
Half Spectre, Full Exploit: Hardening Rowhammer Attacks
with Half-Spectre Gadgets

Andrea Di Dio*, Mathé Hertogh* and Cristiano Giuffrida
* Equal contribution joint first authors

Vrije Universiteit Amsterdam
{a.di.dio,m.c.hertogh,c.giuffrida}@vu.nl

Abstract—Despite nearly a decade of mitigation efforts by both
industry and academia, the community has yet to find com-
prehensive and efficient countermeasures against pernicious
hardware vulnerabilities such as Spectre and Rowhammer.
While Spectre mitigations have mostly focused on patching
dangerous disclosure gadgets in high-value codebases such as
the Linux kernel, mitigating Rowhammer in software is still
challenging and security often hinges on the (im)practicality
of real-world attacks. Indeed, some Rowhammer attacks are
entirely nondeterministic, triggering random bit flips in the
hope of corrupting victim data—but at the risk of corrupting
critical data and crashing the system. More reliable attacks rely
on techniques such as memory templating and massaging, but
achieving fully deterministic behavior is still difficult in face of
complex memory management abstractions in both hardware
and software.

In this paper, we show that fully deterministic Rowhammer
attacks are feasible. To this end, we exploit synergies with
Spectre and specifically focus our attention on so-called half-
Spectre gadgets. We show these gadgets, previously deemed
unexploitable on last-generation CPUs due to their inability
to directly disclose secret data, do enable powerful disclosure
primitives to harden other attacks such as Rowhammer. Specif-
ically, we use half-Spectre gadgets to build PRELOAD+TIME,
a generic primitive to monitor a controlled victim’s physical
memory activity at the cache line granularity, without sharing
memory with the victim. We use this capability to craft
ProbeHammer, the first crash-free end-to-end Rowhammer
exploit that does not rely on templating or massaging. In
detail, we spray physical memory with aggressor (i.e., user)
and victim (i.e., page table) data and disclose their location
with PRELOAD+TIME. This primitive allows us to select safe
hammering patterns and avoid unintended bit flips that may
crash the system. Our evaluation confirms ProbeHammer at-
tacks yield no false positives (hence, no crashes) by construction
and can compromise real-world systems in a matter of hours.

1. Introduction

Spectre attacks, originally disclosed in 2018 [1], demon-
strated attackers can lure victim software into speculatively
executing a disclosure gadget to (i) access secret data

1 void spectre_disclosure_gadget(int x) {
2 if (x < SIZE_A)
3 y = B[4096 * A[x]];
4 }
5

6 void half_spectre_gadget(int x) {
7 if (x < SIZE_A)
8 y = A[x];
9 }

Listing 1: Top: a classic Spectre-v1 disclosure gadget. Bot-
tom: a half-Spectre gadget, alone insufficient to leak data.

and (ii) transmit such data via a microarchitectural covert
channel—which the attacker can then exploit for secret data
disclosure. In response, vendors have deployed pervasive
mitigations [2], resulting in exploitable gadgets being much
harder to find in practice, especially for the original (v1)
Spectre variant [1]. Indeed, recent gadget scanning cam-
paigns on high-value targets such as the Linux kernel [3],
[4] have only uncovered half-Spectre gadgets. Such gadgets
miss the ability to disclose data and are thus assumed to be
uninteresting for exploitation on last-generation systems [5].

In this paper, we show half-Spectre gadgets are much
more powerful than previously assumed, enabling new ca-
pabilities for exploitation. To support this claim, we leverage
such gadgets to build PRELOAD+TIME, a generic primitive
to precisely recover physical addressing information of both
attacker-owned pages and kernel data pages. To showcase
its effectiveness, we use this primitive to harden state-
of-the-art Rowhammer attacks. In particular, we present
ProbeHammer, the first crash-free Rowhammer attack that
is agnostic to both the physical memory allocator and the
data encoding scheme adopted by the hardware.

Half-Spectre Gadgets. Classic Spectre gadgets are con-
sidered exploitable as long as they enable transmission of
secret data via a covert channel. For example, the gadget
at the top of Listing 1 transmits the accessed secret data
(i.e., out-of-bounds value A[x]) to an attacker via a data
cache covert channel (i.e., secret-dependent array access
B[...]). A half-Spectre (v1) gadget (sometimes also de-
scribed as prefetch gadget in literature [6]), on the other
hand, is a “crippled” Spectre gadget missing an explicit
transmitter. For example, the gadget at the bottom of List-

ing 1 still accesses the same secret data as the top gadget,
but features no secret-dependent operation to transmit the
data back to the attacker. As prior work observed, the secret
data can still be leaked with CPU bugs such as MDS, which
can leak recently accessed data from microarchitectural
buffers [3]. But since MDS-like bugs have been subject of
orthogonal mitigations [7], hardware vendors have deemed
explicitly mitigating half-Spectre gadgets unnecessary [5].

PRELOAD+TIME. In this paper, we show that, although
they do not directly enable data disclosure, half-Spectre
gadgets are far from harmless on modern systems. In partic-
ular, we show that such gadgets lurking in operating system
kernel codebases still allow an attacker to efficiently recover
physical addresses of both attacker-controlled pages and of
kernel sensitive data. Although common half-Spectre gad-
gets use relative addressing, an attacker can exploit a Super
TLB side channel to still craft an absolute addressing prim-
itive. In turn, this effectively allows them to speculatively
fill any cache line in physical memory on modern operating
systems such as Linux. The net result is the ability for
an unprivileged attacker to eavesdrop a controlled victim’s
physical memory activity at the cache line granularity, with
no requirement for explicit shared memory between attacker
and victim. This primitive, which we term PRELOAD+TIME,
generalizes existing address translation oracles [8], [9], al-
lowing the attacker to precisely locate data of an arbitrary
victim under their control in physical memory. We use this
primitive to locate aggressor and victim data in physical
memory and enable reliable Rowhammer attacks that relax
many of the assumptions made in prior work.

ProbeHammer. Since its discovery in 2014 [10], the re-
search community has devised a plethora of attacks based
on Rowhammer [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26]. Some attacks are
probabilistic in nature [19], [17], in that they spray memory
with sensitive data and trigger random bit flips in the hope
of finding a target—but at the risk of corrupting unintended
data and crashing the system. To improve reliability, de-
terministic attacks [18], [24], [11] rely on a combination of
physical memory templating and massaging techniques [11],
which, however, can still induce unintended bit flips in case
of unpredictable memory reuse behavior [27] and also incur
unexploitable bit flips in case of unpredictable data encoding
such as that of on-DIMM ECC [19].

Following the disclosure of the first practical Rowham-
mer attacks, major Operating Systems such as Linux,
stopped exposing physical addressing information to unpriv-
ileged users [28] and restrict access to super (1GiB) pages
to superusers. Therefore, modern attacks rely on techniques,
such as transparent huge pages (THPs), that provide partial
physical addressing information on aggressor rows. On the
other hand, PRELOAD+TIME provides full knowledge of the
physical addresses that map to aggressor and victim rows.

We show this knowledge allows an attacker to mount
a deterministic Rowhammer attack without relying on tem-
plating or massaging. We present ProbeHammer, the first

end-to-end Rowhammer attack that is structurally crash-free,
in the sense that the attacker knows before hammering that
they will not induce unintended bit flips. The key idea is
to spray memory with aggressor data (i.e., user pages) and
victim data (i.e., page table pages), rely on PRELOAD+TIME
to probe physical memory for their exact location, and select
safe patterns for Rowhammer accordingly.

As our experiments show, our approach does not incur
any false positives when leaking exact physical addresses
of either aggressor or victim pages. For our end-to-end
exploit, this is crucial to preserve the crash-free property
of ProbeHammer. While probing for spraying data is less
efficient than controlled memory reuse via templating and
massaging, ProbeHammer still yields realistic attack times.
On average, finding a single double-sided hammering triplet
(i.e., two aggressor rows and one victim row) takes 5 min-
utes. End-to-end exploitation, i.e., gaining write access to all
of physical memory via a bit flip in a page table, takes an
average of 28 hours on our (not very bit flip-prone) testbed.

Contributions. To summarize, our main contributions are:

1) We demonstrate half-Spectre gadgets are a more
powerful exploitation primitive than previously as-
sumed. We also show a Super TLB side channel
can elevate the capabilities of common gadgets.

2) We introduce PRELOAD+TIME, leveraging half-
Spectre gadgets to eavesdrop on a controlled vic-
tim’s physical memory activity at cache line gran-
ularity, without shared memory requirements.

3) We present ProbeHammer, the first crash-free
Rowhammer attack which does not rely on tem-
plating and memory massaging.

Testbed. The experiments described in this paper were
conducted on our testbed: an Intel i9-13900K (Raptor Lake)
CPU with microcode revision 0x123 and 16GiB of DDR4
RAM, running Ubuntu 22.04 with Linux kernel v6.7.10.

Availability. We have open sourced our code at https:
//github.com/vusec/half-spectre.

2. Background

2.1. Virtual Memory and Caching

Modern architectures manage the available physical
memory by means of a level of indirection known as
virtual memory. Software issues memory reads and writes
using exclusively virtual addresses, which are then trans-
lated to physical addresses by the Memory Management
Unit (MMU). The Operating System (OS) manages this
translation by maintaining a radix tree-like data structure
known as multi-level page tables (PTs) resident in memory.
On a typical x86-64 system with 4-level paging, the virtual
address space is limited to the lowest 48 bits of an address.
The lowest 12 bits represent the offset within a page (4KiB),
leaving the remaining 36 bits of a virtual address to retrieve

2

https://github.com/vusec/half-spectre
https://github.com/vusec/half-spectre

the corresponding page frame via the PTs. Each page table
level is itself a page which holds 512 8-byte page table
entries (PTEs). As such, 9 bits are required to address a
PTE within each level of the page table hierarchy, resulting
in a 4-level page table structure. On Linux, these four levels
are known as the Page Global Directory (PGD), Page Upper
Directory (PUD), Page Mid-level Directory (PMD) and Page
Table Entry (PTE), from highest to lowest level, respectively.

