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Abstract—Despite advances in software testing, many bugs still
plague deployed software, leading to crashes and thus service
disruption in high-availability production applications. Existing
crash recovery solutions are either limited to transient faults or
require manual annotations to target predetermined persistent
bugs. Moreover, existing solutions are generally inefficient, hin-
dering practical deployment.

In this paper, we present FIRestarter (Fault Injection-based
Restarter), an efficient and automatic crash recovery solution for
commodity user applications. To eliminate the need for manual
annotations, FIRestarter injects targeted software faults at the
library interface to automatically trigger error handling code
for standard library calls already part of the application. In
particular, when a crash occurs, we roll back the application state
before the last recoverable library call, inject a fault, and restart
execution forcing the call to immediately return a predetermined
error code. This strategy allows the application to automatically
bypass the crashing code upon such a restart and exploits
existing error-handling code to recover from even persistent
bugs. Moreover, since library calls lie pervasively throughout the
code, our design provides a large recovery surface despite the
automated approach. Finally, FIRestarter’s recovery windows are
small and frequent compared to traditional checkpoint-restart,
which enables new optimizations such as the ability to support
rollback by means of hybrid hardware/software transactional
memory instrumentation and improve performance. We apply
FIRestarter to a number of event-driven server applications and
show our solution achieves near-instantaneous, state-preserving
crash recovery in the face of even persistent crashes. On popular
web servers, our evaluation results show a recovery surface of
at least 77%, with low performance overhead of at most 17%.

I. INTRODUCTION

Minutes of downtime can cost millions of dollars for high-
availability software services [1]–[3]. Despite much research
on software testing over the past several decades [4]–[9],
deployed software is still plagued by pervasive bugs [10],
[11]. While inherent limitations due to lack of dynamic
characteristics of applications constrain static checkers, dy-
namic bug finders like sanitizers and fuzzers either depend
on test coverage or must deal with path explosion challenges.
Therefore, even rigorous testing efforts fail to eliminate all
bugs in software before deployment. Many such residual
bugs lead to application crashes, severely impacting high
availability of production services that underpin our global
critical infrastructure. Moreover, recovering from downtime
may lead to additional recovery bugs [1], [12].

To tolerate failures induced by residual bugs, deployed
services typically automatically restart after a crash or use
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Nooks [15] 7 3 Kernel extns. - <60%
Microreboot [16] 7 3 Managed code <1 >2%
Shadow drivers [17] 7 3 Drivers - <3%
Recovery Domains [18] 7 3 Kernel:34-97% - 8-560%
Rx [19] 3 7 ENV influenced ≈0.5 <5%
ASSURE [20] 3 7 Rescue-pointed ≈0.1 <7.6%
REASSURE [21] 3 7 Rescue-pointed <1 <115%
HAFT [22] 7 3 90.2% <1 200%
OSIRIS [23] 3 3 OS units: ≈60% <1 ≈5%
FIRestarter 4 4 >77% ≈0.1 <17%

TABLE I: Comparison of software crash recovery techniques.

some form of service replication (e.g., replicating worker
processes or entire server applications). Unfortunately, all such
simple solutions still result in loss of application state and
have significant impact on several classes of applications.
Applications that only retain short-lived state, such as web
servers, experience service disruption. For example, a client
request causing a target web server’s worker process to crash
will disrupt all the ongoing client connections handled by
the same process. Applications with long-lived ephemeral
state, such as caching servers, experience at least runtime
performance loss. Applications with long-lived non-ephemeral
state, such as database servers, experience data loss or, at best,
prompt lengthy recovery actions to bring the service back to a
sane state [13], [14]. Furthermore, crashes caused by software
bugs keep occurring until they are thoroughly diagnosed and
fixed, often requiring substantial manual effort.

Crash recovery solutions reduce service disruption by mask-
ing the impact of crashes for end users. Existing solutions
either perform automatic patch generation [24]–[26] (which
incurs high recovery latencies and still lose state) or employ
some form of checkpoint-restart [27]–[29]. Solutions based
on checkpoint-restart are promising, but, as shown in Table I,
are currently limited in important ways. Several only target
transient faults [16], [22], [30], while software bugs are often
persistent (e.g., deterministic memory safety bugs). Others
handle persistent bugs, but require manual annotations [20],
[21], [31] or specific system design [23]. Moreover, prior
solutions typically incur high performance overhead (even 2x
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or more) due to large checkpointing windows [20], [21], [32].
In this paper, we present FIRestarter (Fault Injection-based

Restarter), which offers automatic, efficient, state-preserving,
and instantaneous crash recovery. Our key insight is that we
repurpose library-level fault injection—a classic dependabil-
ity assessment technique [33]—to automate crash recovery.
Library interfaces report errors in interactions with the envi-
ronment, which applications need to handle. After recovering
a checkpoint, we inject targeted library-level software faults
to trigger error handling code already in the application. Our
key strategy is to piggyback on error-handling code already
existing in the target application, for crash recovery. This
allows us to recover even from persistent crashes in a manner
that is specified by the application itself. By transparently
converting application crashes into library error conditions
that the application can already handle, we eliminate the need
for manual annotations and also avoid recovery bugs [12].
Moreover, the crash recovery surface and its quality will be
as good as the application’s handling of errors from its envi-
ronment. This also means that any developer effort to improve
the quality of error-handling code automatically translates to
higher-quality crash recovery (and vice versa).

We apply FIRestarter to event-driven server applications,
which are key building blocks of modern production services
and particularly amenable to efficient crash recovery [27].
Our results show that FIRestarter can effectively and instan-
taneously mitigate the service disruption caused by crashes in
production. We are the first to efficiently and automatically
enforce a large crash recovery surface against persistent bugs.

Contributions: We make the following contributions:
1) We propose a novel crash recovery model that exploits

the contract between applications and standard libraries
as well as targeted library-level software fault injection
to automatically bypass crashing code paths.

