
A Methodology to Efficiently Compare
Operating System Stability

Erik van der Kouwe∗, Cristiano Giuffrida†, Razvan Ghitulete‡ and Andrew S. Tanenbaum§

Computer Systems Section
Faculty of Sciences, VU University

Amsterdam, The Netherlands
∗Email: erik@minix3.org
†Email: giuffrida@cs.vu.nl

‡Email: razvan.ghitulete@gmail.com
§Email: ast@cs.vu.nl

Abstract—Despite decades of advances in software engineering,
operating systems (OSes) are still plagued by crashes due to
software faults, calling for techniques to improve OS stability
when faults occur. Evaluating such techniques requires a way to
compare the stability of different OSes that is both representative
of real faults and scales to the large code bases of modern OSes
and a large (and statistically sound) number of experiments.

In this paper, we propose a widely applicable methodology
meeting all such requirements. Our methodology relies on a novel
fault injection strategy based on a combination of static and run-
time instrumentation, which yields representative software faults
while drastically reducing the instrumentation time and thus
greatly enhancing scalability. To guarantee unbiased and compa-
rable results, finally, our methodology relies on the use of pre- and
posttests to isolate the direct impact of faults from the stability of
the OS itself. We demonstrate our methodology by comparing the
stability of Linux and MINIX 3, saving a total of 115 computer-
days for the 12,000 Linux fault injection runs compared to the
traditional approach of re-instrumenting for every run.

Keywords-Fault injection; Stability; Operating Systems;

I. INTRODUCTION

While decades of advances in computer science have iden-
tified many ways to make software more reliable, crashes and
downtime due to bugs in operating systems are still common.
Even mature software contains a number of bugs proportional
to the code size [1], so the key to making today’s systems
more stable is to deal with the presence of software faults.

While anecdotal evidence often suggests that some OSes
are more stable than others, empirical measures of system
stability are necessary if we wish to objectively determine
the effectiveness of stability-improving mechanisms. This is
crucial to uncover the trade-offs imposed on other properties,
for instance, performance, code complexity, or portability.

In this paper, we present a novel way to measure OS stability
that is comparable, representative, and scalable, allowing for
a large (and statistically sound) number of measurements in a
reasonable time frame. Our methodology guarantees compara-
bility because it tests systems systematically, using the same
workload, a similar fault load, and providing unbiased sta-
bility results. Our methodology guarantees representativeness
because it emulates only real-world programmer-introduced

faults which are most likely to remain in production soft-
ware [2]. Finally, our methodology guarantees scalability for
large OS code bases (up to millions of lines of code) because
it operates the fault selection process entirely at runtime,
eliminating the need for lengthy recompilation runs across
experiments. By combining these properties, our methodology
makes a fair comparison possible and allows stability-related
decisions to be taken in a systematic and rational way.

To determine how robust a piece of software is in the face
of bugs, one needs to confront the OS with a software fault
(software fault injection) and determine whether its response
to the fault is appropriate. An analogy can be made with
crash-testing cars: to evaluate and compare the effectiveness
of their safety features, crashes are deliberately induced under
controlled circumstances and the impact on the passengers
accurately measured. In the case of software fault injection,
there are two ways to test response to faults: (i) using real-
world faults that were previously identified in the software
or (ii) injecting artificial faults designed to mimic real-world
faults. While both approaches can be useful, our focus is on
the latter because it allows us to compare systems facing with
the same types of faults (comparability) and to obtain much
larger sample sizes (scalability). As in the car crash example,
these are not real-world faults but we attempt to mimic real-
world faults as closely as possible (representativeness).

To develop a meaningful measure of stability, we need to
define the anatomy of a legitimate OS response to a fault.
We consider stability as the ability of an OS to remain usable
in spite of the presence of faults, which may, however, still
degrade the functionality of certain OS components. After a
major car crash, one may expect the car can no longer be
driven. In a similar vein, we expect the OS not to be fully func-
tional after a fault has been injected, but we do hope that faulty
OS components have minimal impact on the rest of the system.

Summarizing, the contribution of this paper lies in the
introduction of a new measure of OS stability in the face
of software faults that is, at the same time, comparable,
representative, and scalable. Our approach uses statistical
testing, allowing the user to determine whether enough tests
have been conducted to draw conclusions from the results. In

addition, we have implemented our approach in a way that is
easily portable to widely used OSes and we have performed
experiments to compare two OSes (Linux and MINIX 3) to
demonstrate the usefulness of our approach.

II. RELATED WORK

Many researchers have investigated methodologies to
benchmark the dependability of operating systems using fault
injection experiments. Two orthogonal fault injection strate-
gies, in particular, prevail in prior work in the area: (i)
supplying invalid inputs at the OS interface boundaries and
(ii) operating targeted mutations in the OS code.

