
InSpectre Gadget: Inspecting the Residual Attack Surface
of Cross-privilege Spectre v2

Sander Wiebing∗ Alvise de Faveri Tron∗ Herbert Bos Cristiano Giuffrida

Vrije Universiteit Amsterdam
∗ Equal contribution joint first authors

Abstract
Spectre v2 is one of the most severe transient execution

vulnerabilities, as it allows an unprivileged attacker to lure a
privileged (e.g., kernel) victim into speculatively jumping to
a chosen gadget, which then leaks data back to the attacker.
Spectre v2 is hard to eradicate. Even on last-generation Intel
CPUs, security hinges on the unavailability of exploitable
gadgets. Nonetheless, with (i) deployed mitigations—eIBRS,
no-eBPF, (Fine)IBT—all aimed at hindering many usable gad-
gets, (ii) existing exploits relying on now-privileged features
(eBPF), and (iii) recent Linux kernel gadget analysis studies
reporting no exploitable gadgets, the common belief is that
there is no residual attack surface of practical concern.

In this paper, we challenge this belief and uncover a signif-
icant residual attack surface for cross-privilege Spectre v2 at-
tacks. To this end, we present InSpectre Gadget, a new gadget
analysis tool for in-depth inspection of Spectre gadgets. Un-
like existing tools, ours performs generic constraint analysis
and models knowledge of advanced exploitation techniques to
accurately reason over gadget exploitability in an automated
fashion. We show that our tool can not only uncover new (un-
conventionally) exploitable gadgets in the Linux kernel, but
that those gadgets are sufficient to bypass all deployed Intel
mitigations. As a demonstration, we present the first native
Spectre-v2 exploit against the Linux kernel on last-generation
Intel CPUs, based on the recent BHI variant and able to leak
arbitrary kernel memory at 3.5 kB/sec. We also present a
number of gadgets and exploitation techniques to bypass the
recent FineIBT mitigation, along with a case study on a 13th
Gen Intel CPU that can leak kernel memory at 18 bytes/sec.

1 Introduction

As the community slowly comes to grips with various forms
of transient execution attacks [13, 29, 31, 32, 35, 51], Spectre
v2 or Branch Target Injection (BTI) [2] remains one of the
most severe ones, able to transiently divert the control flow of
a program. If attackers can find a snippet of code that encodes

secret data into the microarchitectural state, i.e., a (disclosure)
gadget, they can force a victim program, e.g., the kernel, to
transiently jump to it. Even in the face of hardware mitiga-
tions such as eIBRS, researchers have shown that Spectre
v2 can still leak secret data across privilege levels on Intel
systems through what is known as Branch History Injection
(BHI) [13].

However, neither academia [13] nor industry [7] ever found
an exploitable “native” gadget and the only existing exploit
relies on a gadget injected by the authors themselves using
eBPF. Since then, new advanced mitigations such as Indirect
Branch Tracking (IBT) and its recent fine-grained counterpart
FineIBT, have reduced the set of usable gadgets even (much)
further. As a result, it is a common belief that deployed miti-
gations such as eIBRS and privileged eBPF (now default in
all popular Linux distributions) are sufficient to eliminate the
cross-privilege Spectre v2 attack surface—and even more so
in combination with the opt-in (Fine)IBT mitigations.

To challenge this belief, our key observation is that current
techniques to identify such gadgets either overfit “standard”
patterns—identifying only gadgets that look like a handful
of known Spectre examples and ignoring less conventional
patterns—or grossly overapproximate—identifying many po-
tential gadgets of which exploitability is highly uncertain.
Examples of the latter are approaches that identify gadgets
based on their high-level data flow, leaving exploitability to
manual analysis [13, 21, 28]. Examples of the former include
all pattern-based gadget scanners [37, 39, 40], but also all
simplifying and self-limiting gadget definitions [7]. Overly
constraining the definition of a gadget is dangerous, because
even snippets that do not meet all the preconditions of a stan-
dard gadget can still leak data with advanced exploitation
techniques [21, 28, 51]—leaving a gap between what attack-
ers need for exploitation and what vendors and developers
consider for mitigation.

In this paper, we present InSpectre Gadget, an in-depth
Spectre gadget inspector that uses symbolic execution to ac-
curately reason about exploitability of usable gadgets. To this
end, our tool explicitly models data constraints and knowl-

1

edge of advanced exploitation techniques. This strategy re-
laxes the common preconditions of standard gadgets, while
still avoiding the common overapproximations that would
otherwise report many unexploitable gadgets. Moreover, it
provides the analyst with insights into exploitability char-
acteristics, such as the exploitation techniques required, the
constraints to be met, the values that can be leaked, etc.

Scanning the Linux Kernel, InSpectre Gadget finds 1,511
gadgets leading to secret transmission, a significant resid-
ual attack surface. Furthermore, it uncovers hundreds dis-
patch gadgets, i.e., gadgets containing an indirect branch to
an attacker-controlled target and, as we will show, provid-
ing the attacker with a variety of interesting capabilities for
exploitation in face of deployed mitigations. Examples in-
clude increasing control over registers, expanding the set of
reachable gadgets, or crafting disclosure gadgets by chaining
multiple loads. To demonstrate the practicality of our find-
ings, we use the reported gadgets to implement the first native
Spectre-v2 exploit against the Linux kernel on last-generation
Intel CPUs. Our exploit is based on the BHI variant and is
able to leak kernel memory at 3.5 kB/sec without eBPF.

Furthermore, in contrast to previous findings, we show the
recent (Fine)IBT mitigations still allow transient execution of
between 4 and 6 (unchecked) dependent loads. To exploit the
resulting attack surface, we showcase a number of gadgets
and exploitation techniques, along with a case study on a 13th
Gen Intel CPU, leaking kernel memory at 18 bytes/sec.

Contributions. To summarize our contributions:

1. We build InSpectre Gadget, a gadget inspector that
evaluates exploitability of potential gadgets, incorpo-
rating data constraints and knowledge of advanced ex-
ploitation techniques. InSpectre Gadget is available at
https://github.com/vusec/inspectre-gadget, along with a
database of gadgets found for Linux kernel v6.6-rc4.

2. We present the first native (no-eBPF) BHI exploit on
the latest Linux kernel and last-generation Intel CPUs
(CVE-2024-2201).

3. We analyze the effectiveness of both the IBT and
FineIBT mitigations and demonstrate they are insuffi-
cient to hinder native BHI exploitation.

4. We uncover a large presence of dispatch gadgets in the
kernel, showing how an attacker can abuse them to fur-
ther the attack surface and bypass deployed mitigations.

2 Background

2.1 Transient Execution Attacks
Modern CPUs rely on a multitude of speculation mechanisms
to achieve better performance. For example, whenever a CPU
encounters a control flow instruction like a conditional branch

HA

HV

Speculate

KernelUser

3

4

HA

HV

call [rax]

BTB
Collision

legit
target

eBPF
gadget

1 2

call [rax]

CA

CV

TA

TV

eBPF

victim

Figure 1: The BHI attack. The attacker first triggers the
branch CA with history HA 1⃝, which inserts the target TA into
the BTB 2⃝, then triggers the victim branch CV with history
HV 3⃝. The histories are crafted so that CA and CV share the
same BTB entry, so from CV the CPU speculates to TA 4⃝.

or an indirect branch, the correct target might not be known
yet. To avoid stalling, the CPU uses a set of internal struc-
tures, called predictors, to determine the next instruction to
fetch, and starts speculatively executing instructions. If the
speculation is later revealed to be incorrect, the CPU will
undo the effects of the transient execution and restart from
the correct jump target. However, traces of the transient com-
putation can still be observed in the shared microarchitectural
state, e.g. in the cache. An attacker can then measure these
traces with techniques such as FLUSH+RELOAD [52] and
PRIME+PROBE [33] and recover the values of registers and
memory used during the transient computation.

2.2 Spectre v2
In 2018, the disclosure of Spectre [29] famously demonstrated
how speculation can be used to leak data across security do-
mains. One variant presented in the paper, originally known as
Spectre v2 or Branch Target Injection (BTI), shows how spec-
ulation of indirect branches can be used to transiently divert
the control flow of a program and redirect it to an attacker-
chosen location. The attack works by poisoning one of the
CPU predictors, the Branch Target Buffer (BTB), which is
used to decide where to jump on indirect branch specula-
tion. Initially, mitigations were proposed at the software level
and, later, in-silicon mitigations such as Intel eIBRS [5] an
ARM CSV2 [12] were added to newer generations of CPUs
to isolate predictions across privilege levels.

2.3 Branch History Injection
In 2022, Branch History Injection (BHI) [13] showed that,
despite mitigations, cross-privilege Spectre v2 is still possible
on latest Intel CPUs by poisoning the Branch History Buffer
(BHB). Figure 1 provides a high-level overview of the attack.

2

https://github.com/vusec/inspectre-gadget

In summary, by executing a sequence of conditional
branches (HA and HV) right before performing a system call,
an unprivileged attacker can cause the CPU to transiently
jump to a chosen target (TA) when speculating over an indi-
rect call in the kernel (CV). This happens because the CPU
picks the speculative target for CV from a shared structure, the
BTB, that is indexed using both the address of the instruction
and the history of previous conditional branches, which is
stored in the Branch History Buffer (BHB). Finding the right
combination of histories that will result in a collision can be
done with brute-forcing.

To ensure the injected target, TA, contains a disclosure gad-
get, the original BHI attack relied on the presence of the
extended Berkeley Packet Filter (eBPF), through which an
unprivileged user can craft code that lives in the kernel.

2.4 Defenses

Recommended mitigations. In the aftermath of the BHI
disclosure, Intel has advised to disable unprivileged eBPF,
which is now disabled by default in the Linux kernel, and to
mitigate potential disclosure gadgets by prepending a LFENCE
instruction to them [1].

Attack Surface Analysis. The original BHI paper pre-
sented an initial estimate of the BHI attack surface beyond
eBPF using simple data-flow analysis and a loose definition
of disclosure gadget [13]. The analysis pinpointed 1,177 po-
tential gadgets in the Linux kernel, but with no insights into
their exploitability. Later, Intel researchers statically analyzed
the Linux kernel [7], adopting a more refined data-flow-based
approach and finding an order of magnitude more potential
gadgets. Again, with the analysis unable to automatically rea-
son over exploitability, Intel researchers resorted to manually
assessing exploitability of the 8 simplest (linear) gadgets. No
gadgets were deemed exploitable (6 due to reachability issues,
2 due to leakage constraints). Ultimately, with many potential
gadgets uncovered by both scanners but no evidence of prac-
tical exploitability, no additional mitigations were deployed.

Hardware mitigations. On the hardware front, Intel has
proposed a hardware mitigation, the BHI_DIS_S indirect pre-
dictor control, which prevents the CPU from selecting BTB
entries based on history coming from lower security domains.
As the performance overhead is nontrivial, future CPUs might
come with an optimized version, namely BHI_NO. At the time
of writing, while Alder Lake and Raptor Lake Intel CPUs
support BHI_DIS_S after applying a microcode update, the
Linux Kernel does not have support to enable this feature.

