
OSIRIS: Efficient and Consistent Recovery of
Compartmentalized Operating Systems

Koustubha Bhat∗ Dirk Vogt∗ Erik van der Kouwe‡ Ben Gras† Lionel Sambuc†

Andrew S. Tanenbaum‡ Herbert Bos‡ Cristiano Giuffrida‡
Department of Computer Science

Vrije Universiteit Amsterdam, The Netherlands
∗{k.bhat, d.vogt}@vu.nl, †{ben, lionel}@minix3.org, ‡{vdkouwe, ast, herbertb, giuffrida}@cs.vu.nl

Abstract—Much research has gone into making operating
systems more amenable to recovery and more resilient to crashes.
Traditional solutions rely on partitioning the operating system
(OS) to contain the effects of crashes within compartments and
facilitate modular recovery. However, state dependencies among
the compartments hinder recovery that is globally consistent.
Such recovery typically requires expensive runtime dependency
tracking which results in high performance overhead, high
complexity and a large Reliable Computing Base (RCB).

We propose a lightweight strategy that limits recovery to
cases where we can statically and conservatively prove that
compartment recovery leads to a globally consistent state—
trading recoverable surface for a simpler and smaller RCB with
lower performance overhead and maintenance cost. We present
OSIRIS, a research OS design prototype that demonstrates
efficient and consistent crash recovery. Our evaluation shows that
OSIRIS effectively recovers from important classes of real-world
software bugs with a modest RCB and low overheads.

I. INTRODUCTION

All modern operating systems contain bugs [1], [2]. Studies
show that all software averages between 1 and 16 bugs per
1,000 lines of code [3], [4] even in tested and deployed soft-
ware, and dormant software faults persist even in mature code
bases [5]. With code bases that often easily exceed a million
lines of code, operating systems (OSes) contain thousands of
bugs at any time. Some of these bugs are in code that is beyond
the control of the operating system developers. For instance, a
considerable portion of the privileged code consists of code
in kernel extensions such as third-party drivers. A decade
ago, Chou et al. [6], [7] identified buggy kernel extensions
as an important cause of operating system crashes for both
Windows and Linux. Assuming that drivers are mostly stateless
and faults are mostly transient, we can handle such faults by
isolating the driver code and restarting it in case of a crash [8].

However, a more recent study on the Linux kernel [9]
shows that faults in stateful core OS subsystems have started to
outrank the buggy drivers in importance, even though the latter
are still large in number. Furthermore, these bugs are typically
not transient [10], [11]. In other words, relying on simple re-
execution is no longer a viable solution to recover from such
faults. Since faults in a core OS subsystem greatly reduce over-
all system dependability and existing techniques cannot handle
them, we conclude that software faults in the operating system
still rank among the greatest challenges to system dependabil-
ity. In this paper, we seek a method to mitigate their effects.

Reliability and stateful interaction: There are many ap-
proaches that improve fault tolerance in operating systems.
Typically, they protect either applications [12] or specific OS
subsystems from the effects of software faults in the operating
system [13], [14], [15], [16], but there also have been efforts
to provide whole-OS fault tolerance [17], [18], [19], [8].

Extending fault mitigation techniques to an entire OS is a
complex problem. Most of the solutions compartmentalize the
OS, primarily to prevent the effects of faults in one component
from spreading onto other components. Moreover, compart-
mentalization allows components to be recovered individually.
However, stateful runtime interactions among components
make per-component recovery nontrivial. In a scheme that en-
forces strict fault isolation between OS components, recovering
from crashes resembles a distributed systems recovery prob-
lem. In this context, the solutions are generally of three kinds:

1) Global replication – which is least suitable for a
general-purpose operating system that aims for ju-
dicious and efficient usage of system resources;

2) Dependency tracking – which does not scale for the
high-frequency inter-component interactions found in
an operating system setting;

3) Global checkpointing – which not only hinders nor-
mal execution performance, but also degrades it expo-
nentially when we scale to a larger number of active
system components.

