much slower than the CPU L3 cache. Additionally,

it optimizes pure bandwidth, but not random access speed.

MineSweeper uses this fundamental property of the CryptoNight algorithm to

identify it based on its CPU cache usage. Monitoring L1 and L3 cache events us-

ing the Linux perf [114] tool during the execution of a Wasm module, MineSweeper

looks for load and store events caused by random memory accesses. As our exper-

iments in Section 5.6 demonstrate, we can observe a signi�cantly higher load/s-

tore frequency during the execution of a cryptominer payload compared to other

use cases, including video players and games, and thus detect cryptominers with

high probability.
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5.5.4 Deployment Considerations

While MineSweeper can be used for the pro�ling of websites as part of large-

scale studies such as ours, we envision it as a tool that noti�es users about a

potential drive-by mining attack while browsing and gives them the option to

opt-out, e.g., by not loading Wasm modules that trigger the detection of crypto-

graphic primitives, or by suspending the execution of the Wasm module as soon

as suspicious cache events are detected.

Our defense based on the identi�cation of cryptographic primitives could be

easily integrated into browsers, which, so far, mainly rely on blacklists and CPU

throttling of background scripts as a last line of defense [138, 139, 159]. As our

approach is based on static analysis, browsers could use our techniques to pro-

�le Wasm modules as they are loaded and ask the user for permission before

executing them. As an alternative and browser-agnostic deployment strategy,

SEISMIC [83] instruments Wasm modules to pro�le their use of cryptographic

operations during execution, although this approach comes with considerable

run-time overhead.

Integrating our defense based on monitoring cache events, unfortunately, is

not so straightforward: access to performance counters requires root privileges

and would need to be implemented by the operating system itself.

5.6 Evaluation

In this section, we evaluate the e�ectiveness of MineSweeper’s components

based on static analysis of the Wasm code and CPU cache event monitoring

for the detection of the cryptomining code currently used by drive-by mining

websites in the wild. We further compare MineSweeper to a state-of-the-art de-

tection approach based on blacklisting. Finally, we discuss the penalty in terms

of performance, and thus pro�ts, evasion attempts against MineSweeper would

incur.

Dataset. To test our Wasm-based analysis we crawled Alexa’s Top 1 Million

websites a second time over the period of one week in the beginning of April 2018

with the sole purpose of collecting Wasm-based mining payloads. This time we

con�gured the crawler to visit only the landing page of each website for a period

of four seconds. The crawl successfully captured 748 Wasm modules served by

776 websites. For the remaining 28 modules, the crawler was killed before it was

able to dump the Wasm module completely.
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Table 5.9. Results of our cryptographic primitive identification. MineSweeper detected at
least two of CryptoNight’s primitives in all mining samples with no false positives.

Detected Number of Number of Missing
Primitives Wasm Samples Cryptominers Primitives

5 30 30 -

4 3 3 AES

3 - - -

2 3 3 Skein, Keccak, AES

1 - - -

0 4 0 All

Evaluation of cryptographic primitive identification Even though we were

able to collect 748 valid Wasm modules, only 40 among them are, in fact, unique.

This is because many websites use the same cryptomining services. We also

found that some of these cryptomining services are providing di�erent versions

of their mining payload. Table 5.9 shows our results for the CryptoNight function

detection on these 40 unique Wasm samples. We were able to identify all �ve

cryptographic primitives of CryptoNight in 30 samples, four primitives in three

samples and two primitives in another three samples. In these last three samples,

we could only detect the Groestl and BLAKE primitives, which suggests that

these are the most reliable primitives for this detection. As part of an in-depth

analysis, we identi�ed these samples as being part of the mining services BatMine

and Webminerpool (two of the samples are a di�erent version of the latter), which

were not part of our dataset of mining services that we used for the �ngerprint

generation, but rather services we discovered during our large-scale analysis.

However, our approach did not produce any false positives and the four sam-

ples in which MineSweeper did not detect any cryptographic primitive were,

in fact, benign: an online magazine reader, a videoplayer, a node library to rep-

resent a 64-bit two’s-complement integer value, and a library for hyphenation.

Furthermore, the generic cryptographic function detection successfully �agged

all 36 mining samples as positives and all four benign cases as negatives.