Upon any virtual memory reference, the MMU uses
the page table hierarchy to perform a page table walk
and retrieve the physical address. This operation, however,
means that a memory access requires additional memory
accesses to reference each level of the page table hierar-
chy, making virtual address resolution a slow operation. To
speed up address translation, modern systems are equipped
with special caches known as Translation Lookaside Buffers
(TLBs) and translation caches, which cache full and par-
tial address translations, respectively. Furthermore, from the
CPUs perspective, PTEs are normal data and as such are
cached in the system’s cache hierarchy. This results in a
faster translation whenever the virtual address does not have
an entry in the dedicated TLBs or translations caches.

2.2. The Direct Map

On x86-64 systems, Linux and other modern operating
system kernels set up a special memory region called the
direct map in the kernel memory address space. This region
has a one-to-one mapping to every page frame starting from
Page Frame Number (PFN) zero to the highest (MAX_PFN).
The purpose is to quickly be able to access any location
in physical memory and also simplify physical-to-virtual
address translation. Kernel heap allocators such as SLUB
and vmalloc, which overlay the page frame allocator (i.e.,
the buddy allocator), return pointers to the direct map.
Therefore, data dynamically allocated by the kernel such as
page tables fall within this memory region. Given that the
direct map maps the entire physical memory, every page in
the system mapped to user space has also an alias in the
direct map which translates to the same page frame in the
physical address space. The starting address of the direct
map is known as the page_offset_base and its value
is randomized at boot time with KASLR enabled.

2.3. Spectre

In 2018, Kocher et al. [1] demonstrated how an attacker
can take advantage of speculative execution to leak data
across security domains. The variant of interest for this
paper is Spectre-PHT (also known as Spectre-v1), which
exploits the speculative execution window which occurs
after a mispredicted conditional branch. Within this window,
an attacker can force the CPU to perform a speculative
load at a desired address, with the loaded value used to
effect changes to the microarchitectural state. Since microar-
chitectural changes are not rolled back by the CPU when
speculation aborts, the attacker can use a (e.g., cache) covert

channel to leak the data stored at that loaded address. A
typical Spectre-v1 gadget is shown at the top of Listing 1.

2.4. Rowhammer

The Rowhammer vulnerability [10] allows attackers to
flip bits in rows of extraneous physical memory by repeat-
edly activating i.e., “hammering”, one or more neighboring
rows. Rowhammer-induced bit flips are notoriously repro-
ducible and data-dependent [29], [30]. The first Rowham-
mer end-to-end exploit was presented by Seaborn and Dul-
lien [17], probabilistically targeting bit flips in PTEs to
escalate privileges. Probabilistic attacks rely on the ability
of the attacker to spray memory with victim (e.g., PTE)
data. However, since memory also contains other critical
data, such attacks cannot guarantee the bit flips will not
accidentally corrupt unintended data and crash the system.
Follow-on work demonstrated more deterministic attacks on
different architectures (x86 architectures [11], [12], [13],
[14], [15], [16] and ARM [18], [19], [20]) and environ-
ments (browser sandboxes [21], [22], [23], clouds [24],
kernels [27], and networked systems [25], [26]).

Typically, a deterministic Rowhammer exploit comprises
three main steps namely, templating, memory massaging,
and hammering [24]. In the first step, the attacker hammers
their own memory to find bit flips at a specific page offset
(a so-called template). In the memory massaging phase,
the attacker manipulates the memory layout so that the
target data is stored at the vulnerable template(s). Finally,
the attacker re-issues the original hammering patterns to
trigger a bit flip in the target data. Unlike probabilistic
attacks, deterministic attacks can be in principle crash-
free. However, this is subject to the reliability of memory
massaging—which requires the attacker to fully predict
allocation behavior [24] and, more importantly, to that of
templating—which is unreliable on modern DIMMs with
ECC in face of non fully predictable victim data [19].

3. Threat Model

We consider a classic local exploitation scenario, with
an unprivileged userland attacker seeking to disclose con-
fidential information, escalate privileges, etc. To this end,
we assume the attacker targets a half-Spectre gadget in
the operating system kernel, reachable via a system call.
We assume a modern up-to-date kernel with all default
mitigations against (microarchitectural) attacks applied and
with no software bugs. Finally, we assume the kernel to have
a direct map of physical memory, as done by commodity
kernels such as Linux.

4. Half-Spectre Gadgets

To gather insights into the attack surface of half-Spectre
gadgets in the Linux kernel, we rely on existing gadget
scanners which have been developed to identify Spectre-
v1 and half-Spectre gadgets in the kernel. Table 1 presents

3

Tool Half-Spectre gadgets reported

Smatch [32] 234
Google CodeQL [4] 290
Kasper [3] 722

TABLE 1: Half-Spectre Gadgets in Linux v6.7.10

an overview of the number of unique half-Spectre gadgets
found by these tools. These tools rely on either static or
dynamic data-flow analysis to identify half-Spectre gadgets,
an approach that can successfully pinpoint potential gadgets
but cannot provide insights into their practical exploitabil-
ity [31]. In other words, exploitability analysis must be
conducted manually. From the results gathered by these
tools, we manually selected two running examples (List-
ings 2 and 3), one for each tool that has explicitly sought
to uncover half-Spectre gadgets [3], [4], and closely studied
their exploitability. In the following, we first discuss the
characteristics that affect exploitability and then present an
analysis of our two running examples.

4.1. Half-Spectre Gadget Properties

Transient execution. Similar to their Spectre-v1 counter-
parts, half-Spectre gadgets abuse conditional branch predic-
tion present on modern CPUs. As such, exploitation requires
the attacker to (i) mistrain the target branch using in-place or
out-of-place training [6], [33] to induce transient execution
and (ii) delay branch resolution as much as possible to obtain
a sufficiently large speculation window. Delaying branch
resolution is as simple as evicting a cache line if the branch
depends on data loaded from memory [1]. However, many
real-world gadgets branch on constant data and attackers
need to resort to SMT resource contention to lengthen the
window [34], [31].

Addressing. Half-Spectre gadgets can either be absolute or
relative. In the former case, an attacker directly provides the
address to be speculatively loaded in the kernel. In the latter
case, an attacker only controls an offset to an uncontrolled
base address, allowing them to only address the speculative
loads relative to this base. Absolute gadgets often arise
from pointer dereferencing, whereas relative gadgets usually
arise from array indexing. Due to the prevalence of array
index bounds checking, relative gadgets appear much more
common. For example, all the gadgets reported by Smatch
and Google CodeQL in Table 1 are relative.

Range. Not all half-Spectre gadgets may be able to specu-
latively load any address. A gadget’s range is the set of
virtual addresses that an attacker can let it speculatively
load. For a gadget arising from an array being speculatively
indexed with a 32-bit integer, the range is limited to the 32-
bit address region behind the start of the array. But the range
may be even much smaller than that. In general, the range
depends on the complete interaction between attacker and
victim. This includes the gadget’s body, the code between

1 static int do_prlimit(struct task_struct
*tsk, unsigned int resource, struct
rlimit *new_rlim, struct rlimit
*old_rlim)

↪→

↪→

↪→

2 {
3 struct rlimit *rlim;
4 int retval = 0;
5

6 if (resource >= RLIM_NLIMITS) // BCB
7 return -EINVAL;
8 ...
9 rlim = tsk->signal->rlim + resource;

10 task_lock(tsk->group_leader);
11 if (new_rlim) {
12 if (new_rlim->rlim_max > rlim->rlim_max

&& !capable(CAP_SYS_RESOURCE))↪→

13 ...
14 }
15 }

Listing 2: An example of a relative half-Spectre gadget in
the Linux kernel (kernel/sys.c) found by Google [4].
We use this gadget in our end-to-end exploit.

the mispredicted branch and the speculative load, which may
for example mask off certain bits of the loaded address. But
it also depends on the full code path between system call
entry and the gadget: sanitization of user arguments at the
start of a system call may limit the attacker’s control over
the address of a speculative load. And even cross system
call interaction may be relevant for the range, as we will
see in the break_lease example gadget in Section 4.2.

4.2. Exploitability of Running Examples

Our two running examples (Listings 2 and 3) con-
sist of a relative and an absolute half-Spectre gadget (re-
spectively) found in the Linux kernel. In order to assess
their exploitability, we mapped a 4KiB page in userland
(i.e., a reload buffer), retrieved its physical address via the
pagemap interface, and triggered the gadgets to perform a
speculative load to the direct map alias of our user page.

The gadget shown in Listing 2 is straightforward to
trigger via the setrlimit system call. The user has direct
control over the 32-bit integer resource parameter (in
bold). Line 9 adds resource as an offset to an array of
struct rlimit elements allocated on the kernel heap
for each user process. Hence, the gadget is relative. Its
range consists of the 64GiB region of virtual address space
behind the base tsk->signal->rlim. To reach the out-
of-bounds speculative load on line 12, we have to enlarge
the speculation window using SMT contention, since the
gadget branches on a constant value.

The absolute gadget shown in Listing 3, on the other
hand, is more complicated to exploit. Indeed, exploit-
ing absolute gadgets typically requires the attacker to
land controlled data in the kernel via memory massag-
ing [3]. Note that on x86-64 systems, one cannot sim-
ply pass a pointer to the kernel via a system call and
trick it into speculatively dereferencing such pointer since

4

1 static bool leases_conflict(struct
file_lock *lease, struct file_lock
*breaker)

↪→

↪→

2 {
3 bool rc;
4

5 if
(lease->fl_lmops->lm_breaker_owns_lease↪→

6 &&lease->fl_lmops->lm_breaker_owns_lease(
lease))↪→

7 return false;
8 ...
9 }

10

11 static bool any_leases_conflict(struct
inode *inode, struct file_lock
*breaker)

↪→

↪→

12 {
13 struct file_lock_context *ctx =

inode->i_flctx;↪→

14 struct file_lock *fl;
15

16 lockdep_assert_held(&ctx->flc_lock);
17

18 list_for_each_entry(fl, &ctx->flc_lease,
fl_list) { // BCB↪→

19 if (leases_conflict(fl, breaker))
20 return true;
21 }
22 return false;
23 }

Listing 3: An example of an absolute half-Spectre gadget
in the Linux kernel (fs/locks.c) found by Kasper [3].

user pointer dereferences are serialized via SMAP [4].
As shown by Kasper [3], list iterators as implemented
in the Linux kernel are prone to speculative type con-
fusion, inducing out-of-bounds speculative loads past the
last element of the list depending on the relative type
sizes. In this case, struct file_lock_context is
smaller than struct file_lock, hence, if we can mas-
sage a valid kernel pointer next to the SLUB-allocated
file_lock_context object, the speculative type confu-
sion allows the gadget to load from an absolute controlled
location in the direct map (in bold).

