
IFuzzer: An Evolutionary Interpreter Fuzzer
using Genetic Programming

Spandan Veggalam1, Sanjay Rawat2,3, Istvan Haller2,3 and Herbert Bos2,3

1 International Institute of Information Technology, Hyderabad, India
2 Computer Science Institute, Vrije Universiteit Amsterdam, Netherlands

3 Amsterdam Department of Informatics
veggalam.s@research.iiit.ac.in, s.rawat@vu.nl, i.haller@student.vu.nl,

herbertb@cs.vu.nl

Abstract. We present an automated evolutionary fuzzing technique to
find bugs in JavaScript interpreters. Fuzzing is an automated black box
testing technique used for finding security vulnerabilities in the software
by providing random data as input. However, in the case of an inter-
preter, fuzzing is challenging because the inputs are piece of codes that
should be syntactically/semantically valid to pass the interpreter’s ele-
mentary checks. On the other hand, the fuzzed input should also be un-
common enough to trigger exceptional behavior in the interpreter, such
as crashes, memory leaks and failing assertions. In our approach, we use
evolutionary computing techniques, specifically genetic programming, to
guide the fuzzer in generating uncommon input code fragments that may
trigger exceptional behavior in the interpreter. We implement a proto-
type named IFuzzer to evaluate our technique on real-world examples.
IFuzzer uses the language grammar to generate valid inputs. We applied
IFuzzer first on an older version of the JavaScript interpreter of Mozilla
(to allow for a fair comparison to existing work) and found 40 bugs, of
which 12 were exploitable. On subsequently targeting the latest builds of
the interpreter, IFuzzer found 17 bugs, of which four were security bugs.

Keywords: Fuzzing, System Security, Vulnerability, Genetic Programming, Evo-
lutionary Computing

1 Introduction

Browsers have become the main interface to almost all online content for almost
all users. As a result, they have also become extremely sophisticated. A mod-
ern browser renders content using a wide variety of interconnected components
with interpreters for a growing set of languages such as JavaScript, Flash, Java,
and XSLT. Small wonder that browsers have turned into prime targets for at-
tackers who routinely exploit the embedded interpreters to launch sophisticated
attacks [1]. For instance, the JavaScript interpreter in modern browsers (e.g.,
SpiderMonkey in Firefox) is a widely used interpreter that is responsible for
many high-impact vulnerabilities [2]. Unfortunately, the nature and complexity
of these interpreters is currently well beyond state-of-the-art bug finding tech-
niques, and therefore, further research is necessary [3]. In this paper, we propose
a novel evolutionary fuzzing technique that explicitly targets interpreters.

sanjay
Typewritten text
The original article, presentated in ESORICS'16, is avaialble at: https://dx.doi.org/10.1007/978-3-319-45744-4_29

2

Fuzz testing is a common approach for finding vulnerabilities in software [4–
8]. Many fuzzers exist and range from a simple random input generator to highly
sophisticated testing tools. For instance, in this paper, we build on evolutionary
fuzzing which has proven particularly effective in improving fuzzing efficiency [5,
9, 10] and makes use of evolutionary computing to generate inputs that exhibit
vulnerabilities. While fuzzing is an efficient testing tool in general, applying it
to interpreters brings its own challenges. Below, we list a few of the issues that
we observed in our investigations:

1. Traditionally, fuzzing is about mutating input that is manipulated by a soft-
ware. In the case of the interpreter, the input is program (code), which needs
to be mutated.

2. Interpreter fuzzers must generate syntactically valid inputs, otherwise, inputs
will not pass the elementary interpreter checks (mainly the parsing phase)
and testing will be restricted to the input checking part of the interpreter.
Therefore, the input grammar is a key consideration for this scenario. For
instance, if the JavaScript interpreter is the target, the fuzzed input must
follow the syntax specifications of the JavaScript language, lest the inputs
be discarded early in the parsing phase.

3. An interpreter may use a somewhat different (or evolved) version of the
grammar than the one publicly known. These small variations are important
to consider when attempting fuzzing the interpreter fully.

Genetic Programming is a variant of evolutionary algorithms, inspired by
biological evolution and brings transparency in making decisions. It follows Dar-
win’s theory of evolution and generates new individuals in the eco-system by
recombining the current characteristics from individuals with the highest fitness.
Fitness is a value computed by an objective function that directs the evolution
process. Genetic Programming exploits the modularity and re-usability of solu-
tion fragments within the problem space to improve the fitness of individuals.
This approach has been shown to be very appropriate for generating code frag-
ments [11–13], but hasn’t been used for fuzz-testing in general as program inputs
are typically unstructured and highly inter-dependent. However, our key insight
is that, as described before, interpreter fuzzing is a special case. Using code as
input, Genetic Programming seems like a natural fit!

In this paper, we introduce a framework called IFuzzer, which generates code
fragments using Genetic Programming [14]—allowing us to test interpreters by
following a black-box fuzzing technique and mainly looks for vulnerabilities like
memory corruptions. IFuzzer takes a language’s context-free grammar as input
for test generation. It uses the grammar to generate parse trees and to ex-
tract code fragments from a given test-suite. For instance, IFuzzer can take the
JavaScript grammar and the test-suite of the SpiderMonkey interpreter as in-
put and generate parse trees and relevant code fragments for in-depth testing.
IFuzzer leverages the fitness improvement mechanism within Genetic Program-
ming to improve the quality of the generated code fragments.

Figure 1 describes the overview of IFuzzer. The fuzzer takes as input a test
suite, a language grammar and sample codes. The parser module uses the lan-

3

Fig. 1: Overview of IFuzzer Approach

guage grammar to parse the program and generates an abstract syntax tree. The
fragment pool extractor generates a pool of code fragments extracted from a set
of sample code inputs for different nodes (Non-Terminals) in the grammar. The
code generator generates new code fragments by performing genetic operations
on the test suite. The interpreter executes all the generated code fragments.
Based on the feedback from the interpreter, the fragments are evaluated by the
fitness evaluator and accordingly used (or discarded) for future generations of
inputs. We evaluated IFuzzer on two versions of Mozilla JavaScript interpreter.
Initially, we configured it to target SpiderMonkey 1.8.5 in order to have a com-
parison with LangFuzz [3], a state-of-art mutation fuzzer for interpreter testing.
In another experiment, we configured IFuzzer to target the latest builds of Spi-
derMonkey. Apart from finding several bugs that were also found by LangFuzz,
IFuzzer found new exploitable bugs in these versions.