Evaluation of CPU cache event monitoring For this evaluation we used perf

to capture L1 and L3 cache events when executing various types of web appli-

cations. We conducted all experiments on an Intel Core i7-930 machine running

Ubuntu 16.04 (baseline). We captured the number of L1 data cache loads, L1 data

cache stores, L3 cache stores, and L3 cache loads within 10 seconds when visiting

four categories of web applications: cryptominers (Coinhive and NFWebMiner,
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Figure 5.4. Performance counter measurements for the L1 data cache for miners and other web
applications on two di�erent machines (# of operations per 10 seconds, M=million).

both with 100% CPU usage), video players, Wasm-based games, and JavaScript

(JS) games. We visited seven websites from each category and calculated the

mean and standard deviation (stdev) of all the measurements for each category.

As Figure 5.4 (left) and Figure 5.5 (left) show, that L1 and L3 cache events are

very high for the web applications that are mining cryptocurrency, but consid-

erably lower for the other types of web applications. Compared to the second

most cache-intensive applications, Wasm-based games, the Wasm-based miners

perform on average 15.05x as many L1 data cache loads, and 6.55x as many L1

data cache stores. The di�erence for the L3 cache is less severe, but still notice-

able: here on average the miners perform 5.50x and 2.93x as many cache loads

and stores, respectively, compared to the games.

We performed a second round of experiments on a di�erent machine (Intel

Core i7-6700K), which has a slightly di�erent cache architecture, to verify the re-

liability of the CPU cache events. We also used these experiments to investigate

the e�ect of CPU throttling on the number of cache events. Coinhive’s Wasm-

based miner allows throttling in increments of 10% intervals. We con�gured it to

use 100% CPU and 20% CPU and compared it against a Wasm-based game. We

executed the experiments 20 times and calculated the mean and standard devia-

tion (stdev). As Figure 5.4 (right) and Figure 5.5 (right) show, on this machine L3

cache store events cannot be used for the detection of miners: we observed only
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Figure 5.5. Performance counter measurements for the L3 cache for miners and other web
applications on two di�erent machines (# of operations per 10 seconds, M=million).

a low number of L3 cache stores overall, and on average more stores for the game

than for the miners. However, L3 cache loads, as well as L1 data cache loads and

stores are a reliable indicator for mining. When using only 20% of the CPU, we

still observed 37.25%, 38.05%, and 37.71% of the average number of events com-

pared to 100% CPU usage for L1 data cache loads, L1 data cache stores, and L3

cache loads, respectively. Compared to the game, the miner performed 13.96x

and 6.29x as many L1 data cache loads and stores, and 2.46x as many L3 cache

loads even when utilizing only 20% of the CPU.

Comparison to blacklisting approaches To compare our approach against ex-

isting blacklisting-based defenses we evaluateMineSweeper against Dr. Mine [231].

Dr. Mine uses CoinBlockerLists [227] as the basis to detect mining websites. For

the comparison we visited the 1,735 websites that were mining during our �rst

crawl for the large-scale analysis in mid-March 2018 (see Section 5.4) with both

tools. We made sure to use updated CoinBlockerLists and executed Dr. Mine and

MineSweeper in parallel to maximize the chance that the same drive-by mining

websites would be active. During this evaluation, on May 9, 2018, Dr. Mine could

only �nd 272 websites, while MineSweeper found 785 websites that were still

actively mining cryptocurrency. Furthermore, all the 272 websites identi�ed by

Dr. Mine are also identi�ed by MineSweeper.
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Impact of evasion techniques In order to evade our identi�cation of crypto-

graphic primitives, attackers could heavily obfuscate their code, or implement

the CryptoNight functions completely in asm.js or JavaScript. In both cases,

MineSweeper would still be able to detect the cryptomining based on the CPU

cache event monitoring. To evade this type of defense, and since we are only

monitoring unusually high cache load and stores that are typical for cryptomin-

ing payloads, attackers would need to slow down their hash rate, for example by

interleaving their code with additional computations that have no e�ect on the

monitored performance counters.

Table 5.10. Decrease in the hash rate (H/s), and thus profit, compared to the best-case scenario
(∗) using Wasm with 100% CPU utilization if asm.js is being used and the CPU is
thro�led on an Intel Core i7-6700K and an Intel Core i3-5010U machine.

