We Crashed, Now What?*

Cristiano Giuffrida
Department of Computer Science
Vrije Universiteit, Amsterdam
giuffrida@cs.vu.nl

Lorenzo Cavallaro
Department of Computer Science
Vrije Universiteit, Amsterdam
sullivan@cs.vu.nl

Andrew S. Tanenbaum
Department of Computer Science
Vrije Universiteit, Amsterdam
ast@cs.vu.nl

Abstract

We present an in-depth analysis of the crash-recovery
problem and propose a novel approach to recover from
otherwise fatal operating system (OS) crashes. We show
how an unconventional, but careful, OS design, aided by
automatic compiler-based code instrumentation, offers a
practical solution towards the survivability of the entire
system. Current results are encouraging and show that
our approach is able to recover even the most critical OS
subsystems without exposing the failure to user applica-
tions or hampering the scalability of the system.

1 Introduction

As aresult of their ever-growing complexity, modern op-
erating systems are constantly plagued by bugs. Empir-
ical studies have determined that the size of the Linux
kernel almost doubles between major releases, and so
do the number of bugs [1]. Unfortunately, a bug in
the OS code can potentially lead to a crash during nor-
mal operation, resulting in serious consequences ranging
from data loss for PC users to disruption of service for
high-availability systems. In commercial systems, down-
time directly translates to revenue loss [11]. In mission-
critical systems, disruption of service can lead to catas-
trophic consequences, including an electricity blackout
affecting millions of people [12]. Unfortunately, crash
recovery has proven to be an extremely challenging prob-
lem, especially when dealing with many classes of fail-
ures and protecting a large fraction of the OS.

By nature, a crash is an unpredictable event that occurs
when the system is in an arbitrary state and can produce
a number of undesirable effects a recovery solution must
deal with. First, a crash can result in data inconsistencies.
Consider, for example, some code adding an element to
a linked list. The operation is clearly not atomic and a
crash occurring during an update can leave the list in an

*This work has been supported by The European Research Council
under grant ERC Advanced Grant 227874.

invalid state. Second, part of the state can get corrupted
as a result of a memory error. Consider, for example, a
buffer overflow that overwrites critical data. Finally, er-
rors and inconsistencies can easily propagate to different
subsystems than the one where the bug originated.

The majority of the approaches to crash recovery de-
scribed in the literature attempt to incorporate some form
of explicit recovery support in the OS. The recovery in-
frastructure is typically tailored to specific components,
including drivers [35, 14], OS extensions in general [18],
and file systems [13]. The obvious benefit of an ad-hoc
recovery infrastructure is the ability to drastically reduce
the complexity one has to deal with at recovery time.

The problem with these approaches is their limited
scope. Generalizing these techniques to the entire OS
to build a high-coverage crash recovery infrastructure
would introduce significant complexity and directly ex-
pose a considerable portion of the recovery code to the
OS programmer. Experience with this model goes way
back, with the famous quote from Tom Van Vleck ad-
mitting that half the code he was writing in the Multics
operating system was solely dedicated to recovery [16].
Since the number of software bugs is roughly linear with
the number of lines of code [10], introducing a lot of
recovery code creates a vicious circle. In addition, these
approaches suffer from poor maintainability and expand-
ability properties. When interfaces between subsystems
change, the recovery code must be adapted accordingly
or potentially be rewritten from scratch.

In a completely different direction, researchers have
looked at strategies to build more generic recovery in-
frastructures to transparently protect a large fraction of
an OS. Successful approaches have used instrumentation
techniques [8] or kernel replication combined with forms
of live migration in face of a crash [3]. The key bene-
fits are backward compatibility with most existing oper-
ating systems, low exposures of the recovery infrastruc-
ture to the OS programmer, and potentials to overcome
the maintainability issues depicted earlier.

The main problem with transparent techniques is the
evident tradeoff between the number of recovery scenar-
ios considered and the complexity of the recovery infras-
tructure. For instance, best-effort strategies, such as the
one proposed in [3], offer low complexity but are not
generally concerned with state inconsistencies that can
easily trigger another crash. On the other hand, pure
instrumentation-based approaches drastically reduce the
number of assumptions on the nature of a crash but incur
very high complexity. As expected, with more complex-
ity comes a higher overhead and poor scalability due to
potential interrequest dependency tracking in the kernel.