The former strategy is popular in robustness testing cam-
paigns, which seek to evaluate the ability of the OS to function
correctly in the presence of unexpected inputs or events. Pio-
neering work in the area of robustness testing was undertaken
by researchers in the Ballista project [3], which first developed
a methodology to supply invalid parameters to the system call
interface for OS testing purposes. Their methodology was used
to compare the robustness of several POSIX operating systems,
eventually uncovering a number of critical and previously
unknown bugs. Since then, robustness testing has been applied
to a variety of domains, including comparing the dependability
of different OS architectures [4], implementations [5], or
evaluating the impact of faulty drivers on the robustness of
the operating system [6]–[8]. A number of robustness testing
studies have also sought to evaluate the experimental impact of
different fault models [7], injection techniques [9], and injec-
tion triggers [8], [10]. While robustness testing methodologies
share some similarities with our work—for example, our
methodology relies on failure modes inspired by standard de-
pendability benchmarking metrics which have been influential
in the area [4]—they also pursue radically different objectives
in that they aim to elicit erroneous behavior but do not actively
inject faults inside the OS and evaluate their stability impact.

The latter strategy is popular in mutation testing campaigns,
which seek to emulate realistic software or hardware faults
inside the OS and analyze error propagation, thus sharing more
similarities with our work. Prior mutation testing campaigns
have served a number of purposes, including evaluating the
effectiveness of fault-tolerance mechanisms [11], [12], eval-
uating the OS behavior in presence of errors [9], [11], [13],
[14], or comparing the dependability of different operating
systems [5], [15]. The testing methodologies proposed in
prior work encompass different code mutation techniques,
ranging from run-time injection [12], [13], [15] to binary
rewriting [5], [14] and compile-time injection [16]. Run-time
injection is popular for its scalability properties—the very
same OS binary can be reused across many experiments with
no relinking required—allowing, for instance, researchers to
inject as many as 3,400,000 faults into the OS in [12]. Prior
studies, however, have found run-time injection strategies to be
poorly representative of realistic software faults [17]. Similar
representativeness problems have been also evidenced for
binary rewriting strategies [18], which still operate entirely at
the binary level. Not surprisingly, prior work based on all such

strategies has focused on the emulation of hardware faults,
with the only exception of the methodology proposed in [11],
which attempts to mitigate accuracy problems by surgically
reflecting source-level faults into binary-level mutations.

Compile-time injection strategies, in contrast, have been
successfully used to inject realistic software faults into OS
code [16], but at the cost of a less scalable experimental
setting—each experiment requires recompiling the OS. Un-
like prior approaches, our methodology relies on a hybrid
instrumentation strategy, which introduces pervasive software
fault mutations at compile time, but carefully selects those to
actually inject only at run time. This approach results in a
both scalable and representative fault injection strategy, which
allows our methodology to efficiently and reliably compare the
stability of different operating systems. Further, unlike prior
approaches, our methodology sets out to discards nonresid-
ual faults, which have been shown to potentially hinder the
representativeness of fault injection campaigns [2].

III. APPROACH

This section discusses how we inject faults into the system,
how we select them and how we determine the impact of the
faults. We also list the workloads we used and discuss to what
other systems our approach would apply.

A. Fault injection

To be able to study the impact of faults on the systems
being compared, we perform software fault injection. Our goal
is to inject the types of faults that programmers are likely
to introduce accidentally in real programs. Common software
fault types have been identified in the literature [19]–[21].
These works form the basis for our selection of fault types,
which is listed in table I. Selecting realistic fault types is an
important element to achieve good representativeness.

After injecting faults in it, the OS cannot be relied upon
to properly report the impact of the fault. For this reason,
our methodology performs fault injection experiments inside
a virtual machine (VM). Since faults are only injected in the
guest OS, results of the test can safely be logged on the host.
Our methodology relies on QEMU, with KVM to benefit
from hardware acceleration. For each run, the VM is booted
until a workload script provided by the host machine takes
control. This script executes one of our workloads to stress
the system and activate the injected fault. The guest reports
whenever it reaches a new phase and before fault activation
using a hypercall. We enabled hypercalls through simple
memory accesses by implementing a new QEMU device.
QEMU logs the data provided by the guest for later analysis.

The starting point for fault injection is to scan the target pro-
grams to identify fault candidates. A fault candidate is a pair
of a code location and a fault type that can be injected at that
location [22]. Fault candidates can be identified at three dif-
ferent levels: source code, intermediate code, and binary code.
The source and intermediate levels offer better representative-
ness because source-level information is lost during compila-
tion [18], [23]. The intermediate code level is decoupled from

TABLE I: Fault types
name description applicability

buffer-overflow size too large in memory operation
call to memcpy,
memmove, memset,
strcpy or strncpy

corrupt-index off-by-one error in array index array element access

corrupt-integer off-by-one error in integer operand operation with integer
arguments

corrupt-operator replace binary operator with random operator binary operator
corrupt-pointer replace pointer operand with random value pointer operation
dangling-pointer size too small in memory allocation call to malloc
flip-bool negate result of boolean operation boolean operation
flip-branch negate controlling value for conditional branch conditional branch
mem-leak remove memory de-allocation call to free or munmap
no-load load zero instead of intended value memory load
no-store remove store operation memory store
random-load load random number instead of intended value memory load
stuck-at-branch fixed controlling value for conditional branch conditional branch

stuck-at-loop fixed controlling value for loop conditional branch part
of loop construct

swap swap operands of binary operation binary operator

both the source language and the target architecture, resulting
in better portability. This makes it easier to compare systems.
For these reasons, we decided to work on the intermediate code
level. To gain access to the intermediate code, we have written
a compiler pass for the LLVM compiler framework [24].