In summary, this paper makes the following contributions:

1. We introduce a fully automated and systematic approach for code generation
for interpreter testing by mapping the problem of interpreter fuzz testing onto
the space of evolutionary computing for code generation. By doing so, we
establish a path for applying advancements made in evolutionary approaches
to the field of interpreter fuzzing.

2. We show that Genetic Programming techniques for code generation result
in a diverse range of code fragments, making it a very suitable approach
for interpreter fuzzing. We attribute this to inherent randomness in Genetic
Programming.

3. We propose a fitness function (objective function) by analyzing and identi-
fying different code parameters, which guide the fuzzer to generate inputs
which can trigger uncommon behavior within interpreters.

4. We implement these techniques in a full-fledged (to be) open sourced fuzzing
tool called IFuzzer that can target any language interpreter with minimal
configuration changes.

5. We show the effectiveness of IFuzzer empirically by finding new bugs in
Mozilla’s JavaScript engine SpiderMonkey—including several exploitable se-
curity vulnerabilities.

The rest of the paper is organized as follows. Section 2 presents the moti-
vation for choosing Genetic Programming for code generation. We explain the
implementation of IFuzzer in section 3. Section 4 discusses the experimental

4

set-up and evaluation step of IFuzzer and section 7 concludes the work with
comments on possible future work.

2 Genetic Programming

Evolutionary algorithms build up a search space for finding solutions to opti-
mization problems, by evolving a population of individuals. An objective func-
tion evaluates the fitness of these individuals and provides feedback for next
generations of individuals. These algorithms build on the Darwinian principle
of natural selection and biologically inspired genetic operations. In prior work,
Genetic Algorithms proved successful in the generation of test cases [13,15].

Genetic programming (GP) [14, 16] achieves the goal of generating a popu-
lation by following a similar process as that of most genetic algorithms, but it
represents the individuals it manipulates as tree structures. Out of the many
variants of GP in the literature, we follow Grammar-based Genetic Program-
ming (GGP). In GGP, we consider programs, that are generated based on the
rules formulated in the grammar (context free), as the individuals and repre-
sent them by parse trees. This procedure is a natural fit for the interpreters.
All the individuals in a new generation are the result of applying the genetic
operators—crossover and mutation—on the parse tree structures.

Search Space: The search space is the set of all feasible solutions. Each point
in the space represents a solution defined by the fitness values or some other
values related to an individual. Based on fitness constraints, the individual with
highest fitness is considered the best feasible solution.

Bloating: Bloating [16] is a phenomenon that adversely affects input genera-
tion in evolutionary computing. There are two types of bloating: structural and
functional bloating.

– Structural Bloating : While iterating over generations, after a certain number
of generations, the average size of individuals (i.e. the code) grows rapidly
due to uncontrolled growth [17]. This results in inefficient code, while the
growth hardly contributes to the improvement of fitness. Moreover, large
programs require more computation to process.

– Functional Bloating : In functional bloating [18], a range of fitness values
become narrow and thereby reduces the search space. However, it is com-
mon to have different individuals with the same fitness, because after some
time bloating makes everything look linear. As a result, it becomes hard to
distinguish individuals.

As the process of fuzzing may run for a very long period, neglecting or failing to
handle the bloating problem may lead to very unproductive results.

5

2.1 Representation of the Individuals

We consider input code to be the individuals manipulated by GP. Each individ-
ual is represented by its parse tree, generated using the corresponding language
grammar. IFuzzer performs all its genetic operations on these parse trees and
generates new individuals (input code) from the resulting parse trees. Figure 2
illustrates an example of valid program for the simple language grammar (List-
ing 1.1) and the corresponding parse tree derived.

〈statement〉 ::= 〈variable Statement〉*
〈variable Statement〉 ::= var 〈identifier〉 〈initializer〉?
〈initializer〉 ::= = 〈numLiteral〉 | 〈identifier〉
〈identifier〉 ::= [a-zA-Z0-9]*
〈numLiteral〉 ::= [0-9]*

Listing 1.1: Example of a Simple Language Grammar

var s=10
var b
var a=b

S

V

var id : s I

= num : 10

V

var id : b

V

var id : a I

= id : s

Fig. 2: Example of a syntactically valid program and its derived parse tree

2.2 Fragment Pool

The fragment pool is a collection of code fragments for each non-terminal in the
grammar specification. We can tag each possible code fragment in a program
with a non-terminal in the grammar specification. Using the parser, IFuzzer
parses all the input files in the test suite and extracts the corresponding code
fragments for different non-terminals. With a sufficient number of input files,
we can generate code fragments for all non-terminals in the language grammar.
It stores these code fragments in tree representations with the corresponding
non-terminal as root. At a later stage, it uses these code fragments for mutation
and code generation. The same process of generating parse trees is followed in
the crossover operation for identifying code fragments for selected common non-
terminal between the participating individuals. An example of a fragment pool
for the derived parse tree, summarized in Figure 2, is shown in the box below.

(S) <statement> = {var s =10, var b , var a=s }
(V) <var iab leStatement>

= {var s =10, var b , var a=s }
(I) < i n i t i a l i z e r > = {= 10,= s }
t e rmina l s = { id : s , id : a , id : b ,num: 1 0 , var ,=}

6

3 Implementation

We implement IFuzzer as a proof-of-concept based on the methods discussed in
the previous sections. It works as described in the overview diagram of Figure 1
and in the following, we elaborate on IFuzzer’s individual components.

3.1 Code Generation

In this section, we explain various genetic operators that IFuzzer uses for input
generation. After each genetic operation, the objective function, discussed in
section 3.3, evaluates the fitness of the offspring.

IFuzzer uses the ANTLR parser for the target language and generates the
parser using the ANTLR parser generator framework [19] with the language
grammar as input. The initial population, the fragment pool generation (dis-
cussed in section 2), and the crossover and mutation operations all make use of
parse tree returned by the parser.

Initial Population. The initial population of individuals consists of random
selection of programs, equal to the population size, from the input test sam-
ples. This forms the first generation. After each generation, individuals from the
parent set undergo genetic operations and thereby evolve into offspring.