2) We propose FIRestarter, a design and implementation
of our recovery model decomposing a target application
into a number of crash transactions. Our full FIRestarter
prototype implementation is open source and available
at https://github.com/vusec/firestarter.

3) We explore optimizations, with compiler-based in-
strumentation that can automatically and adaptively
select checkpointing implementations (hardware-based
and software-based) at runtime.

4) We apply our prototype to event-driven server applica-
tions. Our evaluation shows that FIRestarter can sig-
nificantly increase the crash recovery surface against
persistent bugs (as high as 84% on Nginx), with no
need for annotations and with practical performance
overheads (as low as 17% on Nginx).

II. FAULT MODEL

FIRestarter enables recovery from crashes due to both
transient and persistent faults in high-availability event-driven
server applications. Transient faults include issues such as tem-
porary hardware failures and race conditions, while persistent
faults include common software faults due to programming

Listing 1: Running example of a library call interval with error
handling in Nginx.

1 ...

2 ret_s = setsockopt(s, SOL_SOCKET, SO_REUSEADDR,

3 (const void *) &reuseaddr, sizeof(int));

4 if (ret_s == -1) { // Error handling

5 LOG_ERROR("setsockopt() failed");

6 if (ngx_close_socket(s) == -1) {

7 LOG_ERROR("ngx_close_socket failed");

8 }

9 return NGX_ERROR;

10 }

11
12 ...

13 ret_b = bind(s, ls[i].sockaddr, ls[i].socklen);

14 if (ret_b == -1) { // Error handling

15 err = ngx_socket_errno;

16 ...

17 LOG_ERROR("bind() failed");

18
19 if (ngx_close_socket(s) == -1) {

20 LOG_ERROR("ngx_close_socket_n failed");

21 }

22 if (err != NGX_EADDRINUSE) {

23 return NGX_ERROR;

24 }

25 failed = 1;

26 continue;

27 }

28 ...

errors such as null pointer dereferences, buffer overflows,
and dangling pointers. Generally, retrying the failed operation
suffices to recover from transient faults whereas surviving
persistent faults is much harder. Effective persistent fault
recovery requires bypassing the faulty code and gracefully
disabling the affected path without breaking the program, or
in the worst case, gracefully exiting the program.

With our focus on survivability of applications, we assume a
fail-stop fault model (even for persistent hardware faults) like
most of the research in the area [19]–[21], where the fault
crashes the application immediately and, rely on supplemen-
tary methods that can convert fail-silent bugs into fail-stop
ones [34]–[36] for broader applicability. Such crashes form
an important class of failure in common software, particularly
in the context of high availability. Modern compilers such
as GCC and LLVM provide options to instrument programs
to detect spatial and temporal memory corruption bugs and
crash the program immediately. Similarly, defensive coding
practices, such as the use of assertions to verify application
state invariants, also help to guard against fail-silent faults.

III. OVERVIEW

FIRestarter hardens unmodified applications against tran-
sient and persistent software faults that would otherwise be
fatal. It uses compiler transformations to create a lightweight
checkpoint at each library call, and rolls back to an earlier
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FIRestarter’s components

Library Interface Analyzer

Adaptive Transaction Shaper

Checkpoint Manager

Fault Injector

Input program

Crash recoverable 
program

Fig. 1: Constituent components of FIRestarter.

library call in case of crashes. For transient faults, we roll
back changes and re-execute the faulting code. If this fails, we
assume a persistent fault and inject a fault into the library call
to bypass the faulting code. Our target applications are event
driven servers, that typically run in an infinite loop accepting
incoming requests, invoking appropriate request handlers, and
returning their results.

Listing 1 shows our running example, a code snippet from
the Nginx web server, abridged and annotated for better read-
ability. On Line 2, the server sets a socket option by calling
the standard library function setsockopt(). It only invokes
the bind() library function on Line 13 if the previous call
was successful. Error handling code for both the calls, log
the failed call and close the socket. In the remainder of this
section, we explain at a high level how FIRestarter instruments
the code to survive faults, filling in the details in later sections.

FIRestarter’s transformation procedure consists of four dis-
tinct passes, as illustrated in Figure 1. First, the Library
Interface Analyzer assigns appropriate pre-defined compensa-
tion actions to all library call sites found in the application.
Based on operational and failure semantics easily obtainable
from library documentation, compensation actions revert their
effects and allow injecting library faults. In the example, we
can compensate by closing the socket to revert the effects of
setsockopt() and return the value of -1 to indicate an
error. Next, the Adaptive Transaction Shaper statically places
hooks in the code to allow the system to find suitable transac-
tion boundaries at runtime. In the example, it places hooks to
mark the start of transactions right after the setsockopt()
and bind() library calls and places end markers just before
them, encapsulating the code region between the two library
calls in a transaction. After this pass, the Checkpoint Manager
adds code to perform lightweight checkpointing at library
calls, enabling transactions to be rolled back when necessary.
FIRestarter supports checkpoints based on both hardware
transactional memory (HTM) and software transactional mem-
ory (STM). For example, the Checkpoint Manager may add
XBEGIN and XEND instructions to initiate and end hardware
transactions respectively, or instrumentation to track all the

store operations in an undo log for software transactions.
Finally, the Fault Injector adds instrumentation for handling
persistent crashes during the transactions. It uses information
gathered by the Library Interface Analysis pass to find an
alternative path to execute after the Checkpoint Manager rolls
back the state after a crash. To detect crashes, it deploys signal
handlers which handle and proxy fatal signals (like SIGSEGV
on Unix systems) to invoke crash recovery. In the example, the
Fault Injector adds instrumentation that alters the return value
of setsockopt() to -1 to divert the execution path when a
crash occurs, to the error handling code, which eventually tries
closing the socket and returns NGX_ERROR. In summary, the
FIRestarter transformations enable an application to roll back
crashes and inject non-fatal library errors instead, relying on
the application’s error handling code to cleanly handle the
error and skip the faulty code.