B. Fault selection

To accelerate the experiments and make our system more
scalable, we inject faults only in locations that we expect to
be executed. To determine which locations will be executed,
we perform a number of profiling runs [7] before starting
the experiment itself. During a profiling run, the workload is
executed (just as in a faulty run) but no fault is injected. We
register which basic blocks (parts of the code with a single
entry point and a single exit point) are executed during the
profiling run and inject only faults in those basic blocks that
are executed in at least one profiling run.

In our methodology, only one fault is injected per run.
Applying the principle of Occam’s razor, our reasoning is that
faults are rare enough that in most cases crashes experienced
by users are due to a single fault. This approach also allows us
to identify the circumstances of the crash better. The disadvan-
tage of our choice is that we cannot study fault interactions.

In addition to the number of faults to inject, it is also
important to decide which faults to inject. According to [22],
the most representative way to select faults is to make the
chance of selecting a certain location or fault type proportional
to the number of fault candidates. This means that larger
components have a proportionally larger chance of being
selected (consistent with [1]) and fault types for which there
are many opportunities to introduce are injected more often.

The standard approach to inject a single fault per run at
the intermediate code level entails relinking the program for
each experiment. Unfortunately, this strategy does not scale to
large code bases (like most operating systems), since linking
can take a very long time. To improve scalability we opted
for a radically different instrumentation strategy, which shifts
overhead from compile time to run time. For this purpose,
our fault injection compiler pass clones each basic block into
a clean version and a faulty version. In the faulty version, a
single randomly selected fault candidate is injected. This basic
block cloning approach is inspired by prior techniques [23],

fault
bb index

fault
bb index loglog

QEMUQEMU

instr.
binary

map file profile stats
fault

bb index
log

log
analysis

fault
picker

QEMU
LLVM

w/pass
QEMU

source
code

workload
script

compilation profiling testing
fault

selection
analysis

Fig. 1: Phases of our approach

but serves as a basis for a completely different injection strat-
egy in our methodology. Our compiler pass always mutates all
basic blocks in the program with faults—thus eliminating the
need for recompilation across the experiments. Our compiler
pass injects per-basic block fault triggers [23] that guarantee
that only one faulty basic block (different for each experiment)
is actually executed at runtime—thus preserving our single-
fault-per-run assumption. Our compiler pass writes a map file
with information on all fault candidates and injections.

Before starting the faulty runs, we randomly select basic
blocks that were activated in the profiling runs for fault
injection. The likelihood of a basic block being chosen is
proportional to the number of fault candidates in that basic
block, ensuring that each fault candidate has the same chance
of being selected. The chosen basic block is passed to QEMU
as an argument. The guest OS is slightly modified to perform
a hypercall at the earliest opportunity to retrieve the number
of the faulty basic block. In modular operating systems, each
module does so individually. At run-time, each per-basic block
fault trigger checks whether the stored basic block number
corresponds with its own and executes the faulty version of
itself if this is the case. This incurs some runtime overhead,
but our measurements show that this takes far less time than
the additional linking that would otherwise be needed. Hence,
this strategy is effective in lifting the scalability of static
bitcode-level injection close to that of run-time binary-level
injection, while retaining similar representativeness guarantees
to that of source level injection—the best of both worlds.

Figure 1 illustrates the steps that have been described here.
The main consequence of the sequencing as shown in this
diagram (chronologically from left to right) is that due to
run-time fault selection only the “testing” phase is performed
multiple times. This allows for scaling with regard to both
size of the code base and number of experiments because the
linking time is not multiplied by the number of experiments.

C. Classification of results

It is hard to automatically classify the state of a system after
fault execution. We aim to determine the stability of the OS

itself rather than the impact of the fault. We consider it accept-
able for a fault to prevent the part of the system it was injected
in from working properly, but we are interested in evaluating
the degree to which the OS can prevent arbitrary faults from
bringing the system as a whole into an unstable state.

Our approach takes the problem of separating the direct
impact of the fault from system stability into account by
testing whether the faulty system is functional both before and
after running a workload. Once the system is booted, it loads
a script that will perform the tests and the workloads. Before
running our workloads, a pretest is performed. If it succeeds,
the run is considered valid. If it fails or is never reached,
the run is marked as invalid and is not considered when
determining how many faults make the system unstable. The
reasoning is that a fault that prevents the system from booting
or that breaks basic functionality would never go unnoticed
and therefore would not end up in production software. Hence,
the faults injected in valid runs are similar to what is termed
“residual faults” elsewhere [2]. For valid runs, the workload
is executed and afterwards a posttest (same as the pretest)
is performed. If the second test also passes, we conclude
that the system has retained its original functionality. This is
interpreted as a sign of stability. If the pretest succeeds but
the posttest fails or is never reached, the fault is considered
residual and made the system unstable. This is interpreted as
an indication that the OS is not very stable in the presence
of faults. Such runs will be referred to as “crash” runs.

Unfortunately our methodology does not allow us to deter-
mine exactly what went wrong. We cannot distinguish different
types of crashes and hangs. The aim of this paper is to provide
a first demonstration of our methodology for efficient fault
injection. Since the way the results are analyzed is orthogonal
to this, a crude but simple approach is most suitable. More
advanced approaches can be explored in future work.

