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Abstract

Many real-world systems require continuous operation.
Downtime is ill-affordable and scheduling maintenance
for regular software updates is a tremendous challenge
for system administrators. Existing live update ap-
proaches proposed as a solution to this problem have
failed to reach broad acceptance in system administra-
tion communities.

In this paper, we investigate the root causes of the poor
acceptance and argue that a new model is necessary to of-
fer adequate dependability guarantees. After describing
the new model, we propose a taxonomy of live updates
and analyze many practical examples from operating sys-
tems. We show how the nature of the update is crucial to
determine the properties and limitations of the resulting
live update process and discuss the emerging need for
update-aware systems.
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1 Introduction

The past decades have witnessed an increasing demand
for highly reliable computer systems. The need for con-
tinuous operation is emerging in many areas of applica-
tion with different levels of impact. Mass market soft-
ware systems, not initially conceived with extreme avail-
ability in mind, attract more and more consumers who
expect nonstop operation. Many unsophisticated users
find it very annoying to reboot their PC after an update
or a crash. For workstation users in companies, reduced
availability directly translates to productivity loss.

In industrial systems, the need for continuous opera-
tion is even more evident. In many cases, high availabil-
ity is required by design. As an example, the telephone
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network, a 99.999% availability system, can tolerate at
most five minutes of downtime per year [1]. In other ap-
plications, such as factories and power plants, availabil-
ity constraints are even more tight. In general, downtime
constitutes a serious threat to high-availability systems,
as it results in loss of transient state and disruption of
service.

In business systems, absence of service leads to rev-
enue loss. It has been estimated that the cost of an hour
of downtime can be as high as hundreds of thousands
of dollars for e-commerce service providers like Ama-
zon and eBay and millions of dollars for brokerages and
credit card companies [2]. In addition, long-lasting pe-
riods of downtime for popular services are newsworthy
and affect user loyalty and investor confidence. When
eBay suffered a 22-hour site-wide outage in 1999, the
significant impact on the public image of the company
caused 26% decline in stock price and an estimated rev-
enue loss between $3 million and $5 million [3].

In mission-critical and safety-critical systems, down-
time or unexpected behavior can lead to catastrophic
consequences. For example, unplanned downtime in a
widely deployed energy management system caused a
blackout affecting 50 million people in U.S. and Canada
in August 2004 [4]. Another famous episode relates to
the Patriot missile defense system used during the Gulf
War. A software flaw prevented the interception of an in-
coming Scud missile, leading to the death of 28 Ameri-
can soldiers [5]. Many other examples of mission-critical
systems can be found in aerospace, air control, telecom-
munication, public information, transportation, indus-
trial control, military, and medical applications.

Unfortunately, software changes over time. Despite
decades of research and advances in technology and soft-
ware engineering, the majority of cost and effort spent
during software lifetime still goes to maintenance [6].
System administrators have learned to live with the many
changes that programs undergo over time. The introduc-
tion of new features, enhancements, bug fixes and se-



curity patches are the norm rather then the exception in
widely adopted software solutions.

Current trends in software development suggest that
this tendency will likely grow in the future. The com-
plexity of software systems is increasing dramatically,
and so are the number of bugs, security vulnerabilities
and unanticipated changes. Studies have determined that
the number of bugs in commercial software ranges from
1 bug per 1000 lines of code to 20 bugs per 1000 lines
of code [7]. As a result, software vendors continuously
release new updates and publish recommendations.

The increasing number of updates available represents
an enormous burden for system administrators. Whether
it is a small patch or an entire new version of the sys-
tem, an update requires operations like copying, compil-
ing, or running particular installation procedures. At the
end, a system reboot is conventionally required before
the changes can take effect.

Rebooting constitutes a major problem for the man-
agement of systems that must provide strong availability
guarantees. In addition, in some areas of application—
physical systems for example power plants—shutting
down and restarting the system may take a long time.
Not surprisingly, previous studies have indicated that
maintenance is the primary cause of downtime for high-
availability systems, possibly accounting for as high as
75% of the outages [8].

Fortunately, most high-availability installations are
replicated across multiple machines. To mitigate the ef-
fects of downtime, system administrators usually update
one node at time when a new patch or version becomes
available. This approach, however, has shortcomings for
both small and large installations.

In small installations, shutting down a single node
leads to a capacity problem. The machine must be made
unavailable for the entire duration of the update process,
and other nodes may get overloaded from the increased
number of service requests. Oversizing is a common way
to address this problem, but additional cost is required.

In large installations, an incremental update process
may produce undesirable effects. When a new feature
is included in an update, it may take a long time before
all the nodes are updated. As a consequence, while the
update is still in progress, repeated service requests that
happen to land on different nodes may lead to different
results. In addition to the inconvenience caused to the
users, increased application complexity is often neces-
sary to avoid possible inconsistencies.

In practice, planned downtime to update a software
system is hard to schedule whenever high availability is
of concern. As a result, system administrators tend to
forego installing updates or decide not to install them at
all [9]. This, in turn, increases the risk of unplanned
downtime caused by software bugs or security attacks

and can result in even more catastrophic failures. As a
matter of fact, it has been estimated that more than 90%
of security attacks exploit known vulnerabilities [10].

1.1 Live Update

Experience indicates that trading off high availability
against the need to update a software system is painful
for many applications. Live update—namely the abil-
ity to update software without service interruption—is
a promising direction to address this problem. An in-
frastructure to apply online changes to a running system
would greatly aid in the maintenance of systems that can-
not tolerate disruption of service or loss of transient state.
Live update could be the definitive solution to support
software evolution in high-availability environments.

In the near future, the importance of live update will
likely grow and its application will not be limited to high-
availability systems. With the advent of ubiquitous com-
puting, software tailored to ordinary devices will become
more complex, thus incurring frequent maintenance up-
dates. Emerging embedded software will necessarily re-
quire live update approaches to maintain the current level
of transparency and be widely adopted. It is very un-
likely that most people will understand the need to turn
off their car as a consequence of a high-priority secu-
rity update. Even worse, one could envision legal con-
sequences when a user is forced to update and restart his
TV set while watching a pay-per-view sporting event.