IV. REVERTING CRASHES

FIRestarter offers two key advances that together enable
efficient stateful recovery from both transient and persis-
tent faults: lightweight checkpointing using hybrid hardware/-
software transactions to enable efficient crash recovery, and
library-level fault injection to bypass persistently faulty code.
We discuss our checkpointing mechanism in this section and
fault injection in Section V.

To revert crashes, we need to make regular checkpoints,
which allows us to revert to the last checkpoint whenever a
crash occurs. Afterwards we can re-execute the code with no
loss of state. Regular checkpointing incurs significant runtime
overhead, so it is critical to do this as efficiently as possible.
To this end, we use memory transactions, which do not store
the entire state, but rather keep track of memory stores and
revert them to restore the last checkpoint. This approach can
efficiently achieve high checkpointing frequencies [27].

A. Hybrid Checkpointing

Logging each store in software is slow. Fortunately, the
Intel TSX instruction set extensions allow us to leverage the
L1 cache for this purpose, providing instructions to begin
or commit a transaction to memory and automatically roll
back if anything goes wrong. While originally developed for
managing concurrency, we repurpose it here for efficiently re-
covering from software faults. We will refer to this mechanism
as simply Hardware Transactional Memory (HTM). Since the
size of the cache limits HTM, it will automatically roll back if
a transaction grows too large. Moreover, unpredictable events
such as conflicts between CPU cores within the same cache
lines and interrupts also cause a transaction to abort. Therefore,
not all code can be run with HTM.

While prior work has also used TSX for reliability [22],
it falls back to unprotected execution after an abort. We
instead propose a hybrid approach, which falls back to soft-
ware transactional memory (STM) instead. To support STM
semantics, we rely on a common undo log-based design [27],
which instruments the specified code region to track all the
stores to memory and save the old data in the undo log.
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Fig. 2: FIRestarter transforming a program to introduce an adaptive transaction between two consecutive library calls.

To roll back, we walk the undo log in reverse order and
restore each modified memory location to its original value.
We additionally instrument the code region to save (and restore
when necessary) the contents of all registers in memory, using
a method akin to glibc’s setjmp() and longjmp()
functions [37].

B. Switching between HTM and STM

We get the best of both worlds: where possible, HTM yields
good performance, while where necessary, STM is available to
maximize the recovery surface. However, static analysis cannot
determine which transactions will work with HTM and which
will be aborted prematurely, because: (1) it cannot determine
the complete call graph due to the possibility of indirect
function calls, (2) it cannot predict loop iteration counts, and
(3) it cannot estimate how many page faults or other interrupts
may occur at runtime. These issues stem from fundamental
limitations of static analysis, including the inability to solve
complex aliasing problems and the lack of knowledge about
the input and control variables affected by the environment.
We must decide which type of transaction to use, at run-time.

To switch between HTM and STM, we introduce adaptive
transactions. At the locations where a transaction can start,
we insert a transaction entry gate that allows us to switch
between HTM and STM (see Figure 2). As we will explain
in Section V-A, we start transactions right after a library call
and commit them right before the next. We clone all code
between consecutive library calls, instrumenting one copy with
the XBEGIN and XEND instructions for HTM and the other
copy with undo logging for STM. The transaction entry gate
dynamically selects one of the variants.

Note that each runtime transaction must stick to the same
selected checkpoint method even across function boundaries

along its execution path, until it completes or aborts. So,
function entry points must select the transaction type of their
caller, and return sites need to apply the callee’s transaction
type at return time. At these locations we insert flow switches,
which select the correct execution path based on a global
variable, set to the current transaction type by the transaction
entry gates. We ensure that the code uses the same local
variables regardless of the selected clone so that data remains
consistent even when switching inside a function.

C. Dynamic Transaction Adaptivity

Our design so far offers a mechanism for high-frequency
checkpoints that can dynamically switch between HTM and
STM, but also requires a policy to determine when to use
which. This policy is critical for performance. Although HTM
has much better performance than STM, if HTM aborts, it
requires not just rollback, but also code re-execution using
STM to determine whether HTM aborted due to resource
constraints, or due to a real crash. A naive policy of attempting
HTM first each time is inefficient. However, permanently
switching to STM after the first abort is also inefficient, as
any transaction can randomly abort, for example due to an
interrupt.

Figure 3 shows the percentages of HTM transactions that
abort and corresponding throughput degradation we observe in
a FIRestarter-protected Nginx server. Using the naive policy of
always attempting HTM, 20% of HTM transactions abort, re-
sulting in substantial overhead. Specifically for the transactions
after the library calls malloc(), posix_memalign() and
fcntl64(), we observe 82%, 47% and 15% HTM aborts
respectively. We attribute this behavior to library calls that are
followed by large memory operations (hence exceeding HTM
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Naive hybrid policy

Hybrid policy optimized by hand

Dynamic Transaction Adaptivity
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Fig. 3: Impact of adaptive transaction policies on HTM abort
percentage and throughput degradation on Nginx.

limit), such as initializations following memory allocation.
With this, throughput degradation of Nginx shoots up to 69%.

We could mark these specific code regions manually to let
their transactions take the STM route directly without trying
HTM at all and avoid those unnecessary HTM aborts. When
optimizing by hand in such a way, the HTM aborts drop
to 0.0002% (hence invisible in Figure 3) and the throughput
degradation drops to 18%, less than a third of the original over-
head. Clearly, avoiding HTM aborts helped reduce the overall
performance impact significantly. We observe this behavior on
other applications too and discuss this in Section VI.

Following this observation, we devise a dynamic adaptation
policy and make the transactions automatically decide when
to attempt HTM and when to directly switch over to STM.
Each transaction monitors its HTM abort rates at runtime
and switches over to STM permanently when exceeding an
abort tolerance threshold. With this approach, transactions that
slow down the system due to many aborts (such as large-
scale memory initialization) switch to STM, while transactions
where resource limits are rarely exceeded continue to try HTM
before possibly falling back to STM on a case-by-case basis.