Advanced software mitigations. Additional software mit-
igations, like Retpoline [8] or a software BHB-clearing se-
quence [1], have been proposed as spot fixes. However, they
come with a prohibitive performance cost, discouraging prac-
tical deployment. For Linux, in particular, the software BHB-
clearing sequence recommended by Intel has not been imple-
mented at all, as developers rely on unprivileged eBPF being

“the only known real-world BHB attack vector” [9].
IBT. Indirect Branch Tracking (IBT) [45] is a defense for

code-reuse attacks, such as return-oriented programming [43]
and jump-oriented programming [16], which ensures that
indirect branches always jump to an intended target. Intel
CPUs implement a coarse-grained version of IBT in hard-
ware, which ensures that every indirect branch lands on a
special instruction (endbr32 or endbr64), which has to be
inserted by the compiler. While IBT was originally designed
to address architectural control-flow hijacking, it is also part
of Intel’s mitigation guidance for BHI [1]. This is to provide
defense-in-depth against speculative control-flow hijacking,
limiting—somewhat similarly to the existing eIBRS—the pos-
sible Spectre v2 disclosure gadget locations to the beginning
of any indirect branch target in the kernel. Support for IBT
was added to Intel processors with the Tiger Lake series [6]
and is enabled by default from Linux kernel v6.2 [3].

FineIBT. Researchers have recently proposed a finer-
grained IBT variant in software, called FineIBT [20]. The
idea is to instrument the caller of each IBT-guarded indirect
call to load a unique value into a register as well as the callee
to check said value. If the value is different from the expected
one, the execution path is directed to an illegal instruction to
abort execution.

This further restricts indirect calls to (architecturally or
speculatively) target only compliant callees. Support for
FineIBT was recently introduced in Linux kernel v6.2 [4].
Since FineIBT relies on Clang-instrumented kernels [20], to
our knowledge, it is not yet enabled by default in any Linux
distribution (unlike its IBT building block).

3 Threat Model

We consider a traditional cross-privilege Spectre v2 threat
model, with a local unprivileged attacker seeking to disclose
information from a privileged victim, such as the operating
system kernel or the hypervisor. We specifically focus on
a victim Linux kernel, running with all default Spectre v2
mitigations on last-generation Intel CPUs such as eIBRS [5]
and privileged eBPF. Finally, we assume other classes of
vulnerabilities (e.g., memory errors) are subject of orthogonal
mitigations and not part of the attack surface under study.

4 Overview

To perform a Spectre v2 attack against the kernel on last-
generation Intel systems, one must target an indirect branch
in the kernel that jumps to a disclosure gadget. Using BHI,
one can then speculatively hijack a victim branch to the cho-
sen gadget. InSpectre Gadget aids the analyst in choosing a
suitable gadget, following the workflow depicted in Figure 2.

As shown in the figure, the analyst provides InSpectre Gad-
get with a kernel image and a list of candidate gadgets in

3

Exploitable
Gadgets

Filtered
Gadgets

1

2

3

Control
Defenses

���

Craft
Exploit

call [rax]

call [rax]

InSpectre
Gadget

Chosen
gadget

+
Kernel Targets

Figure 2: InSpectre gadget workflow. The analyst provides a
kernel image and a list of target addresses to InSpectre Gadget
1⃝, which performs in-depth inspection to find gadgets that

can leak secrets and output their characteristics. The gadgets
can be filtered 2⃝ based on the available attacker-controlled
registers and the mitigations enabled, and used to craft Spectre
v2 exploits against the kernel 3⃝.

input. Our tool inspects each candidate for a fixed number
of basic blocks with symbolic execution and returns a list
of gadgets that lead to the transmission of a secret. Along
with the gadgets, our tool outputs a number of gadget char-
acteristics: the advanced exploitation techniques required (if
any), the constraints that have to be met, the registers that
have to be controlled, and the values that can be leaked. Such
characteristics are stored into a database, which the analyst
can later filter according to what targets are reachable, what
registers are controlled when the speculative hijack happens,
and what mitigations are enabled for a given target. Addition-
ally, an annotated assembly file is generated for each gadget
to give the analyst a quick overview of the gadget, as shown
in Appendix C. The resulting gadgets can then be exploited
to mount end-to-end Spectre v2 kernel attacks.

In the next sections, we first elaborate on how InSpectre
Gadget models gadgets (constraints, exploitability, etc.) and
how it then performs exploitation-aware gadget inspection.
Next, we demonstrate how an attacker can use its output to
mount an end-to-end BHI attack against the Linux kernel.

5 InSpectre Gadget

A recurring problem in transient execution attacks is eval-
uating if a given instruction sequence can leak a secret via
a—typically cache [24,30,33,38,44,52]—covert channel. To
leak a secret through the cache, an attacker needs to open a
speculation window and accommodate a disclosure gadget.
In this section, we explain that practical disclosure gadgets
extend well beyond those that fit existing narrow definitions.
Next, we show how InSpectre Gadget uses symbolic execution

Listing 1: Standard Spectre disclosure gadget.
1 // Load from attacker-controlled address
2 uint64_t secret = *attacker;
3 // Mask the loaded value
4 uint8_t secretByte = (secret & 0xFF);
5 // Shift the result
6 uint32_t tsecret = secretByte << 9;
7 // Use transmission secret as index.
8 uint64_t transmission = *(tbase + tsecret);

to analyze the candidate gadgets for Spectre v2 exploitability.

5.1 Standard Gadgets
Today’s tools typically concentrate on finding speculation
windows and overapproximating exploitability—leaving the
analysis of disclosure gadgets to the human analyst. Unfortu-
nately, the complexity of such exploitability analysis is daunt-
ing and, unsurprisingly, analysts generally look for standard
Spectre disclosure gadgets, such as the one in Listing 1.

In a standard (or “perfect”) gadget, the CPU loads a secret
from an attacker-controlled address. The loaded secret must
be sufficiently small, either by nature, or as the result of a
bitmask (Line 4), to serve as an index into a second buffer—
ideally shared with the attacker. This second buffer is known
as the reload buffer. Moreover, to ensure that each value of
the secret corresponds to a different cache line, the gadget
should shift the value left by some stride (Line 6). The result is
known as the transmitted secret. As the gadget subsequently
adds it to a second attacker-controlled value which we refer to
as the transmission base and dereferences the resulting value,
it inadvertently establishes a transmission through a cache
covert channel. Specifically, by iterating over the reload buffer
with the same stride while timing the accesses, attackers can
infer that the secret value is the index of the buffer element
for which the access is fast (because it is in the cache).

5.2 Exploitation-Aware Gadget Analysis
Standard gadgets are the most intuitive to understand and the
most straightforward to exploit, but they are by no means
the only exploitable ones. While limiting the analysis to
standard gadgets reduces the complexity, attackers are under
no obligation to respect such restrictions. BLINDSIDE [21],
KASPER [28], PACMAN [41], and RETBLEED [51], for ex-
ample, all exploit gadgets that deviate from such narrow defi-
nitions. Moreover, besides leaking information through the
cache, attackers may avail themselves of a myriad of other
covert channels [15, 19, 22, 42, 49]. In this section, we relax
the assumptions for standard gadgets, describe the additional
challenge posed by each relaxation, and where appropriate,
explain how we can meet the challenge and still leak secrets.

C1. Base not controlled. To perform FLUSH+RELOAD an
attacker needs to be in control not only of the secret address,

4

0xdeadbeef

Transmission

Base SecretKnown Prefix

base - 0xdeadbe00 +

00 00 00 00 de �� �� ��

00 00 00 00 de ad be ��

���

00 00 00 00 �� �� �� ��1

2

3

Figure 3: Known-prefix technique. The attacker first points
the secret address to some known data 1⃝. Then, by shifting
the address 2⃝, small portions of the secret are revealed. With
that, one can adjust the base of subsequent transmissions 3⃝.

but also of the transmission base, so that the transmission load
falls inside of the reload buffer. However, if the base is not
controlled, attackers can still perform PRIME+PROBE [33].

C2. Secret entropy too big. If the code does not mask
the secret prior to its transmission, the entropy impedes its
recovery by the attacker who would have to probe too many
memory locations. However, if the attackers control the trans-
mission base, they can still exploit such gadgets by repur-
posing a technique pioneered in earlier attacks [21, 49, 51],
which we call the known-prefix technique. First, the attacker
chooses a location in memory near the secret that contains a
small known value, and uses that as the secret address. Then,
by increasingly shifting the address, the attacker makes sure
that only a few bytes of the secret are unknown at any given
transmission, and adjusts the transmission base according to
the bytes that are already known (see Figure 3).

C3. Max secret too high. Another problem that may oc-
cur when leaking a large secret value is that the transmission
address might end up outside the valid address space. How-
ever, if enough bits of the transmission base are under attacker
control, one can adjust the base to overflow the secret value,
ensuring that the transmission always occurs in the valid ad-
dress space. We call this technique base adjusting and it is
often used in conjunction with the known-prefix technique.

C4. Secret too small. If the gadget does not shift the secret
value prior to transmission, the lower bits cannot be recovered
through cache covert channels, since nearby addresses belong
to the same cache line. However, if at least one byte of the
secret is above cache-line granularity, we can use the known-
prefix technique to leak the uppermost byte in each iteration.
Otherwise, an attacker may use the sliding technique of RET-
BLEED [51], which exploits the fact that prefetchers generally
do not prefetch cache lines across pages [46]. An attacker
may now adjust the base address to be near a page boundary,
so that even a one-bit difference in the secret value will re-
sult in the transmission being observed on another memory

page. Doing so eliminates any cache and prefetcher noise that
would otherwise make two different values indistinguishable.

C5. Base aliasing. In some cases, even if the transmission
base is attacker-controlled, the base cannot be chosen without
influencing the secret address—a phenomenon we refer to
as aliasing. This may occur, for instance, if the base is com-
puted from a value that is also used to compute the secret
address. In this case, an attacker can still leak values using
PRIME+PROBE. However, not all secret addresses may be tar-
geted as the probe region must reside within mapped memory.
Specifically, since the probe region typically follows the se-
cret address, the final secret addresses result in a non-mapped
probe region. Other, more complex dependencies between the
base and the secret address out of scope. InSpectre Gadget
marks these cases as not (easily) exploitable.

C6. Non-linear gadgets. An implicit assumption of most
static analysis techniques for gadget scanning is that all the
instructions have to be in the same basic block. Since modern
CPUs all support nested speculation, this is not a limitation
in practice. The attacker can either train branches or simply
use static prediction to ensure that the transmission gadget is
reached during speculative execution. An attacker can also
use SMT contention, as demonstrated by prior work [36], to
delay branch resolution and create large speculation windows
that can accommodate multiple basic blocks.