The tests serve to determine whether the system would be
perceived by a user as alive and functional. They test function-
ality that would be easily found to be broken while the system
was being tested. As such, they are less rigorous than the work-
load, which should stress as much of the system as possible. In
this work, we model the OS being tested as a server system
that is reachable from the outside through the network. We
make the host system connect to the guest through SSH and
create a file inside the VM. If the file is successfully created,
the system is reachable and would be considered to be alive by
a user. However, our methodology could easily use other kinds
of tests for other types of systems. Test selection influences
which faults are tested because faults detected by the pretest
are excluded as invalid runs. We recommend adapting the test
to the role of the operating systems being tested to most
effectively identify residual faults and decide whether the
system would be considered to be functional by a user.

D. Operating systems and workloads

Because our system operates at the intermediate code level,
it requires the source code. To demonstrate our methodology
we selected two open-source systems. The first is Linux as

TABLE II: Workloads

code description tests
bsh Bash regression test shell functionality
gdb GDB-like workload ptrace
htp Apache workload networking
mnx Reduced MINIX test set calls provided by MINIX (incl. POSIX)
uxb Unixbench performance-sensitive POSIX calls
vim Vim regression test interactive use of the tty

it is one of the most popular open-source operating systems.
As for the second system, we opted for a system with a very
different structure to test the versatility of our methodology.
It seemed appropriate to select a multi-server microkernel
system based on theoretical claims that this design should be
more reliable than the more common monolithic design [12].
If there is indeed a difference, our methodology should be
able to measure it. Based on these constraints we picked
MINIX 3, an open-source multi-server microkernel system
that has good POSIX support due to its use of the NetBSD
C library. An additional advantage is that the latest release
supports LLVM bitcode compilation out of the box.

Our aim in selecting the workloads was to find tests that
work identically on both systems and use a variety of different
system calls. The workloads we selected are listed in Table II.
The codes will be used to refer to the workloads in the results
section. Unixbench and the MINIX test set were included
because both use a wide range of system calls. For the MINIX
test set, we had to disable a few tests because they use
functionality not provided by Linux. The other workloads were
all included to test specific parts of the system to determine
whether this results in different stability behavior.

E. General applicability

The main requirement to be able to use our tools is that the
OS can be built with the LLVM compiler in bitcode mode. The
LLVM compiler has front-ends for many different languages,
amongst others C and C++, which are used for most OSes. It
also has a high degree of compatibility with GCC, a compiler
which is very widely used for such systems. In the case of
our experiment, MINIX 3 was already fully compatible with
LLVM bitcode while for Linux we had to use the LLVM
Linux project [25], which removes reliance on some obscure
GCC extensions of the C language that LLVM chose not
to implement. We expect that in time these changes will be
merged into mainline Linux. Some small build system changes
were required to support bitcode linking. More and more OSes
are starting to provide support for LLVM, such as for example
Apple and the BSDs. Also, for standards-compliant code there
is no need to even make changes to be able to use it.

To be able to use our approach as described here, a few
very small changes must be made to the OS. In particular,
the system must be linked against the fault injection library,
provide a way to perform the required hypercalls and request
which fault is to be injected at boot time. Other invocations
of the hypervisor are performed automatically by the compiler
pass (reporting whenever the fault is activated) or the script
controlling the experiment (reporting whether the pre- and

posttest have succeeded). Our changes introduced 127 new
lines of code in Linux and 208 in MINIX. These additions
implement hooks called by compiler-generated code and add
a hypercall during early boot. This means the only OS-specific
knowledge needed is how to access physical memory and what
is the earliest time after booting when this can be done.

IV. RESULTS

To compare how stable Linux and MINIX 3 are according to
the methodology outlined in this paper, we have performed a
total of 24,768 experiments. For each combination of the two
systems and six workloads, we performed 64 profiling runs
and 2,000 faulty runs. We believe the number of profiling runs
is adequate because performing more runs does not increase
coverage any further (for MINIX it increases up to 32 runs, for
Linux up to 16) and because the standard errors on the timing
are very low compared to the total runtime (see Table IV). As
for the faulty runs, more is always better because it allows
statistical tests to be performed for more uncommon events,
such as faults injected in components with small code size.

To give some crude indication of the desired number of
experiments we start from the common rule of thumb that the
χ2 test (used to test whether crashes are more common in some
cases than in others) is only accurate if the expected value is
at least five in all of the cells of the contingency table [26].
Overall, approximately 2% of the total number of runs are
“crash” runs, the case that we are most interested in. Theefore,
we require approximately 250 runs to be able to perform
a χ2 test. For example, the total number of fault injection
experiments we ran per OS (n = 12, 000) allows us to perform
tests for components making up at least 2% of the code base.
These numbers are not exact because it depends on the number
of valid crash runs in the part used as a reference but it gives
some indication of the total number of experiments required.
For our purposes, the number of experiments performed turned
out to be sufficient to perform tests for all relevant cases.

For the experiments, we used two VMs with 4GB RAM
each. One runs Linux 3.11 rc4 (the version supported by
LLVM Linux [25]) with the Ubuntu Server 12.04 LTS
distribution, the other a pre-release of MINIX 3.3.0 (the
first version supporting LLVM bitcode linking). Both OSes
were slightly modified to report fault activations through our
hypercall interface (127 lines in Linux and 208 in MINIX). As
a hypervisor we used QEMU 2.0.0 with KVM acceleration.
We modified QEMU by implementing an additional device to
provide the hypercall interface for the guests (899 lines added).
The experiments were conducted on nodes of a computer
cluster, each with two Intel Xeon E5620 CPUs at 2.40GHz
and 24GB of memory. These nodes were used exclusively for
our experiments, with only one experiment running per node
at a time to avoid interference of other jobs with the timing.