We implemented two proof-of-concepts to trigger both
gadgets with controlled input—i.e., offset passed via a
system call for the relative gadget and address injected
via SLUB memory massaging for the absolute gadget—
and evaluated the number of successful gadget invocations
per second while creating SMT contention as suggested in
prior work [34], [31]. Table 2 presents our results. The
do_prlimit gadget has considerably higher throughput
than the break_lease gadget, because do_prlimit is
very ‘shallow’ in the call stack, it does not require any mem-
ory massaging for exploitation, and the code architecturally
returns to userland immediately after the condition check is
performed (on line 7). Therefore, for the remainder of the
paper and for our end-to-end exploit (Section 7), we will
exclusively focus on this half-Spectre gadget—which is also

Gadget Reload buffer hits per second

do_prlimit 493,600
any_leases_conflict 1,500

TABLE 2: Throughput of the gadgets in Listing 2 and 3.

more representative of common (relative) gadgets. However,
being a relative gadget, this choice raises an additional
challenge, which we discuss in Section 4.3.

4.3. From Relative To Absolute with Super TLB

The rest of this paper will focus on exploiting half-
Spectre gadgets with absolute addressing being a require-
ment. However, as mentioned, relative gadgets in which a
speculative load is performed on a constant kernel address
(the base) plus an attacker-controlled value (the offset), are
much more prevalent. This section shows that an attacker
can effectively obtain absolute addressing capabilities from
a relative gadget. To this end, the attacker must know the
exact kernel virtual address of the relative gadget’s (uncon-
trolled) base. Given that we are targeting the direct map, the
first step is to break KASLR. We achieve this by means of
the prefetch side channel [8], which provides the attacker
with an oracle to determine whether a given kernel address
is mapped or not. For an attacker with knowledge of the
true offset of the direct map (i.e., page_offset_base),
leaking the uncontrolled base is trivial if the base is a
static kernel variable, e.g., a global variable. However, in
the vast majority of the gadgets reported in Table 1, this
is more complicated because the uncontrolled base points
to a heap object which is dynamically allocated at runtime.
For instance, the do_prlimit gadget (Listing 2) used in
our end-to-end exploit has a base tsk->signal->rlim
allocated via the slab allocator.

We present a new technique that uses differential anal-
ysis and sliding [35] to leak the exact address of a relative
half-Spectre gadget’s base via a Super TLB side channel.
At a high level, we perform TLB Evict+Reload [36] against
the half-Spectre gadget itself. However, the Linux kernel
heap resides in the direct map, which is backed by 1GiB
super pages [37]. This requires a new generalization of
Evict+Reload to the Super TLB, the TLB’s separate partition
holding entries for super pages. Our differential analysis
distinguishes the gadget’s signal from systematic syscall
noise. Despite the signal being only super page granular,
we can pinpoint the exact address of the base via a sliding
technique. Both the differential analysis and the sliding tech-
nique take advantage of the attacker’s fine-grained control
over the half-Spectre gadget’s speculative execution.

First we discuss Evict+Reload on the (Super) TLB. A
userspace attacker evicts a kernel page from the TLB, then
triggers a system call, and afterwards reloads the backing
TLB entry—timing the operation—to determine whether the
system call accessed the page. For regular pages, TLBs have
been extensively reverse engineered [38]. Evicting a (kernel)
TLB entry can be done by accessing a number of user pages

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Super (1GiB) page index in the direct-map

0
1

2
3

4
5

6
7

8
9

10
Of

fs
et

 in
 su

pe
r (

1G
iB

) p
ag

es

0

50

100

150

200

250

300

Figure 1: Super TLB Evict+Reload signal on Linux’ direct
map, upon triggering the do_prlimit’s half-Spectre gad-
get with different offsets. The heatmap shows the number of
Super TLB hits measured out of 300 repetitions, per super
page and per offset. The blue diagonal originates from the
half-Spectre signal, and indicates the base to be within super
page 4.

forming a TLB eviction set. Reloading can either be done
via prefetch instructions [8], or page fault handlers [39].

Hence, to generalize Evict+Reload to the Super TLB,
we need to be able to implement Reload as well as build
eviction sets. For the former, despite the lower translation
latency incurred by super pages, our experiments show a
measurable timing difference between a Super TLB hit and
miss via both prefetches and page faults on our testbed.

Super TLB evictions are more challenging. Super pages
are restricted to superusers on Linux. Hence, unprivileged
attacker cannot build their own Super TLB eviction sets. To
address this challenge, we reverse engineered the Super TLB
behavior in our testbed, by relying on a classic blackbox
eviction set algorithm [40] adapted to the Super TLB and
disclosed its properties. The algorithm found only a single
eviction set with 4 entries, which reveals the Super TLB
behaves like a fully-associative, 4-way cache—with LRU-
like replacement policy. This is small enough to let the
kernel self-evict its own super pages. That is, an attacker
can repeatedly trigger the half-Spectre gadget to perform
speculative loads on other super pages. Alternatively, on
platforms such as our testbed where a user-mode prefetch
invocation can trigger TLB fills for kernel addresses, we can
directly prefetch the kernel’s super pages (e.g., in the direct
map) to trigger evictions.

Next, we leak the gadget’s base page by using (Super)
TLB Evict+Reload against the system call triggering the
relative half-Spectre gadget. Triggering the gadget with
offset 0 inserts the base into TLB, potentially along with
other pages which are accessed by the system call, resulting

page 4 page 5 page 6page 1page 0 page 2 page 3

page 1 page 4 page 5 page 6 page 7page 0 page 2 page 3

page 7

base spec load

spec loadbase

offset = 0x2c01

Figure 2: Sliding the speculative load higher and higher,
by providing higher and higher offsets to the half-Spectre
gadget, caused the TLB signal to cross the page boundary,
revealing the base to be at offset 0x3ff within page 4.

in Evict+Reload measuring systematic noise. To distinguish
the correct base’s page from this noise, we take advantage
of the flexibility the attacker has with respect to triggering
the gadget. The attacker triggers the gadget with multiple
different offsets, spanning across multiple pages, and per-
forms differential analysis on the results. As the speculative
load moves across different pages, while the systematic
noise stays (mostly) static, our differential analysis is able
to distinguish the base’s page. An example run of this
technique for the do_prlimit gadget is illustrated in
Figure 1. Since do_prlimit lies inside Linux’ direct
map (backed by super pages), we resort to the Super TLB.
Although the gadget’s base resides on super page 4, we see
some systematic noise on super page 0 as well. Even if more
systematic noise would be present, say both super pages 1
and 5 would have dark blue columns as well, the diagonal
signal still reveals the base to be on super page 4.

Now that we know the base’s page, we can leak the
base’s exact location via sliding. Our differential analysis
has already revealed an offset which causes the half-Spectre
gadget to hit a target (super) page that is otherwise never
hit. The attacker then slides this offset, i.e., increase byte-
by-byte, until the speculative load crosses the next (super)
page boundary, as depicted in Figure 2. The offset upon
which this happens reveals the exact (byte-precise) location
of the base within the (super) page. As an optimization, we
perform sliding in binary search fashion, instead of linearly.

We implemented Super TLB Evict+Reload using the
prefetch method on x86 64 Linux, and evaluated the dif-
ferential analysis and sliding techniques for the relative
do_prlimit gadget on our testbed. Out of 20 runs, the
correct base address was leaked each time, in an average of
49 seconds (σ = 16s).

5. Attack Overview

In this section, we provide an overview of
ProbeHammer, which attackers can use to gain read/write
access to the entirety of physical memory on a victim
system. Unlike previous Rowhammer attacks which
commonly rely on memory templating and massaging as
their main steps in the exploit chain, ProbeHammer relies
on PRELOAD+TIME, allowing the exploit to consist of

6

1 for (pa = page_offset(va); pa < MEM_SIZE;
pa += PAGE_SIZE) {↪→

2 clflush(va);
3 kernel_speculatively_load(pa);
4 if (access_time(va) < THRES)
5 return pa
6 }

Listing 4: Disclosing the physical address pa of the user
virtual address va via speculative loads in the kernel.

three phases: (1) interleaved memory spraying, (2) pattern
search and, (3) hammering.

PRELOAD+TIME. Our approach relies on half-Spectre gad-
gets to craft a primitive that leaks the physical addresses of
the attacker’s user data pages and those of the page table
pages. Furthermore, we use this information to precisely
hammer only PTEs—the target data which we want to safely
corrupt with Rowhammer bit flips.

Interleaved memory spraying. In the first phase of the at-
tack, we spray physical memory by interleaving allocations
of page table pages and user pages. The former contain the
data that we want to place in the victim rows, while the
latter the data that we want to place in the aggressor rows.

Pattern search. Once physical memory is filled with page
table pages and user pages that we control, we scan through
the physical memory address space looking for double-sided
hammering pairs. Specifically, we use PRELOAD+TIME to
leak the physical addresses of both the user data pages
and the page table pages, until we find a situation where
the allocated pages follow the typical hammering pattern
(i.e., Aggressor-Victim-Aggressor) over three DRAM rows
in the same bank. Note that this requires knowledge of the
memory controller’s mapping between physical and DRAM
addresses, which we discuss in Section 7.3.