C7. Other transmitters. Finally, a plethora of covert
channels exist in modern CPUs outside of caches (e.g., the
TLB [34]) and one should flexibly support different trans-
mitters. For brevity, we focus our main analysis on classic
secret-dependent data load/store transmitters and later show
our tool can be easily extended to support other vectors such
as the recent SLAM covert channel [26].

5.3 Design

As advanced exploitation techniques relax the assumptions
for standard gadgets as imposed by existing approaches, they
apply new constraints in their stead, enabling the techniques
described in the previous section. To reason over the con-
straints and to assess if code satisfies them, InSpectre Gadget
employs symbolic execution—expressing variables as sym-
bols, and exploring all the possible directions of a program’s
control flow at the same time, while recording the correspond-
ing symbolic constraints.

Although symbolic execution quickly leads to state explo-
sion in the general case, InSpectre Gadget explores only a
small fraction of the program’s control flow. In particular,
since the number of instructions executed during a specula-
tion window is limited, symbolic execution can easily explore
the multiple paths, while still keeping the number of explored
states small. We build on top of ANGR [47], a symbolic exe-
cution engine widely used in the field of software security and
reverse engineering. Note that all the steps described below
are performed automatically by InSpectre Gadget.

5

Transmission

Base
Secret Address

Transmitted Secret

 LOAD[LOAD[rax] + ((LOAD[rbx] & 0xff) * 8)]

Figure 4: Anatomy of a transmission. Once a potential trans-
mission is identified through symbolic execution, InSpectre
Gadget dissects its symbolic expression into components,
which are then analyzed to reason about exploitability.

Tracking attacker control. We start our analysis by substi-
tuting all the values stored in registers and on the stack with
symbolic variables, which for now we assume are attacker-
controlled, and marked as such. Next, we symbolically exe-
cute code starting from a given location. On each load, we
produce a new symbolic value with a label attached to it. If the
load comes from an attacker-controlled symbol, it is marked
as a potential secret. If the address comes from a potential
secret, it is marked as a potential transmission. Note that po-
tential secret implies attacker-controlled, since it is any value
loaded from an attacker-chosen location. Similarly, potential
transmission implies potential secret. This strategy allows us
to track of attacker control through complex chains of loads.

Store-to-Load Forwarding (STL). We model Store-To-
Load Forwarding by keeping a list of all the symbolic stores,
and checking this list for each of the loads encountered by the
symbolic execution engine. If the symbolic expression of the
load address aliases with that of a previous store, we forward
the stored value to the load. Store-to-Load forwarding can be
enabled or disabled with a runtime flag.

Potential transmissions. We let the symbolic execution en-
gine run for a configurable number of basic blocks, recording
all the constraints that might be added, for instance by cmove
or branch instructions. We also record the symbolic expres-
sion of each load. Finally, after the scanning phase is finished,
the scanner reports a list of potential transmissions, i.e., loads
whose symbolic address has been marked as a potential secret.

In a second phase, we inspect the AST of the symbolic ex-
pression of each potential transmission, identifying the trans-
mission base, transmitted secret, and secret address. A high-
level example is shown in Figure 4. Finally, we check if the
base depends on any value used to construct the secret address,
perform a range analysis to infer the minimum, maximum
and stride of all the transmission components, and perform an
inferable-bits analysis to infer which bits of the secret end up
in the transmission and at which position. This comprehen-
sive analysis is crucial for accurate exploitability reasoning.
For instance, data-flow information alone is insufficient to
determine the controllability requirements to be met.

Gadget reasoning. With this information, we can finally

reason about each gadget. All the properties found during the
analysis, along with a list of registers that the attacker needs
to control for each gadget, are saved in a database. We now
use a reasoner to model exploitation techniques with database
queries. The reasoner inserts columns indicating which gad-
gets can leak a secret, and, if needed, which techniques are
required. For instance, if a gadget has a high secret entropy
(i.e., number of transmitted bits > 16), the reasoner checks
if we can perform the known-prefix technique (i.e., secret
address is attacker-controlled with granularity <= 16 bits).

5.4 Evaluation

To evaluate the ability of InSpectre Gadget to uncover a new
attack surface, we analyzed the Linux kernel version 6.6-rc4
(latest at time of writing) with the default configuration. By
listing all the code locations that contain an endbr instruction
and looking at the symbol table, we found a total of 35,212
indirect call targets (have a symbol), and 7,562 indirect jump
targets (have no associated symbol). InSpectre Gadget took
approximately 14 hours to analyze all indirect branch targets,
running on the i9-13900K Intel CPU with 20 cores. We count
each unique transmission address as a gadget, so multiple
paths leading to the same transmission count as 1 gadget.

Additionally, while InSpectre Gadget does not directly out-
put information about reachable gadgets (i.e., those that can
be user-triggered through a syscall), we estimate reachabil-
ity for call targets by cross-referencing the labels with the
coverage report generated by Syzkaller [11], a state-of-the-
art kernel fuzzer. We use the openly-available results from
the Syzbot project [10], which runs Syzkaller for 24 hours,
finding a total of 14,015 reachable targets. This approach
underapproximates the number of reachable gadgets, as the
completeness is subject to fuzzing coverage, but it is useful
to provide an estimate.

Table 1 summarizes the gadgets we uncovered. We found
a total of 922 and 589 gadgets in kernel indirect call and
jump targets (respectively). We manually analyzed 40 ran-
domly sampled gadgets from the list by manually inspecting
the assembly code (in approximately 3 hours). After manual
analysis, we considered 35 to be exploitable. This shows In-
Spectre Gadget provides good accuracy, with the few misses
caused by imprecise controllability modeling of our current
prototype (Section 5.5).

Figure 5 shows statistics that we can use to estimate the
size of the required speculation window, e.g., the number of
instructions and branches present in the gadget, or how many
dependent loads have to fit in the window to leak a secret.

Finally, Table 2 presents the number of potential gadgets
that were not deemed exploitable by our tool. Gadgets with
an invalid base are gadgets where the attacker does not com-
pletely control the transmission base, and in particular, for
some values of the secret, the transmission address would
be invalid, without the attacker being able to compensate by

6

Table 1: The number of exploitable gadgets found by InSpec-
tre Gadget in indirect call targets and indirect jump targets of
the kernel, grouped by technique needed for exploitation.

Technique Call Targets Reachable Jump Targets

Load Store Load Store Load Store

None 12 4 1 3 0 0
Prime+Probe 190 118 50 53 126 13
Sliding 73 30 33 5 221 51
Known Prefix 391 123 104 14 120 94
Base Adjusting 7 0 4 0 0 0
(Base Adjusting
+ Known Prefix)

(65) (27) (26) (6) (75) (43)

Train In-Place 452 204 164 63 166 53
Train OOP 39 10 13 2 115 57

Total 710 283 211 75 469 160

adjusting the transmission base. Gadgets classified as having
an invalid secret address do not allow the attacker to choose
an arbitrary memory location to leak, and gadgets where no
bits of the secret survive before being transmitted, e.g., if the
secret is XOR-ed with itself, are classified as Not Inferable.
Finally, the labels Secret Too Big, Secret Too Small and Base
Alias refer to the problems mentioned in Section 5.2.

As mentioned earlier, InSpectre Gadget can be easily ex-
tended to support new covert channels. As a demonstration,
we added support for both the recent SLAM covert chan-
nel [26] and the code-load (i.e., secret-dependent function
pointer dereference) covert channel [42]. With our tool, we
found ~4x more exploitable gadgets than SLAM’s simple
scanner, primarily due to our ability to reason about the ex-
ploitability of complex gadgets. The code-load covert channel
further revealed over 2,000 SLAM gadgets, although no new
traditional gadgets were found. For a more detailed analysis,
we refer the reader to Appendix A.

5.5 Limitations

As opposed to tools like KASPER [28], InSpectre Gadget is
designed to analyze only the content of speculation windows
(e.g., call and jump targets for Spectre v2), whose entry points
have to be provided by the analyst. Other aspects needed
for end-to-end exploitation, such as the reachability of the
target and the presence of a suitable victim branch, are not
part of the tool’s output. Nonetheless, in Section 6.1, we show
how to construct an end-to-end attack based on the results of
our analysis. Moreover, InSpectre Gadget cannot completely
prove the absence of gadgets in a given snippet of code.

Regarding exploitability results, our current prototype has
a number of limitations potentially impacting accuracy. First,
our tool is based on ANGR and relies on both its disassembler
(CAPSTONE) and constraint solver (Z3). Whenever an error

Table 2: The number of potential gadgets marked as “not
exploitable” by InSpectre Gadget, broken down by the reason
for which they were deemed unexploitable.

Problem # of Gadgets # Reachable
Load Store Load Store

Base Alias 1344 652 517 162
Invalid Base 32547 5411 9328 1364
Invalid Secret Address 434 86 114 17
CMOVE Alias 817 170 278 48
Secret Not Inferable 120 6 55 1
Invalid Transmission 277 66 53 15
Secret Too Big 2042 451 284 169
Secret Too Small 555 76 189 36

Total 34724 5865 9665 1532

occurs in one of these components, e.g., on unsupported in-
structions, we have to bail out from the analysis, leaving some
symbolic states unexplored. Second, transmissions that con-
tain a complex symbolic expression, e.g., two independently-
controlled loads used in a XOR operation, cannot be easily
unpacked into a base and a transmitted secret, but might still
leak a value. We mark these cases as complex and approxi-
mate their ranges by querying the SAT solver for the minimum
and maximum values of the whole expression and of each
sub-expression. We also use this approach when performing
range analysis on expressions with complex (symbolic) con-
straints, whose values cannot be easily reduced to an interval
or a small set. For these cases, besides reporting the minimum
and the maximum values, we also check if certain bits are
always 0 or 1 to approximate the stride.

Finally, at the moment our tool models the attacker’s con-
trol over complex chains of loads as a binary condition (con-
trolled or not controlled), as opposed to reporting the degree
of control as done for transmission components. For complex
aliasing cases, this can introduce imprecision (e.g., inaccurate
classification of the required exploitation techniques).

6 Native BHI

In the previous section, we saw that InSpectre Gadget was
able to uncover in the Linux kernel many gadgets that can lead
to the transmission of a secret. In this section, we demonstrate
how an attacker can use such gadgets to mount an end-to-end
Spectre v2 exploit against the kernel, by presenting the first
native BHI attack (without the need of unprivileged eBPF).

6.1 Preliminaries
To perform native BHI, an attacker must first trigger the gad-
get via a syscall to insert its entry in the BTB. As discussed in
Section 5.4, we use the reports from Syzkaller to determine
which target can be triggered, and how. Note that, since we use

7

0 20 40 60

Number of Instructions

0

200

400

600

800

C
u

m
u

la
ti

ve
#

of
G

ad
ge

ts

Call

Jump

Reachable

0 1 2 3 4 5 6

Number of Branches

0

200

400

600

800

C
u

m
u

la
ti

ve
#

of
G

a
gd

et
s Call

Jump

Reachable

0 1 2 3 4 5

Number of Loads

0

200

400

600

800

C
u

m
u

la
ti

ve
#

of
G

ad
ge

ts

Call

Jump

Reachable

Figure 5: Cumulative distributions of the number of instructions, branches and dependent loads found in disclosure gadgets.

valid indirect call targets, the attack is completely unaffected
by the eIBRS and IBT mitigations.