Mutation. During mutation, IFuzzer selects random code fragments of the in-
put code for replacement. It performs replacement by selecting a random mem-
ber of the fragment pool which corresponds to the same non-terminal, or by
generating a new fragment using an expansion algorithm. Our expansion algo-
rithm assumes that all the production rules have equal and fixed probabilities
for selection. We use the following expansion algorithm:

1. Select the non-terminal n from the parse tree to expand.
2. From the production rules of the grammar, select a production for n and

replace it with n.
3. Repeat the following steps up to num iterations.

(a) Identify a random set N of non-terminals in the resulting incomplete
parse tree.

(b) Extract a set of production rules Pn, for the selected non-terminal n, from
the production rules P (i.e., Pn ⊆ P) listed in the grammar specification.

(c) Select a production Pselected randomly for each identified non-terminal
∈ N .

(d) Replace the non-terminals occurrence with Pselected.

4. After expansion, replace all remaining occurrences of non-terminals with
corresponding code fragments, selected randomly from the fragment pool.
Note that steps 3 & 4 also solve the problem of non-termination in the
presence of mutually recursive production rules.

7

Fig. 3: Example of stepwise expansion on the parse tree: all the dark nodes
represent non-terminals and white nodes represent terminals. A particular node
is selected and expanded as shown.

Figure 3 illustrates an example of the expansion algorithm. Dark nodes in the
parse tree represent the non-terminals and white nodes represent the terminals.
A dark node from the parse tree is selected during the mutation process and is
expanded to the certain depth (num) as discussed above. This algorithm does not
yield a valid expansion with more iterations. After expansion, we may still have
unexpanded non-terminals. IFuzzer handles this by choosing code fragments from
the fragment pool and replaces remaining non-terminals by such code fragments,
which are represented by the same non-terminals. In this way, the tree converges
with terminals and results in a valid parse tree.

Crossover. During crossover, for a given pair of individuals (parents), IFuzzer
selects a common non-terminal n from parse trees of the individuals and ex-
tracts random fragments, originating from n, from both the individuals. These
selected fragments from one individual are exchanged with fragments of another
individual, thereby generating two new parse trees. Using these trees, IFuzzzer
generates two new offsprings.

Replacement. During the process of offspring generation, it is important to
retain the features of the best individuals (parents) participating in evolution.
Therefore, IFuzzer adopts the common technique of fitness elitism to retain the
best individuals among the parents in the next generation. IFuzzer generates the
remaining population in the next generation by crossover and mutation. Elitism
prevents losing the best configurations in the process.

Reusing Literals. The code generation operations may result in semantically
invalid fragments or a loss of context. For instance, after a modification a state-
ment in the program may use an identifier a which is not declared in this pro-
gram. Introducing language semantics will tie IFuzzer to a language specification
and we therefore perform generic semantic improvements at the syntactic level.
Specifically, IFuzzer reduces the errors due to undeclared identifiers by renaming
the identifiers around the modification points to the ones declared elsewhere in
the program. Since it knows the grammar rules that contain them, IFuzzer can
easily extract such identifiers from the parse tree automatically. In our example
of the undeclared variable a, it will mapped it to another identifier b declared
elsewhere and replace all occurrences of a with b.

8

3.2 Bloat Control

Bloat control pertains to different levels [20] and IFuzzer uses it during the fitness
evaluation and breeding stages:

Stage 1: Fitness Evaluation. Applying bloat control at the level of fitness
evaluation is a common technique. In IFuzzer, we use parsimony pressure [21,22]
to alter the selection probability of individuals by penalizing larger ones.

Calculating Parsimony Coefficient: The parsimony co-efficient c(t) at each
generation t is given by the following correlation coefficient [23].

c(t) =
Covariance(f, l)

V ariance(l)
=

∑n
i=0(fi − f̄)(li − l̄)

n− 1
× n− 1∑n

i=0(li − l̄)2
(1)

where l̄ and f̄ are the mean fitness and length of all individuals in the pop-
ulation, and fi and li are the original fitness and length of an individual i.
Covariance(f, l) calculates the co-variance between an individual’s fitness and
length, while V ariance(l) gives the variance in the length of the individuals.
In Section 3.3, we will see that IFuzzer uses the parsimony coefficient to add
penalty to the fitness value.

Stage 2: We also apply bloat control at the breeding level by means of fair
size generation techniques [16].Fair Size Generation limits the growth of the
offspring’s program size. In our approach, we restrict the percentage of increase
in program size to a biased value:

lengthgenerated code/lengthoriginal code < biasthreshold

where lengthx gives information about the number of non-terminals in the parse
tree x and biasthreshold is the threshold value for fair size generation. This re-
stricts the size of code and if the generated program fails to meet this constraint,
IFuzzer discards as invalid. In that case, it re-generates the program using the
same GA operator with which it started. After a certain number of failed at-
tempts, it discards the individual completely and excludes it from further con-
sideration for offspring generation.

Finally, we use Delta debugging algorithm [24, 25] to determine the code
fragments that are relevant for failure production and to filter out irrelevant
code fragments from the test cases, further reduces the size of test case. This
essentially results in part of the test case that is relevant to the failure [26].
The same algorithm reduces the number of lines of code executed and results in
suitably possible valid small test case.

3.3 Fitness Evaluation

The evolutionary process is an objective driven process and the fitness function
that defines the objective of the process plays a vital role in the code generation

9

process. After crossover and mutation phases, the generated code fragments are
evaluated for fitness.

As IFuzzer aims to generate uncommon code structures to trigger excep-
tional behavior, we consider both structural aspects and interpreter feedback
of the generated program as inputs to the objective function. The interpreter
feedback includes warnings, execution timeouts, errors, crashes, etc.—in other
words, the goal itself. Moreover, during the fitness evaluation, we calculate struc-
tural metrics such as the cyclomatic complexity for the program. The cyclomatic
complexity [27] gives information about the structural complexity of the code.
For instance, nested (or complex) structure has a tendency to create uncommon
behavior [28], so such structures have higher scores than less complex programs.

At its core, IFuzzer calculates the base fitness value fb(x) of an individ-
ual x as the sum of its structural score (scorestructure) and its feedback score
(scorefeedback).

fb(x) = scorestructure + scorefeedback

Finally, as discussed in section 3.2, IFuzzer’s bloat control re-calculates the
fitness with a penalty determined by the product of its parsimony co-efficient c
and the length of the individual l :

ffinal(x) = fb(x)− c ∗ (l(x))

where ffinal(x) is the updated fitness value of an individual x.