Given that exploiting Rowhammer on DDR4 systems
requires building many-sided patterns, we keep searching
for double-sided patterns until we can form a so-called n-
double-sided pattern. Furthermore, as we skip the templating
phase, we do not know a priori whether the patterns we
find are effective at triggering bit flips in the victim rows.
Therefore, we need to test many n-double-sided patterns
in a given bank before we find an exploitable pattern. As
we will later show in Section 7.4, our optimized spraying
algorithm allocates ∼30k double-sided pairs evenly spread
across banks on our testbed with 16GiB of RAM.

Hammering. Finally, while we keep finding new n-double-
sided patterns in a given bank, we hammer the aggressor
rows. In order to maximize our probability of finding an
exploitable pattern, we combine the single double-sided pat-
terns in many different n-double-sided patterns and hammer
all the new combinations as we keep finding new hammering
pairs. Upon a bit flip, we check our read/write access to a
page table by using an oracle [19] that only speculatively
accesses the page, to suppress any potential crashes. Upon

0x1000 0x15b94c000 MEM_SIZE
Speculatively Loaded Physical Address

0

100

200

300

400

Ac
ce

ss
 L

at
en

cy
 (i

n
Cy

cle
s)

Figure 3: An example run of Listing 4, using a synthetic
system call that speculatively loads a user provided physical
address, and 16GiB of RAM. We see a low access time, i.e.,
cache hit, only at physical address 0x15b94c000, revealing
it as the correct physical address.

success, we have effectively fully compromised the system.
Otherwise, we keep searching for patterns.

6. PRELOAD+TIME

We now present PRELOAD+TIME, a generalization of
the address translation oracle [8], [9], re-enabling the oracle
on modern systems, significantly improving its performance
and (absolute vs. relative addressing) flexibility, and—most
importantly—extending its application to victim (not just
attacker) data. PRELOAD+TIME can monitor a victim’s
memory activity at the cache line granularity (similar to
Flush+Reload [41]), while being more widely applicable
(similar to Evict+Time [42]). We focus on a (Rowhammer
oriented) application of PRELOAD+TIME, by targeting the
MMU to leak the location of page tables in physical mem-
ory. We later evaluate PRELOAD+TIME’s accuracy.

6.1. Address Translation Oracle

The combined work of Gruss et al. [8] and Schwarzl
et al. [9] describes an address translation oracle, enabling
an unprivileged attacker to locate their own data in physical
memory. The oracle can be summarized in three main steps.
Let V be the virtual address of an attacker’s user page,
and let P be a (guessed) physical address. The attacker
(1) flushes the cache line backing V , (2) forces the kernel
to speculatively load the cache line at physical address P
via the direct map, and (3) measures the access time to V .
The most important insight is that the second step caches
V ’s data if and only if V is backed by the physical memory
at P . Hence, a fast access time indicates V translates into
physical address P . Upon a slow access, the attacker takes
a new guess for P , and repeats. Listing 4 shows an example
implementation and Figure 3 depicts the raw timing data of
an example run.

Initially, Gruss et al. [8] implemented step (2) with a
prefetch instruction issued from userland. Later, Schwarzl
et al. [9] showed the prefetches to actually be irrelevant,
and determined the root cause of the cache signal to be
speculative kernel loads triggered via Spectre-v2 gadgets.
The attacker stores a direct map address into a register, and

7

1 int preload_time(physaddr_t pa) {
2 victim();
3 evict_cache_set(pa);
4 t_base = time(victim);
5 evict_cache_set(pa);
6 preload(pa);
7 t_preload = time(victim);
8 return t_preload < t_base - THRES;
9 }

Listing 5: PRELOAD+TIME determines whether the
victim function accesses physical address pa.

then issues many (random) system calls. The slim chance
of indirect branch mispredictions in the kernel, combined
with many kernel indirect call targets dereferencing regis-
ters, resulted in the direct map address sometimes being
speculatively dereferenced.

Since these occurrences are rare, this blackbox strategy
only resulted in 5 to 60 hits per second [9]. To put this
in perspective, scanning through 16GiB of RAM, as done
in Figure 3, would take at least 19.4 hours to translate
one address. Moreover, since the deployment of Spectre-v2
mitigations, this attack has been fully mitigated [9].

6.2. PRELOAD+TIME: Attacker Data

We now first show PRELOAD+TIME can disclose the
physical location of attacker data (à la address translation
oracle). We later target victim data (Section 6.3).

While PRELOAD+TIME on attacker data still follows the
algorithm from Listing 4, it instead triggers a speculative
load in the kernel via half-Spectre (v1) gadgets, which have
been left largely unmitigated [5]. PRELOAD+TIME deliber-
ately adopts a whitebox strategy, targeting a predetermined
half-Spectre gadget and ensuring its speculative execution,
for example via branch mistraining and SMT contention.
After breaking KASLR, the attacker knows the location D
of the direct map in the kernel’s virtual address space. After
acquiring absolute addressing capabilities for the chosen
half-Spectre gadget, the attacker can trigger the gadget to
speculatively load the kernel virtual address D + P , i.e.,
physical address P . This re-enables the address translation
oracle, with much better performance. For example, using
the do_prlimit gadget lowers translation time to 8.5
seconds for one address (cf. Table 2). Our optimizations
in Section 6.4 even bring this down to merely 0.3 seconds.

6.3. PRELOAD+TIME: Victim Data

We now apply PRELOAD+TIME to eavesdrop on the
physical memory activity of a controlled victim. Unlike
existing techniques, PRELOAD+TIME can monitor a victim’s
memory activity at the cache line granularity, even if the
attacker and victim do not explicitly share memory. Without
access to the victim data being monitored, the attacker
cannot directly flush the data, or measure its access time, as
in Listing 4. Instead, the attacker resorts to cache eviction
and victim timing, similar to Evict+Time [42].

Flush+Reload Evict+Time Preload+Time

Victim
Control no yes yes

Victim
Latency irrelevant stable stable

Shared
Memory yes no no

Granularity cache line cache set cache line

TABLE 3: Comparison of side channels.

Suppose the attacker wants to know whether the victim
accesses physical address pa. Then, as shown in Listing 5,
the attacker first executes the victim, caching its code and
data. Next, the attacker evicts pa’s cache set, by walking
a cache eviction set, and times the total run time of the
victim, as a baseline measurement. Next, the attacker again
evicts the cache set of pa, but now preloads pa itself:
triggering a half-Spectre gadget in the kernel to speculatively
load pa’s cache line. Timing the victim’s total run time
again, and comparing it against the baseline timing, reveals
whether the victim accessed pa. Note that the victim’s
latency should be stable across runs, in order to distinguish
the victim’s potential cache hit vs. miss on pa reliably
(similar to Evict+Time [42]). In general, depending on the
variance of the victim’s run time, the attacker must perform
enough measurements to see a statistically significant lower
t_preload timing across runs.

PRELOAD+TIME can be seen as a refinement of
Evict+Time, having the exact same applicability. As for
requirements, that means the attacker needs direct control
over the victim, and the victim’s run time variance should
be low. The main advantage is that both Evict+Time and
PRELOAD+TIME are applicable without shared memory be-
tween attacker and victim. PRELOAD+TIME is more power-
ful than Evict+Time though. Whereas Evict+Time monitors
cache sets, PRELOAD+TIME extracts information of the
victim’s physical memory activity at the cache line granu-
larity, similar to Flush+Reload. For example, on a virtually
indexed L1 data cache, Evict+Time can disclose whether
the victim accesses the first cache line of any page, while
PRELOAD+TIME can reveal whether the victim accesses the
first cache line of one particular page. In summary, as also
listed in Table 3, PRELOAD+TIME is as widely applicable
as Evict+Time, while disclosing information as detailed
as Flush+Reload. Moreover, PRELOAD+TIME’s more fine-
grained information disclosure leaves it unmitigated by some
cache attack defenses, like Page Coloring [43], that protect
against cache set granular side channels, but not cache line
granular ones.

6.4. Locating PTEs

This section shows how to physically locate PTEs, by
applying PRELOAD+TIME to the MMU’s page table walk.
Let va be a virtual address in the attacker’s address space,

8

User Data

Physical Memory

PTE

PGD

PUD

PMD

User Data

User Data Alias

PTE

PMD

PUD

PGD

Direct Map (KVA)

User Virtual
Memory

3. load(user data)

2. spec_load(pte)
1. half_spectre(pte)

load
(use

r da
ta)

(i)

(ii)

Figure 4: Leaking the physical address of a PTE with
PRELOAD+TIME. Bottom-left (i): Slow load of user data
with PTE evicted from cache and the user data address
evicted from the TLB. Top-left (ii): Fast load of user data
due to the faster page table walk, after preloading (hence,
caching) the correct PTE.

whose PTEs we want to locate. Upon a TLB miss for va, the
MMU will perform a page table walk, consequently loading
all va’s PTE levels into the cache. PRELOAD+TIME can
leak their physical addresses up to cache line granularity,
as described by Listing 5, where victim is a load from
va that misses the TLB—which the attacker should ensure
by purposefully evicting va from the TLB beforehand.
Figure 4 illustrates this application of PRELOAD+TIME to
locate PTEs.

As an optimization, we can avoid checking all cache
lines in physical memory, if we have a priori physical
address knowledge. The virtual address bits of va determine
the offsets of its PTEs in the different page tables, hence the
attacker already knows the page offset of all the PTEs. For
example, on our testbed with an x86 64 CPU and 16GB
of RAM, this reduces the search space from 28 bits (256M
cache lines) to 22 bits (4M cache lines), a 32x speedup.
Moreover, we can use Evict+Time to break these 22 bits
of entropy in two separate steps. Our testbed’s L2 cache is
indexed with the 11 physical address bits 16:6 (the lower
six are the cache line offset). A PTE’s lower 12 bits (the
page offset) are known a priori, and the next 5 bits 16:12
can be leaked via Evict+Time on the L2 cache against the
MMU’s page table walk. Breaking this 5 bit entropy is a
quick operation, leaving us with only 18 bits of entropy
left to break with PRELOAD+TIME, allowing us to gain
another 32x speedup. Replacing the L2 cache with the
bigger L3 cache, would result in an additional 24x speedup
on our testbed, which we did not implement due to the
higher complexity of the proprietary hash functions used
for L3 slice indexing. Note that the same search space
reduction can be applied when locating attacker data with
PRELOAD+TIME, as in Section 6.2. Also note that none of

Leakage Target True Pos. False Pos. False Neg.