Baseline 100% CPU 75% CPU
H/s Profit H/s H/s Profit H/s Profit H/s H/s Profit

Wasm US$ asm.js Loss US$ Wasm US$ asm.js Loss US$

i7 65∗ 100.00 39 40.00% 60.00 48.75 75.00 29.25 55.00% 45.00

i3 16∗ 24.62 9 43.75% 13.85 12 18.46 6.75 57.81% 10.38

50% CPU 25% CPU
H/s Profit H/s H/s Profit H/s Profit H/s H/s Profit

Wasm US$ asm.js Loss US$ Wasm US$ asm.js Loss US$

i7 32.5 50.00 19.5 70.00% 30.00 16.25 25.00 9.75 85.00% 15.00

i3 8 12.31 4.5 71.88% 6.92 4 6.15 2.25 85.94% 3.46

In the following, we discuss the performance hit (and thus loss of pro�t) that

alternative implementations of the mining code in asm.js, and an intentional sac-

ri�ce of the hash rate, in this case by throttling the CPU usage, would incur.

Table 5.10 show our estimation for the potential performance and pro�t losses

on a high-end (Intel Core i7-6700K) and a low-end (Intel Core i3-5010U) machine.

As an illustrative example, we assume that in the best case an attacker is able to

make a pro�t of US$ 100 with the maximum hash rate of 65 H/s on the i7 machine.

Just falling back to asm.js would cost an attacker 40.00%–43.75% of her pro�ts

(with a CPU usage of 100%). Moreover, throttling the CPU speed to 25% on top

of falling back to asm.js would cost her 85.00%–85.94% of her pro�ts, leaving her

with only US$ 15.00 on a high-end and US$ 3.46 on a low-end machine. In more

concrete numbers from our large-scale analysis of drive-by mining campaigns in

the wild (see Section 5.4.3), the most pro�table campaign, which is potentially

earning US$ 31,060.80 a month (see Table 5.5), would only earn US$ 4,367.15 a

month.
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5.7 Limitations and Future Work

Our large-scale analysis of drive-by mining in the wild likely missed active cryp-

tomining websites due to limitations of our crawler. We only spend four sec-

onds on each webpage; hence we could have missed websites that wait for a

certain amount of time before serving the mining payload. Similarly, we are not

able to capture the mining pool communication for websites that implement min-

ing delays, and in some cases due to slow server connections, which exceed the

timeout of our crawler. Moreover, we only visit each webpage once, but, some

cryptomining payloads, especially the ones that spread through advertisement

networks, are not served on every visit. Our crawler also did not capture the

cases in which cryptominers are loaded as part of “pop-under” windows. Further-

more, the crawler visited each website with the User Agent String of the Chrome

browser on a standard desktop PC. We leave the study of campaigns speci�cally

targeting other devices, such as Android phones, for future work. Another av-

enue for future work is studying the longevity of the identi�ed campaigns. We

based our pro�t estimations on the assumption that they stayed active for at least

a month, but they might have been disrupted earlier.

Our defense based on static analysis is similarly prone to obfuscation as any

related static analysis approach. However, even if attackers decide to sacri�ce

performance (and pro�ts) for evading our defense through obfuscation of the

cryptomining payload, we would still be able to detect the mining based on mon-

itoring the CPU cache. Trying to evade this detection technique by adding addi-

tional computations would severely degrade the mining performance—to a point

that it is not pro�table anymore.

Furthermore, currently all drive-by mining services use Wasm-based cryp-

tomining code, and hence, we implemented our defense only for this type of

payload. Nevertheless, we could implement our approach also for the analysis of

asm.js in future work. Finally, our defense is tailored for detecting cryptocurren-

cies using the CryptoNight algorithm, as these are currently the only cryptocur-

rencies that can pro�tably be mined using regular CPUs [183]. Even though our

generic cryptographic function detection did not produce any false positives in

our evaluation, we still can imagine many benign Wasm modules using crypto-

graphic functions for other purposes. However, Wasm is not widely adopted yet

for other use cases besides drive-by mining and we therefore could not evaluate

our approach on a larger dataset of benign applications.
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5.8 Related Work

Related work has extensively studied how and why attackers compromise web-

sites through the exploitation of software vulnerabilities [7, 15], miscon�gura-

tions [19], inclusion of third-party scripts [61], and advertisements [90]. Tradi-

tionally, the attackers’ goals ranged from website defacements [8, 51], over enlist-

ing the website’s visitors into distributed denial-of-service (DDoS) attacks [64],

to the installation of exploit kits for drive-by download attacks [29, 68, 69], which

infect visitors with malicious executables. In comparison, the abuse of the visi-

tors’ resources for cryptomining is a relatively new trend.