Live updatable software systems have also other po-
tential benefits [11]. First off, live update offers a higher
degree of flexibility with respect to when to start the up-
date process. Different update policies can be employed
to start the live update process at an appropriate time. A
low-priority update policy could be labeled update when
the system load is low in an attempt to minimize system
disruption, whereas a critical security update might be
labeled update as soon as possible.

In addition, live updates can be used for fast prototyp-
ing. When developing a new version of the system, the
ability to test changes online may save the programmer a
lot of time. This is especially true for systems that take a
long time to reboot.

Finally, live updates can be used to dynamically
address the behavior of a running system. Appli-
cations include: (i) efficient dynamic monitoring—
a monitoring infrastructure can be loaded and un-
loaded dynamically when needed with no runtime over-
head in the normal case, (ii) specialized support and
optimizations—customizations tailored to specific sce-
narios can be added dynamically when required, (iii)
adaptive algorithms—system-triggered live updates can
be employed to continuously adapt the behavior of the
system to the monitored workload.



1.2 Contributions of this Paper

The contributions of this paper are threefold. First, we
discuss different models for live update and analyze char-
acteristics of state-of-the-art solutions described in the
literature. Our aim is to investigate the root causes of
why live update technologies have failed to receive broad
acceptance.

Second, we propose a new model for live update tar-
geted towards building dependable and trustworthy solu-
tions. Our concrete goal is promoting the design of sys-
tems and infrastructures specifically conceived with live
update in mind, as opposed to building live update suites
targeting transparency and backward compatibility.

Finally, we propose a taxonomy of live updates focus-
ing on the nature of the update rather than the state of the
system when the update arrives. The taxonomy aims to
provide criteria and scenarios to establish and analyze the
level of complexity and potential disruption of a given
live update. We develop our analysis through concrete
examples and investigate the properties and limitations
of live update.

We believe our contribution is an important step to im-
prove the common understanding and perception of live
updates and identify the issues to design dynamically up-
datable systems. The ultimate goal is to foster the de-
velopment of systems that support dependable live up-
date by design and encourage system administrators to
use them. To the best of our knowledge, no one before
has provided a comprehensive analysis of the properties
and limitations connected with live update, established
an adequate taxonomy based on the aforementioned cri-
teria, and investigated system design issues from a broad
perspective.

1.3 Roadmap

The remainder of the paper is laid out as follows. We
first discuss different models for live update highlight-
ing characteristics, limitations, and trade-offs (Sec. 2).
Then we present the taxonomy (Sec. 3), analyze its im-
plications, and discuss our findings (Sec. 4). Finally, we
survey related work (Sec. 5) and conclude with final re-
marks (Sec. 6).

2 Models for Live Update

Live update has received a great deal of attention in the
past two decades. Both hardware-based and software-
based approaches have been extensively studied in the
literature.

Hardware-based solutions rely on specialized hard-
ware and adopt a primary-backup scheme to update with-
out service interruption. The main shortcoming of this

approach is the additional cost for redundant hardware
and the introduction of synchronization complexity to
preserve transient state and avoid inconsistencies. De-
spite their drawbacks, these solutions have become popu-
lar in many large organizations. Dealing with an average
of 20,000 updates per year and yet maintaining more than
99.5% availability, Visa’s transaction processing system
is a notable example in this category [12].

In contrast, software-based solutions provide runtime
support to apply online changes to running software.
These approaches can be further categorized basing on
the structural unit of change they support. Live update
frameworks described in the literature usually allow dy-
namic replacement of functions, objects or processes. A
number of techniques at each level of granularity have
been proposed in several research communities. More
recently, system-level approaches to update the system
as a whole by running two parallel instances [13] or us-
ing virtualization technologies [8, 14] have also been
explored. These approaches, however, require ad-hoc
infrastructures—a separate execution environment or vir-
tual machines—and are usually more tailored to major
system updates.

Another possible classification criterion for software-
based solutions is the type of software supported. Some
approaches target software applications in general, with
possible restrictions on the environment or programming
language used. Many other solutions are tailored to up-
dating specific operating systems.

In the present paper, we mainly focus on software-
based live update for operating systems. Nevertheless,
the same considerations apply to other software systems
sharing a similar event-driven model. In an operating
system, an event is primarily determined by an applica-
tion requesting service by means of a system call or by a
hardware interrupt. In server applications, such as HTTP
servers or database management systems, events are trig-
gered by user requests and processed in bounded time.
The analysis presented in this paper is equally relevant
to both scenarios.

There are at least three good reasons to concentrate our
attention on operating systems. First, operating systems
are plagued with continuous maintenance updates. As a
consequence of their size and complexity characteristics,
modern operating systems have probably more bugs and
security holes than any other piece of software [15]. In
addition, their code base rapidly evolves to support new
devices and applications.

Second, high availability of operating systems is a ma-
jor concern. Downtime in an operating system directly
translates to downtime for all the hosted applications.
Moreover, recovery time is substantial. After a conven-
tional software update to the operating system, a machine
reboot is required to restart the operating system. As a



result, minimizing downtime due to maintenance is ex-
tremely challenging.

Finally, operating systems offer a complete set of func-
tionalities and update scenarios. This property is use-
ful for our analysis. Furthermore, system administrators,
programmers, and other categories of users are already
familiar with many real-life examples of operating sys-
tem updates.

2.1 Existing Approaches to Live Update

We now turn our attention to live update solutions de-
scribed in the literature. System research in the area of
live update is generally focused on designing frameworks
to seamlessly apply online changes of any sort to existing
software systems the instant they arrive.