User Data Page 943 (94.3%) 0 (0%) 57 (5.7%)
PTE Page 928 (92.8%) 0 (0%) 72 (7.2%)

TABLE 4: Accuracy Results for PRELOAD+TIME after
running the experiment outlined in Section 6.5.

the Evict+Time methods come close to leaking full physical
addresses. PRELOAD+TIME is the crucial step to enable full
disclosure.

6.5. Accuracy Evaluation

We implemented PRELOAD+TIME to locate both user
pages (i.e., attacker-owned data) as well as their PTEs (i.e.,
victim data) on our testbed. As an evaluation, we allocate
1,000 normal user pages, and we apply PRELOAD+TIME
to leak the physical address of these user pages, as well as
their lowest level PTEs (pointing to the user pages). The
results of this experiment, reported in Table 4, show that
PRELOAD+TIME is a highly precise primitive for recovering
the physical addresses of both user pages and PTEs (with
a 94.3% and 92.8% True Positive Rate, respectively). We
attribute the false negatives to noise in the system, which
accidentally evicts the ‘preloaded’ data from the cache
before the timing step. Nevertheless, such false negatives
only result in slower attacks—as we are missing exploitation
opportunities whenever we cannot locate a user page or a
PTE in physical memory—but do not affect their reliability.

On the other hand, any false positives would weaken the
crash-free guarantees of ProbeHammer, as they could lead
an attacker to incorrectly interpret critical system data as a
user page or PTE. However, ProbeHammer eliminates false
positives in the practical cases of interest by design. Indeed,
as we are targeting attacker-controlled user pages or PTEs
pointing to user pages, we do not expect any independent
accesses to such pages. Only hypothetical features such as
a hardware prefetcher systematically accessing user data
pages and the corresponding PTEs would result in false
positives (which we could not filter out by means of repeated
measurements). We have not encountered any false positives
in all our experiments nor in our end-to-end exploit.

In terms of performance, locating a user data page takes
∼2 minutes on average, while locating a PTE page takes
∼5 minutes, the latter requiring more repetitions for high-
accuracy measurements.

As we will show in Section 7, for our end-to-end exploit,
we will rely on these primitives in order to selectively flip
bits in memory only in our target data, without causing
system crashes.

7. End-to-End Exploit

To show how an attacker can take advantage of half-
Spectre gadgets to build a more complex exploit, we present
ProbeHammer: a Rowhammer attack which targets PTEs
and takes advantage of half-Spectre gadgets to bypass

9

... ...

r

12 101519

f2

162024 232733

f3

30 1722 2128 2531

f4

18 142632 29

f1

9

f0

1113

Figure 5: Reverse-engineered DRAM addressing functions
for the Intel i9-13900K machine with a single-channel,
single-DIMM, dual-rank DRAM configuration. Highlighted
in blue () and green () the number of lowest bits shared
between the physical and virtual address for Super (1GiB)
pages and Huge (2MiB) pages, respectively.

the templating and memory massaging stage of typical
Rowhammer attacks, while structurally avoiding system
crashes by precisely targeting only page frames storing
PTEs. In this section, we explain the steps to build our end-
to-end exploit and gain read/write access to the entirety of
physical memory.

7.1. Experimental Setup

To evaluate the components we need to build the end-to-
end exploit, we run all experiments on our testbed, equipped
with a G Skill F4-3200C14-16GTZR DDR4 DIMM. In
order to use the high-throughput half-Spectre gadget shown
in Listing 2, we reverted the patch mainlined by Google [4].

7.2. Crash-Free Rowhammer

To implement crash-free Rowhammer semantics,
ProbeHammer relies on a combination of interleaved
memory spraying (Section 7.4) and the PRELOAD+TIME
primitives. Using these two primitives, an attacker can
derive plenty of double-sided hammering triplets and
combine them to achieve ‘n-double-sided hammering’,
a generally effective Rowhammer variant on modern
DRAM [13]. In our attack, we target PTEs as our
victims as they have been repeatedly targeted by prior
exploits for the purpose of privilege escalation. Thanks to
PRELOAD+TIME, we can reliably leak their addresses in
physical memory (along with the addresses of user page
aggressors).

7.3. Raptor Lake DRAM Addressing

We reverse-engineered the DRAM addressing functions
for our target machine using bank conflicts as a side channel
similarly to previous work [44]. The resulting functions
which map a physical address to a DRAM address are
depicted in Figure 5. As shown by Kang et al. [16], the
memory controller on more recent Intel microarchitectures

(Alder Lake) uses more bits and higher bits of the physi-
cal address to complete the address translation. Our work
shows that this is also the case on the latest Raptor Lake
microarchitecture. We compare our results to the state-of-
the-art tool, DARE [15], and find consistent results.

In order to further investigate the quality of our reverse
engineered functions, we ran state-of-the-art Rowhammer
fuzzers [13], [14], [16]. We first ran these three tools on a
Coffee Lake CPU, a legacy microarchitecture with a simpler
memory controller (but not as prone to SMT contention
as modern ones) and observed a significant number of bit
flips. We then ran the tools on our Raptor Lake setup as
well as on other modern Intel microarchitectures using the
same DIMM. Over 24 hours, we consistently observed no
bit flips or an insignificant (and unstable) number of bit flips
compared to our Coffee Lake runs. We attribute this behav-
ior to more complex memory controller behavior on mod-
ern microarchitectures, hindering state-of-the-art Rowham-
mer patterns. Thereafter, we halved the refresh rate in the
BIOS, resulting in consistent bit flips again. Since our focus
here is on the exploitability of Rowhammer bit flips and
ProbeHammer can compose with any hammering patterns,
we leave the investigation of more effective Rowhammer
patterns on modern memory controllers to future work and
present experiments with the refresh rate halved hereafter.

With all the tools mentioned earlier, both on standard
and halved refresh rate, we always observe the bit flips to
be three rows away from the first of the two aggressors,
revealing non-standard DRAM geometry. In other words,
the victim row was not logically sandwiched between the
aggressors but happened to be 3 rows away from the first
aggressor row. Our exploit takes this finding into account
and, in the remainder of the paper, we will refer to such
a triple of rows as a hammering triplet. Also note that an
attacker would do this reversing of the DRAM geometry
only once, in an offline phase.

7.4. Interleaved Memory Spraying

Armed with our PRELOAD+TIME primitive which can
precisely recover the physical memory location of both our
victim pages and our aggressor pages, we have devised
interleaved memory spraying, a new memory spraying tech-
nique to increase the likelihood of finding safe hammering
patterns. The key idea is to optimize spraying to maximize
the chances of (i) colocating aggressor (user) data with
victim (page table) data and (ii) entirely filling victim rows
with victim data. To this end, in the memory spraying stage,
we interleave allocations of both page table pages and user
data pages until we exhaust physical memory. By spraying
most of the physical memory available on the system, we
span over a large number of bits within the physical address
space resulting in allocations which are equally distributed
across all the DRAM banks on our system. This allows us
to target any bank in the system in the hammering stage of
our exploit.

To allocate as many page table pages as needed we resort
to similar techniques as previous work [17], [21], [19], [18]

10

5710 20 30 40 50 60 70 80 90 100
Ratio of PTE Pages to User Data Pages (n:1)

0

5000

10000

15000

20000

25000

30000

35000

Nu
m

be
r o

f H
am

m
er

in
g

Tr
ip

le
ts

Figure 6: Average number of hammering triplets (i.e.,
Aggressor-Victim-Aggressor tuples) over 6 runs of our in-
terleaved memory spraying technique with a varying ratio
of page table pages to user data pages (n : 1). Highlighted
in red, the ratio (i.e., 7 : 1) resulting in the most triplets.

and use shared file mappings in order to efficiently have
many PTEs pointing to the same physical pages. To allocate
user data pages, we allocate a large buffer with read/write
permissions and fault in pages as needed. One key aspect
we have to take care of is that our aggressor pages (i.e., the
user data pages) must be resident in memory at all times
and should not be swapped out to disk because, when they
are paged back into memory, they might no longer be at the
same physical location. Given that by exhausting physical
memory we are putting the system under heavy memory
pressure, this issue is very likely to arise as the kernel
tries to free up physical memory to reclaim pages for other
processes. To circumvent this problem, we use the mlock
system call to force the OS to keep those pages resident
in memory. In theory, the memory compaction daemon on
Linux (kcompactd) could still migrate the aggressor pages
and change the backing page frame for those particular
mappings because page migration does not break mlock
semantics. In practice, however, due to the fact that most
of physical memory is allocated with unmovable page table
pages and the movable freelists are almost depleted, we have
never observed this behavior during our memory spraying
experiments. We have also ensured that all user data pages
remained resident in memory with the mincore system
call.

In order to optimize the spraying phase for our attack, we
run an experiment to find the best ratio of page table pages
to user data pages. We run multiple iterations of our spraying
techniques by varying the number of page table pages (n) to
user data pages. The results of this experiment are shown in
Figure 6. By averaging the number of ‘hammering triplets’
over 6 runs we see that the best ratio is 7 : 1, which results
in 30,238 patterns. As we decrease the number of user data
pages (i.e., increase the PTE to user data ratio), the number
of hammering triplets gradually decreases, reaching a value
of 0 when n ≥ 80. Therefore, we use the 7 : 1 ratio for our
end-to-end Rowhammer exploit.