Previous work on cryptomining focused on botnets that were used to mine

Bitcoin during the year 2011–2013 [36]. The authors found that while mining is

less pro�table than other malicious activities, such as spamming or click fraud, it

is attractive as a secondary monetizing scheme, as it does not interfere with other

revenue-generating activities. In contrast, we focused our analysis on drive-by

mining attacks, which serve the cryptomining payload as part of infected web-

sites, and not malicious executables. The �rst other study in this direction was

recently performed by Eskandari et al. [23]. However, they based their analysis

solely on looking for the coinhive.min.js script within the body of each web-

site indexed by Zmap and PublicWWW [185]. In this way, they were only able to

identify the Coinhive service. Furthermore, contrary to the observations made in

their study, we found that attackers have found valuable targets, such as online

video streaming, to maximize the time users spend online, and consequently the

revenue earned from drive-by mining. Concurrently to our work, Papadopou-

los et al. [102] compared the potential pro�ts from drive-by mining to adver-

tisement revenue by checking websites indexed by PublicWWW against black-

lists from popular browser extensions. They concluded that mining is only more

pro�table than advertisements when users stay on a website for longer periods

of time. In another concurrent work, Rüth et al. [73] studied the prevalence of

drive-by miners in Alexa’s Top 1 Million websites based on JavaScript code pat-

terns from a blacklist, as well as based on signatures generated from SHA-255

hashes of the Wasm code’s functions. They further calculated the Coinhive’s

overall monthly pro�t, which includes legitimate mining as well. In contrast, we

focus on the pro�t of individual campaigns that perform mining without their

user’s explicit consent. Furthermore, with MineSweeper, we also present a de-

fense against drive-by mining that could replace current blacklisting-based ap-

proaches.

The �rst part of our defense, which is based on the identi�cation of cryp-
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tographic primitives is inspired by related work on identifying cryptographic

functionality in desktop malware, which frequently uses encryption to evade

detection and secure the communication with its command-and-control servers.

Gröbert et al. [30] attempt to identify cryptographic code and extract keys based

on dynamic analysis. Aligot [48] identi�es cryptographic functions based on

their input-output (I/O) characteristics. Most recently, CryptoHunt [88] pro-

posed to use symbolic execution to �nd cryptographic functions in obfuscated

binaries. In contrast to the heavy use of obfuscation in binary malware, obfus-

cation of the cryptographic functions in drive-by miners is much less favorable

for attackers. Should they start to sacri�ce pro�ts in favor of evading defenses

in the future, we can explore the aforementioned more sophisticated detection

techniques for detecting cryptomining code. For the time being, relatively sim-

ple �ngerprints of instructions that are commonly used by cryptographic oper-

ations are enough to reliably detect cryptomining payloads, as also observed by

Wang et al. [83] in concurrent work. Their approach, SEISMIC, generates sig-

natures based on counting the execution of �ve arithmetic instructions that are

commonly used by Wasm-based miners. In contrast to pro�ling whole Wasm

modules, we detect the individual cryptographic primitives of the cryptominers’

hashing algorithms, and also supplement our approach by looking for suspicious

memory access patterns.

This second part of our defense, which is based on monitoring CPU cache

events, is related to CloudRadar [92], which uses performance counters to detect

the execution of cryptographic applications and to defend against cache-based

side-channel attacks in the cloud. Finally, the most closely related work in this

regard is MineGuard [77], also a hypervisor tool, which uses signatures bases on

performance counters to detect both CPU- and GPU-based mining executables

on cloud platforms. Similar to our work, the authors argue that the evasion of this

type of detection would make mining unpro�table—or at least less of a nuisance

to cloud operators and users by consuming fewer resources.

5.9 Conclusion

In this chapter, we examined the phenomenon of drive-by mining. The rise of

mineable alternative coins (altcoins) and the performance boost provided to in-

browser scripting code by WebAssembly, have made such activities quite prof-

itable to cybercriminals: rather than being a one-time heist, this type of attack

provides continuous income to an attacker.

Detecting miners by means of blacklists, string patterns, or CPU utilization
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alone is an ine�ective strategy, because of both false positives and false negatives.