In addition, we must choose a victim indirect branch. At-
tackers need to ensure they control the registers and memory
required by the gadget, when the victim call is triggered. To
find potential victims, we use ANGR to search for indirect
branches from the syscall entry point. Upon detecting an indi-
rect branch, we perform range analysis on attacker-controlled
registers. To find attacker-controlled values that require an
extra dereference with a small offset, we first query the solver
to determine if the expression stored in a register has a single
solution. If so, we examine the memory at this address and the
adjacent 256 bytes for attacker-controlled values and perform
range analysis on them if found.

We identified 21 indirect branches across 11 syscalls, each
with at least one register under sufficient attacker control to
pass a kernel pointer.

6.2 End-To-End Exploit
In this section, we show how we craft an end-to-end exploit
against the Linux kernel to leak the content of /etc/shadow
on the latest Intel CPUs in under two minutes. Figure 6 shows
a general overview of the attack.

Disclosure gadget and victim branch. As a first step, we
search for a FLUSH+RELOAD gadget to provide an efficient
covert channel, by filtering the database generated by InSpec-
tre Gadget. In particular, we select cgroup_seqfile_show,
shown in Listing 2, as our gadget. The corresponding an-
notated assembly file, generated by InSpectre Gadget, is in-
cluded in Appendix C.

As our victim branch, we choose the kernel syscall handler.
When executing this branch, all of the (attacker-controlled)
syscall arguments have already been pushed on the stack,
while rdi points to the location of these arguments. Since
cgroup_seqfile_show loads a value from rdi + 0x70 and
uses it to compute all other values, attackers need to control
just the first syscall argument when the misprediction occurs.

Inserting the BTB entry. To ensure that the CPU mispre-
dicts to our gadget, its address must be injected into the BTB
before calling the victim. To this end, we trigger the gadget
from userspace exactly once. Manual analysis shows that we

call [rax]

call [rax]

Collision

legit
target

Speculate
Leak

KernelUser

1 2

3
4

<cgroup_seqfile_show>

rax = load[rdi+0x70]
rax = load[rax]
���
transmit[rdi+rax*8]

[rdi+0x70]
controlled

read file

syscall

Figure 6: Workflow for the native BHI exploit. The at-
tacker first triggers an indirect call in kernel 1⃝, which jumps
to cgroup_seqfile_show 2⃝. Then, a colliding history is ex-
ecuted, and the syscall dispatcher is invoked 3⃝, which expects
the user-provided syscall argument at address rdi+0x70. Be-
fore executing the intended target, the CPU transiently jumps
to cgroup_seqfile_show 4⃝, which dereferences rdi+0x70
and uses its value to construct a transmission.

can trigger cgroup_seqfile_show by reading a file in the
cgroup directory (/sys/fs/cgroup) from userspace.

Increasing the transient window size. The induced tran-
sient window must be sufficiently large to fit our transmission.
There are various ways to achieve this. In our case, we opted
for evicting from the cache the syscall table entry that con-
tains the legitimate target of our victim, making the victim
call slow. Our experiments show that evicting the entry from
the L2 data cache provides a window that is large enough.

Finding the reload buffer. To use FLUSH+RELOAD, there
needs to be a shared buffer between the attacker and the victim.
We can obtain such a reload buffer by allocating a user page
and identifying its corresponding address in the kernel’s direct
map of physical memory. However, the map address is not
known in advance, and must be leaked.

In principle, an attacker can brute-force this address by
exploiting BHI to transiently jump to an attacker-controlled
load, and check if the load brought the user page into the
cache. However, two significant sources of entropy stand in

8

Listing 2: Assembly of the cgroup_seqfile_show gadget.
Linux kernel 6.6-rc4, default configuration.

1 endbr64
2 push rbp
3 mov rax, QWORD PTR [rdi+0x70]; load user rdi
4 mov r8, rsi
5 mov rbp, rdi
6 mov rax, QWORD PTR [rax] ; indirect load
7 mov rsi, QWORD PTR [rax+0x60]; indirect load
8 mov rdx, QWORD PTR [rax+0x8] ; indirect load
9 mov rax, QWORD PTR [rsi+0x58]; load secret addr

10 mov rdi, QWORD PTR [rdx+0x60]; load tbase
11 test rax, rax
12 je <cgroup_seqfile_show+55>
13 movsxd rax, DWORD PTR [rax+0x9c] ; load secret
14 add rax, 0x2e
15 mov rdi, QWORD PTR [rdi+rax*8+0x8]; transmit

our way: the kernel direct map address (subject to KASLR
and allocator entropy) and the victim/target branch histories
(which need to collide). In other words, a cache hit for the user
page can only be observed by the attacker if both the kernel
direct map address of the user page is correctly guessed and
the history correctly collides with the target branch.

To reduce the entropy and speed up brute forcing, we first
find the start of the physical map and break KASLR. To do
so, we use a modified version of the prefetch attack [23].

Next, instead of looking for a specific collision, as one
would do when performing BHI, we perform a parallel history
collision search by injecting the address of multiple gadgets
in the BTB before calling the victim, and randomizing both
the target and victim branch history.

Combining these optimizations allows us to identify the
kernel direct map address for our user page within a minute
on both Intel Comet Lake and Intel Raptor Lake CPUs.

Finding the histories. Once we have found the user page
address, we follow the original BHI method to find a single
reusable history for our victim branch colliding with the target
branch [13]. Specifically, we randomize the victim history
while keeping the target history constant until our user page
gets loaded by the kernel.

Leaking kernel memory. To leak arbitrary kernel memory,
we first have to find a known signature to use the known-
prefix technique. It can be any value, including zeros. In our
attack, to leak the shadow file, we first bring it into memory
by calling passwd -s. Next, we start leaking from the start of
the physical map and check if the signature ‘root:’ is present
at the start of a 4k page [21].

Results. The end-to-end exploit time to leak the root pass-
word hash from the shadow file is on average 45s and 120s for
the Intel i7-10700K and i9-13900K, respectively. The exploit
runs longer on Raptor Lake due to the larger BHB size which
therefore requires more collision iterations. The leakage rate
after initialization is 4.5 KBps and 3.5 KBps on the i7-10700K
and i9-13900K, respectively, with an accuracy of >99.9%

7 Dispatch Gadgets

A native BHI attacker is normally restricted to syscall-
reachable disclosure gadgets. However, we found another
type of gadget in many indirect kernel targets, i.e., one with an
indirect branch to an attacker-controlled address (Figure 8)—
which we refer to as dispatch gadget (or dispatcher).

To find such gadgets, we adapted InSpectre Gadget to also
report such cases, which correspond to jumps to a symbolic
address during symbolic execution. Most code logic for dis-
patch gadgets is shared with that of disclosure gadgets, as
supporting dispatch gadgets primarily required adding an ex-
tra hook for symbolic branches and saving all the information
from the analysis. With such support, we found as many as
2,105 dispatch gadgets residing within the first 6 basic blocks
of an indirect call target of the Linux kernel, of which 478
are reported to be reachable by Syzkaller. We also found 457
others at the beginning of indirect jump targets. We manually
analyzed 20 randomly sampled dispatch gadgets and found
that all 20 are indeed exploitable. Figure 7 shows the depth of
the dispatch gadgets found by InSpectre Gadget, measured in
number of instructions, number of branches, and maximum
number of dependent loads.

Dispatch types. Dispatch gadgets are particularly interest-
ing because they allow an attacker to divert control flow to
effectively any address. Use cases of interest are for example:

Dispatch-to-Call. The attacker jumps to a valid indirect
call target. The target might either not be (easily) reachable
via syscall, or the attacker uses the dispatcher to increase the
number of controlled registers before jumping to the target.

Dispatch-to-Jump. Similar to Dispatch-to-Call, the attacker
jumps to an indirect jump target. Jumps targets are of spe-
cial interest as, with FineIBT, they are instrumented with an
endbr instruction but not with the call-specific FineIBT in-
strumentation. We discuss this primitive in the next section.

Dispatch-to-Any. In case IBT is disabled, the attacker can
jump to any code location, at direct call/jump targets, in the
middle of functions, or even in the middle of instructions.

Dispatch-to-Dispatcher. The attacker chains two or more
dispatchers to increase control over registers or to craft a dis-
closure gadget by chaining multiple load sequences together.

Chaining strategies. From an exploitation perspective,
dispatch gadgets can be used to jump to a gadget within
the same speculation window. With this 1-stage chaining
strategy, the dispatcher can easily reach unreachable code,
increase controlled registers, etc. For example, if at the time
of misprediction only rax is controlled, an attacker might
jump to a dispatcher that moves rax to rbx before jump-
ing to the final target. This allows the attacker to use any
gadget that requires control of rbx—not previously possible.
To demonstrate this approach, we repurposed our exploit to
use common_timer_delete as the dispatcher to jump to the
of_css disclosure gadget—a valid indirect call target not nor-
mally reachable from an unprivileged attacker’s workload.

9

0 20 40 60 80 100
Number of Instructions

0

500

1000

1500

2000

C
u

m
u

la
ti

ve
#

of
D

is
p

at
ch

er
s

Call

Jump

Reachable

0 1 2 3 4 5 6
Number of Branches

0

500

1000

1500

2000

C
u

m
u

la
ti

ve
#

of
D

is
p

at
ch

er
s

Call

Jump

Reachable

0 1 2 3 4 5 6
Number of Loads

0

500

1000

1500

2000

C
u

m
u

la
ti

ve
#

of
D

is
p

at
ch

er
s

Call

Jump

Reachable

Figure 7: Cumulative distribution of number of instructions, branches, and dependent loads of the attack surface for dispatch
gadgets found within indirect call (Call), indirect jump (Jump), and reachable indirect call (Reachable) targets.

���
call[rsi]

���
call [rax]

call [rax]

Collision Speculate

1 2

4

5

���
3

gadget

gadget

gadget

6

6

6

<unreachable>

<legit>

<jmp_target>

<any_address>

<dispatcher>

rsi controlled

Figure 8: Dispatch gadgets. Instead of transiently jumping to
a disclosure gadget, an attacker can jump to a gadget that calls
a controlled function pointer. From that point, the attacker
can divert control flow to less restrictive gadgets.