Global checkpointing in the context of operating
systems [20] offers strong global consistency guarantees,
but suffers from the need to synchronize all components,
introducing bottlenecks which greatly affect overall system
performance. Since OS components interact all the time,
checkpoints should be taken at high frequencies—typically
orders of magnitude beyond what is possible with today’s
global checkpointing solutions. Local, per-component
checkpointing allows for more concurrency in the system but
dependent components still have to coordinate to ensure that
their locally checkpointed state remains consistent with that
of their counterparts. In case of uncoordinated checkpoints,
there is the risk of a domino effect [21], where crash recovery
leads to unbounded rollback of inter-dependent components.
In general, expensive runtime dependency tracking is the price
that local checkpointing schemes pay towards guaranteeing
globally consistent recovery.

Safe recovery windows: In this paper, we introduce a
new design called OSIRIS (Operating System with Integrated

1

Recovery preventing Inconsistent State), which seeks to strike
a new balance between performance and globally consistent
recoverability of an operating system. Building on efficient in-
memory checkpointing, OSIRIS recovers only in cases where
we can conservatively infer that performing local recovery
will not lead to global state inconsistencies. This eliminates
the need for dependency tracking and synchronization, also
greatly simplifying the recovery mechanism. Such solution
offers better performance than any other existing scheme, at
the cost of not being able to recover in every case.

Our solution is the first to achieve globally consistent
recovery of stateful core OS components with very low perfor-
mance overhead. With a runtime performance penalty of just
5.4% (on a microkernel-based OS baseline), OSIRIS brings
OS recoverability (limited, but still powerful) within the reach
of production systems. Moreover, unlike many existing OS
recovery approaches, we do not limit ourselves to drivers and
explicitly target the core system services. Given their heavily
stateful nature, it is much harder to recover from faults in
such components than from faults in drivers. For instance,
a system call like exec involves the file system, memory
manager, cache manager, process manager, etc. Crash recovery
in any of these components must keep its state consistent with
other components’ state and resume execution in a globally
consistent way.

Our approach uses knowledge about the nature of inter-
component interactions in the system to perform recovery only
within dependency-safe recovery windows—intervals during
which state changes within a component have not affected
other components. We use a lightweight in-memory check-
pointing system [22] to allow efficient high-frequency creation
of per-component checkpoints. We further optimize this ap-
proach by disabling our runtime (memory logging) instrumen-
tation whenever recovery to a consistent state is known to be
impossible. Our design results in lower runtime overhead and
provides a fine-grained trade-off between recoverable surface
and performance. Finally, instead of replaying the execution
after recovering from a crash, we send an error to the compo-
nent that sent the request that triggered the crash. This allows
us to deal with persistent faults in addition to transient faults.

Contributions: First, we describe an operating system
recovery method that determines whether rolling back only
component-local state can restore the OS to a globally consis-
tent state.

Second, we show how OSIRIS occupies a meaningful new
point in the design space of dependable operating systems
by introducing a new trade-off that solves the performance,
maintenance, and complexity drawbacks of existing solutions
at the cost of reduced recovery surface. With a performance
overhead of just 5.4%, we show that we can achieve an average
recovery surface of 68.4% in critical OS components with the
total size of Reliable Computing Base (RCB) constituting only
12.5% of the code base.

Third, we explain how our approach deals with persistent
software faults in core system services whereas most prior
efforts are limited to transient faults.

Fourth, we minimize checkpointing instrumentation over-
head by disabling memory logging when we cannot recover,

providing a fine-grained trade-off between performance and
recovery surface.

Fifth, we show that our prototype implementation performs
meaningful recovery from real-world faults by means of large-
scale fault injection experiments. We compare our results with
a baseline recovery strategy and demonstrate a significant
improvement. We also show that the performance and memory
overheads are within practical limits.

Roadmap: The remainder of this paper is laid out as
follows. We provide a background on recovery techniques and
the challenges of stateful recovery in Section II. We provide
an overview of OSIRIS in Section III and detail its design
elements in Section IV. We provide implementation details in
Section V. We evaluate our prototype in Section VI and discuss
the limitations and future work in Section VII. We survey
related work in Section VIII and conclude in Section IX.