Parameters IFuzzer contains many adjustable GP and fitness parameters, in-
cluding the mutation rate, crossover rates, population size, and the number of
generations. In order to arrive at a set of optimal values, we ran application (to
be tested) with various combinations of these parameters and observed for prop-
erties like input diversity, structural properties etc. We adhere to the policy that
higher the values of such properties, better is the combination of parameters.
In the experiments, we use the best combination based on observations, made
during a fixed profiling period. We, however, note that it should be possible to
fine tune all these parameters further for optimal results.

4 Experimentation

In this section, we evaluate the effectiveness of IFuzzer by performing exper-
imentation on real-world applications. IFuzzer is a cross platform tool, which
runs on UNIX and Windows operating systems. All the experiments were per-
formed on a standalone machine with a configuration of Quad-Core 1.6Ghz Intel
i5-4200 CPU and 8GB RAM. The outcome of our experiments aims to answer
the following questions:

1. Does IFuzzer perform better than the known state-of-art tools? What is the
effectiveness of IFuzzer?

10

2. What are the benefits of using GP? What drives GP to reach its objective?
3. Does our defined objective function encourage the generation of uncommon

code?
4. How important is it that IFuzzer generates uncommon code? How is this

related to having high coverage of the interpreter?

In order to answer the questions mentioned above, we performed two exper-
iments. In the first experiment, we evaluate IFuzzer and compare it against the
state-of-the-art LangFuzz using the same test software [3]. In the second experi-
ment, we run IFuzzer against the latest build of SpiderMonkey. We have also run
IFuzzer with different configurations in order to evaluate the effect of separate
code generation strategies. Results of these experiments are in the Appendix.

We also ran IFuzzer on Chrome JavaScript engine V8 and reported few bugs.
However, our reported-bugs were not accepted as security bugs by the Chrome
V8 team and therefore, we do not report them in detail in this paper. In order
to establish the usability of IFuzzer to other interpreters, we could configure
IFuzzer for Java by using Java Grammar Specifications, available at [29]. How-
ever, we have not tested this environment to its full extent. The main intention
of performing this action is to show the flexibility of IFuzzer to other grammars.

4.1 Testing Environment

In our experiments, we used the Mozilla development test suite as the initial in-
put set. The test suite consists of 3̃000 programs chosen from a target version. We
used the same test suite for fragment pool generation and program generation.
Fragment Pool generation is a one-time process, which reads all programs at the
start of the fuzzing process and extracts fragments for different non-terminals.
We assume that the test suite involves inputs (i.e. code fragments) that have
been used in testing in the past and resulted in triggering bugs. We choose Spi-
derMonkey as the target interpreter for JavaScript. We write input grammar
specification from the ECMAScipt standard specification and grammar rules
from the ECMAScript 262 specification [30].

4.2 IFuzzer vs LangFuzz

Our first experiment evaluated IFuzzer by running it against interpreters with
the aim of finding exploitable bugs and compare our results to those of LangFuzz.
We compare in terms of time taken in finding bugs and the extent of the overlap
in bugs found by both the fuzzers. Since we do not have access to the LangFuzz
code, we base our comparison on the results reported in [3]. For a meaningful
comparison with LangFuzz, we chose SpiderMonkey 1.8.5 as the interpreter as
this was the version of SpiderMonkey that was current when LangFuzz was
introduced in [3].

During the experiment on SpiderMonkey 1.8.5 version, IFuzzer found 40 bugs
in a time span of one month, while Langfuzz found 51 bugs in 3 months. More

11

importantly, when comparing the bugs found by the two fuzzers, the overlap is
“only” 24 bugs. In other, a large fraction of the bugs found by IFuzzer is unique.

With roughly 36% overlap in the bugs, IFuzzer clearly finds different bugs–
bugs that were missed by today’s state-of-the-art interpreter fuzzer—in compa-
rable time frames.

We speculate that IFuzzer will find even more bugs if we further fine-tune its
parameters and run it for a longer period. We also notice that there are many
build configurations possible for SpiderMonkey, and Langfuzz tries to run on all
such possible build configurations. In contrast, due to resource constraints, we
configured IFuzzer to run only on two such different configurations (with and
without enabling debugging). Trying more configurations may well uncover more
bugs [31]

16 27

OverLap

24
(36%)

IFuzzer LangFuzz

Fig. 4: Number of defects found by IFuzzer (40) and LangFuzz (51) in Spider-
Monkey version 1.8.5

In order to determine the severity of the bugs, we investigated them manually
with gdb-exploitable [32]—a widely used tool for classifying a given application
crash file (core dump) as exploitable or non-exploitable. Out of IFuzzer’s 40 bugs,
gdb-exploitable classified no fewer than 12 as exploitable.

Example of a defect triggered by IFuzzer: Listing 1.2 shows an example
of a generated program triggering an assertion violation in SpiderMonkey 1.8.5.
The JavaScript engine crashes at line 6, as it fails to build an argument array for
the given argument value abcd*&^%$$. Instead, one would expect an exception
or error stating that the argument as invalid.

1 if (typeo f opt ions == ” func t i on ”)
2 { var opts = opt ions () ;
3 if (! /\ b s t r i c t \b / . t e s t (opts))
4 opt ions (” s t r i c t ”) ;
5 if (! /\ bwerror\b / . t e s t (opts))
6 opt ions (’ abcd∗&ˆ%$$ ’) ;
7 }

Listing 1.2: A test Case generated by
IFuzzer, which crashes the SpiderMon-
key JavaScript engine with an internal
assertion upon executing line 6

1 func t i on t e s t (code) {
2 f = eva l (” (func t i on (){ ”
3 + code + ”}) ”)
4 f ()
5 }
6 t e s t (”x=7”) ;
7 t e s t (”\” use s t r i c t \” ;
8 f o r (d in [x=arguments]){} ”) ;
9 t e s t (” f o r (v in ((Object . s e a l) (x))) ;

10 x . l ength=Function”)

Listing 1.3: Test Case generated by
IFuzzer, that crashes the Spider-
Monkey JavaScript engine 1.8.5.