Already, drive-by mining solutions are actively using obfuscation to evade detec-

tion. Instead of the current inadequate measures, we proposed MineSweeper,

a new detection technique tailored to the algorithms that are fundamental to

the drive-by mining operations—the cryptographic computations required to pro-

duce valid hashes for transactions.

The current security model (CIA triad) and security principles are inadequate

to o�er protection from this new class of cyber threat. This is the root cause

of this cyber threat. Hence, we propose to update current design principles by

adding least required resource to it to prevent this class of cyber threat. The com-

puting systems have to be designed not only to provide Con�dentiality, Integrity

and Availability but also to protect the user’s computational resources. For in-

stance, the applications like Browser should be designed by incorporating this

design principle to prevent similar cyber threats that focus on resource stealing/-
exploitation. These applications should at least give users an option to control

the amount of resources they are allowed to use.
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6 Conclusion

The goal of this work is to study and advance computer defenses that primarily

focus on preventing exploitation based on design �aws. First, we have focused

on the new cyber threats that emerged from design �aws at both the software

and hardware level. Then, we have studied whether the current set of design

principles is comprehensive enough to prevent today’s cyber threats, focusing

especially on cryptojacking.

In Chapter 1, we formulated four research questions around these key goals.

We now recapitulate the conclusions we have reached for each of the research

questions. Finally, we provide a discussion of the limitations of our work and the

possibilities for future research.

Results

In this subsection, we brie�y recall each of the research questions that we formu-

lated in Chapter 1 and summarize our main conclusions. Our main conclusions

for each of the research questions are as follows.

Question (1): Given that exploitable design �aws exist in hardware, can we also
discover them in software that deals with highly sensitive operations such as �nan-
cial transactions?

In Chapter 2 of this thesis, we discussed the remote-install feature, and vari-

ous synchronization features introduced by vendors to enhance usability. These

usability features are blurring boundaries between platforms, thus violating the

design principle called compartmentalize (see Table 1.2). The basic idea behind

the compartmentalization is to segment a system into multiple compartments or

units that are protected independently so that a vulnerability in one unit will not

jeopardize the security of the other units. Note that these usability features also

violate the design principle called separation of privileges (see Table 1.1).

133
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In the chapter, we showed that an attacker could bypass mobile-based 2FA

(used by a wide range of �nancial web services) by exploiting these usability

features. Despite our e�orts, this design �aw still exists because, unfortunately,

sometimes, when given a choice, vendors choose usability over security. We ex-

plored what can be done about this when answering our second research ques-

tion.

Question (2): Given that it is harder to �x such a design/logical �aw when com-
pared to patching a typical software bug, can we still mitigate the cyber threat
stemming from the design �aw that we identi�ed as part of our �rst research ques-
tion under the assumption that the �aw itself cannot be �xed for practical reasons?
What will be the cost of such a solution?

We address this question in Chapter 3 by building a software-based solution

for the Bandroid attack. In this chapter, we showed that it is possible to mitigate

a design-�aw-based attack at the software level without sacri�cing the usability

feature. However, note that an attacker can still spread the damage to other

devices of the victim from a single compromised device exploiting the remote-
install feature. To prevent this, we recommend the vendors to implement an

extra authentication mechanism on the remote device to verify the remote-install
request.

Question (3): Given that it is often more complex to patch a design/logical �aw in
a hardware component, can we still mitigate the cyber threat originated from the
Rowhammer bug using a software-based solution? What will be the cost of such a
solution?

We address this question in Chapter 4 by building a novel and comprehen-

sive software-based protection against the Rowhammer attack which exploits a

design �aw in the memory hardware component (commonly called DRAM). The

root cause of the Rowhammer bug is the vendors’ design choice to optimize the

cost-per-bit by cramming bits very close together. Since the bit �ips/memory

errors induced by Rowhammer happen without any indication, the system fails

to detect it. Clearly, this design of memory chips violates the design principle

called Fail securely (see Table 1.2). The basic idea behind the Fail securely is that

when a system fails, it should do so securely; the con�dentiality and integrity

of a system should remain even though availability has been lost. The attackers

must not be permitted to gain access rights to privileged objects that are normally

inaccessible during a failure.
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In Chapter 4, we showed that it is possible to provide comprehensive software-

based protection against the Rowhammer attacks. Our evaluation showsZebRAM

to be a strong defense able to use all available memory at a performance cost that

is a function of the active working set in DRAM.