In this paper, we explore a different approach to crash
recovery that attempts to mitigate the weaknesses of both
models and offers a potential solution to the general
problem. Our first contribution is a clear definition of
crash recovery with a logical decomposition of the prob-
lem into individual subproblems. Our second contribu-
tion is a novel approach to high-coverage crash recov-
ery for operating systems that provides appealing reli-
ability, scalability, and maintainability properties. Our
guiding principle is to leverage a carefully planned OS
design, which does not expose the recovery infrastruc-
ture to the OS programmer, but drastically reduces the
complexity of the problem space considered and allows
effective crash recovery using automatic instrumentation
techniques in a nonintrusive way.

The key novelty of our work revolves around
combining the benefits of both design-based and
instrumentation-based approaches. When compared to
common design-based techniques, our approach shows
considerably higher coverage without significantly in-
creasing the complexity of the recovery infrastructure or
imposing more burden on the programmer. When com-
pared to pure instrumentation-based techniques, our ap-
proach uses a lightweight instrumentation recovery in-
frastructure greatly reducing its overall complexity, with-
out, at the same time, hampering the scalability proper-
ties of the system. A prototype and preliminary results
confirm the viability of our approach.

2 The Crash-Recovery Problem

Despite much attention dedicated to the problem of crash
recovery in the literature [2, 3,5, 8, 13, 14, 18], very lit-
tle effort has been put into clearly identifying all the
subproblems associated to define a roadmap a solution
should follow to be comprehensive and practical. In the
following, we propose a possible breakdown of the prob-
lem space into common subproblems, which we believe
every dependable crash recovery solution should care-
fully consider.

Crash detection. A crash is a fatal condition that oc-
curs when a piece of software stops performing the ac-
tivities it has been designed for. A recovery solution

can either detect such conditions proactively (i.e., before
crashes actually occur), or reactively using hardware-
based or software-based techniques. A detection mech-
anism should isolate crashes properly not to let them in-
terfere with the recovery process itself.

State transfer. To be able to survive a crash, a recovery
solution must establish an appropriate execution context
where the system can resume operation. To avoid service
disruption, the state of the OS must be transferred from
the faulty execution context to the new execution context.
State consistency. When the old execution context is
interrupted prematurely by a crash, the transfered state
could reflect an arbitrary point in execution and be un-
suitable to resume operation in a deterministic way. A
crash recovery solution should guarantee that no state in-
consistencies are present and allow for deterministic ex-
ecution from a stable state in the new execution context.
State dependency tracking. Depending on the architec-
ture of the OS, multiple execution contexts (e.g. kernel
threads) may be running at the same time and create com-
plex state dependencies among each other. A crash re-
covery solution should guarantee these dependencies are
consistent and ensure that all the OS subsystems have a
coherent view of the global state when the recovery pro-
cedure completes.

State corruption. A consistent state with respect to a
stable execution point is not guaranteed to be error-free.
Arbitrary data corruption might have occurred before the
crash. A crash recovery solution should attempt to limit,
detect, and possibly recover from any form of corruption.
Restart. A crash recovery solution must define a safe
execution point in the new context to resume operation.
In addition, a dependable restart strategy should attempt
to avoid further contingent crashes. For example, deter-
ministic replay of the original execution under the same
conditions would inevitably reproduce the same crash.

3 Our approach

Our approach is to engineer the OS to dramatically re-
duce the complexity of crash recovery. While the idea
of leveraging OS support to simplify recovery has been
investigated before [2,5, 13, 14, 18], we differ in that our
design scales up to nearly the entire OS and neither fail-
ures nor recovery code are directly exposed to the pro-
grammer.

First, we have broken down the OS into a collection of
separate components with well-defined interfaces. Each
component retains a certain amount of private state that
is never explicitly shared with other components. To en-
force the strongest level of isolation possible, we seg-
regate each component in a user-space process with its
own private address space protected by the MMU. This
property leads to a microkernel-based multiserver design
with most of the OS running in user space.

Our goal is to push this approach to the extreme, mov-
ing all the critical OS subsystems to user space, including
drivers, file systems, networking, process management,
virtual memory management, and even scheduling. This
is advantageous for at least two reasons. First, since our
design aims to provide component-agnostic crash recov-
ery for all the stateful user-space components, pushing
more subsystems to user space increases the coverage of
our recovery technique. In addition, this approach dra-
matically reduces the size and the complexity of the (mi-
cro) kernel, which only provides interprocess communi-
cation (IPC) and basic low-level resource management.
The very limited size of the resulting microkernel could
make it practical to verify the code using formal tech-
niques and guarantee that the microkernel itself is free of
programming errors [6].