Another example (shown in Listing 1.3) exposes security issues in SpiderMonkey

12

1.8.5, which is related to strict mode changes to the JavaScript semantics [33].
Line 8 enables the strict mode which makes changes to the way, SpiderMonkey
executes the code. On execution, the JavaScript engine crashes due to an access
violation and results in a stack overflow.

Bug ID Description

1131986 Segmentation fault
1133247 OOM error is not reported in the browser console

1141969∗ Crash[@js::SCInput::SCInput] or assertion failure: (nbytes & 7) == 0 at Structured-
Clone.cpp:463

1192381∗ Crash due to Assertion failure: input()-> isRecoveredOnBailout() == mustBeRecovered (as-
sertRecoveredOnBailout failed during compilation), at js/src/jit/Recover.cpp:1465

1192379 input()->isRecoveredOnBailout()
1192401

(CVE-2015-4507)
Crash due to Assertion failure: getSlotRef(EVAL).isUndefined(), at js/src/vm/GlobalOb-
ject.h:147

1193307 evaluate() method results in ”Error: compartment cannot save singleton anymore”
1205603 crash due to uncaught exception: out of memory
1205605 InternalError: too much recursion

1234323
AddressSanitizer failed to allocate 0x001000000000 bytes. AddressSanitizer’s allocator is termi-
nating the process instead of returning 0

1248188∗ Crash due to Assertion Failure : Could not allocate ObjectGroup in EnsureTrackPropertyTyp
1234979 Segmentation fault at js/src/jsobj.h:122
1235122 AddressSanitizer failed to allocate 0x400002000 (17179877376) bytes of LargeMmapAllocator
1235160 crash due to Assertion failure: index < length , at js/src/jit/FixedList.h:84
1247231∗ Segmentation fault at js/src/vm/NativeObject.h:86
1248321∗ Crash due to Assertion failure: JSScript::argumentsOptimizationFailed, at js/src/jscntxt.cpp:12
1258189 Crash due to Assertion failure: isLive(), at js/src/build1/dist/include/js/HashTable.h:774

Table 1: Bugs found in the latest version of Mozilla’s SpiderMonkey.

4.3 Spidermonkey Version 38

We also ran an instance of IFuzzer to target SpiderMonkey 38 (latest version
at the time of experimentation). Table 1 shows the results of running IFuzzer
on latest build. IFuzzer detected 17 bugs and out of these, 4 were confirmed
to be exploitable. Five of the crashes (marked with ∗) are due to assertion
failures (which may be fixed in subsequent versions), unhandled out of memory
crashes, or spurious crashes that we could not reproduce. The remaining ones
are significant bugs in the interpreter itself.

For instance, the following code looks to be an infinite loop, except that one
of the interconnected components may fail to handle the memory management
and, hence the JavaScript engine keeps consuming the heap memory, creating
a denial of service by crashing the machine in few seconds. The code fragment
responsible for the crash is shown in Listing 1.4.

1 try {
2 a = new Array () ;
3 while (1)
4 a = new Array (a) ;
5 }
6 catch (e) { }

Listing 1.4: Test Case generated by IFuzzer, crashing the latest version XXX
of SpiderMonkey JavaScript engine. JavaScript engine fails to handle the
situation, leading to a memory leak

Also, in this case, our contribution and efforts were rewarded by the Mozilla’s
bounty program for one of the bugs detected by IFuzzer. The bug received an ad-
visory from mozilla [34] and CVE Number CVE-2015-4507 and concerns a crash
due to a getSlotRef assertion failure and application exit in the SavedStacks

13

class in the JavaScript implementation. Mozilla classified its security severeness
as “moderate”.

The results discussed so far establishes that the evolutionary approach fol-
lowed by IFuzzer tool is capable of generating programs with a given objective
and trigger significant bugs in real-world applications.

Other interpreters. When evaluating our work on the Chrome JavaScript
engine V8, IFuzzer worked out of the box and reported few bugs that resulted in
crash (see table 2). As far as we can tell, these bugs do not appear to be security
bugs and require further scrutiny.

1 func t i on f () {
2 var s = ” switch (x) {” ;
3 for (var i = 8000 ; i < 16400; g++) {
4 s += ” case ” + i + ” : re turn ” + i + ” ; break ; ” ;
5 }
6 s += ” case 8005 : re turn −1; break ; ” ;
7 s += ”}” ;
8 var g = Func . t i on (”x” , s) ;
9 assertEq (g (8005) , 8005) ;

10 }
11 f () ;

Listing 1.5: Test Case generated by IFuzzer, crashing the latest version XXX
of Chrome V8 JavaScript engine. JavaScript engine fails to handle the situ-
ation crashes with an illegal instruction error.

1 - 2 crashes with Fatal error in CALL AND RETRY LAST # Allocation failed - process
out of memory

2 - few crashes due to NULL pointer exception

Table 2: IFuzzer crashes found on Chrome V8 [4.7.0]

In order to establish the usability of IFuzzer to other languages , we could fur-
ther configure IFuzzer for Java by using Java Grammar Specifications, available
at [29]. However, we have not fully tested this environment to its full extent.

5 Remarks on IFuzzer’s Design Decisions

Recall that IFuzzer uses an evolutionary approach for code generation by guiding
the evolution process to generate uncommon code fragments. As stated earlier,
there are several parameters available to fine-tune IFuzzer for better perfor-
mance. For example, the choice of using a subset (of cardinality equal to the
size of population) of the initial test suite, rather than the whole suite, as the
first generation is to make an effective use of resources available. The remaining
inputs from test suite can be used in later generation when IFuzzer gets stuck
at some local minima, which is a known obstacle in evolutionary algorithms.

The generation in which a bug is identified depends on different factors,
including the size of the input test sample, the size of the fragment considered
for genetic operation and the size of new fragment induced etc. As discussed,

14

the higher the complexity of inputs, the higher the probability of finding a bug.
Bloat control and the time taken by the parser to process the generated programs
(one of the fitness parameters) will restrict larger programs from making it into
the next generations. IFuzzer does not completely discard larger programs, but
deprioritizes them.

We also observed that almost all the bugs in SpiderMonkey 1.8.5 are triggered
in the range of 3-120 generations with an average range of 35-40 generations.
With the increase in complexity and number of language features added to the
interpreter, the latest version requires more uncommonness to trigger the bugs,
which implies more time to evolve inputs. As an example, all the bugs in the
latest version are found on average after 90-95 generations.