In Figure 3, we show the impact of FIRestarter with our
dynamic transaction adaptation policy on throughput of Nginx
server when we set the HTM abort tolerance threshold to 1%
with a monitoring sample size of 128. In other words, for
every 128 HTM aborts, the transaction checks the ratio of
the number of HTM aborts to the total number of executions
of the transaction, and decides to permanently switch to STM
when the ratio exceeds 1%. With this policy, FIRestarter incurs
a performance overhead of 21% on Nginx, which is very
close to the best that we could achieve using manual decision
marking. Our policy scores good performance without any
manual annotations.

V. PREVENTING FURTHER CRASHES

So far we described a system that can efficiently roll back
execution after a crash and try again. This is effective against
transient faults, but, in the face of persistent faults, will result
in an endless crash-recovery loop. To mitigate persistent faults
in the absence of a patch or manual annotations, FIRestarter
injects a fault in a suitable library call, piggybacking on
existing error handling code to bypass the faulty code.

Library calls often interact with the environment, possibly
resulting in errors, which are typically reported to the caller

Execution path diversion

NOT
Recoverability possible possible Total
Operation reversible 23 0 23
No reversion needed 9 26 35
Operation deferrable 5 2 7
State restoration needed 12 8 20
Irrecoverable 12 4 16

Total 61 40 101

TABLE II: Library functions in Nginx, Apache, Lighttpd,
Redis, and PostgreSQL classified based on recoverability and
ability to divert (faulty) execution via fault injection.

through well-documented mechanisms. A well-written pro-
gram shall handle such errors appropriately. So, library calls
are the ideal means to inject faults that will divert the protected
program’s execution away from the faulty code which caused
the crash and prompted an execution rollback.

To inject a fault, we need to perform several steps: (1) roll
back the execution to a suitable library call, (2) revert the
operation of the library call, and (3) make the library call
report a suitable error according to its interface documentation.
We roll back execution using the same mechanisms proposed
for transient faults in Section IV and will describe how to
determine which checkpoint to restore in Section V-A. Select-
ing the right restore point is tightly coupled with reverting
operations and therefore discussed in the same section. We
discuss how to inject the fault in Section V-B and finally
discuss the impact on our running example in Section V-C.

A. Finding a Suitable Restore Point

The Library Interface Analyzer pass identifies which library
calls are useful for recovery. We aim to minimize transaction
sizes to reduce checkpointing overhead due to transaction
aborts (for HTM) as well as undo log size (for STM) and
because it is hard to roll back any operation in the transactions
with externally visible effects. However, we need the ability to
inject faults to divert execution away from a crash. Therefore,
the shortest feasible (and therefore most desirable) transaction
granularity is the interval between consecutive interactions
with the environment (i.e., library calls).

We perform static and dynamic analysis on the target
application to determine how it uses shared libraries. Learning
the error handling semantics from their documentation, we
classify library calls into several recoverability classes: (1)
Operation reversible, when a revert operation for the call exists
(e.g., munmap() can revert an mmap() library call), (2) No
reversion necessary, when the call is idempotent and does
not modify application state (e.g., getpid()), (3) Operation
deferrable, when we can defer the effects of a successful call
until after its transaction successfully commits (e.g., usually
free()), (4) State restoration necessary, when the call is
reversible if specific runtime state prior to the call execution
can be restored (e.g., by checkpointing call arguments), and
(5) Irrecoverable, when a call has side effects that go beyond
the application process memory and have externally visible
consequences (e.g., write(), send()).
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...
ret_s = setsockopt();
if (ret_s == -1) {
// Error handling
...
}
...
ret_b = bind();

...
ret_s = setsockopt();
if (DIVERT == tx_gate[site_id]) {
  <fault injection code block>
}
if (ret_s == -1) {
// Error handling
...
}
...
ret_b = bind();

…
  ret_s = setsockopt();

__HTM: if (DIVERT == tx_gate[site_id]) {
    <fault injection code block>
  } else if (HTM != tx_gate[site_id]) {
    goto __STM;
  }
  xbegin();
  if (ret_s == -1) {
  // Error handling
  ...
  }
  ...

  xend();

   ret_s = setsockopt();
__STM: if (DIVERT == tx_gate[site_id]) {

    <fault injection code block>
  } else if (HTM == tx_gate[site_id]) {
    goto __HTM;
  }
  // STM (undolog) instrumentation
  stm_begin();
  if (ret_s == -1) {
  // Error handling
  ...
  }
  ...
  stm_end();

…
  ret_s = setsockopt();

__HTM: if (DIVERT == tx_gate[site_id]) {
  ret_s = -1;
  } else if (HTM != tx_gate[site_id]) {
     goto __STM;
  }
  xbegin();
  if (ret_s == -1) {
  // Error handling
  ...
  }
  ...

  xend();

  ret_s = setsockopt();
__STM: if (DIVERT == tx_gate[site_id]) {

    ret_s = -1;
  } else if (HTM == tx_gate[site_id]) {
    goto __HTM;
  }
  // STM (undolog) instrumentation
  stm_begin(); 
  if (ret_s == -1) {
  // Error handling
  ...
  }
  ...
  stm_end();

(a)

(b)

(c) (d)

  ret_b = bind();
  ...

  ret_b = bind();
  ...

  ret_b = bind();
  ...

  ret_b = bind();
  ...

  ...   ...

Fig. 4: Transformation of our running example code snippet by FIRestarter’s components; a: original code; b: add hook for
fault injection; c: clone code, instrumenting results with transaction mechanisms; d: add fault injection code.

Table II provides statistics on recoverability classes of the
standard library functions used by common server applications
(Nginx, Apache, Lighttpd, Redis and PostgreSQL) and the
ability to divert (faulty) execution via fault injection. As
the table shows, only 16 out of 101 library functions have
operational semantics unsuitable for crash recovery. Note that,
in our analysis, we use the most conservative definition for
the irrecoverable class (no external side effects allowed), but
more less-conservative approximations (e.g., allowing a socket
write() to produce network-visible side effects that can be
masked by injecting a network error) may enable a larger
recovery surface.