While the reliability properties of microkernel-based
architectures have been long known and studied, we
believe little effort has been put into building a high-
coverage crash recovery infrastructure that solves many
of the aforementioned state management problems while
imposing only minimal burden on the OS programmer.
We believe a careful design and the support of emerg-
ing compiler-based instrumentation techniques can help
to fill the gap, as our approach demonstrates.

The second organizing principle we rely on is an
abstract communication mechanism to provide failure-
resilient IPC to OS components. In our design, com-
ponents communicate only via message passing. Each
component is assigned a virtual identifier that is stable
even in the event of a crash. When a component crashes,
the system allows a new instance to take over and re-
sume normal execution after recovery. The new instance
is a separate process automatically inheriting the same
virtual identifier, so that all the pending IPC messages
are transparently rerouted by the kernel. Transparency of
addressing is essential to avoid exposing failures to client
components, as also recognized in prior work [2].

A key assumption in our design is the programming
model adopted for OS components. Every component
strictly adheres to a pure event-driven model with well-
defined properties. The model revolves around a simple
task loop: receive a message, process it, and go back to
the top of the loop to wait for another message. The task
loop is always single threaded but short-lived to achieve
the maximum throughput possible. Note that this design
does not hamper the ability to efficiently implement sup-
port for application-level threads, nor does it rule out dif-
ferent OS components running on different cores, a sub-
ject for future research.

While processing a message, a component may need
to contact the kernel or another component to fulfill the
request. In our model, messages originated while pro-
cessing a request are pushed to the end of the task loop

by design. A component will typically receive a mes-
sage, store information about the pending request in its
local state, send a message to a dependent component re-
quired to complete the request, and go back to the top
of the task loop to serve another request. When the de-
pendent component sends a reply, the client can continue
processing the original request.

Our design is inspired by continuation-based program-
ming [9] and effectively treats each OS subsystem as a
state machine. This approach provides extremely appeal-
ing properties for state management. First, at the top of
the task loop, every component is in a stable and coherent
state that unambiguously identifies its persistent data and
state of execution. Second, transitions from state to state
are well-defined and explicit in the programming model.
Finally, state transitions are always coherent across com-
ponents. Since request-originated messages are pushed
to the end of the task loop, a dependent component will
only receive a message and have the opportunity to tran-
sition to a new state when the client has already transi-
tioned to a new stable state itself. We only allow mes-
sages with idempotent semantics to originate in the mid-
dle of the task loop. These messages do not give rise to
state transitions in dependent components, thereby pre-
serving the consistency of the global state of the system.

In our model, the task loop represents the recovery
window. Our ultimate goal is to support transparent
and component-agnostic recovery from crashes occur-
ring anywhere during the execution of the task loop.
When the recovery procedure completes, execution must
restart at the top of the loop with the same state the com-
ponent had upon reception of the last message before the
crash. We want to resume execution as though the crash
never occurred and the last run of the task loop was never
even started. By design, the top of the loop is a global
safe execution point, with both the component and the
rest of the system in a coherent state.

To be able to restore the last stable state of the com-
ponent, we need a mechanism to roll back all the lo-
cal changes that occurred within the last run of the task
loop. To avoid exposing the details of the recovery in-
frastructure to the OS programmer, we employ automatic
compiler-based instrumentation techniques to track ev-
ery change to the state of the component transparently.
Our instrumentation infrastructure is lightweight and
used only to track local state changes in a component-
agnostic and dependency-agnostic way (see below).

The recovery procedure is initiated when a crash is
detected in one of the OS components. As in prior
work, our failure model assumes one failure at a time
and trusts the recovery and instrumentation code. It is
worth noting that, however, our model can also be used
to survive multiple concurrent failures, but the approach
becomes best-effort, since assumptions normally made

[User applications]
®
(&)
<
% @ : : ’ @
o] ¢
(2]
]
Printer\ (Audio) (Video) | |
Driver / \Driver/ \Driver
Tg 2. DETECT
E, Microkernel

Figure 1: The crash recovery process in our OS model.

during the recovery process may no longer hold (e.g.
the system manager tries to fork a new copy of a dead
driver without knowing that the process manager has
also crashed). More sophisticated dependency resolution
policies to tackle this problem are part of our future work.

