
METAlloc: Efficient and Comprehensive Metadata
Management for Software Security Hardening

Istvan Haller
Vrije Universiteit Amsterdam

i.haller@student.vu.nl

Erik van der Kouwe
Vrije Universiteit Amsterdam

vdkouwe@cs.vu.nl

Cristiano Giuffrida
Vrije Universiteit Amsterdam

giuffrida@cs.vu.nl

Herbert Bos
Vrije Universiteit Amsterdam

herbertb@cs.vu.nl

ABSTRACT
Many systems software security hardening solutions rely
on the ability to look up metadata for individual mem-
ory objects during the execution, but state-of-the-art
metadata management schemes incur significant lookup-
time or allocation-time overheads and are unable to
handle different memory objects (i.e., stack, heap, and
global) in a comprehensive and uniform manner.

We present METAlloc, a new memory metadata man-
agement scheme which addresses all the key limitations
of existing solutions. Our design relies on a compact
memory shadowing scheme empowered by an alignment-
based object allocation strategy. METAlloc’s allocation
strategy ensures that all the memory objects within a
page share the same alignment class and each object is
always allocated to use the largest alignment class possi-
ble. This strategy provides a fast memory-to-metadata
mapping, while minimizing metadata size and reduc-
ing memory fragmentation. We implemented and eval-
uated METAlloc on Linux and show that METAlloc
(de)allocations incur just 3.6% run-time performance
overhead, paving the way for practical software secu-
rity hardening in real-world deployment scenarios.

1. INTRODUCTION
Many common software security hardening solutions

need to maintain and look up memory metadata at run-
time. Examples include bounds information to validate
array references [1,2], type information to validate cast
operations [12], solutions that prevent use-after-free ex-

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

EUROSEC’16, April 18-21 2016, London, United Kingdom
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to

ACM. ISBN 978-1-4503-4295-7/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2905760.2905766

ploits [11,15], and object pointer information to perform
garbage collection [13]. While newer programming lan-
guages can often track such metadata in-band using fat
pointers, previous efforts to implement in-band meta-
data management in systems programming languages,
such as C or C++, have found limited applicability due
to poor ABI compatibility and nontrivial overhead [4].

The alternative solution is to associate metadata in-
formation with the memory objects themselves, assum-
ing we have a mechanism to map pointers to the appro-
priate metadata. Such a primitive is the key to imple-
menting modern metadata management schemes, but it
is also challenging because it needs to support all the
possible memory objects (heap objects allocated with
malloc(), globals, and stack objects) as well as mini-
mize the performance and memory impact of metadata
update and lookup operations.

Minimizing the impact of update operations is chal-
lenging, because allocation and deallocation of mem-
ory objects and their metadata occurs frequently dur-
ing execution. Minimizing the impact of lookups is also
challenging, since metadata lookup must be able to sup-
port interior pointers into nested classes, structures, and
arrays—dictating support for range queries and disqual-
ifying the use of space- and time-efficient hash tables.

Current state-of-the-art software hardening projects
all rely on tailored, mostly one-off solutions for meta-
data management, but none of them simultaneously
achieves low lookup and update impact in all cases. As
a result, none of them provides a generic solution. Com-
mon approaches include tree-based metadata handling
and memory shadowing.

Tree-based approaches [7, 11] store an interval node
for each allocated object according to its bounds. Un-
fortunately, tree lookups can result in a prohibitive per-
formance hit, as the tree depth is frequently in the dou-
ble digit range (more than 1,024 memory objects). The
lookup time is also unpredictable, as it varies with the
object count. As a result, tree-based systems are un-
suitable for most production situations.

http://dx.doi.org/10.1145/2905760.2905766

Traditional memory shadowing, in turn, relies on a
fixed pointer-to-metadata mapping [1, 2, 15]. The key
design choice for this approach is the metadata compres-
sion ratio. The metadata compression ratio represents
the number of metadata bytes that need to be tracked
for each data byte. For example, assume we store one
byte of metadata for each block of eight bytes. In this
case the compression ratio is 1