II. BACKGROUND AND PROBLEM STATEMENT

Software recoverability has been studied in various
contexts. They range from preventing loss of unsaved
application context due to operating system crashes,
insulating operating systems from faulty drivers and hardware
peripherals, and improving availability of server applications
to dealing with fatal faults in high-performance computing and
large-scale distributed systems. Recovery solutions typically
consist of the following elements: fault isolation, a way to
statefully restart components, and dependency monitoring. We
will discuss each in turn. Afterwards, we pose our problem
statement and the fault model that we assume in this work.

A. Fault isolation

Modular software design, along with enforcing component
boundaries allows a system to be compartmentalized, reducing
the scope of recovery to just the affected compartments. Many
fault-isolation techniques exist. Software-only techniques use
static analysis [15], [23], or dynamic object tracking [24],
while hardware-assisted methods may build on hypervisor-
supported service domains [17] and virtual-memory-based
isolation [18], [25]. In addition, there are solutions that su-
perimpose higher-level semantics over static program analysis
to isolate fault regions [19], [26], [27]. Regardless of the tech-
niques applied, compartmentalization of software into smaller
fault domains represents a first step towards achieving practical
software recoverability.

B. Stateful restart

A crashed component needs revival to resume normal
system execution. In the simplest of cases, components are
mostly stateless and can be revived by simply restarting
them—much like the device drivers in MINIX 3 [25].
However, in case of stateful components and inter-component
interactions, revival must ensure that the affected components
are restored to a sane state. Kadav et al. [15] repurpose
power management code in peripheral devices to take device
checkpoints in addition to saving device driver state. Similarly,
researchers have proposed runtime object tracking [14] and
request-oriented undo logging [22] to protect drivers and
even the Linux kernel [19]. In a distributed system setting,
Cruz [28] explored a coordinated checkpoint-restart scheme
using process and network state migration techniques.

2

C. Dependency tracking

While fault isolation and stateful restart are mostly solved
problems by themselves, monitoring state dependencies is
not. We first describe why it is necessary to monitor state
dependencies and then explain why current solutions are not
adequate for use in production environments.

If a request sent from component A to component B
triggers state changes in component B, it creates a dependency
between the states of the two components A and B. If one
is rolled back to the last checkpoint while the other retains
its state, this may lead to two kinds of inconsistencies:
1) If component A crashes before component B completes,
state changes in component B may get orphaned because
A is no longer interested in the results. Moreover, any
inter-component interactions performed by B to fulfill the
request also get orphaned recursively. 2) If component B
crashes while handling the request, component A may get no
reply or an incorrect reply and component A would not know
in which state component B ends up.

We must deal with both the cases in order to avoid inconsis-
tent crash recovery. Existing solutions track state dependencies
to solve these problems, but doing so complicates recovery
and results in increased software complexity and performance
overhead. For example, the hierarchical recovery domains
in Akeso [19] incur slowdowns between 1.08x to 5.6x even
in a virtualized environment. The device driver tracking in
Nooks [24], which allows the system to recover from crashes
only in kernel extensions, incurs up to 60% runtime overhead
depending on the workload. Shadow drivers [14], which build
on top of Nooks, report an increase in CPU utilization by up
to 30% for a benchmark that performs a significant number
of driver-kernel interactions. In addition, dependency tracking
complicates the recovery mechanism, possibly even to the
extent of making it one of the more complex elements in
the system. In contrast, the approach taken by ASSURE [26]
and REASSURE [27], which stops all the execution threads
in a checkpointing interval, is much simpler, but may not be
applicable in a broader context and is prone to deadlocks. We
conclude that runtime dependency tracking adds considerable
performance overhead and complexity to a system, making
operating system recovery impractical in production systems.

D. Problem statement and goals

As discussed, dependency tracking and recursive recovery
greatly increase complexity and cause substantial performance
overhead, making them unsuitable for production systems. In
this paper, we aim to show that, by adjusting expectations, it
is possible to achieve a practical recovery solution with much
less complexity and much better performance.