To avoid increasing the complexity of the kernel, the
recovery code is executed entirely in user space. Part of
the recovery code is encapsulated in the system manager,
a separate OS component that coordinates the entire re-
covery process. In detail, the system manager: (i) selects
a valid replica of the component as a new process; (ii) in-
forms the kernel of the new process to rebind the virtual
identifier, and make the new process runnable; (iii) sends
an initialization message to the new process requesting to
start in face of a crash; (iv) cleans up the old process and
creates another replica if necessary. Replicas are only
created beforehand for critical OS components that are
themselves part of the process creation protocol. For the
others, replicas are created on demand to minimize re-
source consumption.

The remaining part of the recovery code is isolated in a
generic library all the OS components are linked against.
The library hides all the details of the initialization proto-
col with the system manager, transparently executing the
component’s startup code on a fresh start and the recov-
ery code after a crash. The code in the recovery library
restores the component to a coherent state and jumps
to the beginning of the task loop right after, to resume
normal execution. The careful reader may have already
noted that such a deterministic strategy would lead to the
component constantly crashing in case of nontransient
failures, e.g., as a consequence of an attacker exploiting
memory corruption vulnerabilities. While a more com-
prehensive analysis is subject of our future work, we ad-
vocate the adoption of per-component policies to solve
this problem and improve the quality of the recovery pro-
cess, as better detailed in the next section.

Figure 1 depicts the architecture of the system and the
steps of the recovery process.

4 Practical Crash Recovery

In this section, we revisit the problem space analyzed
earlier and discuss the benefits of our approach.

Crash detection. We adopt a uniform mechanism based
on runtime exceptions to detect crashes in OS com-
ponents. CPU and MMU exceptions are triggered di-
rectly by the hardware when unexpected conditions oc-
cur. Software exceptions can be raised by the component
itself (e.g. library calls like exit () or panic () or as-
sertion failures), or eventually be reported to the kernel
by another trusted OS component (e.g. feedback from
the scheduler to detect a component stuck in an infinite
loop). All the hardware and software exceptions are in-
tercepted by the kernel, which informs the system man-
ager to initiate recovery. Thanks to address-space isola-
tion, crashes cannot propagate and the recovery process
can always be activated correctly. We focus specifically
on crashes in our approach, and do not attempt to catch
byzantine failures, e.g., random or malicious behavior.
Actually, we believe this problem is orthogonal to our
current work and can be addressed with other strategies,
for example, using automatically inserted assertions to
immediately catch an invalid state of a component [18].

State transfer. State transfer is entirely implemented
in the recovery library that performs interaddress space
copy from the dead instance to inherit the state. Both the
data and the heap are blindly copied from the old instance
in a protected manner, using a capability-like design.

State consistency. The recovery library uses informa-
tion generated by the instrumentation code to restore the
last stable state correctly. A number of implementation
strategies are possible here. To date, we have exper-
imented with deferred writes replication at the object-
level, as discussed in more detail in the next section. We
point out that the library can transparently revert all the
changes occurred in the last run of the loop and thus guar-
antee that the component state is consistent. This ap-
proach requires lightweight instrumentation code at the
cost of only being able to revert the state of a component
to the beginning of the last recovery window. For exam-
ple, a component may enter a tainted state and crash a
number of recovery windows later, possibly propagating
the taint further across the components it is interacting
with. Should this happen, our framework is only able to
restore the last stable state of the component that may
be as well remain tainted. To address this problem, it is
possible to use component-specific recovery procedures
to recover from a tainted state, or use assertions to im-
mediately catch invalid states and not to let them spread
to other components or across recovery windows. Using
larger recovery windows that spam across several events
is not a pain-free solution, since such an approach would
require high-overhead techniques (e.g. checkpointing) to

consistently record the global state along with any inter-
component dependencies.

State dependency tracking. Our design requires no ex-
plicit dependency analysis to enforce global coherence
of the state. When restoring the last stable state of the
component, the rest of the system is always consistent
since transitions to a new stable state are always coherent
across components. The absence of explicit dependency
analysis is crucial to keep the programming model sim-
ple and preserve the scalability properties of the system.
State corruption. The design of techniques to prevent,
detect, or recover from state corruption depends on the
threat model. While an extensive analysis is outside the
scope of this paper, we point out the potential of our
approach in this respect. First, address-space isolation
helps confine the potential propagation of the error by de-
sign. Second, corruption management mechanisms can
be effectively integrated in our lightweight instrumenta-
tion infrastructure on a local scale. Examples include
interaddress space replication, checksumming, or instru-
mented runtime checks [4, 17]. The evaluation of these
techniques is part of our future work.