We achieved a leakage rate of 3.3 KB/sec on the i9-13900K.
Alternatively, the attacker could opt for a 2-stage chain-

ing strategy , i.e., using the dispatcher to inject a controlled
BTB entry within the transient window [48] and later col-
lide with another victim. This strategy offers two benefits.
First, dispatch and disclosure gadgets are executed in separate
speculation windows, accommodating a larger number of in-
structions. Second, this strategy allows the attacker to exploit
different victims with different controllability characteristics
for dispatcher and disclosure gadgets. To demonstrate this
approach, we repurposed our exploit to use m_show as the dis-
patcher to inject the address of the of_css disclosure gadget
into the BTB and, next, start a new history colliding phase
to collide with the BTB entry just inserted. We achieved a
leakage rate of 2.9 KB/sec on the i9-13900K.

8 FineIBT Analysis

Having shown that our discovered dispatch/disclosure gad-
gets offer many options to mount cross-privilege Spectre v2
attacks against the kernel, defeating deployed mitigations that
are currently believed to hinder exploitation, we now evaluate

Listing 3: IBT test snippet.
1 ind_target:
2 .rept 16
3 mov rax, QWORD PTR [rax]
4 .endr

the impact of the recent FineIBT mitigation on these attacks.
We first analyze the effective speculation window(s) and the
impact of Simultaneous Multithreading (SMT) resource con-
tention, before discussing the residual attack surface.

8.1 IBT Speculation Window

Since FineIBT builds on IBT, any IBT-induced speculation
window is of concern. For Intel CPUs supporting IBT, the
CET-tracker transitions to the WAIT_FOR_ENDBRANCH state
upon execution of an indirect branch. If the subsequent in-
struction is not an endbr instruction, speculation is limited.
To be more precise, Intel specifies that IBT limits speculative
execution to 7 instructions (with a maximum of 5 loads) in
early implementations, while later versions should completely
block speculative execution after a missing endbr [27].

We evaluate the limits of IBT in the context of speculative
execution by opening a transient window in a kernel module
and executing an indirect call to a target snippet which omits
the endbr instruction (Listing 3).

The snippet executes a chain of dependent loads, which
ends with a load from a reload buffer. Prior to each iteration,
we flush the reload buffer and, after executing the snippet,
we test if the reload buffer entry is cached. We ran the ex-
periment over 100 separate runs, with each run performing
1 million iterations for different sizes of the load chain. The
test snippet is positioned between two pages filled with zeros,
which prevents interference from other endbr instructions.
We performed our experiment on the three most recent Intel
CPU generations: Rocket Lake, Alder Lake, and Raptor Lake.
Table 3 presents our results.

We observed that the Intel i7-11800H CPU features an
early implementation of IBT, which allows for up to 5 de-

10

Listing 4: FineIBT instrumentation.
1 __cfi_ind_target:
2 endbr64
3 sub r10d, 0x8baaa714
4 je <ind_target>
5 ud2
6 nop
7 ind_target:

pendent loads in the speculation window. We measured an
average hit rate of 34% for the last load. For every NOP in-
struction inserted before the load chain, we observed one less
load being speculatively executed. Finally, we tested whether
the alignment of the caller or target impacts the speculation
window. The caller’s alignment impacts the hit rate, and in
the least optimal alignment, only 3 dependent loads can be
fitted in the window before speculation is killed by IBT.

For the i9-12900K and i9-13900K CPUs, we can execute
exactly 1 load in the IBT window. Adding a NOP instruction re-
sults in the reload buffer no longer being cached. We observed
no influence from the alignment of the caller or target.

8.2 FineIBT Speculation Window

As a fine-grained extension of IBT, FineIBT introduces a
speculation window of its own. This is due to the (SID
check) conditional branch part of the software instrumen-
tation. Nonetheless, such branch has been explicitly designed
as “low-latency”, performing a comparison between a reg-
ister value and an immediate operand. As a result, FineIBT
is currently considered an effective countermeasure against
speculative control-flow hijacking attacks [1, 20].

Listing 4 shows the FineIBT instrumentation as it appears
in the Linux kernel. The caller of an indirect branch is required
to insert the correct SID into the r10 register and call the CFI
variant of the target function. Inside the callee, the correct
SID is subtracted from r10 and, if the outcome is zero, the
instrumentation jumps to the actual call target. Conversely, if
the SID is incorrect, the UD2 operation is executed, resulting
in an invalid opcode exception.

To evaluate the speculation window size, we instrument the
test snippet from Listing 3 with FineIBT. Next, we train the
branch predictor by transiently executing the snippet with the
correct SID, and later perform a call with an incorrect SID. To
ensure that the same PHT entry is used for both the training
phase and the malicious call, we prime the branch history
by executing 200 branches after we differentiate between a
training and a malicious call, which is in line with previous
results [53]. Our experiments showed that this successfully
trains the branch predictor on the three selected tested CPUs
for this experiment. Table 3 presents our results.

As shown in the table, on all the tested CPUs, we can com-
plete 1 load from RAM into memory with a high hit rate on

Listing 5: FineIBT contention snippet.
1 .align 32
2 do_contention:
3 .rept REPEAT
4 sub eax, 0x1
5 .rept N_JE
6 je do_contention
7 .endr
8 .endr
9 jne do_contention

average, from 79% up to 85%. This contrasts with the findings
of the original FineIBT paper [20], which observed a consider-
ably lower hit rate (17 hits out of 10 million iterations) when
testing for Spectre resilience. However, we observe similar
results without prior PHT entry massaging. As such, we hy-
pothesize that the branch predictor may have distinguished
between test and training runs in their case, thereby correctly
predicting the SID check for the test runs. Namely, their test
setup, despite conducting 10 training runs, jumps to a location
dependent on whether it is a training or test run just prior to
executing the FineIBT check. This jump difference can likely
be inferred by the branch predictor.

8.3 Impact of SMT Contention
When SMT is enabled, a number of resources are shared
between two sibling logical processors sharing the same core.
Prior research [36] has shown that resource contention from
a sibling processor can cause nontrivial delays in the other
processor, thereby expanding the speculation window sizes.

To assess the impact of SMT contention on the (Fine)IBT
speculation windows, we use the same test setup as before.
However, we now introduce a contention workload on the sib-
ling core. We seek to induce a delay in the FineIBT check (i.e.,
subtract operation, conditional branch evaluation, speculation
rollback) or more generally in the victim logical processor
(accounting also for the IBT window).

We evaluated the effects of SMT contention using different
workloads and observed that the behavior of each workload
strongly varies across different runs, although it remains sta-
ble during the run. We focus primarily on finding the most
efficient workload on average, which is shown in Listing 5.

Branch contention. To delay the FineIBT check, the main
ingredient is conditional branch contention. Changing the
branch type in the branch sequence (line 6) to a direct
jump/call or indirect jump/call to the next instruction does not
yield a higher hit rate compared to no SMT workload. Our
experiments also showed that nontaken conditional branches
are more effective on average.

Arithmetic operations. We tested workloads with sub,
add, mul, and cmp operations. A workload with only arith-
metic operations does not seem to increase the hit rate. We
also experimented with adding arithmetic operations in com-

11

Table 3: Hit rates for different load chain sizes while racing against the IBT and FineIBT mitigations.

Intel Core SMT IBT Hit Rates FineIBT Hit Rates
1 LD 2 LD 3 LD 4 LD 5 LD 1 LD 2 LD 3 LD 4 LD 5 LD 6 LD 7 LD 8 LD 9 LD 10 LD

i7-11800H
None 100% 100% 100% 59% 57% 82% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Contention 99% 99% 74% 49% 11% 100% 96% 55% 14% <1% 0% 0% 0% 0% 0%

i9-12900K*
None 100% 0% 0% 0% 0% 79% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Contention 100% 0% 0% 0% 0% 100% 95% 65% 39% 20% 8% 1% 0% 0% 0%

i9-13900K*
None 100% 0% 0% 0% 0% 85% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Contention 100% 0% 0% 0% 0% 100% 79% 57% 33% 16% 7% 4% <1% <1% <1%

* Performance core

Table 4: The SMT workload configuration per CPU model

Intel Core N_REPEAT N_JE

i7-11800H 2 5
i9-12900K 1 9
i9-13900K 2 8

bination with conditional branches. Our experiments showed
that placing one sub or add instruction before the branch
sequence yields a higher hit rate.

Alignment. We observed an alignment of 32 bytes for
the contention workload to be generally the most effective.
However, for some test runs, we observed the highest hit rates
on different, unpredictable alignments. We suspect this is due
to side effects from branch aliasing.

Workload size. During the experiments, we observed that
the most effective configuration of the workload for each
tested CPU differs in the number of sequential conditional
branches (N_JE). Additionally, repeating the snippet before
jumping back to the entry point can also affect the effective-
ness (N_REPEAT). We experimentally derived the best config-
uration for the tested CPUs (Table 4).

We repeated the (Fine)IBT speculation window experi-
ments with our fine-tuned SMT workload. Table 3 reports our
results. As shown in the table, for the IBT window, our SMT
workload does not increase the window size. For the FineIBT
window, on the other hand, our SMT workload heavily im-
pacts the number of loads one can fit across microarchitec-
tures. Specifically, we observed cache hits up to 5, 7, and 10
loads for the i7-11800H, i9-12900K, and i9-13900K CPUs, re-
spectively. Noteworthy, on the i9-13900K CPU, a contention
workload composed solely of taken branches showed varied
results: 80% of the runs had hits only up to 2 loads, 15% had
a 90% hit rate for 6 loads, and 4% even reached a 90% hit
rate for 9 loads.

9 FineIBT Bypass

We showed that the (Fine)IBT speculation windows still leave
room to transiently fit a gadget with illegal control flow. In par-

ticular, depending on the microarchitecture, our results show
that a FineIBT attacker can transiently execute 4-6 dependent
loads with a hit rate of at least 7%. As such, attackers can use
a variety of techniques to bypass FineIBT. To find gadgets
for these techniques, the analyst can issue a SQL query to
filter the InSpectre Gadget database for gadgets that satisfy
the corresponding requirements.

Racing against the FineIBT window. An attacker may
race against the FineIBT window with a disclosure gadget,
and, optionally, use Dispatch-to-Call to increase reachability
of disclosure gadgets (either via 1-stage or 2-stage chaining).
As shown in Figures 5 and 7, the ability to fit 4 loads in
the transient window is sufficient to have a wide selection
of gadgets. More specifically, if we conservatively filter for
reachable dispatchers with a maximum of 3 dependent loads
within 10 instructions, we are left with 41 gadgets. If we
filter for disclosure gadgets with at most 15 instructions and 4
dependent loads, we obtain 85 reachable gadgets and 532 non-
reachable gadgets, which can be reached through a dispatcher.

Racing against the IBT window. Instead of using indirect
call targets as disclosure gadgets, an attacker can also opt to
use Dispatch-to-Any to reach any executable code for disclo-
sure. However, the attacker then needs to race against both
the FineIBT and the (nested) IBT window.