Question (4): Given that cyber attacks have evolved over time to become more
stealthy and complex, is the current set of design principles comprehensive enough
to prevent today’s cyber threats?

In Chapter 5, we answered this question by researching a new class of cy-

ber threat called cryptojacking. First, we showed that the current measures like

blacklisting and monitoring the CPU are inadequate to detect this cyber attack.

Then we proposed MineSweeper, a new detection technique tailored to the al-

gorithms that are fundamental to the drive-by mining operations — the crypto-

graphic computations required to produce valid hashes for transactions. Finally,

we concluded that our current security model (CIA triad) and security principles

are inadequate to o�er protection from this new class of cyber threat. We pro-

pose to update current design principles by adding least required resource to it to

prevent this class of cyber threat. The computing systems have to be designed

not only to provide Con�dentiality, Integrity and Availability, but also to protect

the user’s computational resources. For instance, applications like the browser

should be designed by incorporating this design principle to prevent similar cy-

ber threats that focus on resource stealing/exploitation.

Future Directions

In this thesis, our primary focus was on mitigating design �aws or logical �aws —

though identifying such �aws is sometimes rather di�cult. There has been a

lot of research on building fuzzers to �nd software bugs, but not much on the

automation of �nding logical �aws. This remains a promising direction for future

research.

Chapter 3 shows that it is possible to build software-based solutions for the

Bandroid attack without sacri�cing the problematic feature. However, Secure-

Pay does not eradicate all the cyber threats introduced by synchronization fea-

tures. An attacker can still spread the damage to other devices of the victim from

a single compromised device exploiting the remote-install feature. To protect

from such attacks, we need to enforce access control between di�erent trust do-

mains/platforms. For instance, an extra authentication mechanism on the remote

device to verify the remote-install request. More research is required to evaluate
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whether proper access control can be enforced between di�erent platforms (trust

domains). This remains a promising direction for future research.

Even though the ZebRAM defense sounds promising compared to previous

research, the worst-case overhead of ZebRAM (measured in the dissertation with

a uniformly random and hence pessimistic synthetic distribution) is high. The

root cause of the Rowhammer bug is the vendors’ design choice to optimize the

cost-per-bit by cramming bits so close together that an access can �ip bits in ad-

jacent cells; no reliable solution that can undo such e�ects will be free of cost.

Nevertheless, there is a need for more research on the ZebRAM design that fo-

cuses on its performance improvement.

The ZebRAM defense requires correct physical addresses to DRAM addresses

mapping to partition the memory in zebra pattern. Currently, we need to reverse

engineer this mapping for di�erent architectures because hardware vendors do

not publish this mapping. We recommend every hardware vendor to expose this

mapping to the software so that ZebRAM can easily support any underlying

architecture. We believe that the only way to provide complete protection from

various Rowhammer attacks is by building a system-level defense like ZebRAM

where software and hardware collaborate to detect and �x DRAM errors. For

instance, a memory controller can be set to use one bit of the physical address to

di�erentiate between physical addresses that fall into odd and even DRAM row.

With this information available to software, a system-level defense can utilize

unsafe memory more e�ciently and safely. Furthermore, currently, software

only takes action when the system encounters uncorrectable errors. It remains

a promising direction for future research to �gure out whether hardware and

software can collaborate better to detect ongoing Rowhammer attacks. Hence,

enhancing the performance of ZebRAMby improving the software and hardware

collaboration remains a promising direction for future research.

Chapter 5 provides a novel detection technique that is based on the intrinsic

characteristics of the cryptomining code. Currently, all drive-by mining services

use Wasm-based cryptomining code, and hence, we implemented our defense

only for this type of payload. In the future, the attacker could use asm.js for

drive-by mining attacks. Hence, implementing our detection approach for the

analysis of asm.js remains a promising direction for future research. Note that

this does not prevent such attacks. For prevention, an interesting direction for

future work is to re-design applications like the browser by considering the least
required resource design principle. These applications should at least give users

an option to control the amount of resources they are allowed to use.

Cyber attacks are evolving to become more stealthy and complex. There is
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a need for periodic research to update design principles regularly to keep the

emerging cyber threats in control. We hope that this work shall be a motivation

for future research.
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Summary

Design �aws and implementation bugs are two di�erent types of security de-

fects. Design �aws are mistakes/errors that occur in the design phase, while

implementation bugs are errors that occur in the implementation phase of the

product development lifecycle. Unfortunately, the current focus of the systems

security community is more on common implementation bugs than on design

�aws even though design �aws constitute 50% of the security defects.