It is important to note that by skipping the templating
phase, we cannot know where the bit flips are going to occur
within a specific row. Therefore, we want to make sure that

when spraying we fill an entire victim row i.e., 8 KiB, with
our target data (PTEs). Theoretically, a triplet in which the
victim row has one PTE page co-located with a user data
page in the same row is also a ‘safe’ hammering pattern, i.e.,
would not end up causing memory corruptions in memory
that is not attacker-controlled. Another instance of a ‘safe’
triplet is one in which the aggressor rows only contain one
user data page each and can be co-located with any other
data on the same row and the victim row stores at least one
page table page. However, in order to maximize the chances
of bit flips, in the remainder of this section we will only take
into account hammering triplets in which all the data stored
in the aggressor rows is represented by user data pages and
the victim row only contains PTEs. We will go into further
detail on how we target ‘interesting’ bits within the PTEs
in Section 7.5.

Over 20 runs of our spraying algorithm, on average, we
can spray physical memory as desired with PTEs and user
data pages on our experimental testbed in 144 seconds.

7.5. Rowhammer Patterns

Pattern Search. Once we have sprayed most of physi-
cal memory with page table pages and user data pages,
we proceed with the search of the hammering triplets us-
ing PRELOAD+TIME. Firstly, we break KASLR using the
prefetch side channel [8]. Then we start the search by
picking one of the pointers which we use to map the PTEs
and leak the physical address of the lowest level page table
page as described in Section 6.4. Next, using our knowledge
of DRAM addressing, we compute the physical addresses of
the other 5 pages that make up a hammering triplet. Then,
we use PRELOAD+TIME again to find the virtual address of
the ‘mate’ PTE page i.e., the PTE page which is co-located
on the same row as the first PTE page found in the earlier
step. If we find two PTE pages which satisfy this condition,
we proceed to find the virtual addresses of the remaining
4 user data pages which form the aggressor rows of the
hammering triplet. Note that, this time, we fix a physical
address because the pages forming a hammering triplet must
be in specific DRAM locations in order to be useful, and
use PRELOAD+TIME to search through all virtual addresses,
rather than the other way around. In the event where we
cannot find PTEs or user data pages at our desired physical
addresses, we discard the address we picked initially and
start the search again.

Aggressor Row Striping Data. As shown in prior research,
including the first paper describing the Rowhammer phe-
nomenon [10], bit flips are heavily data-dependent with a
striping pattern, i.e., aggressors rows having the inverse
value of the data in the victim rows, being the most effective.
In order to maximize the probability of triggering bit flips
in our victim page table pages, we can take advantage of
PRELOAD+TIME to fill our user data pages with a data
pattern to selectively target the page frame number (PFN)
bits of the PTEs.

11

NX RESERVED
/IGNORED

0x8 00000 02a2e6f 067

AGG

0x8 00000 015d190 067

0x8 00000 02a2e6f 067

PFN ACCESS
CTRL

AGG

VIC

Figure 7: A striping pattern used for hammering, enabled by
PRELOAD+TIME, where the bit flips that could cause our
process to crash are ‘masked out’.

The PTEs stored in the last level page table page can be
easily predicted after having sprayed memory as explained
in Section 7.4. Most of the access control bits such as
the present, writable, NX bits etc... are known to our user
process because we pass specific access rights to the mmap
system call and use mlock to pin the pages in memory.
The biggest source of entropy lies in the PFN bits (i.e.,
bits [40 : 12]). However, we can fully leak those bits with
PRELOAD+TIME as explained in Section 6.2, meaning we
can fully recover the PTE data, not merely its location. Once
we know the data stored in the PTEs, we can effectively
mimic a striping data pattern by storing the inverse value of
the PFN bits in the user data (aggressor) pages. This allows
us to precisely test for both bit flip directions (0 → 1 and,
1 → 0) in the PFN bits in the PTE i.e., maximizing the
chance that within one hammering round we can get useful
bit flips. Furthermore, in order to minimize the chances
of the attacker’s process crashing, we make sure that the
resulting PFN is within the physical address space therefore,
we also ‘mask out’ the upper PFN bits to stop the PTE from
pointing to any address above the largest PFN possible on
the system. We do this by storing the same value (i.e., 0)
in the bits which are needed to address content above the
system memory limit.

An example of such a pattern is depicted in Figure 7.
In the victim (middle) row, the first 64 byte value (i.e.,
a PTE) is stored. We can infer the control bits and we
can leak the PFN bits with PRELOAD+TIME in order to
have full knowledge of the PTE content. In order to max-
imize the chance of useful bit flips, in the aggressor rows,
we store the same PTE value with the PFN bits inverted
to mimic the striping pattern. I.e., the bit values in the
columns matching those of the PFN bits in the victim
rows are calculated by XORing the value with a mask
(PFN(vic)⊕ ((1 << log2(MAX PFN))− 1)).

7.6. Page Locality

On our experimental testbed, performing TLB evictions
and triggering the half-Spectre gadget (due to contention)
was very noisy. As such, reliably leaking PTE and user
data physical addresses required many PRELOAD+TIME

measurements per guess, considerably slowing down the
attack. Finding one double-sided Rowhammer pattern as
described above takes ∼10 minutes on average. This means
that finding 5 hammering triplets to form a 10-sided pattern
takes nontrivial time (i.e., 50 minutes).

As a speed optimization, we rely on the locality of the
kernel page allocator to find Rowhammer patterns more
efficiently without the need to pessimistically scan the whole
direct map range with PRELOAD+TIME. Simply put: due
to its internal page management, pages close in physical
memory are more likely to be handed out by the allocator
closely to each other. In order to confirm this behavior,
we assign an allocation ID (AID) to both page table pages
and user data pages—which we increment linearly during
our spraying phase. To investigate this heuristic, we run
our interleaved spraying strategy 20 times with the optimal
PTE to user data pages ratio found in Section 7.4, i.e.,
7 : 1 and run a script which parses the data by finding
the hammering triplets synthetically and records the AID of
each page forming a triplet.

The results show that for 99.2% of triplets found, the two
pages forming an aggressor row have a consecutive AID. In
essence, this shows that once we are able to leak the physical
address of one user page in the aggressor row, the other page
residing in the same row in DRAM is at AID ±1 with a
probability close to 1. Similarly, for the page table pages
which reside in the victim row of our hammering triplets,
in 99.8% of the triplets found, the two PTE pages are at AID
distance of 1. Restricting our search space to only those two
pages allows for a speedup of almost 2x to find a suitable
triplet.

7.7. Hammering the Triplets

Every time we find a pattern which satisfies our length
requirements (in our case 10-sided) as described in Sec-
tion 7.5, we start hammering the aggressor rows using the
same hammering algorithm proposed by Frigo et al. [13].
If we find a bit flip and we can now read page table data
by dereferencing the victim pointers using a crash-resistant
oracle [19], we stop and we now have read/write access to
the entire physical memory. If the hammering round does
not succeed, we keep searching for hammering triplets and
combine the newly found triplets with the old ones to form
new 10-sided patterns.

We run our end-to-end exploit 5 times. On average, we
find the first valid hammering pattern after ∼1 hour. The
first successful bit flip (i.e., a bit flip in the PFN bits of a
target PTE which now points to another PTE page in the
system) occurs, on average, after 28 hours.

8. Mitigation & Discussion

Mitigating PRELOAD+TIME. Developing a comprehensive
defense for Spectre-v1 in hardware is much more challeng-
ing than for other Spectre variants [6]. As such, Spectre-v1
mitigations leave the burden of reducing the attack surface

12

by means of software patches to OS vendors and program-
mers [2]. Similarly, there is no simple solution to mitigate
half-Spectre gadgets in hardware without heavily crippling
the performance benefits gained with branch prediction on
modern CPUs.

In the context of PRELOAD+TIME, we identify two
potential routes to protect existing and future systems. The
first option, also proposed as a first-cut defense to mitigate
MDS [45] is to disable SMT. Even though exploitation of
half-Spectre gadgets does not strictly depend on SMT being
enabled, disabling it would reduce the attack surface, since
gadgets which need SMT contention to be exploited are no
longer relevant. Another option is to include half-Spectre
gadgets in the operating system’s threat model. Similarly to
Spectre-v1, mitigation entails patching dangerous gadgets
with speculation-aware serialization or masking semantics,
e.g., adding array_index_nospec in half-Spectre gad-
gets exploiting unsafe array access.

Mitigating Rowhammer. Even though numerous hardware-
and software-based [46], [47], [48], [49], [50], [51], [52],
[53], [54], [55], [56] mitigations have been proposed since
the discovery of the Rowhammer phenomenon, modern
DIMMs are still vulnerable [15], [14], [13]. Ultimately, the
best way to fundamentally mitigate Rowhammer would be
by means of hardware defenses [48], [47], [49], [50], [53],
[54] implemented by the memory vendors. Newer genera-
tion DIMMs (DDR5) are shipped with Refresh Frequency
Management (RFM), which tracks the number of activations
issued to a specific bank and, once this exceeds a predefined
threshold, the memory controller issues refresh commands
to DRAM. Unfortunately, the details of this defense are
proprietary and recent work has demonstrated bit flips on
DDR5 DIMMs as well [15]. This leaves a gap in the
landscape of Rowhammer defenses, which is yet to be filled
with a fully comprehensive solution to this vulnerability.

Future Work. In this paper, we have shown how an at-
tacker can combine memory spraying and an half-Spectre
enabled PRELOAD+TIME to build effective patterns to ex-
ploit Rowhammer. However, DRAM does not distinguish
between architectural and speculative loads [57]. Therefore,
an attacker could simply spray physical memory with page
tables and, instead of having user data pages in the aggressor
rows, they could trigger loads at arbitrary (aggressor) physi-
cal memory addresses via a half-Spectre gadget. This would
enable an attacker to hammer memory directly via the direct
map, including aggressor rows that are out of reach of (user
page) memory spraying (e.g., because they already contain
persistent kernel data). Nevertheless, for this approach to
work, one would need a very high throughput gadget in
which the attacker can mistrain the branch and issue tens of
thousands of speculative loads to each aggressor row within
a typical DRAM refresh window (i.e., 64ms). Even with the
high-throughput gadget in Listing 2, we were unsuccessful
in directly inducing bit flips via speculative loads. To further
increase the half-Spectre gadget surface, future work should

devise more sophisticated half-Spectre gadget scanners and
reason about their exploitability characteristics.