While there are some similarities between LangFuzz and IFuzzer, the dif-
ferences are significant. It is difficult to make a fair comparison on all aspects.
IFuzzer’s GP-based approach is a guided evolutionary approach with the help of
a fitness function, whereas LangFuzz follows a pure mutation-based approach by
changing the input and testing. IFuzzer’s main strength is its feedback loop and
the evolution of inputs as dictated by its new fitness function makes the design
of IFuzzer very different from that of LangFuzz.

Both IFuzzer and LangFuzz are generative fuzzers that use grammars in
order to be language independent but differ in their code generation processes.
LangFuzz uses code mutation whereas IFuzzer uses GP for code generation.
The use of GP provides IFuzzer the flexibility of tuning various parameters for
efficient code generation.

Intuitively, the fitness function (objective function) is constructed to use the
structural information about the program along with interpreter feedback infor-
mation to calculate the fitness. Structural metrics, along with the interpreter
feedback information, are also considered in the fitness calculation. Structural
information is used to measure the singularity and complexity of the code gener-
ated. The chances of introducing errors are higher with larger and more complex
code. Hence, the inputs that triggered bugs are not entirely new inputs but have
evolved through generations starting from the initial test cases. We observed this
evolutionary manifestation repeatedly during our experimentation.

In a nutshell, we observed that the uncommonness characteristic of the input
code (like the structural complexity or the presence of type casting and type con-
versions) relates well with the possibility of finding exceptional behavior of the
interpreter. Throughout this work, the driving intuition has been that most tests
during development of the interpreter focused on the common cases. Therefore,
testing the interpreter on uncommon (“weird”) test cases should be promising
as generating such test cases manually may not be straightforward and thereby
some failure cases are missed.

6 Related Work

Fuzz testing was transformed from a small research project for testing UNIX
system utilities [35] to an important and widely-adopted technique.

15

Researchers started fuzzers as brute forcing tools [36] for discovering flaws,
after which they would analyze for the possibility of security exploitation. Later,
the community realized that such simple approaches have many limitations in
discovering complex flaws. Smart Fuzzer, overcame some of these limitations and
proved more effective [37].

In 2001, Kaksonen [38] used an approach known as mini-simulation, a sim-
plified description of protocols and syntax, to generate inputs that nearly match
with the protocol used. This approach is generally known as a grammar-based ap-
proach. It provides the fuzzer with sufficient information to understand protocol
specifications. Kaksonen’s mini-simulation ensures that the protocol checksums
are always valid and systematically checks which rules are broken. In contrast,
IFuzzer uses the grammar specification to generate valid inputs.

Yang et al [39] presented their work on CSmith, a random “C program” gen-
erator. It uses grammar for producing programs with different features, thereby
performing testing and analyzing C compilers. This process is a language inde-
pendent fuzzer and uses semantic information during the generation process.

In the area of security, Zalewski presented ref fuzz [40] and crossfuzz [41]
aiming at the DOM component in browsers. JsFunFuzz [42] is a language-
dependent generative tool written by Ruddersman in 2007, which targets JavaScript
interpreters in web browsers, and has led to the discovery of more than 1800 bugs
in SpiderMonkey. It is considered as one of the most relevant work in the field
of web interpreters. LangFuzz, a language independent tool presented by Holler
et. al. [3] uses language grammar and code mutation approaches for test gen-
eration. In contrast, IFuzzer uses grammar specification and code generation.
Proprietary fuzzers include Google’s ClusterFuzz [43] which tests a variety of
functionalities in Chrome. It is tuned to generate almost 5 million tests in a day
and has detected several unique vulnerabilities in chrome components.

However, all these approaches may deviate the process of code generation
from generating the required test data, thereby degenerating into random search,
and providing low code coverage. Feedback fuzzers, on the other hand, adjust
and generate dynamic inputs based on information from the target system.

An example of feedback-based fuzzing is an evolutionary fuzzer. Evolution-
ary fuzzing uses evolutionary algorithms to create the required search space of
data and operates based on an objective function that controls the test input
generation. One of the first published evolutionary fuzzersis by DeMott et al. in
2007 [10] . This is a grey-box technique that generates new inputs with better
code coverage to find bugs by measuring code block coverage.

Search-based test generation using metaheuristic search techniques and evo-
lutionay computation has been explored earlier for generating test data [44,45].
In the context of generating inputs using GP for code generation (as also adopted
by IFuzzer), recent work by Kifetew et.al. [46] combines stochastic grammar with
GP to evolve test suites for system-level branch coverage in the system under
test.

Our approach differs from existing work in many aspects. First, our ap-
proach uses GP with a uniquely designed guiding objective function, directed

16

towards generating uncommon code combinations—making it more suitable for
fuzzing. In order to be syntactically correct but still uncommon, we apply sev-
eral heuristics when applying mutation and crossover operations. Our approach
is implemented as a language independent black box fuzzer. To the best of our
knowledge, IFuzzer is the first prototype to use GP for interpreter fuzzing with
very encouraging results on real-world application.

7 Conclusion and Future Work

In this paper, we elaborate on the difficulties of efficiently fuzzing an interpreter
as well as our ideas to mitigate them. The main challenge comes from the fact
that we need to generate code that is able to fuzz the interpreter to reveal bugs
buried deep inside the interpreter implementation. Several of these bugs are
found to be security bugs, which are exploitable, which makes an interpreter a
very attractive target for future attacks.

In this work, we proposed an effective, fully automated, and systematic ap-
proach for interpreter fuzzing and evaluated a prototype, IFuzzer, on real-world
applications. IFuzzer uses an evolutionary code generation strategy that applies
to any computer language of which we have the appropriate grammar specifica-
tions and a set of test cases for the code generation process. IFuzzer introduces
a novel objective function that helps the fuzzer to reach its goal of generating
valid but uncommon code fragments in an efficient way. In our evaluation, we
show that IFuzzer is fast at discovering bugs when compared with a state-of-the-
art fuzzer of its class. IFuzzer found several security bugs in the SpiderMonkey
JavaScript interpreter that is used in Mozilla browser. The approach used in
this paper is generic enough for automated code generation for the purpose of
testing any targeted language interpreters and compilers, for which a grammar
specification is available and serves as a framework for generating fuzzers for
any interpreted language and corresponding interpreters.