8 . If we have a pointer
p and an array of metadata starting at address q, we
can compute a pointer to the metadata for object as
1
8p + q. This way, metadata can be located very effi-
ciently. However, choosing the appropriate compression
ratio is difficult, as it enforces a minimum alignment on
every memory allocation. Small compression ratios re-
sult in inflated metadata size and a large tracking over-
head, while large compression ratios result in significant
memory fragmentation. In practice, memory manage-
ment systems typically only guarantee alignment up to
8 or 16 bytes. This means that to keep the compression
ratio reasonably small only a single byte of metadata
is supported [1,2]. Even then, this approach introduces
prohibitive initialization time and memory overhead for
large objects in case multi-byte metadata is needed. Fi-
nally, recent approaches rely on custom allocators to
reduce the impact of memory shadowing on the heap,
but cannot support efficient and comprehensive meta-
data management including more performance-sensitive
objects on the stack [12].

In this paper, we propose METAlloc, a new meta-
data memory management scheme based on an efficient
and comprehensive variable memory shadowing strat-
egy. Our strategy builds on recent developments in
heap [6] and stack [10] organizations to implement a
variable and uniform pointer-to-shadow mapping and
significantly reduce the performance and memory im-
pact of metadata management. Our results show that
METAlloc is practical and can support efficient whole-
memory metadata management for several software se-
curity hardening solutions.

Summarizing, we make the following contributions:

• We propose a new memory metadata management
scheme that supports interior pointers and is time-
and space-efficient in both lookups and updates
across all memory object types.

• We present a prototype implementation termed
METAlloc, which demonstrates that efficient and
comprehensive metadata management is feasible
and widely applicable in practice.

• We present an empirical evaluation showing that
METAlloc incurs a run-time performance overhead
of just 3.6% for (de)allocations on SPEC2006.

2. METAlloc
As we have seen, one of the major limitations of state-

of-the-art memory shadowing approaches is the diffi-
culty of getting the compression ratio right. Because

the right value may differ from application to applica-
tion, the intuitive solution is to enable a variable com-
pression ratio. This eliminates the fixed memory over-
head associated with metadata shadowing and greatly
reduces the allocation-time performance hit.

METAlloc’s key goal is to implement a metadata man-
agement scheme handling all memory objects in a uni-
form and highly efficient manner, regardless of their al-
location type (heap, stack, or global memory). There
are two requirements to accomplish this goal. The first
is to support a simple, efficient, and uniform mechanism
to associate pointers with the compression ratio. The
second is the ability to optimize the compression ra-
tio as much as possible, ideally such that only a single
metadata entry is needed for each object. METAlloc
meets both these requirements by ensuring that all the
memory objects within a memory page share a nontriv-
ial common alignment, which is fixed as long as there
are active objects within the page. This requirement
serves as a basis for our scheme and is met by draw-
ing from modern heap [6] and stack [10] organizations
widely used in production, as discussed in Section 2.4.

Alignment relates directly to the compression ratio,
namely an n-byte object alignment allows one meta-
data entry to be associated to every group of n bytes
within said object. Having uniform alignment within
each memory page allows METAlloc to associate com-
pression ratios to the individual memory pages and to
look them up using a mechanism similar to page tables.
Such page tables also include the location of the meta-
data region corresponding to the individual pages. This
mechanism is described in the following section.