Disclosure

We disclosed the issues detailed in the paper to the Linux
kernel security team. The team replied that Linux does not
intend to take any new actions for Rowhammer issues.

9. Related Work

9.1. Rowhammer

Since its discovery in 2014, Rowhammer has had plenty
of attention from both academia and industry, leading to
numerous exploits being developed. Following the first prac-
tical exploit by Seaborn and Dullien [17] which targeted
page table pages in order to obtain privilege escalation,
researchers have demonstrated how to leverage Rowhammer
bit flips in order to hinder both integrity [18], [25], [26],
[11], [24], [20], [58], [21], [23], [16] and confidential-
ity [30], [27], [59], [60].

ProbeHammer is the first end-to-end crash-free
Rowhammer attack that hinders integrity. Other efforts have
demonstrated crash-free guarantees in other scenarios. For
instance, RamBleed [30] features an attacker hammering
their own memory (i.e., in a crash-free fashion) and
exploiting the data-dependent nature of Rowhammer bit
flips to leak data. ECCploit [29] hammering patterns avoid
inducing bit flips in memory locations which would be
detected by ECC and potentially cause crashes during
memory templating. Pinpoint Hammer [61] similarly
exploits the data-dependent properties of Rowhammer
to suppress unwanted bit flips. The latter also relies on
memory templating which has been shown by Kogler
et. al. [19] to be unreliable on modern DIMMs which
implement on-die ECC.

As more researchers started to work on novel Rowham-
mer attacks, the community gained more insight on how to
amplify the Rowhammer effect on various generations of
memory modules. In particular, heavy reverse engineering
efforts have been devoted to understanding how to con-
struct the most efficient hammering patterns by precisely
recovering DRAM geometry information [44], [58] and by
uncovering the weaknesses in the mitigations implemented
by hardware vendors [13], [14], [15], [19].

9.2. Memory Massaging

Both Drammer [18] and SpecHammer [59] devised tech-
niques to massage the Linux buddy allocator into allocating
page table pages vulnerable to Rowhammer next to attacker-
controlled data. However, Drammer-style massaging is no
longer feasible on modern Linux kernels due to the internal
separation of the buddy allocator’s freelists in “migrate
types” (with user pages and page table pages being served
by different pools). SpecHammer [59] overcomes this is-
sue by means of memory exhaustion techniques, which,

13

however, are slow, not fully reliable, and not applicable
to memory-limiting scenarios (e.g., containers). In contrast,
ProbeHammer relies on interleaved memory spraying, which
is more effective in quickly forming hammering triplets.

9.3. Spectre

Following the original Spectre disclosure [1], researchers
have produced plenty of work studying and building new
attacks exploiting Spectre gadgets in order to leak sen-
sitive information [62], [45], [63], [64], [36]. Given the
high impact of the vulnerability, a lot of analysis has been
conducted on the gadgets that enable exploitation [3], [4],
[31] in order to aid in mitigation efforts. Recent efforts by
Wiebing et al. [31] and Hertogh et al. [36] have shown
that gadgets that were previously deemed unexploitable by
the community can still be used to build different Spectre
attacks showing the need for more sophisticated analysis in
order to properly defend existing and future systems from
such vulnerabilities. In line with these recent findings, our
PRELOAD+TIME primitive shows that half-Spectre gadgets
can also be exploited in order to leak sensitive information
which can be used to build more complex attacks.

9.4. Rowhammer Meets Spectre and Side Channels

In the last decade, researchers turned their attention to
hardware failure mechanisms which are exploitable from
software such as Rowhammer [10] and transient execution
vulnerabilities, including Spectre [1]. In recent years, work
combining both Spectre and Rowhammer has shown the
power of such vulnerabilities in breaking confidentiality [59]
and integrity [57], [19]. For example, Kogler et al. [19]
showed how an attacker armed with a Spectre oracle can
perform ‘blind hammering’ in order to bypass the limitations
of the templating phase present in most Rowhammer attacks.
Tobah et al. [59] demonstrated that an attacker can flip bits in
victim data in order to relax the requirement that an attacker
needs to have shared memory with the victim in order to
leak data using a FLUSH+RELOAD-style cache-based covert
channel. Another work by Tobah et al. [27] highlighted the
presence of Rowhammer gadgets which allow an attacker to
leak kernel data by flipping bits in kernel pointers to redirect
them to sensitive data and use PRIME+PROBE in order to
reduce (but not eliminate) the chances of their memory
massaging technique resulting in crashes. In contrast to
prior work, PRELOAD+TIME enables an attacker to mount
a Rowhammer attack which does not crash the system and
does not rely on memory templating and massaging. Finally,
Zhang et al. [57] show that speculative loads can also be
used to trigger Rowhammer bit flips on DDR3 memory.

10. Conclusion

In this paper, we reconsidered the security im-
pact of half-Spectre gadgets by using them to build
PRELOAD+TIME. We have shown how one can use

PRELOAD+TIME as a powerful attacker primitive in order
to build ProbeHammer, a crash-free Rowhammer attack
which does not rely on memory templating or massaging.
ProbeHammer structurally discards hammering patterns that
may induce unintended bit flips and thus prevents corruption
of unintended data (and system crashes). As countermea-
sures, we suggest kernel developers to include half-Spectre
gadgets in their threat model and mitigate such gadgets,
similarly to Spectre-v1 gadgets, by issuing code patches
to further reduce the attack surface of transient execution
vulnerabilities.

Acknowledgments

We would like to thank the anonymous reviewers for
their feedback. This work was supported by NWO through
project “INTERSECT” and the Dutch Prize for ICT re-
search, and by the European Union’s Horizon Europe pro-
gramme under grant agreement No. 101120962 (“Rescale”).

References

[1] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in IEEE S&P,
2019.

[2] Intel, “Affected processors: Guidance for security issues
on intel® processors,” https://www.intel.com/content/www/
us/en/developer/topic-technology/software-security-guidance/
processors-affected-consolidated-product-cpu-model.html#
tab-blade-1-1.

[3] B. Johannesmeyer, J. Koschel, K. Razavi, H. Bos, and C. Giuffrida,
“Kasper: Scanning for Generalized Transient Execution Gadgets in
the Linux Kernel,” in NDSS, 2022.

[4] J. Zomer and A. Sandulescu, “Finding gadgets for CPU side-
channels with static analysis tools,” https://github.com/google/
security-research/blob/master/pocs/cpus/spectre-gadgets/README.
md, 2023.

[5] “Kasper information page,” https://vusec.net/projects/kasper.

[6] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation of
transient execution attacks and defenses,” in USENIX Security, 2019.

[7] Intel, “Microarchitectural data sampling,” 2019. [Online].
Available: https://www.intel.com/content/www/us/en/developer/
articles/technical/software-security-guidance/advisory-guidance/
microarchitectural-data-sampling.html

[8] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch
side-channel attacks: Bypassing SMAP and kernel ASLR,” in CCS,
2016.

[9] M. Schwarzl, T. Schuster, M. Schwarz, and D. Gruss, “Speculative
dereferencing: Reviving foreshadow,” in FC, 2021.

[10] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing
them: An experimental study of DRAM disturbance errors,” in ISCA,
2014.

[11] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,
W. Schoechl, and Y. Yarom, “Another flip in the wall of Rowhammer
defenses,” in IEEE S&P, 2018.

[12] Z. Zhang, Y. Cheng, D. Liu, S. Nepal, Z. Wang, and Y. Yarom,
“PThammer: Cross-user-kernel-boundary Rowhammer through im-
plicit accesses,” in MICRO, 2020.

14

https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html#tab-blade-1-1
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html#tab-blade-1-1
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html#tab-blade-1-1
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html#tab-blade-1-1
https://github.com/google/security-research/blob/master/pocs/cpus/spectre-gadgets/README.md
https://github.com/google/security-research/blob/master/pocs/cpus/spectre-gadgets/README.md
https://github.com/google/security-research/blob/master/pocs/cpus/spectre-gadgets/README.md
https://vusec.net/projects/kasper
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/microarchitectural-data-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/microarchitectural-data-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/microarchitectural-data-sampling.html

[13] P. Frigo, E. Vannacci, H. Hassan, V. van der Veen, O. Mutlu, C. Giuf-
frida, H. Bos, and K. Razavi, “TRRespass: Exploiting the many sides
of Target Row Refresh,” in IEEE S&P, 2020.

[14] P. Jattke, V. van der Veen, P. Frigo, S. Gunter, and K. Razavi,
“Blacksmith: Scalable Rowhammering in the frequency domain,” in
IEEE S&P, 2022.

[15] P. Jattke, M. Wipfli, F. Solt, M. Marazzi, M. Bölcskei, and K. Razavi,
“ZenHammer: Rowhammer Attacks on AMD Zen-based Platforms,”
in USENIX Security, 2024.

[16] I. Kang, W. Wang, J. Kim, S. van Schaik, Y. Tobah, D. Genkin,
A. Kwong, and Y. Yarom, “Sledgehammer: Amplifying rowhammer
via bank-level parallelism,” in USENIX Security, 2024.

[17] M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer bug
to gain kernel privileges,” in Black Hat, 2015.

[18] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deter-
ministic Rowhammer attacks on mobile platforms,” in CCS, 2016.

[19] A. Kogler, J. Juffinger, S. Qazi, Y. Kim, M. Lipp, N. Boichat, E. Shiu,
M. Nissler, and D. Gruss, “Half-Double: Hammering from the next
row over,” in USENIX Security, 2022.

[20] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand Pwning Unit:
Accelerating microarchitectural attacks with the GPU,” in IEEE S&P,
2018.

[21] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A remote
software-induced fault attack in JavaScript,” in DIMVA, 2016.

[22] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup Est
Machina: Memory deduplication as an advanced exploitation vector,”
in IEEE S&P, 2016.

[23] F. de Ridder, P. Frigo, E. Vannacci, H. Bos, C. Giuffrida, and
K. Razavi, “SMASH: Synchronized many-sided Rowhammer attacks
from JavaScript,” in USENIX Security, 2021.