To enhance usability and performance, both application developers and plat-

form vendors are constantly introducing new features (like synchronization fea-
tures), and often such desires for increased usability/performance results in a

violation of secure design principles. This is the reason why most design �aws

hide in plain sight as product features. Attackers can take advantage of the un-

intended consequence of such features to compromise the whole system. This

is a di�erent way of exploitation when compared to typical memory corruption

bug exploitation. Hence, it is typically di�cult to detect, and complex to patch

a design �aw compared to an implementation bug — often requiring solutions

that are unique to each attack.

This thesis explores design �aws that may occur at the software- and hardware-

level of computing systems, and the cyber threats stemming from them. We build

novel software-level computer defenses to protect from these identi�ed cyber

threats and discuss the cost associated with them. Futhermore, this research is

broadened by identifying whether the current set of design principles is compre-

hensive enough to prevent today’s cyber threats. We achieve this goal by per-

forming an in-depth analysis of a new cyber attack called cryptojacking which

does not break today’s widely-accepted security model called CIA triad (standing

for Con�dentiality, Integrity, and Availability; yet, a very practical and stealthy

cyberattack that monetizes o� a victim’s computational resources. Based on this

study, we propose to include least required resource as a new principle to the

current set of design principles to o�er protection from such futuristic attacks.
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Samenva�ing

Ontwerpfouten en implementatiefouten zijn twee verschillende soorten beveilig-

ingsgebreken. Ontwerpfouten zijn fouten die zich voordoen in de ontwerpfase,

terwijl implementatiefouten fouten zijn die zich voordoen in de implementatiefase

van de productontwikkelingscyclus. Helaas is de huidige focus van de systeem-

beveiligingsgemeenschap meer gericht op veelvoorkomende implementatiefouten

dan op ontwerpfouten, ook al vormen ontwerpfouten 50% van de beveiligingsge-

breken.

Om de gebruiksvriendelijkheid en prestaties te verbeteren, introduceren zowel

applicatieontwikkelaars als platformverkopers voortdurend nieuwe functies (zoals

synchronisatiefuncties), en vaak resulteert een dergelijke wens tot verhoogde ge-

bruiksvriendelijkheid/prestatie in een schending van de principes van veilig on-

twerp. Dit is de reden waarom de meeste ontwerpfouten zichtbaar zijn als pro-

ducteigenschappen maar toch niet gezien worden. Aanvallers kunnen pro�teren

van de onbedoelde gevolgen van dergelijke functies om het hele systeem in gevaar

te brengen. Dit is een andere manier van misbruik in vergelijking met typis-

che manieren om geheugenfouten te misbruiken. Om deze reden is het normaal

gesproken moeilijk om dergelijke fouten te ontdekken, en in vergelijking met een

implementatiefout is het complex om een ontwerpfout te herstellen. Dit vereist

vaak oplossingen die voor elke aanval uniek zijn.

In deze dissertatie onderzoeken wij ontwerpfouten die kunnen voorkomen op

het software- en hardwareniveau van computersystemen, en de cyberbedreigin-

gen die daaruit voortvloeien. We bouwen nieuwe softwarematige computer-

beveiliging om te beschermen tegen de geïdenti�ceerde cyberbedreigingen en

bespreken de kosten die ermee gepaard gaan. Bovendien wordt dit onderzoek

verbreed door na te gaan of de huidige verzameling van ontwerpprincipes uit-

gebreid genoeg is om de huidige cyberdreigingen te voorkomen. We bereiken

dit doel door een diepgaande analyse uit te voeren van een nieuwe cyberaanval,

cryptojacking genaamd, die het algemeen aanvaarde veiligheidsmodel van van-
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daag, de CIA-triade, niet doorbreekt (dat staat voor Condentiality, Integrity en

Availability) maar wel een zeer praktische en moelijk te ontdekken cyberaanval

die de rekenkracht van een slachto�er in geld omzet. Op basis van deze studie

stellen we voor om least required resource op te nemen als een nieuw principe in

de huidige set van ontwerpprincipes om bescherming te bieden tegen dergelijke

futuristische aanvallen.