A. Coverage

Table III shows the coverage reached by our workloads. in
terms of both fault candidates (“fc”) and lines of code (“loc”).

TABLE III: Coverage as % of fault candidates (fc) and lines
of code (loc)

workload Linux MINIX
fc (%) loc (%) fc (%) loc (%)

bsh 15.9 16.5 38.5 38.0
gdb 15.6 16.4 37.5 36.4
htp 15.8 16.5 37.6 36.5
mnx 16.2 16.9 39.1 38.5
uxb 15.9 16.5 37.4 36.4
vim 15.9 16.5 37.4 36.4
(combined) 16.9 17.4 40.0 39.4

The units show reasonable agreement, which means our ap-
proach of making the likelihood of injection proportional to
the number of fault candidates is in agreement with the most
common measure of code size. Unfortunately, the combined
coverage reached is quite low, especially on Linux. While it
would be desirable to reach higher coverage [22], it is hard
to do so because we can only use features supported by both
operating systems in our workloads. It may be possible to
reach higher coverage in systems that are more similar, but
then there is still the issue that much of the hardware support
is not used, especially when run in an emulator. For example,
running the full MINIX test set (including the tests that do not
run on Linux) does not give substantially better results because
many hardware-related modules have very poor coverage.

When considering the individual workloads listed in Ta-
ble III, it is clear that the reduced MINIX test set (“mnx”) is
the most extensive workload, reaching the highest coverage on
both systems in both units. The combined coverage, however,
is still clearly better than any individual workload. This shows
that the workloads test different parts of the system, so there
is value in keeping them separate to find whether the response
to faults is affected by the types of operations performed.

B. Fault activation

There is some nondeterminism that causes the parts of the
program executed not to be exactly the same from run to run,
even if no faults were injected. Although we only injected
faults in basic blocks activated in the profiling runs, 1.8% of
the faults did not get activated on Linux and 0.3% on MINIX.
Although we could re-run these experiments until the fault was
activated, we opted not do do so because it would bias the
results. In real-world situations faults in these locations would
also be less likely to trigger than those in deterministically
executed locations, so our stability conclusions should reflect
this. Instead, we discarded these runs and did not consider
them for the statistics. This approach seems to have the least
risk of introducing bias compared to real-world faults. How-
ever, given that the number of nonactivated runs is so small, the
alternative choice would not have influenced our conclusion.

C. Scalability

As discussed in the approach section, we have opted to
accept a slowdown to select the active fault at runtime to

TABLE IV: Runtime with and without instrumentation

system workload uninstrumented (s) instrumented (s) slowdown (%)
mean std.err. mean std.err.

linux bsh 154.6 0.0 212.0 0.1 37.1
linux gdb 211.7 0.0 220.4 0.0 4.1
linux htp 271.3 1.9 301.7 0.1 11.2
linux mnx 236.3 0.2 364.7 1.2 54.3
linux uxb 554.7 0.1 1112.1 0.1 100.5
linux vim 176.8 1.7 205.8 1.6 16.4
linux (total) 1605.5 4.0 2416.6 3.2 50.5
minix bsh 168.7 0.0 224.6 0.0 33.2
minix gdb 93.4 0.1 109.6 0.0 17.4
minix htp 415.5 0.3 546.7 0.4 31.6
minix mnx 377.6 0.1 682.4 0.5 80.7
minix uxb 1097.2 0.1 1110.8 0.1 1.2
minix vim 120.8 0.1 227.7 0.1 88.4
minix (total) 2273.2 0.7 2901.7 1.1 27.6

save compilation time and overall hope to accelerate the
experiments. Table IV shows the impact of the overhead on
the time each experiment takes, from starting up QEMU to the
completion of the posttest. The results are averages over 64
runs, which is sufficient to obtain very reliable measurements
judging from the standard errors. On our system, using LLVM
with bitcode, it takes 59m10s to compile Linux, 1m4s to
instrument it and 15m0s to link it. With standard bitcode-level
fault injection (i.e., no runtime fault selection), the system
has to be re-instrumented and re-linked before each run. This
would cost 5784s for all workloads together (six runs) and
would save only 811s of runtime. This means our solution
is more than seven times as fast. MINIX takes 3m44s to
compile, 1m16s to instrument and 3m5s to link. This is 1566s
for six runs to save 629s of overhead. Here, our approach is
a factor 2.5 faster than the alternative. On the whole, we save
115 computer-days on the Linux runs and 22 computer-days
on the MINIX runs. This is a low estimate, as many runs
crash early, resulting in even less runtime overhead. Clearly,
our choice is very effective in making our approach more
scalable. That said, it should be noted that the decision must
be made on a case-by-case basis, as the best choice could turn
out differently for smaller OSes running larger workloads.