2.1 Efficient retrieval of page information
Because lookups are expected to be very frequent,

the page table design is very performance-sensitive. For
this reason, METAlloc opts for a single-level page table
design, which requires only one memory read for each
lookup. We refer to this data structure as the meta-
page table. Figure 1 shows the data structures of MET-
Alloc, including the use of the meta-page table. Given
a pointer, we split it in a page index and an offset. The
page index is used as an index into the meta-page table,
which is an array stored at the page table base. This
page table base is a compile-time constant and there-
fore requires no extra memory read. The entries in this
array are eight bytes large, split between the seven-byte
metabase pointer and the one-byte base-2 logarithm of
the memory alignment. The metabase points to the
start of an array of metadata entries available for this
page table entry. The size of the entries of the meta-
data array is determined by the metasize compile-time
constant, which specifies the amount of metadata per
object. It should be noted that objects larger than
the alignment size have multiple metadata entries, each
with the same contents. The offset part of the origi-
nal pointer divided by the alignment serves as an index
into the metadata array, allowing the correct metadata

pointer

pageidx * 8 +
page table base

pageidx offset

page table

alignmetabase alignmetabasealignmetabase

(offset >> align) *
metasize +
metabase metadata

Figure 1: METAlloc’s data structures

entry to be located for the specified object.
While the size of the meta-page table (for x86-64

systems using 48-bit virtual addresses and 4096-byte
pages) is theoretically 236 entries or 512 GB, only pages
corresponding to address ranges currently in use by the
process need to be allocated. To implement this strat-
egy, METAlloc reserves the required virtual memory
area in advance and relies on demand paging to lazily
link the required page table pages to physical memory.

2.2 Static versus dynamic metadata
The scheme presented so far assumes a fixed-sized

metadata entry which is statically initialized at the start
of the object’s lifetime. For objects whose size exceeds
their alignment there are multiple copies of this meta-
data entry in memory. A metadata entry can be an
integer, a small struct or even a pointer, which can re-
fer to further metadata of arbitrary dynamic size.

In the simplest possible setup, each metadata entry
is filled with a compile-time constant, such as a type
index. This scheme allows the instrumentation to iden-
tify certain predetermined object characteristics at run
time, with the lowest possible overhead. In this use
case, initializing the metadata is cheap, as it involves
a simple memset operation for the compressed meta-
data range corresponding to the object. Given the use
of variable compression rates, the amount of metadata
that needs to be initialized is minimal.

Alternatively, the metadata can include a pointer to
information created at compile time in global memory.
This scheme may be, for example, used to support in-
depth type tracking when implementing precise garbage
collection for languages such as C/C++ [13]. From
an overhead perspective, this is similar to the constant
metadata scenario, as the pointer itself is just another
numeric constant, whose value is fixed at compile time.

Finally, the metadata pointer might be generated at
run time. In this case, a metadata node is allocated
whenever a new memory object is allocated and deallo-
cated when it is freed. This scheme is relevant to instru-
mentation tailored to individual object instances, rather
than broad object groups. Sharing lifetimes is trivial on
the stack and in global memory, but leads to interest-
ing design decisions when dealing with the heap. Intu-

itively, the fastest solution is to increase the allocated
size of the object itself and store the metadata node in-
band. In practice, we found this solution to result in
significant performance degradation due to its negative
caching impact. The alternative is to perform a second
heap allocation dedicated to the metadata node itself.
While we expected a nontrivial performance hit for ap-
plications where allocations dominate the run time, we
found the impact to be reasonable in practice. In ad-
dition, most applications do not require object-specific
metadata tracking and can safely refrain from using dy-
namic metadata, as it incurs the highest run-time and
memory overhead.

2.3 Instrumentation across memory types
Globals. Global memory is the simplest to deal with

from a memory shadowing perspective. Global alloca-
tions only occur at load time and the amount of global
data is typically limited. These properties suggest that
the default 8-byte alignment within the system works
reasonably well for this allocation type, thus we can
just associate every global data memory page with this
alignment in the meta-page table. We simply instru-
ment binary files (executables and dynamic libraries) to
allocate metadata pages and set up the meta-page table
entries corresponding to their data sections as soon as
the binaries are loaded.