On CPUs with an early IBT implementation, an attacker
can fit up to 5 loads in the IBT window. So an attacker can
use a dispatcher to jump to a sequence of instructions, with
a maximum of 5, to load a secret and subsequently transmit
it. If the attacker uses 1-stage chaining, it has to fit the dis-
patch gadget in the FineIBT window and the transmission
in the FineIBT and IBT window. Even more powerful, the
attacker could use 2-stage chaining to insert a BTB entry for
a transmission sequence and avoid the FineIBT window in
the second stage which executes the transmission sequence.

Later IBT implementations allow for exactly one specula-
tive load after the illegal jump. While at a first glance this
may seem unhelpful, attackers can still benefit from an addi-
tional load when transiently executing a dispatch gadget. In
fact, the attacker can use any dispatch gadget that executes an
additional load from an attacker-controlled address. Namely,
the attacker can point the dispatch target to an instruction that

12

call [rax]

Collision

2

load[r8+ rbx]rsi

<unix_poll>

rdx r8
controlled

<��cfi_unix_poll>
endbr
cmp SID
je <unix_poll>

Speculate

3

5

Train

Speculate
6

7

Leak8

FineIBT Window

IBT Window

anywhere

Inject
call [rax]

1

4
rbx = [rsi+0x18]
r11 = [rdx]
���
call r11

Figure 9: FineIBT bypass case study. The attacker invokes
epoll_ctl 1⃝ to inject the address of unix_poll 2⃝ and,
contextually, train its FineIBT check 3⃝. Then, prctl is
invoked 4⃝, which speculatively jumps first to the target’s
FineIBT check 5⃝ then to its body 6⃝. Inside unix_poll, a
secret is loaded, then the function jumps to a single, final load
7⃝ which discloses the secret 8⃝.

transmits the secret loaded by the additional load. InSpectre
Gadget found 475 dispatch gadgets with at least one load
preceding (but not controlling) the dispatch call.

Using JMP targets. IBT requires both indirect call targets
and indirect jump targets to land on an endbr instruction. In
contrast, FineIBT only guards indirect call targets. As a result,
an attacker can target indirect jump targets—which do start
with an endbr instruction but are not instrumented with a
SID check—to bypass FineIBT. Hence, the attacker can use
a disclosure gadget reached via indirect jump without racing
against the FineIBT window. To solve reachability, while still
avoiding the FineIBT check, it can use a dispatcher reached
via indirect jump to perform a Dispatch-to-Jump dispatch.
InSpectre Gadget found 457 dispatch gadgets and 589 viable
disclosure gadgets at indirect jump targets in the Linux kernel.

Case study. As a case study, we demonstrate how a BHI
attacker can bypass FineIBT and leak kernel memory in prac-
tice on a 13th Gen Intel CPU. At a high level, as depicted
in Figure 9, we rely on a Dispatch-to-Any primitive with 1-
stage chaining. This is to divert control flow to a dispatcher
gadget (valid according to IBT, invalid according to FineIBT)
and then, in turn, to an arbitrary final target (invalid accord-
ing to IBT, unchecked by FineIBT). To this end, we need
to race against two nested speculation windows (other than
the initial BHI one): (i) the FineIBT window checking for
the invalid (SID-violating) control-flow transfer to the dis-
patcher gadget; (ii) the IBT window checking for the invalid
(endbr-bypassing) control-flow transfer to the final target.

From our InSpectre Gadget results, we need to first select
a dispatch gadget that can race against the main FineIBT win-
dow. To this end, we select unix_poll (Appendix B), a short-
lived dispatcher that loads an attacker-controlled value into

a first register before a call via a second, attacker-controlled
register. Next, we need to select a final target that can race
against the nested IBT window. Recall from Section 8.2 that,
on 13th Gen Intel IBT, we can still execute exactly one in-
struction without a preceding endbr. As a result, we need to
select as final target a load instruction disclosing the secret
in the first register. To this end, we scanned the Linux kernel
image for loads with matching register. We found over 900
suitable instructions and selected one as our final target.

To inject the address of the dispatch gadget into the BTB,
we invoke the epoll_ctl syscall. The gadget requires at-
tacker control over the registers rsi, rdx and, optionally, a
third register to use as the base. To this end, we selected an
indirect call in the prctl syscall as our victim branch, which,
at call time, grants the attacker full control over 7 registers
including rsi and rdx. Finally, to successfully race against
the main FineIBT window, we need to correctly train the SID
branch (Section 8.2). To this end, one can in principle just
execute epoll_ctl when inserting the BTB entry. However,
this is alone insufficient due to the different path histories of
the training and test runs (potentially distinguishable by the
branch predictor). As a result, upon the misprediction of the
SID check during the test run, a new entry is inserted into the
level-1 PHT, indexed by the test run’s path history [53].

To evict the test run’s PHT entry, we build a jump chain of
conditional branches. Eviction of the level-1 PHT requires us
to initially take all branches, resulting in an entry insertion in
the local base predictor. Then, we need to cause a mispredic-
tion by not taking the branches, leading to an entry inserted
into the level-1 PHT and potentially evicting the entry of the
test run. For this purpose, we used a simple (but far from
optimal) eviction strategy walking 8k branches. Therefore,
we alternate between eviction sets during the colliding phase
and, after we find a collision, we randomize eviction sets until
we observe a hit rate exceeding our lower bound.

This strategy, in conjunction with our fine-tuned SMT work-
load (Section 8.3), allowed us to achieve a hit rate of between
50% and 70% and a leakage rate of 18 B/sec on the i9-13900K
CPU. It should be noted that an attacker can certainly optimize
our PHT eviction strategy to gain a higher leakage rate.

10 Mitigations

To mitigate the gadgets found by InSpectre Gadget, an op-
tion is to add a speculation barrier (i.e., LFENCE instruction)
at the function entry point of all the disclosure and dispatch
gadgets. However, possible kernel performance degradation
aside, this strategy cannot guarantee the absence of resid-
ual exploitable gadgets—especially with an ever-evolving
Linux kernel. Nonetheless, we believe there is value in this
strategy, especially on the short term, and we are actively en-
gaging kernel developers to use InSpectre Gadget as part of
their regression testing workflow. A more general strategy
is to hinder BHI exploitation, e.g., by relying on BHI_DIS_S

13

controls [1] (which is only supported from Alder Lake and
Sapphire Rapids CPUs onwards) or a software BHB-clearing
sequence [1] (which is, however, costly). This strategy is still
insufficient to stop other (intra-mode BTI) Spectre v2 variants.
To completely close the attack surface, we need new in-silicon
mitigations (e.g., decoupling history and IP matching logic)
or more costly ones, such as retpoline [1] (which is, however,
vulnerable on some microarchitectures [51]) or IPRED_DIS
controls [1] (which are, again, only supported from Alder
Lake and Sapphire Rapids CPUs onwards).

Vendors’ response. In response to our disclosure, Intel
acknowledged our findings and updated their BHI mitiga-
tion guidance. AMD and ARM confirmed that their exist-
ing mitigations are sufficient. Given the significant presence
of exploitable gadgets revealed by our findings, Intel now
recommends software vendors to apply broader mitigations.
Specifically, Intel suggests enabling BHI_DIS_S on CPUs
that support it and executing a software BHB clearing se-
quence at privilege boundaries on other CPUs. For future
CPUs that enumerate BHI_NO, no additional mitigations are
required. Intel engineers have also developed new patches for
the mainline Linux kernel to incorporate the recommended
mitigations. Finally, our endbr analysis uncovered a bug in
clang (causing the compiler to occasionally emit spurious
endbr instructions), which Intel engineers promptly patched.

11 Related Work

Spectre gadget scanners. Spectre gadget scanners docu-
mented in literature mostly focus on Spectre v1. With excep-
tions [40], such scanners typically rely on dynamic analysis.
SPECFUZZ [37] uses fuzzing to detect out-of-bounds accesses
on a speculative path. SpecFuzz marks every out-of-bound
access as a gadget, without modeling attacker controllability.
In response, SPECTAINT [39] requires the secret address to
be tainted with attacker input, as determined via dynamic taint
analysis (DTA). KASPER [28] also relies on DTA for gad-
get characterization, but generalizes the fixed patterns used
by SpecTaint. Unlike InSpectre Gadget, all these solutions
identify gadgets solely based on their data flow, an overap-
proximation that leaves their exploitability uncertain. Like
ours, other gadget scanners are based on symbolic execution,
but typically focus on other use cases (i.e., verification [25]
or early detection [50]) with no exploitability analysis.

Spectre v2 attacks. Besides work exclusively focusing on
gadget scanning, prior Spectre v2 attack efforts also described
gadget analysis campaigns. For instance, the RETBLEED au-
thors [51] used static data-flow analysis to identify basic 3-
load gadgets for a native Spectre-RSB-to-BTI exploit. This
simple strategy is sufficient as Retbleed exploits (similar to
Inception [48]) vulnerable older-generation CPUs with no
eIBRS. As such, they can speculatively hijack control flow to
arbitrary code locations with no restriction.

The BHI authors [13], also using data-flow-based gadget

analysis, presented evidence eBPF=off exploits were at least
potentially feasible on modern eIBRS-enabled platforms—
but with no attempt to reason about exploitability. Intel later
presented a similar gadget analysis campaign along with man-
ual exploitability analysis of “the most promising” gadgets,
reporting no exploitable ones [7]. This shows the difficulty of
performing exploitability analysis—even from experts manu-
ally inspecting the gadgets—without a general framework to
rule out self-limiting assumptions.

In contrast, by analyzing one (v2) transient window at
the time, InSpectre Gadget can leverage the full power of
symbolic execution to deeply characterize gadgets and rea-
son about their exploitability for the first time, without run-
ning into the limitations of traditional symbolic execution
tools [17, 18], such as scalability and state explosion. As a
result, our analysis was not only able to automatically uncover
several exploitable native gadgets, but even gadgets that can
bypass newer mitigations (FineIBT).

Crucially, our tool models knowledge of advanced exploita-
tion techniques including sliding and gadget chaining. Chain-
ing itself has been proposed before to increase the Spectre v2
attack surface [14, 48]. With InSpectre Gadget, we demon-
strate for the first time its crucial role in cross-privilege Spec-
tre v2 attacks, countering mitigations with widespread dis-
patch gadgets in modern kernels.

12 Conclusion

In this paper, we showed that, by relaxing the requirements
on “standard” exploitable Spectre gadgets and using in-depth
gadget inspection, it is possible to generically reason about
gadget exploitability. To substantiate this claim, we presented
InSpectre Gadget and applied its exploitation-aware gadget
analysis to uncover a significant residual attack surface for
cross-privilege Spectre v2 attacks against the Linux kernel.
Specifically, we revealed several new gadgets and showed
that they can be exploited by a BHI attacker not only to leak
kernel memory in native end-to-end exploits, but also bypass
all deployed mitigations including the recent Fine(IBT).