Our goals for consistent recovery in OSIRIS are twofold:
(1) ensure global state consistent recovery, (2) keep the
crash recovery infrastructure simple to minimize the risk of
introducing faults in the RCB. In the remainder of this paper,
we present our recovery solution, which takes into account the
possibility of system state being spread across several fault
domains and yet avoids performing complex and expensive
runtime dependency tracking.

E. Fault model

In this section, we describe our fault model and discuss its
consequences.

Many previous efforts assume that faults are transient [25],
[29], [30], which means that simply restarting a component
and restoring its original state is sufficient. Given the transient
nature of the fault, attempting the same operation again is
likely to succeed. While it is true that hardware faults are
often transient (e.g., bit flips in memory) and software faults
may also be transient (e.g., a race condition that only occurs
for particular scheduling decisions), many common software
faults are persistent, where the fault can be a function of
the inputs and the existing state. In the case of persistent
faults, recovering a component and replaying the same inputs
will inevitably trigger the same fault again. Our fault model
considers both transient and persistent software faults.

Fail-stop faults cause the affected component to crash
immediately, unlike fail-silent errors which corrupt its state
without an immediate crash. Fail-stop faults are common.
Typical examples of fail-stop errors are NULL-pointer deref-
erences and divisions by zero. Moreover, defensive coding
practices such as the use of assertions to verify invariants
transform many potential fail-silent faults into fail-stop faults.
In addition, compilers are increasingly equipped with options
that convert traditionally fail-silent faults into fail-stop faults.
Typical examples are bounds checking and the wide range of
sanitization and stack protector options in popular compilers
like gcc and clang. Finally, hung-component faults can be
detected, and thus transformed into fail-stop faults, by sending
regular heartbeat messages and killing them if they do not
respond in time [25]. Our fault model assumes only fail-stop
faults and relies on fault detection mechanisms (such as the
ones above) to handle many classes of fail-silent faults in a
“fail-stop fashion”.

Furthermore, our fault model assumes only one failure
(i.e., crash) at a time. We note this is a relatively minor
restriction considering the other assumptions we make. First,
since we assume fail-stop faults, the failing component itself
is unable to execute any more code between the failure
and its recovery, so a second failure cannot happen there.
Second, since our recovery code is trusted (in the small
RCB), no failure can happen in the recovery code itself.
The only possibility of additional failures during recovery is
thus elsewhere in the system. To minimize this possibility,
we temporarily disallow system call processing, stalling the
userland until recovery operations complete.

Finally, an important assumption is that faults may also
occur in core OS components. This is unlike much prior work
that only deals with faults that occur in drivers [24], [16],
[25], [14]. Failures in core OS components are considerably
harder to deal with than driver failures, because the system
requires availability of the core OS components at all times.
Moreover, while drivers typically have relatively simple
and highly standardized communication protocols [24], the
core system components are much more tightly coupled and
need to perform complex interactions to execute a range of
cross-cutting system calls. Akeso [19] and CuriOS [18] also
recover from faults in the OS, but their strategies impose
nontrivial runtime performance and design constraints.

3

III. OVERVIEW

In this section, we first give a high-level overview of
OSIRIS’ system architecture and then provide an example
explaining our recovery methodology.

A. System architecture

OSIRIS builds on top of a compartmentalized operating
system. Its fault-isolated components interact through
message passing. We put in place Side Effect Engraved
Passages (SEEPs), wrapping each of the channels transporting
these messages. A SEEP keeps side-effects information,
especially about whether a state dependency arises out of that
interaction or not. SEEPs allow OSIRIS to restrict component
recovery to cases where state changes since the last checkpoint
are not visible outside the crashed component. In the other
cases, the system aborts and does not attempt recovery.