Stack. Stack pages share the property of long life-
times with global memory (associated with the stack for
the lifetime of the thread), but they are unique in that
object allocations within the pages occur frequently and
with minimal run-time cost. A simple solution is to
restrict stack objects to the conservative 8-byte align-
ment [1], but this makes tracking multi-byte metadata
prohibitively expensive. METAlloc solves this challenge
by leveraging recent advances in shadow stack solu-
tions (recently integrated in mainstream compilers) [10],
which split the program stack into a primary and a sec-
ondary stack. METAlloc uses a multi-stack approach
with a primary and a number of secondary stacks. The
primary stack preserves all the stack objects not sub-
ject to the current instrumentation, including ABI spe-
cific elements such as return addresses and arguments,
while the secondary stacks store the remainder. The
secondary stacks each are designed for a particular class
of object sizes with appropriate non-trivial alignment to
improve the compression ratio for metadata tracking.
This design ensures that METAlloc only needs to care
about the secondary stacks, which are free from ABI
specific restrictions. We propose using the same heuris-
tic for all instrumentations, namely moving all objects
which can potentially be subject to memory corruption
attacks (either address taken or address used in unpre-
dictable manner) to one of the secondary stacks. In
practice the secondary stacks end up composed mostly
of arrays and some address taken integers. As a re-
sult, we propose enforcing a relatively large alignment
on each object within every secondary stacks. While

some memory fragmentation does occur with address
taken integers, it only affects a small portion of the en-
tire memory address space of the program and it will
not break program functionality in general. Our current
design uses one secondary stack for small and medium
objects having a fixed alignment of 64 bytes, and an-
other secondary stack for large objects where 4096 byte
alignment is enforced. METAlloc instruments the allo-
cation of program stacks to create the secondary stacks
and to also allocate the corresponding metadata pages
and to set up the appropriate meta-page table entries.

Heap. In order to meet our requirements, METAl-
loc uses a heap allocator designed around the concept
of object sizes. Instead of keeping track of the heap as
a whole, it operates with size-specific free-lists instead.
Whenever a free-list becomes empty, the allocator can
request new memory pages from the system, which are
then associated with this particular free-list until they
are released back to the system. The allocator would
then enforce the largest possible alignment for objects
within each free-list without triggering too much frag-
mentation. Applying METAlloc to such a heap alloca-
tor is trivial as one just needs to monitor page request
by the free-lists to associate the appropriate metadata
information with the pages. Figure 2 summarizes this
operation with the addition of potential object caches
and a page allocator to improve performance.

2.4 Implementation specifics
While it is possible to build a new custom heap al-

locator which respects our design specification, we de-
cided to build upon a proven, state-of-the-art allocator
instead. We expect that for most complex C++ appli-
cations the heap allocator has a significant impact on
performance, thus a proven allocator is key. The tcmal-
loc allocator (developed and used by Google) features a
memory organization which matches our requirements.
Neither tcmalloc nor our modifications affect ABI com-
patibility, so no changes are needed in the operating sys-
tem and external libraries do not need to be recompiled.

For the stack we decided to extend the implementa-
tion of SafeStack [10], as it is advertised as a replace-
ment for stack canaries going forward and it is becoming
a core component within the LLVM project. Its inter-
pretation of safe and unsafe objects also matches up well
with our definition of objects requiring instrumentation.
SafeStack does not affect ABI compatibility.

3. APPLICATIONS
Efficient metadata tracking enables a wide range of

valuable instrumentation tools to be used with produc-
tion systems where performance overhead is a key char-
acteristic. In the following we present a couple of key
examples of such instrumentation. This list is by no
means exhaustive and we hope that readers find other
innovative uses of the framework. In this (short) paper,
the applications serve as motivation for our work and

malloc(100)
Object

Caches

8 bytes

16 bytes
...