D. Systems and workloads

Although it provides more information, the main aim of
our methodology is to determine in a systematic way whether
one system is more stable than another. Table V provides the
outcome of this test. Note that the number of valid runs is not
split between workloads because it is inherently unaffected by
the workload, which runs after the result of the pretest has
already been reported. There is a substantial and significant
difference between Linux and MINIX in the number of runs
that are valid but the difference in the number of valid runs
where the posttest fails (further referred to as “crash” runs
here) is small and not statistically significant. This is consistent
between the workloads, some of them giving the benefit of
the doubt to Linux and others to MINIX but not one of
them showing a significant difference. Based on this result
and contrary to what might have been expected theoretically,
MINIX cannot claim to be more stable that Linux. Residual
faults are approximately equally likely to crash both systems.

TABLE V: Stability of systems per workload

workload Linux MINIX
valid (%) crash (%) valid (%) crash (%)

bsh 2.9 * 4.2
gdb 4.6 3.5
htp 4.0 4.5
mnx 5.3 * 7.3 ***
uxb 4.4 4.3
vim 4.2 4.3
(total) 59.2 4.2 39.9 ### 4.7

χ2 comparing with other workloads significant at *=p < 0.05,
=p < 0.01, *=p < 0.001; χ2 comparing with other sys-
tem significant at #=p < 0.05, ##=p < 0.01, ###=p < 0.001

However, MINIX does have the advantage that more faults
are detected early by interfering with the basic functionality
of the system of booting and performing the pretest. As a
consequence, it is expected that faults are on average easier to
detect and fewer of them will remain in production releases.
This suggests that MINIX’ use of memory protection between
modules is effective in causing early crashes for some faults,
but in the end the implemented isolation and recovery mech-
anisms are not sufficient to prevent faults from spreading or
bringing down the system. However, to know for sure would
require more in-depth analysis of what is happening on the
crash runs. To do this automatically would require dropping
the black box assumption. It could be a suitable topic for future
research but is out of scope for this paper because it is not as
widely applicable as our methodology presented here.

Comparing the workloads between each other, the reduced
MINIX test (“mnx”) stands out for triggering significantly
more crash runs than the other workloads. Given that this
workload also reaches the highest coverage (see Table III) this
seems to be due to the fact that it is simply the most extensive
workload, most capable of triggering crashes. The Bash
regression test (“bsh”) triggers significantly fewer crashes
than the other workloads on Linux. This may be cause by the
fact that Linux heavily relies on shell scripting to initialize the
system at boot time, so the fault most affecting the Bash shell
would have been spotted earlier and resulted in invalid runs.

In addition to providing a comparison between the systems
and workloads tested, another interesting result is the fact
that the vast majority of residual faults (more than 95% of
them) do not crash the system. Despite the lack of isolation
in the Linux kernel, they apparently do not cause enough
corruption to interfere with the posttest. We plan to delve
into this phenomenon deeper in future work by determining
what kind of impact these faults do have - are they inherently
harmless or do they cause some damage eventually that can
only be noticed after specific triggers?

E. Operating system components

To find why MINIX is not more resilient against injected
faults than Linux, we have used the code paths provided
by the LLVM debug symbols to classify the locations in
which we have injected faults. The results are presented

TABLE VI: Fault types
component Linux MINIX

n valid (%) crash (%) n valid (%) crash (%)
driver 2189 61.41 * 1.06 *** 1037 52.84 *** 1.82 ***
fs 2262 57.55 9.3 *** 1057 51.18 *** 4.07
kernel 1332 65.24 *** 1.99 *** 1620 37.61 * 7.65 ***
lib 2383 57.24 * 4.1 1738 33.24 *** 4.34
mm 730 61.1 2.03 * 1234 25.61 *** 3.8
net 1496 63.03 ** 3.83 2000 41.94 * 1.79 ***
pm 535 53.46 *** 12.59 ***
servers 352 43.75 3.9
vfs 1896 39.7 6.12 *
other 1608 51.73 *** 5.59 * 531 30.19 *** 3.75
(total) 12000 59.15 4.23 12000 39.87 4.69

χ2 comparing with other components significant at *=p <
0.05, **=p < 0.01, ***=p < 0.001

in Table VI. We did not perform statistical tests between
the systems here because, as accurate as we tried to be in
classifying the code paths into components, the differences
between the systems are too large to make the (groups of)
components fully comparable. For example, the Linux kernel
contains functionality that in MINIX is provided by the
process manager (“pm”), virtual file system (“vfs”) and the
other system servers (“servers”). However, these different
organizations do not prevent us from identifying the more
and less robust parts of both systems individually.

Microkernel systems such as MINIX aim to reduce the
trusted code base (TCB) of programs that have sufficient
privilege to bring down the system as a whole (rather than
just the parts that directly depend on its functionality). Ideally,
components such as the drivers and networking (“net”) should
be outside the TCB. As expected, residual faults injected in
either of these components result in significantly fewer crashes
than faults injected elsewhere. Apparently, privilege reduction
and isolation are effective here. The kernel, PM and VFS, on
the other hand, show significantly more crashes. These three
components are firmly within the TCB, with considerable
privileges and the entire system depending on them. The
memory manager (“mm”) is also in the TCB but does not show
a high number of crash runs. Given the very low number of
valid runs, it seems faults in this component tend to bring down
the system early and are therefore unlikely to make it into
production systems. Summarizing, it seems the microkernel
design is effective but the TCB is highly vulnerable, causing
the average not to be better than Linux’ average.