We perform recovery by rolling back the crashed compo-
nent state to its last checkpoint. The components making up
OSIRIS are event-driven, allowing them to create a checkpoint
every time they receive a new request message (i.e., event).
Because checkpoints need to be created at high frequencies,
we do not copy the entire state but rather opt for incremental
checkpoints by maintaining an undo log [22]. The undo log
stores all the memory writes since the last checkpoint and
allows them to be rolled back at recovery time. We use a
compiler pass to insert necessary instrumentation to maintain
the log. Since our fault model focuses on fail-stop faults, we
can assume the last checkpoint to be a valid component state.
This means that only one checkpoint needs to be maintained
at a time. After rolling back to the last checkpoint, we send an
error reply to the component that sent the failure-triggering re-
quest, instead of simply replaying its execution. This is to also
recover from persistent faults, as dictated by our fault model.

B. Ensuring safe recovery

To ensure that we attempt recovery only when the system
is known to reach a consistent state, we first consider what it
means for our system to be in an inconsistent state. The system
is in an inconsistent state whenever at least one component
believes another component to be in a state it is not in. Our
system is compartmentalized into components that can only
interact through SEEPs. This means state changes after the
most recent outgoing SEEP message are not known to the
rest of the system. Therefore there can be no inconsistencies
if we roll back a component to a checkpoint that was made
after the last outgoing SEEP message in that component. While
this approach is more conservative than strictly necessary, it
prevents the need to do dependency checking and recursive
rollbacks. When a component crashes, we only need to deter-
mine whether the last checkpoint was made after the last SEEP.

A SEEP can be state-modifying or non-state-modifying,
indicating whether a request passing through it affects the state
at the receiving side or not, respectively. Because the receiving
end of a non-state-modifying SEEP does not update its own
state, it does not become aware of changes in the sender’s state.
As such, we can safely ignore these for recovery purposes
and only consider the last encountered state-modifying SEEP.
Building on these intuitions, OSIRIS only performs recovery

operations when the crashed component has sent no state-
modifying outgoing message since the last checkpoint, mask-
ing the failure to any other component in the system and result-
ing in a globally consistent state after recovery by construction.

C. Recovery example

Considering our OSIRIS design, let us exemplify what
happens when a fault occurs. Consider, for example, a shell
issues a fork() system call to create a new process to run
a user command. The shell process sends a message to the
responsible OS component and waits for a reply. When the
component responsible for creating new processes receives the
message, OSIRIS creates a checkpoint which marks the start
of a new recovery window for the component. Within the re-
covery window, our instrumentation maintains the checkpoint-
associated undo log for recovery purposes. The recovery win-
dow remains open as long as we can conservatively prove that
the component has not altered states of any other components.

Now let us consider what happens in case of a crash. For
instance, assume that, while handling the fork() request and
before communicating with other components, the code deref-
erences a NULL pointer that causes the Process Manager (PM)
to crash. In response to the crash, the OS kernel notifies the Re-
covery Server, a key OS component in OSIRIS. The Recovery
Server has a spare fresh copy of all recoverable components. It
transfers state from the crashed PM to the fresh copy and then
rolls back the operations listed in the undo log to restore the
state that existed when the fork() call was received. It then
replaces the crashed component with the recovered PM compo-
nent. The Recovery Server also sends an E_CRASH error code
to the requester—in this case, the shell. The shell can handle
it just like other unexpected failures, such as resource limits
preventing fork(). Most well-written programs routinely
deal with such error codes and take the most appropriate
action. In this case, the shell would simply abort the execution
of the command and inform the user that something went
wrong. At this point, the failure has been cleanly handled and
the system is once again in a stable and consistent state.

So far, our example illustrates an instance of successful
recovery. However, it is not always possible to perform a
successful recovery. Our system closes the recovery window
whenever the component sends a message through a state-
modifying SEEP. If a crash occurs after the recovery window
has closed, the system knows that recovery may not yield
a consistent state and performs a controlled shutdown to
prevent a potentially inconsistent state (with unpredictable
consequences). Hence, as an optimization, after the recovery
window has closed, the system stops updating the undo
log, reducing the performance overhead. As a result, our
approach achieves good performance and never performs
unsafe recovery by design under the fail-stop fault model.