Page size

Free-list Page

Allocator

Metadata

Info

1. Allocate Span

MetAlloc

2. Hook
3. Allocate

metadata

4. Configure metadata for Span

Figure 2: Heap metadata management using
METAlloc

we will focus our evaluation on the framework itself.

3.1 Write Integrity Protection
Recent developments in attack techniques [3, 5, 14]

show the need to enforce additional data integrity within
the program besides the classic control-flow integrity.
Both Microsoft’s WIT [1] and Oracle Application Data
Integrity have looked into the topic of restricting the
target addresses of memory writes using a coloring mech-
anism. In these schemes each memory location is associ-
ated with a given color and the instrumentation along-
side each memory write checks if the target location
matches the color of the pointer/instruction. In the
case of both of these systems, the color for the mem-
ory location is tracked using metadata shadowing with
a fixed compression ratio. Replacing these systems with
METAlloc can lead to substantial improvements in al-
location performance.

3.2 Bounds Checking
Efficient bounds checking has been proposed in the

past to counter buffer overflow vulnerabilities, but none
of the solutions ended up in production systems due
to the performance and memory overheads they bring.
One particularly efficient example is Baggy Bounds Check-
ing [2] which offers a strong protection model with lim-
ited memory overhead, based on fixed compression meta-
data. Its primary deficiency is the need to allocate
objects in slots with sizes in the powers of two, a re-
quirement that is typically not enforced in generic heap
allocators due to the potential for high internal frag-
mentation. The system can be rebuilt without the align-
ment requirements but that would require tracking base
pointer and size information for every object, which
leads to performance and memory issues with the fixed
compression ratio (it is prohibitive to store 16 bytes of
metadata for every 8 data bytes). METAlloc and its
variable compression ratio can help to deal with the
problematic large object allocations, ensuring consis-
tently low overhead across applications even when using
multiple metadata bytes.

An alternative implementation of bounds checking is
Light-weight Bounds Checking [8]. This system detects

out-of-bounds accesses at the memory access time in-
stead of during the pointer arithmetic. The system in-
jects guard zones between objects and fills them with
a random byte value to detect any access into these re-
gions. A memory access is safe if it returns a different
value, but real data might also accidentally match the
guard value. An additional check is performed in the
latter case to filter out false positives, but on average
it is only performed with probability 1 in 256. This
check retrieves a metadata bit associated with the ad-
dress which specifies if it belongs to real data or one of
the guard zones. Light-weight Bounds Checking uses a
fixed compression ratio shadowing scheme of one meta-
data bit for every byte of data in the program. However,
metadata retrieval is avoided on the fast-path of this
scheme with little impact on performance. As a result
replacing the existing metadata tracking with METAl-
loc only yields benefits to the system. The existing
system uses a hierarchical metadata storage system re-
quiring two memory accesses to retrieve the metadata
bit. METAlloc also performs two memory accesses, but
it involves more pointer arithmetic instructions. It is
safe to say that the fast-path behaviour will easily hide
the small difference in retrieval overhead. On the other
hand the variable compression ratio of METAlloc re-
duces allocation overhead, which can be significant in
many applications. As a result, Light-weight Bounds
Checking can also benefit from using METAlloc for its
metadata tracking.

3.3 Type Confusion Detection
Recently type confusion vulnerabilities received sig-

nificant attention as an alternative memory corruption
mechanism which is not covered well by static analysis
and run-time checkers. CaVer [12] was designed as an
efficient system to dynamically track type information
and to perform type validation at potentially vulnera-
ble cast locations. It uses the metadata system track-
ing in LLVM for heap objects, but reverts to red-black
trees for stack and global allocations. As such, it re-
quires additional operations during metadata retrieval
to identify the type of the pointer. By using METAlloc,
CaVer gains access to uniform pointer handling and low
overhead irrelevant of the memory usage pattern. This
is especially beneficial when considering the excessive
overhead reported in CaVer for Firefox, which was at-
tributed to its use of stack variables.