For all the other (85 out of 101) suitable library functions,
we created wrappers to perform compensation actions which
revert the effects of the functions and allow for fault injection
afterwards. This took 503 source lines of C code. Note that
this is a one-time effort to cover widely used standard library
functions and need not be repeated to extend the protection to
additional programs. Statically linked with the application, our
instrumentation facilitates their invocation when necessary.

Using static analysis, we then trace the use of the return
value to determine which library call sites are followed by
error handling code and are thus suitable for fault injection-
based crash recovery. Table II shows that 61 out of 101 calls
are checked for errors, allowing them to be used at the start

of a transaction to automatically divert execution upon restart.
We cannot statically determine where a transaction ends

because it depends on run-time control flow, but we do use
the results of the static analysis to decide on the transaction
size at runtime. Library calls typically indicate failure by their
return values. A few library calls, such as strlen(), cannot
report errors; in other cases, the application may ignore return
values of library calls that do report errors. In both these cases,
there would not be an error handler. Therefore, such call sites
are unsuitable for fault injection because we cannot change
the execution path. Nonetheless, if such calls can be reverted
(or are simply idempotent), the Adaptive Transaction Shaper
extends the transaction at runtime to include them and reverts
the results if the transaction is rolled back. If they cannot be
reverted, the Shaper ends the transaction and the application
cannot recover until the next library call amenable to fault
injection.

B. Fault Injector
The Fault Injector adds instrumentation to inject library

faults to divert execution upon restart. We instrument each
transaction to perform a compensation action, reverting the
library call in which a fault is to be injected, and then modify
the runtime return value of the library call to report an error
to the application. The altered return value causes the program
to handle the injected error, repurposing the error handler
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for recoverability. The transaction entry gate facilitates this
operation, as shown in figure 2.

Reverting the effects of library calls poses two challenges:
(1) effects of library calls are not necessarily limited to the
same process, and (2) the library call is outside our transac-
tions and hence we must explicitly undo any of its memory
modifications within the process. We use the operational
semantics of the various standard library calls, obtained by
the Library Interface Analyzer, to preserve any application
memory that the library calls may modify. After rolling back
memory operations that occurred after the library call and
running its compensation action, we also restore the library
call-affected memory areas (and state in general).

Errors occurring in critical paths typically render an applica-
tion non-functional. We define critical paths of an application
as those code paths without which the application would not be
able to perform any useful service. In terms of testing efforts,
these are code paths that the high-priority test cases exercise.
Typically, error handlers in critical paths either retry the failed
operation indefinitely or ignore the failure and continue in the
same code path anyway. They do not divert execution paths
since they are critically required to be executed. For example,
the Nginx web server calls epoll_wait() to wait for in-
coming HTTP requests. If this operation fails, there is no way
around it but to retry. In contrast, error handlers in non-critical
paths typically take an abortive approach since the operation
does not fundamentally hinder the application’s services. They
take a distinct failure path to gracefully propagate the error to
the user or divert execution towards other paths. For example,
the Nginx web server calls malloc() to allocate memory
when handling a client request. If this operation fails, Nginx
detects an out-of-memory condition, gracefully aborts request
handling, and returns an internal server error to the client
before moving to the next request. Fortunately, fatal faults
rarely occur in critical (and thus heavily tested) code paths
of production software. We specifically aim to recover from
residual faults that remain after extensive testing. Since these
rarely occur in critical paths, for most cases, error handlers
provide an effective way to bypass faulty code.

C. Running example

Figure 4 shows the code of our running Nginx example (part
a) as well as the result of the LLVM [38] transformations that
FIRestarter applies (parts b, c, and d) to enable crash recovery
between two library calls, setsockopt() and bind()
in this example. To protect the region between the library
calls in Figure 4(a), we first determine the operation and
failure semantics of the first library call, setsockopt().
The call belongs to the idempotent recovery class and returns
-1 to indicate an error condition. In Figure 4(b), we add
a conditional branch after the first library call. The global
variable tx_gate[] for this site controls the branch. If the
condition is true, it injects an error. Figure 4(c) shows the
instrumentation to enable lightweight checkpointing. We clone
the snippet and merge the local variables between the two
copies. Afterwards, we update the labels and transaction entry

Nginx Apache Lighttpd

# unique transactions 78 75 136
# libcalls embedded within 102 468 17

# unique irrecoverable transactions 12 17 30
Unique recoverable transactions 84.6% 77.3% 77.9%

TABLE III: Runtime recoverable surface w.r.t standard test
suite workloads of Nginx, Apache, and Lighttpd web servers.

gate to point to each other, depending on the runtime value
of the chosen checkpointing mechanism in the global gate
tx_gate[] for this site. For HTM, we add the XBEGIN and
XEND instructions. The abort handler consults our dynamic
transaction policies to potentially switch to STM. For STM,
we instrument all the store instructions to update the undo
log in memory, in addition to calling a hook that preserves
the register state. Finally, as shown in Figure 4(d), the Fault
Injector consults the Library Interface Analysis for error
semantics and sets the value of ret_s to -1 in both the copies
of the fault injection code block.

During the application’s execution, if a crash occurs any-
where between the library calls, the following events occur.
Inside the HTM code region, Intel TSX aborts the transaction,
restoring the memory and the registers to the state just after the
setsockopt() call (i.e., right at the XBEGIN instruction
within xbegin()) and calls the abort handler specified by
xbegin(). Our abort handler consults the dynamic trans-
action policy, which sets the gate to DIVERT and applies
the compensation action for the library call. setsockopt()
belongs to the recoverable recoverability class and the com-
pensation action simply closes the socket. Based on the failure
semantics for the call, the Fault Injector sets the return value
of the library call to -1. When the execution resumes after the
abort handler finishes, the execution path is diverted towards
the error handling code, gracefully preserving the rest of the
runtime state. Thus, FIRestarter converts a crash into an error
condition that the application can gracefully handle.