The dominant approach is to glue changes into the
running system by loading the update, executing a state
transfer function provided by the author of the update,
and redirecting execution to the new version. Load-
ing the update is usually accomplished through some
form of dynamic linking or special support offered by
the runtime environment—linking a component in a
component-based system, for example. The purpose of
the state transfer function is to convert the old state of
the system into a valid new state before resuming ex-
ecution in a consistent way. For example, if new data
structures are included in the update, the state trans-
fer function must be executed to initialize them with
meaningful values before the new version can start ex-
ecuting properly. When state transfer completes, ex-
ecution is redirected to the new version by exploiting
some form of indirection mechanism specific to the lan-
guage or runtime environment used. Many techniques to
add a level of indirection and redirect execution are de-
scribed in the literature at different levels of abstraction,
such as: function pointers[16], dynamic instrumentation
techniques[17], indirection tables[18], interceptors and
naming services [19]. The live update framework incor-
porates the ability to compare and analyze the old version
and the new version of the system to figure out how to ap-
ply changes correctly and resume execution in a consis-
tent way. Using these techniques, execution is resumed
on the new version seamlessly, without the original ver-
sion being aware of the update.

As a result, much attention has been dedicated to
performance, backward compatibility and transparency.
These properties have been largely promoted as key suc-
cess criteria for live update technologies.

Performance measurements have been extensively
used to determine the time and the overhead required to
apply an online change. In addition, performance statis-
tics have been gathered to measure the overhead on the
runtime behavior of the system. This metric is relevant to

estimate the level of intrusiveness of a live update frame-
work.

Backward compatibility measures the ability of a live
update framework to support and integrate into existing
software systems. An approach designed to retain binary
compatibility can support precompiled software even if
the original source code is not available and the software
was not designed with updating in mind. In contrast, an
approach targeting source compatibility aim to provide a
toolchain to build a live updatable version of the original
software.

Finally, transparency relates to the property of hid-
ing the details of the live update process from authors
of the update, system administrators, and the system it-
self. This property is usually regarded as the ability of the
framework to support existing binary or source patches
and dynamically apply them without any further modi-
fication or user intervention. The only exception is nor-
mally the state transfer function that must be manually
provided when the new version uses different data struc-
tures than the old one.

Live update solutions with emphasis on these proper-
ties have been studied for years now. Despite significant
effort, few research systems have made their way into
the real world. The majority of high-availability systems
still rely on custom solutions or do not use live update at
all [20]. Most approaches have failed to reach broad ac-
ceptance because dynamically updatable systems as such
are not yet considered a trustworthy solution. We believe
that the common perception reflects the lack of practical-
ity and neglect of important dependability properties in
existing live update solutions.

First off, research in being able to apply an update the
very instant it is released is dubious, given the long time
it usually takes to find and fix the bug and publish the
patch. Studies of operating systems have estimated an
average bug lifetime of about 1.8 years, with the median
around 1.25 years [15]. Even once a bug is discovered, it
may take days or weeks to resolve it and deliver an ade-
quate patch. In addition, experience indicates that decid-
ing when to apply the update is crucial to avoid problems
induced by possible bugs in the patch itself. Previous
work on security patches suggested that system adminis-
trators should delay an update at least 10 days after the
patch’s release [21]. In other words, let somebody else
be the guinea pig.

In this light, delaying a live update for a few seconds
to allow the system to get into a known state seems to be
a reasonable option. If the bug has been there for well
over a year, delaying the fix for another 5 seconds is un-
likely to be fatal, especially if you have already inten-
tionally waited 10 days to see if anyone reports bugs in
the update. Yet most of the research in the area assumes
the update must be applied the instant it is available. In



practice, deferring the update process until specific con-
straints are met by the running system is desirable for
several reasons. First, applying online changes when the
system is in a known, stable state is likely to result in a
more reliable update process. In addition, the ability to
specify policies that determine when to schedule the pro-
cess offers a higher degree of flexibility and predictabil-
ity guarantees. This aspect has largely been neglected in
the literature.

As far as backward compatibility and transparency are
concerned, the focus in previous work is largely moti-
vated by the need to cope with existing systems. Al-
though its importance in supporting legacy systems is
indisputable, we argue that a model based on these prop-
erties poorly fits in a standard software development pro-
cess.

Existing solutions assume that the live update infras-
tructure is invisible to the development process leading
to the construction of an update. This, in turn, delegates
to the infrastructure the responsibility of applying the up-
date and ensuring that the resulting configuration is valid.
Unfortunately, inspecting a patch or a new version of the
system to figure out what changes occurred and how to
apply them correctly in the general case is complicated
and error-prone, probably closer to reverse-engineering
than system design. Conversely, programmers develop-
ing a new version of the system are certainly aware of all
the changes that they made and can provide directions on
how to apply them properly at runtime.

Unfortunately, the emphasis on backward compatibil-
ity and transparency in the literature has fostered a clear
separation between the development of a system and the
ability to apply online changes to its running instances.
The main focus is on designing live update infrastruc-
tures that can transparently glue into a running system
any patch at any time. As a result, many live update solu-
tions are primarily concerned with complexity and type
safety, as opposed to ensuring the general safety of an
update [22].

In the literature, the role of safety constraints in live
update solutions is controversial. The reason for this lies
probably at the theoretical foundations of live update. Pi-
oneering work on the validity of a live update was under-
taken by Gupta [23] and has been highly influential in
succeeding research.

In Gupta’s work the validity of a live update is for-
mally proven undecidable in the general case. Namely,
given an arbitrary system at an arbitrary point in time,
an online change, and a state transfer function, it is not
possible to determine if the update will result in a valid
configuration for the system.