For Linux, the most vulnerable component is by far the file
system. This might be due to the fact that Linux uses the EXT4
file system, which is far more complicated than MINIX’ MFS.
The more complex code could allow serious bugs to “hide” for
a longer period of time before corrupting the experiment. In the
light of arguments commonly made in favor of microkernels,
it is remarkable that the drivers and the core kernel are
actually Linux’ least vulnerable parts. Apparently the spread
of corruption in a highly privileged part of the source code is
not as large an issue in practice as would be expected. To find
out why this is the case, one would need to perform a more in-
depth analysis, something which we plan to do in future work.

TABLE VII: Step of first fault activation
first act. Linux MINIX

n valid (%) crash (%) n valid (%) crash (%)
boot 10432 56.7 *** 1.6 *** 10689 37.3 * 3.2 ***
pretest 907 66.7 *** 7.1 *** 1048 53.1 * 3.2
workload 415 100.0 *** 35.9 *** 226 98.2 * 34.7 ***
posttest 31 100.0 *** 25.8 5 100.0 0.0
shutdown 3 100.0 0.0 0
(never) 212 32
(total) 12000 59.2 4.2 12000 39.9 4.7

χ2 comparing with other steps significant at ***=p < 0.001

F. Activation time and fault latency

Because we log each fault activation, it is possible to
determine the impact of the timing of the fault on the outcome
of the experiment. Because timing in terms of seconds is hard
to compare between systems and workloads, we have opted to
instead consider during which step of the experiment the fault
was first activated. Table VII shows the results.

The first thing that stands out it the fact that the vast majority
of faults (87% on Linux, 89% on MINIX) is first activated
while booting. Because the likelihood of fault injection is
proportional to code size, this means there is relatively little
code that is used while the OS is running but not used when
initializing the system at boot time.

Considering the number of valid runs, faults first activated
during boot time are most likely to cause the run to become in-
valid (fail or not reach the pretest). Due to the large number of
faults activated at boot time and the fact that faults activated af-
ter the pretest cannot make a run invalid, this group of faults is
dominant in determining the overall percentage of valid runs.

The percentage of valid runs that fails to pass the posttest
(listed as “crash” in the table) also differs greatly depending
on the first activation of the fault. Faults triggered during boot
time and (for Linux) during the pretest are significantly less
likely to be counted as crash runs than the average while
faults first activated by the workload are far more likely to
cause crash runs. Combining this with the previous result,
it becomes clear that many of more serious early faults are
weeded out because they crash the system while booting or
undermine the basic functionality of the system tested in the
pretest. This means that on average boot-time activated faults
are less likely to go unnoticed and make it into production
software and those that do are on average less dangerous that
late-activation faults. However, this does not take into account
that the total number of early-activation faults is much larger.
When considering the total n, we find that many crash runs
are caused by faults first activated at boot time (32% of them
on Linux and 58% on MINIX). This means that long-latency
faults cannot be ignored. It is worthy of note that MINIX
seems to suffer more from long-latency faults than Linux does.
Our current experiment does not allow us to identify the reason
why, but we will delve deeper into latent corruption and long-
latency faults in future work.

V. THREATS TO VALIDITY

Although we believe our methodology is one of the most
effective ways to compare OS stability, some factors that

threaten its validity must be considered when using it. For
representativeness it is important to note that although we took
care to select realistic faults, the faults we test are artificial.
Real-world faults are more representative, but are problematic
when trying to achieve comparability and scalability. Another
issue that introduces differences with real-world situations
is the fact that we have to virtualize and instrument our
code. While necessary to run the experiments in an automated
fashion, this introduces timing differences that could change
the behavior of race condition bugs. Another limitation is the
fact that the choice of pre- and posttest influences the bugs
that will be tested by determining which ones are classified as
residual (and hence potentially harmful). This can be addressed
by selecting a test that is consistent with the way the system
would normally be used in practice. A related issue is the
fact that it is very hard to tell whether a system is functional,
especially in a black box setting. For example, one cannot tell
whether a system hangs or is just being slow. It is therefore
impossible to automatically classify the state of the system in
all cases. Using the posttest is a workaround to bypass this
issue. Finally, we cannot determine whether latent corruption
is present after fault activation that could be exposed by a
more thorough workload. This is something we will address
in future work by determining whether the internal system
state is still correct after fault activation.

With regard to our evaluation, it should be noted that
we only compare against a traditional compilation-based
approach. Run-time (binary-level) approaches would be
faster but we do not consider them comparable due to their
representativeness issues [17]. It should also be considered
that we used only LLVM and other compilers may generate
code that reacts to faults differently.

VI. CONCLUSION

In this paper, we have presented a novel methodology to
systematically compare OS stability in a way that allows
for meaningful comparison using statistical methods, is
representative of faults made by programmers that make it
into production software and can scale to a large number of
experiments even for very large code bases. Our methodology
is widely applicable. We have successfully applied this
approach to two structurally very different operating systems,
showing that our unconventional choice to shift work from
compile time to run time is highly effective in speeding
up experiments without compromising on the source-level
information available to the fault injector.

ACKNOWLEDGMENT

This research was supported in part by European Research
Council grant 227874.

REFERENCES

[1] T. J. Ostrand and E. J. Weyuker, “The distribution of faults in a large
industrial software system,” vol. 27, no. 4, pp. 55–64.