VI. EVALUATION

We evaluate FIRestarter along the following dimensions:
(1) recoverable surface, (2) effectiveness in surviving faults,
(3) crash recovery latency, (3) run-time performance overhead,
and (4) memory overhead. We run all evaluations on an Intel
i7-6700K with 16 cores at 4.00 GHz and 16 GB of DDR4
memory, running 64-bit Ubuntu 16.04 LTS Linux distribution.

A. Recoverable surface

We define the recoverable surface as the fraction of transac-
tions where, upon a crash, FIRestarter can (1) restore to a sane
state, and (2) can divert execution away from the persistent
fault. The former depends on the amenability of the library call
to recovery. In general, we consider code/calls with externally
visible effects as irrecoverable since we cannot undo their
effects by process-local operations (e.g, send()). The latter
depends on the availability of suitable error handling code at
the start of a transaction. To measure the runtime recoverable
surface, we instrument and profile the Nginx, Apache and
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Fail-stop Fail-silent

Crashes Crashes Crashes
Server Injected recovered Injected Triggered recovered
Nginx 10 10 13 2 2
Apache 4 4 12 0 -
Lighttpd 41 29 11 0 -
Redis 10 9 10 0 -
Postgre 27 22 33 0 -

TABLE IV: FIRestarter’s crash recovery effectiveness against
injected persistent faults.

Lighttpd web servers running their standard test suite work-
loads and measure the fraction of unique transactions that are
recoverable.

Table III depicts the runtime recoverable surface for the
three web servers. Certain library calls may be unsuitable
for execution diversion based on library “faults” (e.g., the
return value of printf() is typically ignored), but have
no adverse effect on the application state. FIRestarter embeds
such code regions in their last transaction. The table also shows
the number of such calls. We observe that with FIRestarter,
84.6%, 77.3% and 77.9% of the runtime transactions of Nginx,
Apache and Lighttpd servers respectively, are recoverable. Im-
proved error handling in applications can further increase the
recovery surface, except in case of irrecoverable transactions.

B. Survivability

To evaluate how effective FIRestarter is at crash recover-
ability, we perform fault injection experiments on the web
servers Nginx, Apache, and Lighttpd. We use the HSFI [39]
framework to inject persistent and fatal faults in every crash
transaction after the server starts up, activating one fault per
experiment. We use each server’s standard test suite as the
workload to drive our fault injection experiments.

We first inject the faults and then apply FIRestarter’s com-
piler instrumentations to emulate a real world scenario where
bugs remain in the source code while FIRestarter facilitates
crash recovery for the compiled source code. Since we can
only exercise those injected faults which are actually executed
by the workload, we first perform program execution profiling
to determine which basic blocks execute during the workload’s
run and instruct HSFI to inject faults in only those basic
blocks—activating one fatal fault per experiment. By repeating
the experiment, we trigger each injected fault.

In reality, bugs are not uniformly distributed over the
code in a production-quality application. Faults in critical
code paths that are necessary for a program’s core behavior
are unlikely to escape testing. So, faults representative of
deployed software are typically in code triggered by rarely
executed features or corner cases, the non-critical code paths.
FIRestarter’s goal is to protect exactly those least tested code
regions likely to contain residual faults. Therefore, we measure
the effectiveness of FIRestarter on non-critical code paths.
We define critical paths using the programmer’s intentions
as observable from the error handling code. Specifically, we
find that error handlers in critical code paths either exit the
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Fig. 5: Crash recovery latency in milliseconds.

program or retry the same code path, implicitly assuming
temporary failure. In contrast, in non-critical parts, the code
branches off to handling code (e.g., to report an error), steering
away from its original execution code path to continue the
execution. Coverage of the remaining paths highly depends on
the test suites. We found 10, 4, 41 and 27 transactions within
non-critical paths of Nginx, Apache, Lighttpd web servers,
and PostgreSQL database server respectively, while running
their standard tests. The Redis key-value server (which, unlike
memcached, does not require multithreading for parallelism),
has 10 such transactions while running SET/GET workloads.
We inject one fault in each unique transaction, in a randomly
selected basic block. Table IV presents our results. As shown
in the table, for Apache and Nginx, FIRestarter successfully
performs crash recovery in 100% of the cases, bypassing the
region with the fault and retaining both the runtime state and
availability. The other tests reach success rates greater than
70%: Lighttpd successfully recovered from 29 of the 41 (70%)
injected faults, Redis from 9 of 10 (90%), and PostgreSQL
from 22 of 27 (81%). Since the remaining cases fall in the
irrecoverable class (Table II), FIRestarter aborts the execution
as intended.

Going beyond our fault model, we next instruct HSFI to in-
ject non-fatal latent faults to observe FIRestarter’s response to
a variety of other software faults (including buffer overflows,
or corrupted pointers, array indices, integers, and operators).
Injecting 13 such faults in Nginx, 12 in Apache, 11 in
Lighttpd, 10 in Redis, and 33 in PostgreSQL (one fault per run
and in one transaction per run), only two of them eventually
triggered crashes, both in Nginx. In the remainder of the
cases, the corruptions sometimes caused deviations in test
results. This is expected as FIRestarter handles crashes only.
It successfully recovered from the crashes and successfully
diverted execution using error handlers, demonstrating its
effectiveness even for faults beyond our target fault model.

C. Recovery Latency

Figure 5 shows how the recovery latency varies across sev-
eral fault-triggered executions of Nginx, Apache and Lighttpd
servers. We injected fatal faults and measured the time between
the invocation of FIRestarter’s signal handler and handing
the execution back to the application after the recovery. The
typical latency is in the order of several tens of milliseconds.
Depending on the execution context just before the crash,
undolog-based recovery may take longer for restoring memory
operations (including restoring the stack to its previous state),
but even in the outliers, the latency remains under a second.
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Nginx: HTM-fail sample sizes
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Apache: HTM-fail sample sizes
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Lighttpd: HTM-fail sample sizes
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Fig. 6: Dynamic Tx Adaptation on web servers for different
HTM failure thresholds of 1%-64%.