Gupta’s result has led many researchers to neglect up-
date safety and focus more on type safety and other prop-
erties. Many models impose restrictions on the type of

an update, others ignore update safety or conservatively
assume that system maintainers can somehow be given
the responsibility to recognize whether or not an update
is valid. Even models that do not target backward com-
patibility but aim to provide frameworks to create live
updatable systems have largely ignored update safety.
Other studies have tried to establish strong update
safety conditions tailored to specific system models.
Common definitions used in component-based systems
are passivity, to indicate the state of a component not
processing any request, and quiescence, to indicate the
state of a passive component whose directly or indirectly
dependent components are all passive [24]—note that in
other research communities quiescence refers to inactive
code in general [17]. For example, consider a compo-
nent that performs logging in a transaction-processing
system. If no logging is in progress, the component is
said to be passive. If not transaction that involves logging
is in progress, the component is also said to be quiescent.
These definitions have been largely acclaimed as a
stable component state to perform a valid dynamic re-
placement. Unfortunately, assumptions on the nature of
the system somehow limit the applicability of these re-
sults. In addition, experience suggests that using a single
general-purpose condition to establish the validity of a
live update reduces the degree of flexibility and causes
excessive system disruption in the average case [25].

2.2 Our Approach to Live Update

We envision a system that can support live update by de-
sign. In our model, the nature of an update is central. We
believe published updates should contain more informa-
tion about what they affect and how, thus allowing the
system to determine when to apply them safely. Note
that we are talking about both small security patches as
well as functional changes from one version to the next.

We believe that a paradigm shift is necessary to real-
ize this vision, moving from the common belief that live
update is somehow similar in spirit to conventional patch
installations. As a matter of fact, there is at least one fun-
damental difference. When changes are applied online,
the impact on the system and the validity of the result-
ing configuration depend on the nature of the update and
the state of the system at the exact moment the update is
performed. A bad update timing can cause serious con-
sequences. To address this challenge, we believe that a
tighter integration between live update and software de-
velopment process is necessary. Both the programmers
and the system should be aware of changes and be pre-
pared to deal with them.

In particular, the programmers producing the update
should document the changes they made in a live update



package. Note that we use the new terminology to in-
dicate the distinction between patch installation and live
update. A live update package contains a patch or a new
version of the system, but also information about the na-
ture of the changes and directives on how to apply them
online properly.

Software, in turn, should be designed with live update
in mind and be prepared to cooperate in the (inevitable)
update process. We need to find structural ways to deal
with that. In our model, the system supports an infras-
tructure to interpret programmers’ specifications and ap-
ply the changes correctly at an appropriate time. When
an update becomes available, the system allows an up-
date manager to send all components affected by the up-
date a “Prepare to die” message that gives them direc-
tives on how to terminate properly. Typically, a compo-
nent will first be asked to finish the necessary pending
activities to ensure that changes are applied only when
its internal state is stable. Then, it will save its state in a
safe place (in another component’s address space or on a
disk) in a predetermined, known, format. Finally, it will
send back to the update manager a “Ready to die” mes-
sage. When all components have responded, the system
is ready to be updated. In spirit, this design is similar to a
two-phase commit. Then the new components are loaded
into the running system. At that point, state transfer takes
place and the new version can safely resume execution.

We believe that this paradigm—having the software
actively cooperate in the update—is far easier and more
practical than the reigning paradigm in the literature
(transparency) in which the update is an unexpected bolt
out of the blue. Developers know that updates happen
and can prepare the code to deal with them.

Our approach results in higher flexibility than using a
general-purpose safety condition and better safety guar-
antees than starting the update process at an arbitrary
moment. In particular, the proposed model solves the
problem of establishing a safe update time structurally,
using a deterministic live update process. By design, the
system can recognize the nature of each update and, in
response to an update request, is able to reach a stable,
receptive state before applying changes. The appropriate
stable state to perform an update is determined from the
nature of the update itself.

A higher degree of flexibility can also enable the defi-
nition of custom update policies to automatically start the
update process at a point in time when eventual disrup-
tion caused by a crash could be minimized. This is an im-
portant aspect to improve the predictability properties of
live updates. Even assuming a safe live update process,
the resulting configuration can in fact still be unstable if
the update itself contains bugs. Moreover, some classes
of live updates that take a long time could be scheduled
when the system is lightly loaded to reduce disruption.

Finally, whenever the system cannot meet required con-
straints or has already entered a tainted state due to latent
errors, the live update process should not occur at all un-
less an appropriate recovery mechanism is available.

In addition, our approach offers better support to the
programmers creating the live update package. In mod-
els assuming the state of the system is not known in ad-
vance, designing a live update package or custom code
to execute at update time—the state transfer function
or other initialization code—can become overly compli-
cated and error-prone. A programming model that forces
programmers to deal with an arbitrary number of possi-
ble initial states is unlikely to be effective and reliable.
Programmers are instead familiar with a deterministic
model, where the initial state of execution is unique and
well known. We envision a similar programming model
for live update.

Furthermore, our model simplifies testing of live up-
date packages. In existing solutions, testing is largely
ineffective in verifying the correctness of an update.
Since the update can be applied at an arbitrary moment,
changes should theoretically be tested against all the pos-
sible system states. This is clearly infeasible. As a result,
live updates rarely go through extensive testing, making
the final update process even less reliable. Our approach,
in contrast, makes testing a deterministic and effective
process.

Finally, we remark that our model does not target bi-
nary compatibility and is by no means transparent. We
regard these concepts as part of the problem, not part of
the solution. There is no real need for instant update and
it is very hard to do it right, so it should not even be con-
sidered when reliability is of concern. Delaying for at
most a few seconds until the system has reached a pre-
dictable state is not harmful and much simpler. In ad-
dition, we believe that our approach can perfectly fit in
a typical software development process, also promoting
a better system design and encouraging programmers to
document changes.

3 The Taxonomy

In the previous section, we argued that the nature of the
update is a crucial aspect to determine the properties of
a live update process and the impact on a running sys-
tem. In this section we develop this intuition further and
propose a taxonomy of live updates.