Restart. Our approach implements a soft rollback to re-
sume execution at the top of the last task loop using only
local information. The ability to deterministically re-
sume execution at a fixed stable execution point makes
it practical to implement several policy-driven restart
strategies and avoid subsequent crashes in the next run.
For instance, if we only aim to address transient failures
(e.g. hardware faults), the recovery library can simply
replay execution. In other cases, an option is to immedi-
ately reply to the message with a valid error code to per-
form request-oriented recovery similarly to [8]. An alter-
native is to let the OS programmer register callbacks to
check the local state for consistency and decide whether
to reply to the message, replay execution, or select a dif-
ferent strategy to process the request (if any). We remark
how the programming model exposed to the programmer
is effective and functional, thanks to the localized and
stable state the callback has to deal with. Consider, for
example, the unbearable alternative of having the pro-
grammer implement consistency checks for the entire
system at an arbitrary execution point. The comparison
and evaluation of different restart strategies is part of our
future work.

5 Current Results

We have prototyped our ideas on MINTX 3, a microker-
nel multiserver POSIX-conformant OS that runs on com-
modity x86 hardware [15]. We have restructured every
OS process to fit our event-driven model and prototyped
the crash recovery infrastructure in user-space. We added
support for our generic crash detection mechanism in the
microkernel with minimal effort.

Preliminary results showed that our approach is able
to restart even the most critical OS components flaw-
lessly during normal system operation, keeping the sys-
tem fully functional and without exposing the failure
to user processes. For instance, our approach can suc-
cessfully restart the process manager (PM), which stores
and manages the most critical information about all the
running processes—both regular and OS-related—in the
system. Our preliminary experiments showed that the
global state of PM was always correctly restored upon
restart and no information was ever lost. We point out
that failures were conveniently induced, but simulating
more realistic scenarios via fault injection is part of our
ongoing work.

In our prototype, the instrumentation code is imple-
mented as a series of compiler passes using the LLVM
compiler framework [7]. A first pass is used to instru-
ment code and store information about the state objects
of each OS component. To this end, we record informa-
tion about global variables, keep track of dynamic mem-
ory allocation, and allocate a shadow region of memory
to store the last stable state. The second pass is used to
insert the code to keep the shadow region consistent and
up to date. Several implementation strategies are possi-
ble for this purpose.

To date, we evaluated the practicality of our approach
with a basic strategy that associates a flag with each state
object, marks the flag as dirty whenever an object is up-
dated, and copies all the dirty objects to the shadow re-
gion at the end of the task loop. We use alias analysis to
determine the set of objects to flag as dirty at every occur-
rence of a store instruction in the code. We remark that
our lightweight instrumentation introduces only a fixed
shadow region and flags that are used to commit changes
at the end of each task loop without requiring any addi-
tional log or journal.

We point out that this basic strategy is implemented
at a coarse level of granularity and may incur significant
overhead depending on the activity performed. The eval-
uation of more efficient finer-grained strategies is part of
our ongoing work. However, our focus here is not on the
overhead—which we are optimistic about significantly
reducing—but rather on the scalability properties that are
innate in our model. Unfortunately, scalability is easily
undermined when interrequest dependencies across dif-
ferent kernel subsystems must be tracked as in [8], but,
as described earlier, our model does not require such a
complication and is aimed to build a dependable, as well
as scalable, crash recovery solution.

To demonstrate the scalability properties of our de-
sign, we evaluated our approach with postmark—
reproducing a I/O intensive workload, and a POSIX test
suite—reproducing a system-call intensive workload.

Figure 2 shows the relative runtime overhead induced

POSIX Suite m—
1 Postmark ——

0.9

0.8

0.7

Normalized Relative Overhead

0.6

0.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N

Figure 2: Scalability impact under parallel workloads.

by our instrumentation code compared to the baseline
system, under different parallel workloads generated by
N concurrent instances of the same benchmark. The dis-
tribution plotted is normalized against the relative over-
head of a sequential run of the benchmark. As depicted
in the figure, the relative overhead is constant, indicat-
ing no impact of our approach on scalability, regardless
of the particular benchmark and workload intensity con-
sidered. This demonstrates the benefit of our approach,
which does not require explicit dependency analysis to
ensure global consistency of the state at recovery time.
In contrast, other approaches exclusively relying on in-
strumentation techniques [8] need to track all the reads
and writes and their contextual dependencies. We believe
the resulting nonnegligible scalability impact is ill-suited
to high-availability applications. Poor scalability eas-
ily translates to significant reduction in terms of system
availability under intensive parallel workloads, which in
turn results in a less dependable system.