3.4 Dangling Pointer Detection
Use-after-free vulnerabilities represent the most promi-

nent attack vectors in today’s browser landscape [11].
While a lot of effort is invested to detect these vulner-
abilities via static analysis and software testing, they
typically manifest in highly specialized contexts, mak-
ing them hard to detect and to fix preemptively. As
such, a couple of systems have been suggested recently
to mitigate the underlying reason for the vulnerabili-
ties, dangling pointers [11, 15]. These systems rely on

tracking heap allocations and their connectivity at run
time. When an object is freed, the systems identify
whether there are any pointers still pointing into the
object being released. These pointers are then set to
a benign value of NULL to mitigate potential memory
dereferences using them. Systems for tracking dangling
pointers share an underlying design based on three core
data structures. The first is the object map, which iden-
tifies heap objects based on any pointer into the object
itself (at any offset). This is equivalent to object meta-
data tracking. DangNull [11] uses red-black trees to
track heap allocations, but as discussed in section 1, this
scheme is susceptible to heavy and unpredictable over-
head. FreeSentry [15] uses a label based system, which
is equivalent to the fixed compression ratio metadata
shadowing. This scheme offers fast fixed-time meta-
data retrieval, but incurs significant allocation-time and
memory overhead. In contrast, METAlloc combines low
allocation- and lookup overhead with efficient memory
usage.

4. EVALUATION
To measure the performance impact of metadata track-

ing, we instrumented all the C and C++ SPEC2006 [9]
benchmarks to observe the overhead it introduces. As
a baseline, we compiled the applications with SafeStack
enabled since it is advertised as a viable replacement for
stack canaries, even showing lower overhead on some
benchmarks [10]. We also use tcmalloc as the heap al-
locator for our baseline, as it can have very different
run-time performance compared to the system alloca-
tor. This decision is also motivated by the fact that we
observed a 10% improvement of execution times when
using tcmalloc on SPEC2006 (geometric mean). This
improvement increases to 17% when considering only
the C++ benchmarks. For each benchmark, we used
the median run time over 16 runs on a Xeon E5-2630
running CentOS Linux 7.2 64-bits.

Figure 3 shows the overhead introduced with the dif-
ferent configurations of METAlloc. We evaluated cre-
ating and initializing both 1 and 8-bytes of metadata
for all objects. These setups correspond to different
instrumentation types, like write integrity tracking or
type hashes. The overhead numbers are very low, with
the maximum being around 20% for perlbench and the
geometric mean being 3.6% for one byte of metadata
and 3.7% for eight bytes. The results also show that
metadata size has a limited impact on the overall per-
formance, showing that the variable compression ratio
can help deal with applications requiring complex meta-
data. While the measured overhead only includes the
metadata creation and initialization, not the instrumen-
tation itself, the latter can be tuned with careful design
and is the topic of future work using METAlloc.

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

perlbench

bzip2
gcc

mcf
milc

namd
gobmk

dealII
soplex

povray

hmmer

sjeng
libquantum

h264ref

lbmomnetpp

astar
sphinx3

xalancbmk

N
o

rm
al

iz
ed

 r
u

n
 t

im
e

1B

8B

Figure 3: C/C++ SPEC2006 overhead with
different configurations of METAlloc. 1(8)B
represents the configuration with 1(8)-byte
metadata entries.

5. CONCLUSION
In this paper, we presented METAlloc, a new mem-

ory metadata management scheme for software security
hardening solutions. Our design is both comprehensive—
given that it can handle whole-memory object metadata
in a uniform and transparent way—and efficient—given
that it yields a run-time performance overhead of just
3.6% in practice for (de)allocations. We believe MET-
Alloc can bring many instrumentation solutions within
reach for adoption in practice, allowing, for example,
many vulnerability mitigation techniques to improve
software security in an efficient and backward compat-
ible fashion.