Rather than focusing on formal definitions, we pro-
pose criteria to describe the nature of an update and dis-
cuss possible scenarios through examples as this will be
of more use to most system administrators. Each sce-
nario in the taxonomy defines a category of updates with
an increasing level of severity, resulting in higher update
complexity and more disruptive effects for the system.



Before detailing our analysis, it is appropriate to intro-
duce the reference model used. In the following, we refer
to a UNIX-like operating system with a standard inter-
face and a generic live update infrastructure. The result-
ing software system is composed of a number of dynam-
ically updatable structural units. Depending on the archi-
tecture of the operating system and the runtime support
provided by the live update infrastructure, the structural
unit used may be a function, object, or process.

We model the interactions between structural units by
means of generic message-passing. A message can be
interpreted as a function call for a function, a method
invocation for an object, and a signal or IPC call for a
process. The execution of the code of a structural unit
follows upon reception of a message. As in a standard
event-driven model, the main message flow is generated
in response to a system-level event.

The semantics of an interaction between multiple
structural units is defined by a protocol. We model a pro-
tocol as the sequence of messages exchanged between an
initiator and one or more structural units that act as re-
cipients. The initiator is the structural unit that starts the
protocol in response to a message received that requires
further processing.

Given the definition of structural units and their inter-
actions, we propose the following criteria to describe the
nature of an update.

Changes to code.
Changes to code refer to changes to algorithms or
protocols and affect one or more structural units.

Changes to data.
Changes to data refer to changes to data structures used
by one or more structural units.

Resource-sensitive changes.

Resource-sensitive changes refer to changes that impose
new requirements for fundamental resources upon which
the operating system relies. In our analysis, we primarily
refer to hardware resources. Examples include memory,
disk, and peripheral devices.

3.1 Definition

Following the characterization of changes introduced
earlier, we present the taxonomy of live updates broken
down into six categories.

1. Update affects one structural unit

This category comprises changes to data and algorithms
isolated in a single structural unit. Common updates in
this category are small bug fixes, security patches, and
performance improvements. An example of a bug fix

is changing a test for ¢ < j to ¢ < j. An example of
security patch is performing length checking on an input
string to avoid buffer overflow attacks. An example of
performance improvement update is a new algorithm
that first checks for the common case before using a
more general and slower approach.

2. Update affects protocol

This category comprises changes to a protocol between
two or more structural units and may include changes to
code and data. Changes to a protocol refer to changes to
the number or type of recipients, changes to the number,
order, or semantics of the messages exchanged, as well
as changes to the content or meaning of any of the fields
in a message. An example is changing the message
format for a call to the disk driver to represent a block
number in 48 bits instead of 32. Another example is
a change that adds, changes or removes a message to
trigger error logging in the structural unit that loads
kernel modules.

3. Update affects global data

This category comprises changes to global data struc-
tures that are shared across multiple structural units.
Also in this category is a change to global data constants,
like renumbering all the error codes. Other examples
are changing the internal representation of a process
identifier from 16 bits to 32 bits or of an inode shared
across multiple structural units throughout the system.
An additional example may be a change to data shared
in a specific subsystem, such as a change to the format
of internal IOCTL codes.

4. Update affects global algorithm

This category comprises changes to a global algorithm
that may affect multiple structural units. An example
in this category is moving the code to add a new inode
to the inode table to a different structural unit, as a
consequence of system restructuring. Another example
is an improved implementation of a file usage counter.
Assume the original version incremented a counter in
the inode at open() time. Imagine that, after noticing
that some files are opened but never accessed, the code
to increment the counter is moved to the time when the
first read() or write() is processed.

5. Update affects data on the disk

Updates in this category are generally concerned with
data stored on the disk. A first example is a change to
the format of the disk image used for process check-
pointing. Another example is a change to the encoding
of temporary files for internal use. More advanced
examples include: (i) changing the executable format, or
(i1) changing the file system format, for example to store



additional information (e.g. more disk addressed) in the
inode on the disk.

6. Update affects hardware requirements

This category comprises changes that impose new
hardware requirements. Examples include changes to
minimum requirements for storage, memory, or proces-
sor speed and changes to hardware supported. Practical
examples in this category can be found in many new
releases of publicly available operating systems. For
example, with the release of Mac OS X v10.5 (Leopard),
Apple dropped support for all PowerPC G3 processors
and for PowerPC G4 processors with clock speeds
below 867 MHz. Another example is the transition from
Windows XP to Windows Vista. Minimum requirements
went from 64 MB to 512 MB for RAM and from 1.5 GB
to 15 GB for disk space available. In addition, Vista
dropped support for older motherboard technologies like
the ISA bus and APM and for every graphics card not
compatible with the DirectX 9 specifications.

3.2 Consequences

In this section, we discuss each category of live updates
in detail and analyze the consequences for the update
process. The gold standard is being able to do with live
update something that previously required a reboot. As
we will show, this is not always possible, but we would
like to get as close as we can.

3.2.1 Update affects one structural unit

In the simple case, the update can be performed by atom-
ically replacing the structural unit. That is, we can apply
changes when the structural unit is not processing a mes-
sage. Recall the security patch example proposed earlier.
If we replace the structural unit when no message is be-
ing processed, all the messages following the update will
use the new code and be verified as expected to avoid
possible buffer overflows. The same considerations ap-
ply to the bug fix example, but state transfer is necessary
to initialize the new data type correctly.

In other cases, an update that uses atomicity at the
structural unit level may not be as effective. For exam-
ple, imagine a protocol to write a chunk of data to a file.
The protocol consists of multiple iterations between the
virtual file system layer and a specific file system imple-
mentation. Assume that the original file system imple-
mentation used buffered writes and only flushed all the
content received at the last interaction. If the file system
implementation is changed to perform unbuffered writes,
the change affects only a single structural unit. Yet, if we
allow the replacement of the file system when the proto-
col is in progress, additional state transfer is necessary to

flush the content of the buffer to the disk before resuming
execution. If the update used atomicity at the protocol
level—that is changes are applied only when the protocol
is not in progress, no state transfer would be necessary.