D. Performance overhead

FIRestarter dynamically adapts to its workload to maxi-
mize performance while retaining recoverability. Two factors
primarily affect FIRestarter’s performance overhead: (1) the
amount of execution time spent in STM mode (which is
slower than HTM), and (2) the number of HTM failures
(which cost time due to execution rewinding) tolerated before
switching to STM. Intuitively, the less time spent in STM,
and the sooner the switch to STM where necessary, the
lower the performance overhead. In other words, switching
too soon and switching too late both harm performance. In
order to understand these dynamics, we set up the following
experiment. We subject the instrumented web servers to an
onslaught of client requests from the standard ApacheBench
benchmark suite and let FIRestarter track the number of ex-
ecutions and corresponding HTM failures for every protected
region. We define two parameters, the HTM abort threshold
and the accounting sample size. The threshold defines the
maximum ratio of HTM failures to the number of executions
of a protected region before we switch to STM. The sample
size determines how often FIRestarter performs the threshold
check. For example, with a sample size of 4, we perform the
threshold check every 4 executions of a particular protected
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Fig. 7: Normalized runtime performance overhead of HTM,
STM, and FIRestarter. FIRestarter significantly reduces the
performance impact in comparison to STM-only.
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Fig. 8: HTM failures observed for HTM-only and FIRestarter.
FIRestarter significantly reduces HTM aborts.

region. We run the ApacheBench workload as described above
on each of the three web servers, with varying thresholds
between 1% and 64% and varying sample sizes between 2
and 128. Figure 6 shows the recorded results for the three web
servers during normal (crash-free) execution. The results show
that the performance is sensitive neither to the sample size, nor
to the threshold, although lower thresholds do perform slightly
better. Overall, a threshold of 1% with a sampling size of 4
achieves the best performance.

Figure 7 shows a comparison of FIRestarter’s performance
overhead with HTM-only and STM-only approaches of re-
coverability. The HTM-only variant has all the library call
intervals instrumented with HTM transactional boundaries and
we set the HTM transaction abort handler to automatically
fall back to executing the vanilla unprotected code. HTM
aborts occur due to exceeding HTM resource limits, page
faults and interrupts. So, this gives no recovery guarantees
at all (even for transient faults) and is only included for
performance comparison. The STM-only variant has all the
library call intervals instrumented with undolog-based memory
checkpointing [27], extended with support for register restora-
tion. It provides full protection. We then run the wrk [40]
benchmark for the web servers and the standard benchmarks
for Redis and PostgreSQL to measure the runtime overhead
under normal execution. We saturate the servers while running
the client workloads on a separate machine connected to
the server by a dedicated 100 Gbit/s network link. Figure 7
shows that compared to STM-only, FIRestarter brings down
the performance overhead significantly. The runtime overhead
of 17% on Nginx and Lighttpd, 14% on Apache and under
12% on Redis show that much better reliability is within the
reach of reasonable performance overheads even for off-the-
shelf software. Figure 8 shows that the percentage of HTM
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Normalized memory overhead
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Fig. 9: Normalized mean memory overhead (RSS) of HTM,
STM, and FIRestarter.

aborts drops drastically for all the listed applications. The
smaller reduction in HTM failures for the FIRestarter variant
of PostgreSQL implies that FIRestarter switches to STM more
often, matching the limited performance gain in Figure 7.

E. Memory overhead

Figure 9 shows the mean memory overhead (RSS) of
FIRestarter for each of the servers. We observed similar
increase in binary sizes indicating that the overhead is mainly
due to our instrumentation which includes code duplication
and facilitating the adaptive switch. The undo log instrumen-
tation for STM-only adds additional overhead [27] compared
to an HTM-only solution.

F. Effectiveness against real-world bugs

Finally, we evaluate the real-world effectiveness of
FIRestarter by reproducing several fatal bugs previously found
to have affected servers in production environments.

Nginx (version 1.11.0) had a NULL pointer dereferenc-
ing bug in its ngx_http_ssi_get_variable() func-
tion [41]. Nginx worker process would crash when an incom-
ing request contained a subrequest that requires Server Side
Includes (SSI) substitution. We instrument the same version of
Nginx with FIRestarter and subject it to the same conditions to
trigger the crash. The instrumented server runs the crash-prone
code within a transaction. This transaction begins after the
last executed library call, pread(). Upon hitting the crash,
our SIGSEGV handler initiates crash recovery. The library
call, pread(), needs no compensation action, and the fault
injector makes the library call return -1 and sets errno to
EINVAL. This error percolates and the Nginx server eventually
returns an empty response, thus effectively surviving the crash
by turning it into an error.

On Lighttpd version 1.4.44, a WebDAV [42] request mixed
with other incoming requests on the same keep-alive connec-
tion triggers a crash [43]. Due to a missing cleanup operation
in the mod_webdav_connection_reset() function, the
server can access an already freed memory pointer, leading
to an immediate crash. We subject a FIRestarter-instrumented
Lighttpd server to the same conditions to trigger the crash.
However, our SIGSEGV handler initiates crash recovery in the
last transaction, which in this case, begins after an open64()

library call. After checkpoint rollback, its compensation action
closes the opened file descriptor and sets the library call’s
return value to -1. The error value percolates and instead of
crashing, the server returns an HTTP error response of ”403 -
Forbidden”. Thus, it survives the crash to continue responding
to other requests, showing the effectiveness of FIRestarter
against fatal bugs encountered in production.

VII. LIMITATIONS AND FUTURE WORK

FIRestarter repurposes existing error handling code to re-
cover from crashes. We describe its limitations below.

Faults in error handlers and critical paths: Faulty error
handling code hinders successful crash recovery. If a crash
occurs while the application is executing error handling code,
there will typically not be an error handler for the error
handler. We do not expect FIRestarter to provide crash re-
coverability in such scenarios, and accept that crash recovery
can only be as good as the application’s error handling
capabilities. Similarly, faults in critical paths of an application
obstruct meaningful execution progress (e.g., in the event
processing loop of an event driven server). Even if FIRestarter
successfully disables the crash-affected region, availability of
the application suffers since it would repeatedly try to execute
the disabled region. We expect pre-deployment testing efforts
to eliminate the bugs in critical paths, as these paths should
be covered by all test cases.