Acknowledgment This work is supported by the
Netherlands Organisation for Scientific Research through
grant NWO 639.023.309 VICI “Dowsing”, and by the
European Commission through the project SHARCS
under Grant Agreement No. 644571.

6. REFERENCES
[1] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and

M. Castro. Preventing memory error exploits with
wit. In Security and Privacy, 2008. SP 2008.
IEEE Symposium on, pages 263–277. IEEE, 2008.

[2] P. Akritidis, M. Costa, M. Castro, and S. Hand.
Baggy bounds checking: An efficient and
backwards-compatible defense against
out-of-bounds errors. In USENIX Security
Symposium, pages 51–66, 2009.

[3] N. Carlini, A. Barresi, M. Payer, D. Wagner, and
T. R. Gross. Control-flow bending: On the
effectiveness of control-flow integrity. In 24th
USENIX Security Symposium (USENIX Security
15), pages 161–176, 2015.

[4] D. Dhurjati and V. Adve. Backwards-compatible

array bounds checking for c with very low
overhead. In Proceedings of the 28th international
conference on Software engineering, pages
162–171. ACM, 2006.

[5] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe,
M. Rinard, H. Okhravi, and
S. Sidiroglou-Douskos. Control jujutsu: On the
weaknesses of fine-grained control flow integrity.
In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications
Security, pages 901–913. ACM, 2015.

[6] S. Ghemawat and P. Menage. Tcmalloc:
Thread-caching malloc. http://goog-perftools.
sourceforge.net/doc/tcmalloc.html, 2009.

[7] I. Haller, A. Slowinska, and H. Bos. Mempick:
High-level data structure detection in c/c++
binaries. In Reverse Engineering (WCRE), 2013
20th Working Conference on, pages 32–41. IEEE,
2013.

[8] N. Hasabnis, A. Misra, and R. Sekar. Light-weight
bounds checking. In Proceedings of the Tenth
International Symposium on Code Generation and
Optimization, pages 135–144. ACM, 2012.

[9] J. L. Henning. Spec cpu2006 benchmark
descriptions. ACM SIGARCH Computer
Architecture News, 34(4):1–17, 2006.

[10] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea,
R. Sekar, and D. Song. Code-pointer integrity. In
Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation,
OSDI’14, pages 147–163, Berkeley, CA, USA,
2014. USENIX Association.

[11] B. Lee, C. Song, Y. Jang, T. Wang, T. Kim,
L. Lu, and W. Lee. Preventing use-after-free with
dangling pointers nullification. In Proceedings of
the 2015 Internet Society Symposium on Network
and Distributed Systems Security, 2015.

[12] B. Lee, C. Song, T. Kim, and W. Lee. Type
casting verification: Stopping an emerging attack
vector. In 24th USENIX Security Symposium
(USENIX Security 15), pages 81–96. USENIX
Association, 2015.

[13] J. Rafkind, A. Wick, J. Regehr, and M. Flatt.
Precise garbage collection for c. In Proceedings of
the 2009 international symposium on Memory
management, pages 39–48. ACM, 2009.

[14] F. Schuster, T. Tendyck, C. Liebchen, L. Davi,
A.-R. Sadeghi, and T. Holz. Counterfeit
object-oriented programming: On the difficulty of
preventing code reuse attacks in c++
applications. In Security and Privacy (SP), 2015
IEEE Symposium on, pages 745–762. IEEE, 2015.

[15] Y. Younan. Freesentry: Protecting against
use-after-free vulnerabilities due to dangling
pointers. In Proceedings of the 2015 Internet
Society Symposium on Network and Distributed
Systems Security, 2015.

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html

	Introduction
	METAlloc
	Efficient retrieval of page information
	Static versus dynamic metadata
	Instrumentation across memory types
	Implementation specifics

	Applications
	Write Integrity Protection
	Bounds Checking
	Type Confusion Detection
	Dangling Pointer Detection

	Evaluation
	Conclusion
	References