In more advanced cases, atomicity at the structural
unit level may be insufficient to apply online changes
correctly. Consider the same protocol described above.
Assume that the file system implementation is changed
to collect statistics on the duration of a write(), storing
a timestamp when the first message from the virtual file
system layer is received and another one at the last in-
teraction. If changes are applied when the protocol is in
progress, no state transfer is possible to bring the new
version to a valid state. Atomicity at the protocol level
would make the update feasible and simple. As an alter-
native, if some imprecision is tolerable in the statistics
collected, the state transfer function can be instructed to
use the timestamp of the time changes are applied.

3.2.2 Update affects protocol

In the simple case, the update can be performed by re-
placing all the structural units affected when the protocol
is not in progress. Recall the driver operation example.
In this scenario, the message format used in the proto-
col is changed. If we replace the driver and the coun-
terpart when there is no communication in progress, all
the following protocol instances will use the new format
without breaking the semantics of the protocol.

In other cases, the update may require synchronization
with additional structural units. For example, imagine a
filter driver that detects low-level data corruption. The
driver intercepts each write request to the disk driver and
breaks it down into a first call to write the data block to
the disk and a subsequent call to read the content back
and compare it with the original data block. Consider
an internal module of the filter driver that compares the
two blocks. Assume the module is a structural unit that
exposes a service protocol to receive the original block
in the first message and the block read from the disk in
a second message. To implement the service efficiently,
a single-message inner protocol is used to interact with
another structural unit whose job is computing the check-
sum for each block received in the message. If in a new
version of the system the inner protocol is changed to use
a more efficient checksumming algorithm, changes also
affect the execution of the service protocol. If we replace
the module and the checksum helper by using atomicity
at the inner protocol level, no state transfer is possible
to bring the new version of the module to a valid state
in the general case, because the original data block may
have been lost. In contrast, if we allowed the update at a
time when neither the inner protocol nor the service pro-
tocol were in progress, the resulting configuration would



be valid and no state transfer necessary.

3.2.3 Update affects global data

In the simple case, the update can be performed by re-
placing all the structural units affected when none of
them is actively accessing the global data changed. Re-
call the process identifier example. Assume we changed
the internal representation of the process identifier to use
a larger data type. If the identifier is shared, for exam-
ple, between two separate structural units such as the
process manager and the memory manager, the update
can be performed when both structural units are not ac-
tively processing a message that involves access to the
identifier.

In other cases, the update may require higher levels
of synchronization. Recall the error code example. As-
sume we introduced additional internal error codes for an
exec() system call to handle unexpected error conditions
with a finer level of granularity, for example. If we allow
the replacement of all the structural units affected when
the system call is in progress, the resulting configuration
may not behave correctly. In particular, some of the new
error conditions may not have been recorded in the old
version of the code before the update was performed. In
that case, no state transfer is possible to bring the new
version to a valid state. In contrast, if we allowed the
update only at a time when the system call was not in
progress, the resulting configuration would be valid and
no state transfer necessary.

3.2.4 Update affects global algorithm

In the simple case, updates in this category require proper
synchronization between all the structural units affected.
Recall the file usage counter example, where an update
moves the code to increment a file usage counter from
open() to the first time read() or write() is processed.
If the update is performed when no file is opened, the re-
sulting configuration is valid and no state transfer is nec-
essary. In the opposite situation, state transfer is required
to adjust the value of the counter properly. In particu-
lar, for each open file, the state transfer function should
decrement the counter if the file has never been read or
written before. How hard it is to access this information
determines the level of complexity of the state transfer
function. If this information is not accessible, no state
transfer is possible to bring the new version to a valid
state.

In other more advanced cases, live update may not be
possible at all. For example, consider a change to the
generation algorithm of the random number generator. If
running applications or structural units of the operating
system rely on a sequence of random numbers provided

by the generator, a live update would break this assump-
tion regardless of when changes are applied. The only
reliable solution here is a conventional reboot update.

3.2.5 Update affects data on the disk

In the simple case, the update can be performed by re-
placing all the structural units affected when none of
them is actively accessing the changed data. Recall the
process checkpointing example and consider an update
to support a compressed disk image. Assume the disk
image is shared between two structural units to respec-
tively checkpoint and resume execution of a process.
When the structural units are not actively processing a
message, the update can be safely performed. A state
transfer function will be necessary to read the content
of the image from the disk, compress existing data, and
write everything back to the disk. The duration of the
update process and the impact on the system depend on
the size of the disk image and the complexity of the com-
pression algorithm.

In other cases, a reboot may be desirable or required
to update the system. For instance, imagine that the file
system format is changed. Assume that the format of the
inode on the disk is changed to support 32-bit UIDs. If a
spare partition is available, the update can be performed
live although slowly. The system can run mkfs on the new
partition, laying down the file system in the new format
and then copying all the files. When they are all copied, it
has to go back to copy files changed since copying began,
repeatedly until done.

In more advanced cases, the update on an existing sys-
tem may not be possible at all. Consider a change in the
file system format to count the number of times every
file has been accessed since creation. No state transfer
can bring the new version of the system to a valid state.
But neither can a reboot. It cannot be done at all.

3.2.6 Update affects hardware requirements

Updates in this category can only be supported if exist-
ing hardware matches the new requirements. Consider
an update that changes the minimum RAM requirements
from 512 MB to 1 GB. If the machine has already 1 GB
of RAM available, the update can be applied immedi-
ately. If it has only 512 MB, new hardware (more mem-
ory) will have to be purchased and a reboot done.

4 Discussion

In the previous section, we analyzed the consequences of
several scenarios drawn from the categories proposed in
the taxonomy. Our analysis did not aim at generality but
was instead driven by concrete examples to explore the



properties and limitations of live update. Empirical evi-
dence has supported our original intuition. Each scenario
revealed an increasing level of severity of an update from
different perspectives. In the following, we discuss our
findings.