	Acknowledgements
	Contents
	Publications
	1 Introduction
	2 BAndroid
	2.1 Introduction
	2.2 Synchronization
	2.2.1 Remote Services
	2.2.2 App Synchronization
	2.2.3 2FA Synchronization Vulnerabilities

	2.3 Exploiting 2FA Synchronization Vulnerabilities
	2.3.1 Android
	2.3.2 iOS
	2.3.3 Dedicated 2FA Apps

	2.4 Discussion
	2.4.1 Feasibility
	2.4.2 Recommendations and Future Work
	2.4.3 Responsible Disclosure

	2.5 Background and Related Work
	2.5.1 Man-in-the-Browser
	2.5.2 Two-Factor Authentication
	2.5.3 Cross-platform infection

	2.6 Conclusion

	3 SecurePay
	3.1 Introduction
	3.2 Background
	3.2.1 Mobile transactions and 2FA
	3.2.2 Separating the factors
	3.2.3 Trusted Execution Environment (TEE)

	3.3 Threat model and assumptions
	3.4 Design
	3.4.1 Requirements for a secure and compatible design
	3.4.2 SecurePay

	3.5 Implementation
	3.5.1 SecurePay components
	3.5.2 SecurePay registration and bootstrap

	3.6 Evaluation
	3.6.1 Security of mobile transactions
	3.6.2 Security of non-mobile transactions
	3.6.3 Verification using Tamarin
	3.6.4 Performance evaluation
	3.6.5 Integration effort
	3.6.6 Comparison with similar efforts

	3.7 Discussion
	3.8 Related work
	3.9 Conclusions

	4 ZebRAM
	4.1 Introduction
	4.2 Background
	4.2.1 DRAM Organization
	4.2.2 The Rowhammer Bug
	4.2.3 Rowhammer Defenses

	4.3 Threat Model
	4.4 Design
	4.5 Implementation
	4.5.1 ZebRAM Prototype Components
	4.5.2 Implementation Details

	4.6 Security Evaluation
	4.6.1 Traditional Rowhammer Exploits
	4.6.2 ZebRAM-aware Exploits
	4.6.2.1 Attacking the Unsafe Region
	4.6.2.2 Attacking the Safe Region


	4.7 Performance Evaluation
	4.8 Related work
	4.9 Discussion
	4.9.1 Prototype
	4.9.2 Alternative Implementations

	4.10 Conclusion

	5 MineSweeper
	5.1 Introduction
	5.2 Background
	5.2.1 Cryptocurrency Mining Pools
	5.2.2 In-browser Cryptomining
	5.2.3 Web Technologies
	5.2.4 Existing Defenses against Drive-by Mining

	5.3 Threat Model
	5.4 Drive-by Mining in the Wild
	5.4.1 Data Collection
	5.4.1.1 Cryptomining Code
	5.4.1.2 CPU Load as a Side Effect
	5.4.1.3 Mining Pool Communication
	5.4.1.4 Deployment and Dataset

	5.4.2 Data Analysis and Correlation
	5.4.2.1 Cryptomining Code
	5.4.2.2 CPU Load as a Side Effect
	5.4.2.3 Mining Pool Communication
	5.4.2.4 Data Correlation

	5.4.3 In-depth Analysis and Results
	5.4.3.1 User Notification and Consent
	5.4.3.2 Mining from Internal Pages
	5.4.3.3 Evasion Techniques
	5.4.3.4 Private vs. Public Mining Pools
	5.4.3.5 Drive-by Mining Campaigns
	5.4.3.6 Drive-by Mining Services
	5.4.3.7 Profit Estimation

	5.4.4 Common Drive-by Mining Characteristics

	5.5 Drive-by Mining Detection
	5.5.1 Cryptomining Hashing Code
	5.5.2 Wasm Analysis
	5.5.3 Cryptographic Function Detection
	5.5.3.1 Detection Based on Primitive Identification
	5.5.3.2 Generic Cryptographic Function Detection
	5.5.3.3 Detection Based on CPU Cache Events

	5.5.4 Deployment Considerations

	5.6 Evaluation
	5.7 Limitations and Future Work
	5.8 Related Work
	5.9 Conclusion

	6 Conclusion
	References
	Conference Proceedings
	Articles
	Books
	Technical Reports and Documentation
	Online
	Talks
	Source code

	Summary
	Samenvatting