Bugs in shared libraries: FIRestarter does not protect
from bugs in shared libraries, although we can overcome
this limitation by statically linking the libraries. It should
be noted that doing so would change the locations where
faults can be injected from the original library calls to the
library calls issues by the now-embedded shared library. In
theory, this may be either beneficial or detrimental. In practice,
we expect this will be beneficial for the common case of
custom shared libraries that are part of the application. Such
libraries would typically forward environmental errors to the
caller, leaving the recoverable surface intact while allowing
for smaller transactions.

Shared memory interactions: Applications may use
shared memory for inter-process communication. Such oper-
ations have externally visible consequences. Although we did
not run into this in the evaluated set of applications (except
PostgreSQL, where such interactions are irrecoverable), we
must exclude regions within shared memory areas from trans-
actions by instrumenting library calls that setup and manage
shared memory.

Multithreading: Our use of HTM and STM limits con-
current executions. Since we repurposed Intel TSX for HTM,
allowing concurrent executions within the transactions can
result in additional aborts due to conflicting concurrent writes.
Even if we extend STM to support concurrency, the restored
values in memory may not remain consistent for re-execution
because of non-determinism in thread scheduling. We leave
this for future work, to explore supporting deterministic thread
scheduling and restricting concurrency at library calls by
some form of batching. However, many servers also provide
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multi-process configurations (for example, Apache) where this
limitation would not apply.

Despite these limitations in the general case, our experi-
ments show that for practical server software (our main target),
our approach is effective and efficient.

VIII. RELATED WORK

Restart-based recovery mechanisms provide protection
against crashes caused by transient faults. As an example, in
microreboots [16], Candea et al. propose to build applications
out of small, loosely coupled components [44]—each of which
can be recovered, by separating application logic from data,
by means of a restart. In contrast, FIRestarter recovers from
crashes due to both transient and persistent faults. Moreover,
it recovers at a finer granularity (environment interaction
intervals rather than full-fledged components), resulting in less
disruption to availability.

Since operating system drivers and extensions are major
sources of bugs with a large impact [45], [46], solutions
such as Nooks [46] and shadow drivers [17] provide exe-
cution monitoring capabilities to replace faulty drivers and
allow the system to remain available. Similarly, multiserver
operating systems offer resilience against transient faults in
(mostly stateless) drivers [47], [48] and core operating systems
functions [49], often through component restart. More recently,
researchers have extended (limited) recovery procedures to
stateful interaction across multiple components and (some)
non-transient faults through checkpointing [23]. However,
these techniques are specific to particular types of software
components, and do not generalize to event-driven server
software.

A related reliability technique, software rejuvenation [50]
also uses restarts, but this time to proactively restart target
applications to avoid failures due to resource leaks and dead-
locks. In contrast, FIRestarter recovers from crashes.

HAFT [22] partitions applications using instrumentation to
detect transient hardware faults (e.g., due to cosmic rays).
HAFT also uses hardware transactions for fault tolerance, but
falls back to unprotected execution whenever the hardware
runs out of resources to record execution state changes.
In contrast, FIRestarter switches to software checkpointing,
increasing the recoverable surface even for transient faults.
Indeed, we show that hybrid transactions that have been used
for concurrency in the past [51], are also a powerful technique
for crash recovery.

To address faults from external sources, other researchers
also developed compiler-assisted checkpoint-restart tech-
niques, for instance, to allow continued program execution
in low-powered energy-harvesting devices [52]–[54]. Specifi-
cally, they handle the transient faults resulting from frequent
power disruptions by restoring the state to the last checkpoint
when power gets restored, allowing continued application
execution in the face of hardware (power) faults. FIRestarter,
on the other hand, minimizes downtime due to fatal persistent
software faults in the application code.

Fault injection [39], [55]–[59] has been a well-studied
dependability technique to improve software testing, by auto-
matically injecting various kinds of faults to ascertain robust-
ness of software amidst potential fault conditions. FIRestarter
repurposes fault injection to instead facilitate crash recovery
from previously undiscovered faults in deployed software.

For crash recovery of persistent faults [19]–[21], restarting
applications or components does not suffice, since re-execution
may simply hit the same fault again, leading to an infinite repe-
tition of crash recovery. Rx [19] therefore applies checkpoint-
restart methods to recover an application from a crash and
then modifies the application environment parameters such as
memory availability and allocation patterns, in an attempt to
divert re-execution away from fault-inducing code paths. It
may take several rollbacks (potentially to progressively older
checkpoints), while trying out several environment changes,
for recovery to be successful. Instead, we take a direct ap-
proach by injecting environment interaction failures to force
the execution towards an error handling path. ASSURE [20]
and REASSURE [21] introduce binary instrumentation to
perform error virtualization to divert application execution
from crash-prone code towards locations in the application’s
code marked as rescue points. Unlike FIRestarter, they require
offline analysis or manual annotations to map failure regions
to suitable rescue points. Moreover, since they use a record-
replay infrastructure based on execution logs to support offline
analysis, the runtime overheads are significantly higher (up
to 115%) [20]. We take a different approach toward error
virtualization, where we instead utilize known environment
interaction semantics for execution path diversion, eliminating
the need for runtime profiling or manual analysis of application
behavior. Moreover, runtime state checkpointing in FIRestarter
is lightweight and limited to active crash transactions only.

IX. CONCLUSION

We presented FIRestarter, which demonstrated novel
environment-oriented crash recovery by utilizing the appli-
cation’s own error handling code for crash recovery. We
showed that the choice of library call intervals to define the
boundaries of our crash transactions opens up opportunities for
performance optimizations by leveraging hardware support to
speed up runtime tracking of memory operations.
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