[24] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos,
“Flip Feng Shui: Hammering a needle in the software stack,” in
USENIX Security, 2016.

[25] M. Lipp, M. T. Aga, M. Schwarz, D. Gruss, C. Maurice, L. Raab,
and L. Lamster, “Nethammer: Inducing Rowhammer faults through
network requests,” in EuroS&PW, 2020.

[26] A. Tatar, R. K. Konoth, E. Athanasopoulos, C. Giuffrida, H. Bos, and
K. Razavi, “Throwhammer: Rowhammer attacks over the network and
defenses,” in USENIX ATC, 2018.

[27] Y. Tobah, A. Kwong, I. Kang, D. Genkin, and K. Shin, “Go Go
Gadget Hammer: Flipping nested pointers for arbitrary data leakage,”
in USENIX Security, 2024.

[28] J. Corbet. Pagemap: security fixes vs. abi compatibility. [Online].
Available: https://lwn.net/Articles/642069/

[29] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting Correct-
ing Codes: On the effectiveness of ECC memory against Rowhammer
attacks,” in IEEE S&P, 2019.

[30] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “RAMBleed: Reading
bits in memory without accessing them,” in IEEE S&P, 2020.

[31] S. Wiebing, A. de Faveri Tron, and C. Giuffrida, “InSpectre Gadget:
Inspecting the residual attack surface of cross-privilege spectre v2,”
in USENIX Security, 2024.

[32] D. Carpenter, “Finding spectre vulnerabilities with smatch,” https:
//lwn.net/Articles/752408/, 2018.

[33] H. Yavarzadeh, M. Taram, S. Narayan, D. Stefan, and D. Tullsen,
“Half&Half: Demystifying intel’s directional branch predictors for
fast, secure partitioned execution,” in IEEE S&P, 2023.

[34] A. Milburn, K. Sun, and H. Kawakami, “You cannot always win the
race: Analyzing mitigations for branch target prediction attacks,” in
IEEE EuroS&P, 2023.

[35] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “ASLR on
the Line: Practical Cache Attacks on the MMU,” in NDSS, 2017.

[36] M. Hertogh, S. Wiebing, and C. Giuffrida, “Leaky Address Masking:
Exploiting Unmasked Spectre Gadgets with Noncanonical Address
Translation,” in IEEE S&P, 2024.

[37] The Kernel Development Community. Amd64 specific boot options.
[Online]. Available: https://www.kernel.org/doc/Documentation/x86/
x86 64/boot-options.txt

[38] A. Tatar, D. Trujillo, C. Giuffrida, and H. Bos, “TLB; DR: Enhancing
TLB-based attacks with TLB desynchronized reverse engineering,” in
USENIX Security, 2022.

[39] R. Hund, C. Willems, and T. Holz, “Practical timing side channel
attacks against kernel space aslr,” in IEEE S&P, 2013.

[40] P. Vila, B. Köpf, and J. F. Morales, “Theory and practice of finding
eviction sets,” in IEEE S&P, 2019.

[41] Y. Yarom and K. Falkner, “FLUSH+RELOAD: a high resolution, low
noise, L3 cache side-channel attack,” in USENIX Security, 2014.

[42] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: the case of AES,” in CT-RSA, 2006.

[43] J. Shi, X. Song, H. Chen, and B. Zang, “Limiting cache-based side-
channel in multi-tenant cloud using dynamic page coloring,” in IEEE
DSN-W, 2011.

[44] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,
“DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks,”
in USENIX Security, 2016.

[45] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue in-flight data
load,” in IEEE S&P, 2019.

[46] A. Di Dio, K. Koning, H. Bos, and C. Giuffrida, “Copy-on-Flip:
Hardening ECC Memory Against Rowhammer Attacks,” in NDSS,
2023.

[47] A. G. Yağlikçi, M. Patel, J. S. Kim, R. Azizi, A. Olgun, L. Orosa,
H. Hassan, J. Park, K. Kanellopoulos, T. Shahroodi et al., “Block-
Hammer: Preventing RowHammer at low cost by blacklisting rapidly-
accessed DRAM rows,” in HPCA, 2021.

[48] T. Bennett, S. Saroiu, A. Wolman, and L. Cojocar, “Panopticon: A
complete In-DRAM rowhammer mitigation,” in DRAMSec, 2021.

[49] Y. Wang, L. Orosa, X. Peng, Y. Guo, S. Ghose, M. Patel, J. Kim,
J. Gómez-Luna, M. Sadrosadati, N. Ghiasi, and O. Mutlu, “FIGARO:
Improving system performance via fine-grained in-DRAM data relo-
cation and caching,” in MICRO, 2020.

[50] G. Saileshwar, B. Wang, M. K. Qureshi, and P. J. Nair, “Randomized
Row-Swap: Mitigating row hammer by breaking spatial correlation
between aggressor and victim rows,” in ASPLOS, 2022.

[51] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren,
and T. Austin, “ANVIL: Software-based protection against next-
generation rowhammer attacks,” in ASPLOS, 2016.

[52] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “Can’t
Touch This: Practical and generic software-only defenses against
Rowhammer attacks,” arXiv preprint arXiv:1611.08396, 2016.

[53] JEDEC, “Jesd79-5, ddr5 specification,” 2024.

[54] M. Marazzi, P. Jattke, F. Solt, and K. Razavi, “ProTRR: Principled
yet optimal In-DRAM Target Row Refresh,” in IEEE S&P, 2022.

[55] V. van der Veen, M. Lindorfer, Y. Fratantonio, H. Padmanabha Pillai,
G. Vigna, C. Kruegel, H. Bos, and K. Razavi, “GuardION: Practical
mitigation of DMA-based Rowhammer attacks on ARM,” in DIMVA,
2018.

[56] J. Juffinger, L. Lamster, A. Kogler, M. Eichlseder, M. Lipp, and
D. Gruss, “CSI:Rowhammer - cryptographic security and integrity
against rowhammer,” in IEEE S&P, 2023.

15

https://lwn.net/Articles/642069/
https://lwn.net/Articles/752408/
https://lwn.net/Articles/752408/
https://www.kernel.org/doc/Documentation/x86/x86_64/boot-options.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/boot-options.txt

[57] Z. Zhang, Y. Cheng, Y. Zhang, and S. Nepal, “Ghostknight: Breaching
data integrity via speculative execution,” https://arxiv.org/pdf/2002.
00524v1, 2020.

[58] A. Tatar, C. Giuffrida, H. Bos, and K. Razavi, “Defeating software
mitigations against Rowhammer: A surgical precision hammer,” in
RAID, 2018.

[59] Y. Tobah, A. Kwong, I. Kang, D. Genkin, and K. G. Shin, “Specham-
mer: Combining spectre and rowhammer for new speculative attacks,”
in IEEE S&P, 2022.

[60] Y. Cohen, K. S. Tharayil, A. Haenel, D. Genkin, A. D. Keromytis,
Y. Oren, and Y. Yarom, “Hammerscope: Observing dram power
consumption using rowhammer,” in CCS, 2022.

[61] S. Ji, Y. Ko, S. Oh, and J. Kim, “Pinpoint rowhammer: Suppressing
unwanted bit flips on rowhammer attacks,” in Proceedings of the 2019
ACM Asia Conference on Computer and Communications Security,
2019.

[62] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck, and
Y. Yarom, “Fallout: Leaking data on meltdown-resistant cpus,” in
CCS, 2019.

[63] E. Goktas, K. Razavi, G. Portokalidis, H. Bos, and C. Giuffrida,
“Speculative Probing: Hacking Blind in the Spectre Era,” in CCS,
2020.

[64] J. Wikner and K. Razavi, “RETBLEED: Arbitrary speculative code
execution with return instructions,” in USENIX Security, 2022.

Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

In this paper the authors present a deterministic, crash-
free Rowhammer exploit that does not require any memory
massaging or templating. To accomplish this, they devel-
oped a technique called Preload+time, which uses a “half-
Spectre” gadget to recover the physical addresses of data.
Using this new primitive, they are able to precisely flip bits
in targeted memory locations, allowing them to flip bits in
Page Table Entries without risking crashing the system.

A.2. Scientific Contributions

• Identifies an Impactful Vulnerability
• Provides a Valuable Step Forward in an Established

Field

A.3. Reasons for Acceptance

1) Identifies an Impactful Vulnerability: This paper
describes how “half-Spectre” gadgets, previously
thought to be harmless, can be leveraged to exploit
a modern Linux kernel.

2) Provides a Valuable Step Forward in an Established
Field: ProbeHammer advances the state-of-the-art
in Rowhammer attacks by enabling attackers to de-
terministically conduct Rowhammer attacks. Addi-
tionally, the Preload+time primitive for recovering
physical addresses has significance to side-channel
research more broadly.

A.4. Noteworthy Concerns

1) The paper demonstrates an attack on only a single
DIMM, on one CPU model, and with the refresh
rate artificially halved. This suggests that conduct-
ing a deterministic ProbeHammer attack may be
substantially harder in practice.

16

https://arxiv.org/pdf/2002.00524v1
https://arxiv.org/pdf/2002.00524v1

	Introduction
	Background
	Virtual Memory and Caching
	The Direct Map
	Spectre
	Rowhammer

	Threat Model
	Half-Spectre Gadgets
	Half-Spectre Gadget Properties
	Exploitability of Running Examples
	From Relative To Absolute with Super TLB

	Attack Overview
	Preload+Time
	Address Translation Oracle
	Preload+Time: Attacker Data
	Preload+Time: Victim Data
	Locating PTEs
	Accuracy Evaluation

	End-to-End Exploit
	Experimental Setup
	Crash-Free Rowhammer
	Raptor Lake DRAM Addressing
	Interleaved Memory Spraying
	Rowhammer Patterns
	Page Locality
	Hammering the Triplets

	Mitigation & Discussion
	Related Work
	Rowhammer
	Memory Massaging
	Spectre
	Rowhammer Meets Spectre and Side Channels

	Conclusion
	References
	Appendix A: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