First, a live update is not always feasible. We showed
examples where no synchronization mechanism and state
transfer function could be provided to perform a live up-
date resulting in a valid configuration for the system. In
many of those cases, a reboot is necessary to perform the
update. In other cases, manual intervention of the system
administrator may be required. In the most unfortunate
cases, the update cannot be done at all.

Second, a live update is not necessarily desirable. In
some cases, the live update process can cause significant
disruption for the running system. As the complexity
of changes and state transfer increases, the update pro-
cess may take longer and the impact on the system be-
come more evident. In particular, a resource-consuming
update process may be problematic or not feasible at
all if, for example, state transfer involves copying large
chunks of memory and not enough extra memory is
available. When substantial disruption is expected, ap-
plying changes online can be inconvenient.

Third, the constraints required for the system at update
time vary. We observed that updates of different natures
may require different levels of atomicity to be applied
online. In simple cases, no synchronization is necessary
to perform the update. In other cases, atomicity at dif-
ferent levels may be required to guarantee a safe update
process and a valid resulting configuration for the sys-
tem. We also noted that, for higher levels of severity,
enforcing the level of atomicity required is increasingly
difficult and expensive.

Finally, the complexity of state transfer depends on
the constraints imposed at update time. In many cases,
we observed that the level of atomicity required at up-
date time can be relaxed. Nevertheless, as we gradu-
ally relax constraints imposed at update time, we observe
an increasingly complicated state transfer. In some cir-
cumstances, constraints cannot be further relaxed or state
transfer will become infeasible. Following these consid-
erations, we recognize the need for a more general defi-
nition of state transfer that also considers the constraints
imposed on the system at update time. Trading off the
implementation complexity of the state transfer function
against the number of constraints to impose at update
time will probably be an important design decision for
programmers of systems that support live update by de-
sign. The nature of the update and the context will drive
the final decision.

In summary, important results can be drawn from the
scenarios presented. For high levels of severity, live
update—or even a conventional reboot update for that
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matter—may be expensive or infeasible. But in most
other cases, the properties of the live update process are
well-defined. Given an update with known characteris-
tics, a desirable stable state for the system at update time
can be established if affected components of the running
system cooperate when they are told “Prepare to die”.
The target state depends on the nature of the update and
the constraints imposed by the programmers for the state
transfer function.

In addition, our investigation shows that the dominant
assumptions used in the literature may lead to undesir-
able effects. In particular, restricting the design to a
unique stable state at update time will result in reduced
flexibility with important consequences. For example,
using quiescence [24] as the only stability condition is
unnecessarily expensive in the average case. In highly
connected systems such as operating systems, this con-
dition translates to synchronizing a large part of the sys-
tem regardless of the nature of the update. As a result,
it may be necessary to freeze the entire system even to
apply a minor and local bug fix. Furthermore, for up-
dates with high levels of severity this condition may not
even provide adequate support. For instance, recall the
file usage counter example. If we want to avoid updating
when applications have still some files opened, blocking
the entire system will not really be of any help.

In the opposite direction, assuming that updates can be
performed at an arbitrary moment (transparency) results
in poor stability guarantees for the update process. As
a result, the complexity of state transfer grows unneces-
sarily with increasing levels of severity, forcing the pro-
grammer to deal with more and more undesirable con-
ditions. Imagine changing the semantics of a protocol
between the process manager and the virtual file system
layer and allowing the update while the protocol is in
progress. The complexity of state transfer would reflect
the complexity of the protocol and the changes made. In
addition, some examples revealed that this assumption
restricts the number of updates that is feasible to perform
online without compromising the overall validity of exe-
cution. A live update solution that combines this model
with transparency is likely to incur the safety problems
discussed earlier in the paper.

Dealing with indeterminacy is neither desirable nor
necessary. No one would approach concurrent program-
ming with no adequate language support. We believe ad-
equate system support is equally crucial for live update.
The system should be able to support a number of stable
states for the update process. Depending on the nature
of the update, it should be possible to determine the ap-
propriate stable state for a safe and predictable update
process. This principle faithfully reflects our approach
discussed earlier.

To conclude our analysis, we comment on the levels



of granularity examined. If system support is to be in-
tegrated in a live update solution, we expect the struc-
tural unit of change to play an important role in the
design. Final conclusions cannot be drawn, but it is
clear that higher levels of granularity are more appeal-
ing as the complexity and potential evolution of the sys-
tem increases. For example, if several function signature
changes are to be expected in each update, supporting
live update at the function level is probably not a good
idea. For complex systems that tend to go through a lot
of changes, higher levels of granularity represent a better
option.

5 Related Work

To our knowledge, no previous study has tried to as-
sess the general properties and limitations of live updates
from a broad perspective and establish an adequate tax-
onomy based on the nature of an update. Classifications
of update types from a functional point of view have been
occasionally proposed to illustrate the properties of a live
update solution [17].

As for update safety and other dependability proper-
ties, previous work is largely concerned with theoretical
aspects and standard definitions for the validity of an up-
date in general.

Gupta [23] and other researchers [26] deal with the
general undecidability of the validity of an update and
formalize sufficient conditions in specific application do-
mains. The focus here is on formal definitions rather than
system design.

Bloom and Day [27] investigate the limitations of state
transfer in the general case when the original specifica-
tions of a module are violated. Our analysis generalizes
the state transfer problem and shows how, given an up-
date of a particular nature, the feasibility and complexity
of state transfer vary depending on the state of the system
at update time.

Kramer and Magee [24] describe a model for dis-
tributed systems and propose the use of transactions to
ensure atomicity. The general validity of an update is
determined by ensuring that each event-generated trans-
action is entirely executed on a single version of the sys-
tem. Their analysis focuses on atomicity at the level of a
system-wide transaction and does not consider lower lev-
els of atomicity. In addition, their model ignores global
or persistent state whose scope is not limited to a sin-
gle transaction. Similar approaches, such as the one de-
scribed in [25], use stronger assumptions on the structure
of the system to relax constraints on atomicity.