IFuzzer is still evolving and we envision avenues for further improvements.
We plan to investigate more code (property) parameters to be considered for the
fitness evaluation. In our experiments, we observed that the parameters for the
genetic operations (mutation and crossover) should be tuned further to improve
the evolutionary process. Another improvement can be to keep track of more
information during program execution, which helps to guide the fuzzer in a
more fine-grained manner. For example through dynamic program analysis we
can gather information about the program paths traversed, which gives coverage
information as well as correlation between program paths and the bugs they lead
to. This information could be used to refine the fitness function, thus improving
the quality of code generation.

Acknowledgments. This work was partially supported by Netherlands Organ-
isation for Scientific Research through the NWO 639.023.309 VICI “Dowsing”
project.

17

We would like to thank Mozilla Security Team and conference reviewers for their
useful suggestions to improve the paper.

References

1. V. Anupam and A. J. Mayer, “Security of web browser scripting languages: Vul-
nerabilities, attacks, and remedies,” in Proceedings of the 7th USENIX Security
Symposium, San Antonio, TX, USA, January 26-29, 1998, 1998.

2. O. Hallaraker and G. Vigna, “Detecting malicious javascript code in mozilla,” in
Proceedings of the 10th IEEE International Conference on Engineering of Complex
Computer Systems, ICECCS ’05, pp. 85–94, 2005.

3. C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments,” in Proceedings
of the 21th USENIX Security Symposium, pp. 445–458, August 2012.

4. L. Guang-Hong, W. Gang, Z. Tao, S. Jian-Mei, and T. Zhuo-Chun, “Vulnerability
analysis for x86 executables using genetic algorithm and fuzzing,” in Convergence
and Hybrid Information Technology, 2008. ICCIT ’08. Third International Con-
ference on, pp. 491–497, Nov 2008.

5. S. Rawat and L. Mounier, “An evolutionary computing approach for hunting buffer
overflow vulnerabilities: A case of aiming in dim light,” in Proceedings of the 2010
European Conference on Computer Network Defense, EC2ND ’10, pp. 37–45, 2010.

6. S. Sparks, S. Embleton, R. Cunningham, and C. Zou, “Automated vulnerabil-
ity analysis: Leveraging control flow for evolutionary input crafting,” in Com-
puter Security Applications Conference, 2007. ACSAC 2007. Twenty-Third An-
nual, pp. 477–486, 2007.

7. C. Del Grosso, G. Antoniol, E. Merlo, and P. Galinier, “Detecting buffer overflow
via automatic test input data generation,” Comput. Oper. Res., vol. 35, pp. 3125–
3143, Oct. 2008.

8. E. Alba and J. F. Chicano, “Software testing with evolutionary strategies,” in Pro-
ceedings of the Second International Conference on Rapid Integration of Software
Engineering Techniques, pp. 50–65, 2006.

9. M. Zalewski, “American fuzzy lop.” At: http://lcamtuf.coredump.cx/afl/.
10. DeMott, Jared, Enbody, Richard, Punch, and W. F., “Revolutionizing the field of

grey-box attack surface testing with evolutionary fuzzing,”
11. W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically finding

patches using genetic programming,” in Proceedings of the 31st International Con-
ference on Software Engineering, ICSE ’09, (Washington, DC, USA), pp. 364–374,
IEEE Computer Society, 2009.

12. D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation learned from
human-written patches,” in Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, (Piscataway, NJ, USA), pp. 802–811, IEEE Press,
2013.

13. G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Transactions on
Software Engineering, vol. 39, no. 2, pp. 276–291, 2013.

14. R. I. McKay, N. X. Hoai, P. A. Whigham, Y. Shan, and M. O’Neill, “Grammar-
based genetic programming: a survey,” Genetic Programming and Evolvable Ma-
chines, vol. 11, pp. 365–396, May 2010.

15. R. P. Pargas, M. J. Harrold, and R. R. Peck, “Test-data generation using genetic
algorithms,” Software Testing Verification and Reliability, vol. 9, no. 4, pp. 263–
282, 1999.

18

16. R. Poli, W. B. Langdon, and N. F. McPhee, A Field Guide to Genetic Program-
ming.

17. T. Soule, J. A. Foster, and Dickinson, “Code growth in genetic programming,” in
Genetic Programming 1996:Proceedings of the First Annual Conference, pp. 215–
223, May 1996.

18. W. B. Langdon and R. Poli, “Fitness causes bloat: Mutation,” in Proceedings of
Genetic Programming, First European Workshop, EuroGP, pp. 37–48, May 1998.

19. T. Parr, The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2nd ed., 2013.
20. S. Luke and L. Panait, “A comparison of bloat control methods for genetic pro-

gramming,” Evolutionary Computation, vol. 14, pp. 309–344, September 2006.
21. T. Soule and J. A. Foster, “Effects of code growth and parsimony pressure on

populations in geneticprogramming,” Evolutionary Computation, vol. 6, pp. 293–
309, December 1998.

22. B.-T. Zhang and H. Mhlenbein, “Balancing accuracy and parsimony in genetic
programming.,” Evolutionary Computation, vol. 3, no. 1, pp. 17–38, 1995.

23. R. Poli and N. F. McPhee, “Covariant parsimony pressure in genetic program-
ming,” 2008.

24. S. McPeak and D. S. Wilkerson, “The delta tool.” http://delta.tigris.org.
25. “Javascript delta tool.” https://github.com/wala/jsdelta.
26. A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing input,”

IEEE Trans. Software Eng., vol. 28, no. 2, pp. 183–200, 2002.
27. T. McCabe, “A complexity measure,” Software Engineering, IEEE Transactions

on, vol. SE-2, pp. 308–320, Dec 1976.
28. D. Mitchell, R. J., Managing complexity in software engineering. No. 17 in IEE

Computing series, P. Peregrinus Ltd. on behalf of the Institution of Electrical
Engineers, 1990.

29. “The java language specification: Java se 8 edition.”
30. ECMA International, Standard ECMA-262 - ECMAScript Language Specification.