6 Conclusions

In this paper, we discussed many of the issues associated
with crash recovery and argued that new solutions with
better dependability properties are needed. To this end,
we presented a novel approach that employs an event-
driven OS design to dramatically simplify state manage-
ment. The result is a well-defined recovery window with
frequent stable execution points where the state is glob-
ally consistent. To recover from arbitrary crashes, we
revert the state of the faulty component to the last stable
state. Thanks to the design adopted, this operation does
not require expensive checkpointing nor complex depen-
dency analysis, but can be implemented via nonintru-
sive instrumentation techniques, as our prototype demon-
strates.

References

(1]

[2]

[3]

[4]

[3]

(6]

[7

—

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

CHOU, A., YANG, J., CHELF, B., HALLEM, S., AND ENGLER,
D. An Empirical Study of Operating Systems Errors. In Proc. of
the 18th ACM Symp. on Oper. Systems Prin. (2001).

DaviD, F. M., CHAN, E. M., CARLYLE, J. C., AND CAMP-
BELL, R. H. CuriOS: Improving Reliability through Operating
System Structure. In Proc. of the 8th USENIX Symp. on Operat-
ing Systems Design and Implementation (2008).

DEPOUTOVITCH, A., AND STUMM, M. Otherworld: Giving
Applications a Chance to Survive OS Kernel Crashes. In Proc.
of the Fifth ACM European Conf. on Computer Systems (2010),
ACM.

DHURJATL, D., KOWSHIK, S., AND ADVE, V. SAFECode: En-
forcing Alias Analysis for Weakly Typed Languages. SIGPLAN
Not. (2006).

HERDER, J. N., Bos, H., GrAS, B., HOMBURG, P., AND
TANENBAUM, A. S. Failure Resilience for Device Drivers. In
Proc. of the 37th Annual IEEE/IFIP Int’l Conf. on Dep. Systems
and Networks (2007).

KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK, J.,
Cock, D., DERRIN, P., ELKADUWE, D., ENGELHARDT, K.,
KOLANSKI, R., NORRISH, M., SEWELL, T., TUCH, H., AND
WINWOOD, S. sel4: Formal Verification of an OS Kernel. In
Proc. of the 22nd ACM Symp. on Oper. Systems Prin. (2009),
ACM, pp. 207-220.

LATTNER, C., AND ADVE, V. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proc.
of the Int’l Symp. on Code Generation and Optimization (2004).

LENHARTH, A., ADVE, V. S., AND KING, S. T. Recovery Do-
mains: an Organizing Principle for Recoverable Operating Sys-
tems. In Proc. of the 14th Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems (2009), ACM.

MILNE, R., AND STRACHEY, C. A Theory of Programming Lan-
guage Semantics. Halsted Press, 1977.

OSTRAND, T. J., AND WEYUKER, E. J. The Distribution of
Faults in a Large Industrial Software System. ACM SIGSOFT
Softw. Eng. Notes (2002).

PATTERSON, D. A. A Simple Way to Estimate the Cost of Down-
time. In Proc. of the 16th USENIX Systems Admin. Conf. (2002).

POULSEN, K. Software Bug Contributed to Blackout. Security
Focus (2004).

SUNDARARAMAN, S., SUBRAMANIAN, S., RAJIMWALE, A.,
ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU, R. H., AND
SWIFT, M. M. Membrane: Operating System Support for
Restartable File Systems. In Proc. of the 8th USENIX Conf. on
File and Storage Technologies (2010).

SWIFT, M. M., ANNAMALAI, M., BERSHAD, B. N., AND
LEVY, H. M. Recovering Device Drivers. ACM Trans. Com-
put. Syst. (2006).

TANENBAUM, A. S., AND WOODHULL, A. S. Operating Sys-
tems Design and Implementation, 3 ed. Prentice Hall, 2006.

VLECK, T. V. Unix and Multics, 1995.

YOUNAN, Y., PHILIPPAERTS, P., CAVALLARO, L., SEKAR, R.,
PIESSENS, F., AND JOOSEN, W. PAriCheck: an Efficient Pointer
Arithmetic Checker for C Programs. In Proc. of the 5th ACM
Symp. on Information, Computer and Communications Security
(2010).

ZHOoU, F., CONDIT, J., ANDERSON, Z., BAGRAK, I., ENNALS,
R., HARREN, M., NECULA, G., AND BREWER, E. SafeDrive:
Safe and Recoverable Extensions using Language-based Tech-
niques. In Proc. of the 7th USENIX Symp. on Operating Systems
Design and Impl. (2006).