13 Disclosure

We disclosed the end-to-end native BHI exploit to Intel in May
2023, and disclosed our full analysis to Intel, AMD, ARM and
the Linux kernel in October 2023, which further notified other
vendors. We converged to a public disclosure date of April
9, 2024, providing time for vendors to roll out mitigations. A
number of vendors (Intel, Microsoft, Google, Xen) have also
explicitly requested access to InSpectre Gadget for internal
attack surface analysis, which we granted under embargo.
Native BHI has been assigned CVE-2024-2201.

14

Acknowledgments

We would like to thank the anonymous reviewers for their
feedback. This work was supported by Intel Corporation
through the “Allocamelus” project, by the Dutch Research
Council (NWO) through project “INTERSECT”, and by the
European Union’s Horizon Europe programme under grant
agreement No. 101120962 (“Rescale”).

References

[1] BHI and intra-mode BTI. https://www.intel.com/
content/www/us/en/developer/articles/technical/
software-security-guidance/technical-documentation/
branch-history-injection.html.

[2] Branch target injection. https://www.intel.com/content/
www/us/en/developer/articles/technical/software-
security-guidance/advisory-guidance/branch-target-
injection.html.

[3] Enable kernel IBT by default. https://lore.kernel.org/
lkml/166764458451.4906.10224019690835731804.
tip-bot2@tip-bot2/T/.

[4] Implement FineIBT. https://git.kernel.org/pub/
scm/linux/kernel/git/torvalds/linux.git/commit/?id=
931ab63664f0.

[5] Indirect branch restricted speculation. https://www.intel.
com/content/www/us/en/developer/articles/technical/
software-security-guidance/technical-documentation/
indirect-branch-restricted-speculation.html.

[6] Indirect branch tracking for Intel CPUs. https://lwn.net/
Articles/889475.

[7] Intel research on disclosure gadgets at indirect branch
targets in the Linux kernel. https://www.intel.com/
content/www/us/en/developer/articles/news/update-to-
research-on-disclosure-gadgets-in-linux.html.

[8] Retpoline: A branch target injection mitigation.
https://www.intel.com/content/www/us/en/developer/
articles/technical/software-security-guidance/
technical-documentation/retpoline-branch-target-
injection-mitigation.html.

[9] Spectre side channels. https://docs.kernel.org/admin-
guide/hw-vuln/spectre.html#spectre-variant-2-branch-
target-injection.

[10] Syzbot. https://syzkaller.appspot.com/.

[11] Syzkaller. https://github.com/google/syzkaller.

[12] Vulnerability of speculative processors. https:
//developer.arm.com/support/arm-security-updates/
speculative-processor-vulnerability.

[13] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert
Bos, and Cristiano Giuffrida. Branch history injection:
On the effectiveness of hardware mitigations against
Cross-Privilege Spectre-v2 attacks. In USENIX Security,
2022.

[14] Atri Bhattacharyya, Andrés Sánchez, Esmaeil M Ko-
ruyeh, Nael Abu-Ghazaleh, Chengyu Song, and Math-
ias Payer. SpecROP: Speculative exploitation of ROP
chains. In RAID, 2020.

[15] Atri Bhattacharyya, Alexandra Sandulescu, Matthias
Neugschwandtner, Alessandro Sorniotti, Babak Falsafi,
Mathias Payer, and Anil Kurmus. SMoTherSpectre: Ex-
ploiting speculative execution through port contention.
In CCS, 2019.

[16] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and
Zhenkai Liang. Jump-oriented programming: A new
class of code-reuse attack. In ASIACCS, 2011.

[17] Sunjay Cauligi, Craig Disselkoen, Klaus v Gleissenthall,
Dean Tullsen, Deian Stefan, Tamara Rezk, and Gilles
Barthe. Constant-time foundations for the new Spectre
era. In PLDI, 2020.

[18] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk.
Hunting the haunter-efficient relational symbolic execu-
tion for Spectre with haunted relse. In NDSS, 2021.

[19] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-
Ghazaleh, ECE, and Dmitry Ponomarev. BranchScope:
A new side-channel attack on directional branch predic-
tor. In ASPLOS, 2018.

[20] Alexander J Gaidis, Joao Moreira, Ke Sun, Alyssa
Milburn, Vaggelis Atlidakis, and Vasileios P Kemerlis.
FineIBT: Fine-grain control-flow enforcement with in-
direct branch tracking. ACM 2023, 2023.

[21] Enes Göktas, Kaveh Razavi, Georgios Portokalidis, Her-
bert Bos, and Cristiano Giuffrida. Speculative probing:
Hacking blind in the Spectre era. In CCS, 2020.

[22] Ben Gras, Kaveh Razavi, Herbert Bos, Cristiano Giuf-
frida, et al. Translation leak-aside buffer: Defeating
cache side-channel protections with TLB attacks. In
USENIX Security, 2018.

[23] Daniel Gruss, Clémentine Maurice, Anders Fogh,
Moritz Lipp, and Stefan Mangard. Prefetch side-channel
attacks: Bypassing SMAP and kernel ASLR. In CCS,
2016.

15

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/branch-target-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/branch-target-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/branch-target-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/branch-target-injection.html
https://lore.kernel.org/lkml/166764458451.4906.10224019690835731804.tip-bot2@tip-bot2/T/
https://lore.kernel.org/lkml/166764458451.4906.10224019690835731804.tip-bot2@tip-bot2/T/
https://lore.kernel.org/lkml/166764458451.4906.10224019690835731804.tip-bot2@tip-bot2/T/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=931ab63664f0
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=931ab63664f0
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=931ab63664f0
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://lwn.net/Articles/889475
https://lwn.net/Articles/889475
https://www.intel.com/content/www/us/en/developer/articles/news/update-to-research-on-disclosure-gadgets-in-linux.html
https://www.intel.com/content/www/us/en/developer/articles/news/update-to-research-on-disclosure-gadgets-in-linux.html
https://www.intel.com/content/www/us/en/developer/articles/news/update-to-research-on-disclosure-gadgets-in-linux.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://docs.kernel.org/admin-guide/hw-vuln/spectre.html#spectre-variant-2-branch-target-injection
https://docs.kernel.org/admin-guide/hw-vuln/spectre.html#spectre-variant-2-branch-target-injection
https://docs.kernel.org/admin-guide/hw-vuln/spectre.html#spectre-variant-2-branch-target-injection
https://syzkaller.appspot.com/
https://github.com/google/syzkaller
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability

[24] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and
Stefan Mangard. Flush+Flush: A fast and stealthy cache
attack, 2016.

[25] Marco Guarnieri, Boris Köpf, José F Morales, Jan
Reineke, and Andrés Sánchez. Spectector: Principled
detection of speculative information flows. In IEEE
S&P, 2020.

[26] Mathé Hertogh, Sander Wiebing, and Cristiano Giuf-
frida. Leaky address masking: Exploiting unmasked
Spectre gadgets with noncanonical address translation.
In IEEE S&P, 2024.

[27] Intel. Intel 64 and IA-32 architectures software devel-
oper’s manual combined volumes. 2019.

[28] Brian Johannesmeyer, Jakob Koschel, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. Kasper: scanning
for generalized transient execution gadgets in the Linux
kernel. In NDSS, 2022.

[29] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting
speculative execution. In IEEE S&P, 2019.

[30] Paul C. Kocher. Timing attacks on implementations
of Diffie-Hellman, RSA, DSS, and other systems. In
CRYPTO, 1996.

[31] Esmaeil Mohammadian Koruyeh, Khaled N. Kha-
sawneh, Chengyu Song, and Nael Abu-Ghazaleh. Spec-
tre returns! speculation attacks using the return stack
buffer. In WOOT, 2018.

[32] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, et al. Meltdown:
reading kernel memory from user space. In USENIX
Security, 2018.

[33] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B. Lee. Last-level cache side-channel attacks are
practical. In IEEE S&P, 2015.

[34] Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai,
Ofir Weisse, Satish Narayanasamy, and Baris Kasikci.
DOLMA: Securing speculation with the principle of
transient non-observability. In USENIX Security, 2021.

[35] Giorgi Maisuradze and Christian Rossow. ret2spec:
Speculative execution using return stack buffers. In
CCS, 2018.

[36] Alyssa Milburn, Ke Sun, and Henrique Kawakami. You
cannot always win the race: Analyzing mitigations for

branch target prediction attacks. In IEEE EuroS&P,
2023.

[37] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and
Christof Fetzer. SpecFuzz: Bringing Spectre-type vul-
nerabilities to the surface. In USENIX Security, 2020.

[38] Colin Percival. Cache missing for fun and profit. 2005.

[39] Zhenxiao Qi, Qian Feng, Yueqiang Cheng, Mengjia Yan,
Peng Li, Heng Yin, and Tao Wei. SpecTaint: Speculative
taint analysis for discovering Spectre gadgets. In NDSS,
2021.

[40] Hany Ragab, Andrea Mambretti, Anil Kurmus, and Cris-
tiano Giuffrida. GhostRace: Exploiting and mitigating
speculative race conditions. In USENIX Security, 2024.

[41] Joseph Ravichandran, Weon Taek Na, Jay Lang, and
Mengjia Yan. PACMAN: Attacking ARM pointer au-
thentication with speculative execution. In ISCA, 2022.

[42] Xida Ren, Logan Moody, Mohammadkazem Taram,
Matthew Jordan, Dean M. Tullsen, and Ashish Venkat. I
see dead µops: Leaking secrets via Intel/AMD micro-op
caches. In ISCA, 2021.

[43] Hovav Shacham. The geometry of innocent flesh on
the bone: Return-into-libc without function calls (on the
x86). In CCS, 2007.

[44] Dag Arne Osvik Shamir, Adi and Eran Tromer. Cache
attacks and countermeasures: the case of AES, 2005.

[45] Vedvyas Shanbhogue, Deepak Gupta, and Ravi Sahita.
Security analysis of processor instruction set architec-
ture for enforcing control-flow integrity. In S&P, 2019.

[46] Youngjoo Shin, Hyung Chan Kim, Dokeun Kwon,
Ji Hoon Jeong, and Junbeom Hur. Unveiling hardware-
based data prefetcher, a hidden source of information
leakage. In ACM CCS, 2018.

[47] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Andrew Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. (State of) the art of war:
Offensive techniques in binary analysis. In IEEE S&P,
2016.

[48] Daniël Trujillo, Johannes Wikner, and Kaveh Razavi.
Inception: Exposing new attack surfaces with training
in transient execution. In USENIX Security, 2023.

[49] Stephan Van Schaik, Alyssa Milburn, Sebastian Öster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue
in-flight data load. In IEEE S&P, 2019.

16

[50] Guanhua Wang, Sudipta Chattopadhyay, Arnab Ku-
mar Biswas, Tulika Mitra, and Abhik Roychoud-
hury. KLEESPECTRE: Detecting information leakage
through speculative cache attacks via symbolic execu-
tion. ACM TOSEM, 2020.

[51] Johannes Wikner and Kaveh Razavi. RETBLEED: Arbi-
trary speculative code execution with return instructions.
In USENIX Security, 2022.