5.1 ed., June 2011.
31. https://bugzilla.mozilla.org/show_bug.cgi?id=676763.
32. “Gdb ’exploitable’ plugin.” http://www.cert.org/vulnerability-analysis/

tools/triage.cfm.
33. https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/

Strict_mode.
34. https://www.mozilla.org/en-US/security/advisories/mfsa2015-102/.
35. B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of

UNIX utilities,” Communications of the ACM, vol. 33, pp. 32–44, December 1990.
36. T. Clarke, “Fuzzing for software vulnerability discovery,” 2009.
37. C. Miller, “How smart is intelligent fuzzing-or-how stupid is dumb fuzzing,” August

2007.
38. R. Kaksonen, M. Laakso, and A. Takanen, “System security assessment through

specification mutations and fault injection,” in Proceedings of the International
Conference on Communications and Multimedia Security Issues, May 2001.

39. X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding bugs in C
compilers,” in Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation,, pp. 283–294, June 2011.

40. Zalewski, “Announcing ref fuzz a 2 year old fuzzer.” http://lcamtuf.blogspot.

in/2010/06/announcing-reffuzz-2yo-fuzzer.html.
41. Zalewski, “Announcing cross fuzz a potential 0-day in cir-

culation and more.” http://lcamtuf.blogspot.in/2011/01/

announcing-crossfuzz-potential-0-day-in.html.

http://delta.tigris.org
https://github.com/wala/jsdelta
https://bugzilla.mozilla.org/show_bug.cgi?id=676763
http://www.cert.org/vulnerability-analysis/tools/triage.cfm
http://www.cert.org/vulnerability-analysis/tools/triage.cfm
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Strict_mode
https://www.mozilla.org/en-US/security/advisories/mfsa2015-102/
http://lcamtuf.blogspot.in/2010/06/announcing-reffuzz-2yo-fuzzer.html
http://lcamtuf.blogspot.in/2010/06/announcing-reffuzz-2yo-fuzzer.html
http://lcamtuf.blogspot.in/2011/01/announcing-crossfuzz-potential-0-day-in.html
http://lcamtuf.blogspot.in/2011/01/announcing-crossfuzz-potential-0-day-in.html

19

42. J. Rudersman, “Introducing jsfunfuzz.” http://www.squarefree.com/2007/08/

02/introducing-jsfunfuzz.
43. A. Arya and C. Neckar, “Fuzzing for security.” http://blog.chromium.org/2012/

04/fuzzing-for-security.html.
44. W. Afzal, R. Torkar, and R. Feldt, “A systematic review of search-based testing for

non-functional system properties,” Information and Software Technology, vol. 51,
no. 6, pp. 957 – 976, 2009.

45. P. McMinn, “Search-based software test data generation: A survey,” Software Test-
ing Verification and Reliability, vol. 14, no. 2, pp. 105–156, 2004.

46. F. M. Kifetew, R. Tiella, and P. Tonella, “Combining stochastic grammars and
genetic programming for coverage testing at the system level,” pp. 138–152, 2014.

Appendix

Comparing Code Generation Approaches

The aim of this experiment is to compare GP based code generative approach
against code mutation, employed by [3] and pure generative approach. This
experiment should clarify how these approaches accounts for good results. To
measure the impact of these approaches, we need three independent runs of
IFuzzer.

Genetic Programming Approach. First run is with a default configu-
ration that follows the GP approach by performing genetic operations on the
individuals, making a semantic adjustment, and using extracted code fragments
for replacements.

Code Mutation Approach. In the Second run, IFuzzer is set to perform
code mutation and to use parsed fragments in replacement process, which is
similar to LangFuzz approach. This process is performed by disabling crossover
and replacement functionality of the IFuzzer. Objective function has no role in
this process, and we do not calculate the fitness of the individuals.

Generative Approach. The third run perform code generation using the
generative approach, the configuration should produce a random code generation
without using mutation or genetic operators. This falls back to pure generative
approach and does not use extracted fragments for replacement. In this approach,
we start with a start terminal in the language grammar and generate the code
by randomly selecting the production rules for a non-terminal that appears in
this process. This process will be terminated after reaching terminals and in case
of recursive grammar rules sometimes it may result in an infinite loop.

Code Mutation and GP approaches can bring diversity among the generated
code, thereby resulting in the higher chance to introduce errors. The generative
approach, by definition, should have been easier to construct valid programs,
but this leads to incomparable results, as there is no consistent environment.

In order to compare these approaches, we initially ran all three independent
configurations on SpiderMonkey 1.8.5 for 2-3 days. All these processes are driven
by randomization and therefore it is difficult to compare the results. The main
intuition of our experiment was to observe the divergence of the code generation

http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz
http://blog.chromium.org/2012/04/fuzzing-for-security.html
http://blog.chromium.org/2012/04/fuzzing-for-security.html

20

and the performance. It was observed that generative approach required more
semantic knowledge without which it generated very large code fragments and
its performance is based on the structure of grammar. We continued for multiple
instances with the first and second configurations for five more days and observed
that IFuzzer is fast enough to find bugs with the first configuration. Even with
a greater overlap ratio, the number of bugs found was slightly higher with a GP
approach when compared with the pure code mutation approach.

Figure 5 shows the results of comparison experiments between IFuzzer“s
GP and code mutation approaches. By considering the fact that both runs are
independent and results are very hard to compare as the entire process runs
on randomization, it appears that GP directs the program to generate required
output and improves the performance of the program.

4 1
OverLap

5

Genetic Programming Code Mutation

Fig. 5: Defects found with Code Mutation and Genetic Programming approaches

To measure the impact of code mutation and GP approach, we recorded the
code evolution process. In code mutation and GP approaches code generation is
performed with or without expanding. In either approach, extracted fragments
are used for replacements. Both the approaches brought divergence, but without
evolutionary computing divergence was achieved at a slower rate.

The IFuzzer’s GP based approach is a guided evolutionary approach with
the help of fitness function, whereas LangFuzz follows a pure mutation-based
approach by changing the input and testing. There is no evolutionary process
involved in LangFuzz by using a fitness function. The inputs that triggered bugs
are not entirely new inputs but have evolved through generations starting from
the initial test cases. We repeated this experiment and observed such findings.

	IFuzzer: An Evolutionary Interpreter Fuzzer using Genetic Programming
	Introduction
	Genetic Programming
	Representation of the Individuals
	Fragment Pool

	Implementation
	Code Generation
	Bloat Control
	Fitness Evaluation

	Experimentation
	Testing Environment
	IFuzzer vs LangFuzz
	Spidermonkey Version 38

	Remarks on IFuzzer's Design Decisions
	Related Work
	Conclusion and Future Work