[2] R. Natella, D. Cotroneo, J. Duraes, and H. Madeira, “On fault represen-
tativeness of software fault injection,” vol. PP, no. 99, p. 1.

[3] P. Koopman and J. DeVale, “The exception handling effectiveness of
POSIX operating systems,” vol. 26, no. 9, pp. 837–848.

[4] K. Kanoun, Y. Crouzet, A. Kalakech, A.-E. Rugina, and P. Rumeau,
“Benchmarking the dependability of Windows and Linux using Post-
Mark workloads,” in Proc. of the 16th Int’l Symp. on Software Reliability
Engineering, pp. 11–20.

[5] J. Arlat, J.-C. Fabre, and M. Rodriguez, “Dependability of COTS
microkernel-based systems,” vol. 51, no. 2, pp. 138–163.

[6] A. Albinet, J. Arlat, and J.-C. Fabre, “Characterization of the impact
of faulty drivers on the robustness of the Linux kernel,” in Proc. of the
Int’l Conf. on Dependable Systems and Networks, p. 867.

[7] A. Johansson, N. Suri, and B. Murphy, “On the selection of error
model(s) for OS robustness evaluation,” in Proc. of the 37th Int’l Conf.
on Dependable Systems and Networks, pp. 502–511.

[8] ——, “On the impact of injection triggers for OS robustness evaluation,”
in Proc. of the 18th Int’l Symp. on Software Reliability, p. 127.

[9] T. Jarboui, J. Arlat, Y. Crouzet, and K. Kanoun, “Experimental analysis
of the errors induced into Linux by three fault injection techniques,”
in Proc. of the Int’l Conf. on Dependable Systems and Networks, pp.
331–336.

[10] D. Cotroneo, D. Di Leo, F. Fucci, and R. Natella, “SABRINE: State-
based robustness testing of operating systems,” in Proc. of the 28th Int’l
Conf. on Automated Software Engineering, pp. 125–135.

[11] J. Dures and H. Madeira, “Characterization of operating systems behav-
ior in the presence of faulty drivers through software fault emulation,”
in Proc. of the Pacific Rim Int’l Symp. on Dependable Computing, p.
201.

[12] J. Herder, H. Bos, B. Gras, P. Homburg, and A. Tanenbaum, “Fault
isolation for device drivers,” in Proc. of the Int’l Conf. on Dependable
Systems and Networks, pp. 33–42.

[13] W. Gu, Z. Kalbarczyk, Ravishankar, K. Iyer, and Z. Yang, “Characteri-
zation of Linux kernel behavior under errors,” in Proc. of the Int’l Conf.
on Dependable Systems and Networks, pp. 459–468.

[14] W. Gu, Z. Kalbarczyk, and R. Iyer, “Error sensitivity of the Linux kernel
executing on PowerPC G4 and Pentium 4 processors,” in Proc. of the
Int’l Conf. on Dependable Systems and Networks, pp. 887–896.

[15] D. Chen, G. Jacques-Silva, Z. Kalbarczyk, R. Iyer, and B. Mealey, “Error
behavior comparison of multiple computing systems: A case study using
Linux on Pentium, Solaris on SPARC, and AIX on POWER,” in Proc.
of the Pacific Rim Int’l Symp. on Dependable Computing, pp. 339–346.

[16] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals, M. Harren,
G. Necula, and E. Brewer, “SafeDrive: Safe and recoverable extensions
using language-based techniques,” in Proc. of the Seventh Symp. on
Operating Systems Design and Implementation, pp. 45–60.

[17] H. Madeira, D. Costa, and M. Vieira, “On the emulation of software
faults by software fault injection,” in Proc. of the Int’l Conf. on
Dependable Systems and Networks, pp. 417–426.

[18] D. Cotroneo, A. Lanzaro, R. Natella, and R. Barbosa, “Experimental
analysis of binary-level software fault injection in complex software,”
in Proc. of the Ninth European Dependable Computing Conf., pp. 162–
172.

[19] J. A. Duraes and H. S. Madeira, “Emulation of software faults: A field
data study and a practical approach,” vol. 32, no. 11, pp. 849–867.

[20] J. Christmansson and R. Chillarege, “Generation of an error set that
emulates software faults based on field data,” in Proc. of the 26th Int’l
Symp. on Fault-Tolerant Computing, p. 304.

[21] M. Sullivan and R. Chillarege, “A comparison of software defects in
database management systems and operating systems,” in Proc. of the
22nd Int’ll Symp. on Fault-Tolerant Computing, pp. 475–484.

[22] E. Van Der Kouwe, C. Giuffrida, and A. Tanenbaum, “Evaluating
distortion in fault injection experiments,” in Proc. of the 15th Int’l Symp.
on High-Assurance Systems Engineering, pp. 25–32.

[23] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “EDFI: A dependable
fault injection tool for dependability benchmarking experiments,” in
Proc. of the Pacific Rim Int’l Symp. on Dependable Computing.

[24] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proc. of the Int’l Symp. on Code
Generation and Optimization, p. 75.

[25] LLVM Linux. http://llvm.linuxfoundation.org/index.php/Main Page.
[26] F. Yates, “Contingency table involving small numbers and the 2 test,”

vol. 1, no. 2, pp. 217–235.