Other studies have used transactions or similar ideas
to ensure atomicity. For example, in object-oriented
communities, researchers have described approaches to
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update multithreaded programs and guarantee atomicity
of execution [28], or proposed the use of transactions
and dependency analysis for type-safe atomic updates of
multiple classes [29].

Neamtiu et al. [30] introduce the notion of transac-
tional version consistency (TVC) and describe so-termed
contextual effects similar to some of those scenarios pre-
sented in our taxonomy. They recognize the need to en-
sure atomicity at different levels of granularity and pro-
pose a model for live update. They suggest that program-
mer should explicitly designate blocks of code as trans-
actions whose execution is guaranteed to be atomic dur-
ing the update process. In our analysis, we show that the
level of atomicity and the constraints required at update
time depend on the nature of the update itself. Hard-
coding those constraints at design time is likely to be
overly complicated, reduce flexibility, and hamper soft-
ware evolution.

In prior work, Neamtiu et al. also describe Gin-
seng [16], a complete live update soltions for C pro-
grams. Ginseng supports single-threaded C programs
and employs source-to-source transformation at com-
pilation time to add indirection for functions and data
types. In this case, they do not address transactional ver-
sion consistentcy but restrict the solution to programmer-
annotated safe update points that are still hard-coded in
the original version. Static analysis is used to ensure
type-safe live updates.

Hicks [31] proposes a similar approach to update pro-
grams written in Popcorn (a C-like type-safe language).
Update patches are automatically generated from two
versions of the source code and contain initialization and
state transfer routines. Patches are then compiled into
native verifiable code and dynamically linked to the run-
ning program. As before, programmers are required to
annotate safe update points in the original code.

Other approaches propose static analysis to improve
update safety. For example, OPUS [32] uses static anal-
ysis to warn programmers when changes to programs are
likely to result in an unsafe dynamic update. In particu-
lar, warnings are reported when an update includes mod-
ifications to nonlocal program state. Unfortunately, no
other system support is provided to ensure the general
validity of an update and the solution described is lim-
ited to type safety.

In another direction, Buisson and Dagnat [33] explore
language support to let users specify consistency con-
straints at update time. Their approach is tailored to up-
dating active code at an arbitrary moment without relying
on any kind of system support. As the authors admit, this
approach results in very high complexity in specifying
constraints at update time.

The use of user-specified update constraints is not en-
tirely new and was first explored by Lee [34]. Lee de-



scribes DYNAMOS, one of the earliest live update so-
lutions, comprising a toolchain and a runtime system to
support live update. Updates are initiated through spe-
cial user-issued commands, and users can specify what
to update and what procedures must be idle at update
time. Unfortunately, due to the low level of granularity, a
costly live update infrastructure is necessary to synchro-
nize access to each function call and the complexity of
update constraints rapidly increases with the size of the
system and the severity of an update.

To conclude our analysis, we also consider research
that has proposed a particular system design to sup-
port live update. Many relevant studies can be found
in the area of extensible operating systems. For exam-
ple, operating systems like SPIN [35], Synthetix [36],
and VINO [37] allow applications to modify kernel poli-
cies or specialize OS components. These systems are
primarily concerned with enabling application-specific
customizations and performance optimizations. More
recently, Baumann et al. [18] describe a complete live
update solution for the K42 operating system. Building
on K42’s object-oriented design, they use hot-swappable
objects to support live update at the object level. When
an object must be updated, all the incoming requests are
queued until no thread is actively executing the object
code. At that point, state transfer takes place and all the
pending requests are redirected to the new object. Their
design uses short-lived kernel threads to avoid starvation
during the update process. Type safety is structurally
supported but the general validity of an update is not ad-
dressed. They also assume that the author of the update
must recognize and reject multi-object updates with in-
terdependencies that may lead to a deadlock at update
time.

The vast majority of the other approaches described in
the literature do not address in detail consistency prob-
lems or the validity of an update in general. Most work
limits the analysis to type safety and generally disallows
updates to active code [38, 39, 40] or permits cross-
version execution [17, 41, 42]. In both cases, it is ex-
plicitly or implicitly assumed that interleaving code from
two different versions of the system does not affect the
overall validity of execution. Unfortunately, no method
of validation or system support is provided to verify this
assumption in practice. The interested reader is referred
to detailed live update surveys in [31, 43, 44, 45].

6 Conclusions

Despite being a promising solution to mitigate mainte-
nance downtime in systems that require nonstop opera-
tion, live update is still largely perceived as an obscure
niche not ready for real-life application. Many practi-
cal properties and limitations of live update are still ill-
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understood and have arguably not received the required
attention in the literature.

In this paper, we have presented a taxonomy of live up-
dates and proposed concrete examples to uncover those
characteristics. We have discussed different scenarios
with an increasing level of severity and analyzed implica-
tions for the live update process and issues in designing
dependable live update infrastructures. From our analy-
sis, an important aspect emerges: the nature of an update
is central in designing systems that support live update
with strong safety and predictability guarantees.

We have discussed shortcomings in existing live up-
date solutions and proposed a new update-centric model,
where the system is receptive to changes and program-
mers collaborate to the common intent. This vision can
only be realized if the system is designed to be live updat-
able and each update carries with it adequate information
to determine what changed and when it can be applied.
In our model, feasibility, predictability, and safety of a
live update are dealt with at design time, during the soft-
ware development process.

We believe that software systems should be specifi-
cally conceived with live update in mind to support truly
dependable live update platforms and encourage system
administrators to perform maintenance activities online.
We hope that much more effort will be spent on improv-
ing the safety and predictability properties of current live
update solutions. The job will be finished when live up-
date technologies can provide dependability guarantees
comparable to those of conventional software updates.
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