[52] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:
A high resolution, low noise, L3 cache side-channel
attack. In USENIX Security, 2014.

[53] Hosein Yavarzadeh, Mohammadkazem Taram, Shravan
Narayan, Deian Stefan, and Dean Tullsen. Half&Half:
Demystifying Intel’s directional branch predictors for
fast, secure partitioned execution. In IEEE S&P, 2023.

A Extra Covert Channels

To demonstrate the flexibility of InSpectre Gadget, we ex-
tended the tool to include two extra covert channels, namely
the code-load covert channel [42], which requires a secret-
dependent function pointer, and the recent SLAM covert chan-
nel [26]. SLAM leverages Intel’s recently announced Linear
Address Masking (LAM) feature, as well as microarchitec-
tural race conditions present on some existing AMD CPUs.
Via SLAM, an attacker can leak data via a straightforward
dereference of a 64-bit secret, typically a noncanonical ad-
dress, by transiently bypassing canonicality checks.

Supporting SLAM required modifications only in the rea-
soner, with 83 line changes. The code-load covert channel
required even fewer modifications, with only 7 line changes in
the scanner. We ran the extended implementation of InSpectre
Gadget with the same setup described in Section 5.4. Table 5
presents our results. We count each entry point as a single
gadget, in line with SLAM’s definition.

The SLAM paper reports a large potential attack surface
when scanning the Linux kernel’s indirect call targets (16,046
potential gadgets), but practical exploitability is approxi-
mated by pattern-matching simple cases, resulting in 4,194
exploitable gadgets. In contrast, by reasoning on complex
gadgets as well, InSpectre Gadget is able to uncover 15,175
SLAM gadgets that pass all exploitability tests in indirect
call targets, and a total of 17,709 exploitable SLAM gadgets
when considering also indirect jump targets and code-loads.
While we did not uncover any new traditional gadgets via the
code-load covert channel, we identified 2,914 SLAM gadgets
that are exploitable via the code-load covert channel.

B FineIBT Case Study Gadget

Listing 6 presents the assembly code of the unix_poll_gadget,
the gadget used in the FineIBT bypass case study. The gad-

Table 5: The number of exploitable SLAM gadgets found by
InSpectre Gadget in indirect call targets and indirect jump
targets of the kernel, grouped by technique needed for ex-
ploitation. Counted by the number of indirect entry points
with at least one gadget.

Technique Call Targets Jump Targets
Code- Code-

Load Store load Load Store load

Known Prefix 14,840 3,470 2,440 1,981 831 474
Train In-Place 5,285 1,796 1,230 531 308 49
Train OOP 363 174 75 1,132 430 424

Total 14,847 3,485 2,440 1,987 832 474

get loads a secret from memory with attacker-controlled reg-
ister rsi as address. Next, the gadget loads the call target
from the attacker-controlled address in rdx and calls it sub-
sequently. The secret is transmitted by the instruction at the
call target, selected by the attacker, that performs a load with
the secret as an argument and an attacker-controlled value
as the base. We selected the instruction movzx ebx, BYTE
PTR[r8+rbx] found in the uuid_string function.

Listing 6: Assembly of the unix_poll gadget. Linux kernel
6.6-rc4, FineIBT enabled.

1 __cfi_unix_poll:
2 endbr64
3 sub r10d,0x1eb58ddc
4 je <unix_poll>
5 ud2
6 nop
7 unix_poll:
8 nop WORD PTR [rax]
9 push rbp

10 push r14
11 push rbx
12 mov rbx, QWORD PTR [rsi+0x18]; load secret
13 test rdx, rdx
14 je <unix_poll+55>
15 mov r11, QWORD PTR [rdx]; load call target
16 test r11, r11
17 je <unix_poll+55>
18 add rsi, 0x40
19 mov r10d, 0xd0facb91
20 sub r11, 0x10
21 nop DWORD PTR [rax+0x0]
22 call r11; call attacker chosen target

C Annotated Assembly Output

Figure 10 shows the annotated assembly output of the
(cgroup_seqfile_show) gadget used in our exploit.

17

----------------- TRANSMISSION -----------------

 cgroup_seqfile_show:

ffffffff8114ff30 endbr64

ffffffff8114ff34 push rbp

ffffffff8114ff35 mov rax, qword ptr [rdi+0x70] ; {Attacker@rdi} -> {Attacker@0xffffffff8114ff35}

ffffffff8114ff39 mov r8, rsi

ffffffff8114ff3c mov rbp, rdi

ffffffff8114ff3f mov rax, qword ptr [rax] ; {Attacker@0xffffffff8114ff35} -> {Attacker@0xffffffff8114ff3f}

ffffffff8114ff42 mov rsi, qword ptr [rax+0x60] ; {Attacker@0xffffffff8114ff3f} -> {Attacker@0xffffffff8114ff42}

ffffffff8114ff46 mov rdx, qword ptr [rax+0x8] ; {Attacker@0xffffffff8114ff3f} -> {Attacker@0xffffffff8114ff46}

ffffffff8114ff4a mov rax, qword ptr [rsi+0x58] ; {Attacker@0xffffffff8114ff42} -> {Attacker@0xffffffff8114ff4a}

ffffffff8114ff4e mov rdi, qword ptr [rdx+0x60] ; {Attacker@0xffffffff8114ff46} -> {Attacker@0xffffffff8114ff4e}

ffffffff8114ff52 test rax, rax

ffffffff8114ff55 je 0xffffffff8114ff67 ; Not Taken <Bool LOAD_64[<BV64 LOAD_64[<BV64 LOAD_64[<BV64 LOAD_64[<BV64 rdi + 0x70>]_21>]_22

+ 0x60>]_23 + 0x58>]_25 != 0x0>

ffffffff8114ff57 movsxd rax, dword ptr [rax+0x9c] ; {Attacker@0xffffffff8114ff4a} -> {Secret@0xffffffff8114ff57}

ffffffff8114ff62 mov rdi, qword ptr [rdi+rax*0x8+0x8] ; {Attacker@0xffffffff8114ff4e, Secret@0xffffffff8114ff57} -> TRANSMISSION

ffffffff8114ff67 mov rax, qword ptr [rsi+0x98]

ffffffff8114ff6e test rax, rax

ffffffff8114ff71 je 0xffffffff8114ff7f

--

uuid: 5bb996d2-d414-4452-a858-c2d306eedb9a

transmitter: TransmitterType.LOAD

Secret Address:

 - Expr: LOAD_64[LOAD_64[LOAD_64[LOAD_64[rdi + 0x70]_21]_22 + 0x60]_23 + 0x58]_25 + 0x9c

 - Range: (0x0,0xffffffffffffffff, 0x1) Exact: True

Transmitted Secret:

 - Expr: (0#32 .. LOAD_32[LOAD_64[LOAD_64[LOAD_64[LOAD_64[rdi + 0x70]_21]_22 + 0x60]_23 + 0x58]_25 + 0x9c]_27) << 0x3

 - Range: (0x0,0x3fffffff8, 0x8) Exact: True

 - Spread: 3 - 34

 - Number of Bits Inferable: 32

Base:

 - Expr: LOAD_64[LOAD_64[LOAD_64[LOAD_64[rdi + 0x70]_21]_22 + 0x8]_24 + 0x60]_26 + 0x178

 - Range: (0x0,0xffffffffffffffff, 0x1) Exact: True

 - Independent Expr: LOAD_64[LOAD_64[LOAD_64[LOAD_64[rdi + 0x70]_21]_22 + 0x8]_24 + 0x60]_26 + 0x178

 - Independent Range: (0x0,0xffffffffffffffff, 0x1) Exact: True

Transmission:

 - Expr: 0x8 + LOAD_64[LOAD_64[LOAD_64[LOAD_64[rdi + 0x70]_21]_22 + 0x8]_24 + 0x60]_26 + (0x170 + ((0#32 .. LOAD_32[LOAD_64[LOAD_64[

 LOAD_64[LOAD_64[rdi + 0x70]_21]_22 + 0x60]_23 + 0x58]_25 + 0x9c]_27) << 0x3))

 - Range: (0x0,0xffffffffffffffff, 0x1) Exact: False

Register Requirements: { rdi }

Constraints: [('0xffffffff8114ff57', <Bool LOAD_32[<BV64 LOAD_64[<BV64 LOAD_64[<BV64 LOAD_64[<BV64 LOAD_64[<BV64 rdi + 0x70]_21]_22 + 0x60]_23

 + 0x58]_25 + 0x9c]_27[31:31] == 0, 'ConditionType.SIGN_EXT')]

Branches: [('0xffffffff8114ff55', <Bool LOAD_64[<BV64 LOAD_64[<BV64 LOAD_64[<BV64 LOAD_64[<BV64 rdi + 0x70]_21]_22 + 0x60]_23 + 0x58]_25 != 0x0

 , 'Not Taken')]

--

1

2

3
4

5

6

6

7

6
8

6

9

Figure 10: Annotated assembly file generated by InSpectre Gadget. Right to the assembly instructions, we output the
annotations attached to the source and destination operands (source�destination). The annotations include the origin of the
value, which is either the instruction pointer of the source load or a register (e.g., @rdi). As we generate for each detected gadget
an annotated assembly file, we do not print annotations that are irrelevant to the gadget flow and we replace all secret annotations
with an attacker annotation that are, for this specific gadget, not used as a secret but as an attacker-controlled value. In the case of
a branch instruction, we show the branch condition to hold instead.
As shown by the annotations, the attacker-controlled value rdi is used in the first load 1⃝, followed by a series of loads whose
controllability is tracked 2⃝. The encountered branch condition is recorded 3⃝. Subsequently, the secret value is loaded from an
attacker-controlled value 4⃝ and transmitted using an attacker-controlled value as the base 5⃝. We output key details after the
assembly code, including the symbolic expression and the range—i.e., (min, max, stride)—for each transmission component 6⃝,
insights about the transmitted secret bits 7⃝, details about which registers an attacker should control to exploit the gadget 8⃝ as
well as the constraints and branches encountered 9⃝.

18

	1 Introduction
	2 Background
	2.1 Transient Execution Attacks
	2.2 Spectre v2
	2.3 Branch History Injection
	2.4 Defenses

	3 Threat Model
	4 Overview
	5 InSpectre Gadget
	5.1 Standard Gadgets
	5.2 Exploitation-Aware Gadget Analysis
	5.3 Design
	5.4 Evaluation
	5.5 Limitations

	6 Native BHI
	6.1 Preliminaries
	6.2 End-To-End Exploit

	7 Dispatch Gadgets
	8 FineIBT Analysis
	8.1 IBT Speculation Window
	8.2 FineIBT Speculation Window
	8.3 Impact of SMT Contention

	9 FineIBT Bypass
	10 Mitigations
	11 Related Work
	12 Conclusion
	13 Disclosure
	A Extra Covert Channels
	B FineIBT Case Study Gadget
	C Annotated Assembly Output