IV. DESIGN

In this section we discuss the design of OSIRIS. We
first describe the underlying programming model. Next, we
explain how our system decides whether it can safely perform
a component-local recovery and how it performs recovery
operations. Then, we describe our incremental checkpointing
optimization that reduces runtime overhead whenever safe

4

/* initialization */
while (true) {
 receive(&endpoint, &request);
 switch (request.type) {
 case REQ_TYPE_x:
 reply = req_handler_x(request);
 break;
 case REQ_TYPE_y:
 reply = req_handler_y(request);
 break;
 /* ... */
 }
 if (reply) send(endpoint, reply);
}

re
qu

es
t p

ro
ce

ss
in

g
lo

op

top of the loop

Fig. 1. OSIRIS’ event-driven programming model.

recovery is known to be impossible. Finally, we explain how
our approach deals with multithreading.

A. Event-driven programming model

Our OSIRIS design applies to compartmentalized operating
systems which apply component isolation and use a message-
passing interface for communication. In OSIRIS, core OS
components (or servers) follow an event-driven programming
model as shown in Figure 1. An event-driven model signifi-
cantly simplifies state management for recovery purposes [31].
After initialization, the OS components run indefinitely in
a request processing loop. They block to receive incoming
messages at the top-of-the-loop, including events such as
system calls initiated by user programs as well as requests
from other OS components and responses to previously issued
asynchronous requests. The corresponding request handler then
processes the received message based on its type. Finally, a
component typically sends a reply except in cases where the
sender must block (for example when no data is available to
satisfy a read() call) or if the incoming message itself was an
asynchronous reply. In those cases, the server postpones the re-
ply until it receives the response it needs to complete its work.
This model imposes clear boundaries on state changes and
binds them to specific request messages, which, as mentioned
earlier, simplifies state management and therefore recovery.

B. When to perform recovery

Inter-component communication may lead to state depen-
dencies between the communicating servers. Such dependen-
cies threaten global consistency after crash recovery. Our
recovery methodology is centered around identifying a recov-
ery window within the request processing loop in each OS
component. A recovery window starts at the top-of-the-loop
and spans those instructions that we may roll back to the top-
of-the-loop (checkpoint) without affecting the consistency of
the overall system. In other words, the recovery window closes
at the point where an irrecoverable operation is encountered.
Conservatively speaking, any operation that affects the global
state of the system is a potential threat to consistent recovery.

In OSIRIS, we make communication interfaces among
the system components side effect aware. As mentioned
in Section III, all messages are exchanged through Side
Effect Engraved Passages (SEEPs). SEEP is aware of the

initialization

top of the loop

stateless SEEP

stateful SEEP

reply

checkpoint

recoverable

Fig. 2. Example showing the recovery window; undo log instrumentation is
enabled where the line is thick.

consequences of the messages it carries. This allows us to
classify every message in the system based on whether or not it
affects the state of the recipient and whether or not it is possible
to send an error reply back after crash recovery. We use this
information to define system-wide recovery policies. Recovery
policies control which classes of SEEPs are allowed within
a recovery window, hence controlling the span of recovery
windows in each OS component. The first SEEP communica-
tion that the policy does not allow closes the active recovery
window in an OS component. We define two simple recovery
policies to demonstrate our design: (i) pessimistic recovery,
where sending out any message closes the recovery window,
and (ii) enhanced recovery (default), where we use SEEP to
identify which interactions actually create dependencies.

To implement SEEP (and enhanced recovery), we rely on
a compiler pass to instrument all the outbound communication
call sites with metadata indicating their potential side effects.

Figure 2 shows an example of how a recovery window
would appear when messages are sent while processing a
request. We create a checkpoint at the receive() call at
the top of the request processing loop, marking the start of the
recovery window. The SEEP the first message is sent through
is non-state-modifying, so it does not affect the recovery
window in our default configuration. The second SEEP is
state-modifying and causes the recovery window to be closed.
The system can discard the checkpoint (i.e., undo log data)
at that point as the system will not attempt to restore it.

C. How to perform recovery

At its core, OSIRIS’ recovery mechanism relies on memory
checkpointing [22], [32]. It creates a new in-memory check-
point at the start of every recovery window. From that point
onward, compiler instrumentation keeps track of an undo log.
Specifically, an LLVM [33] instrumentation pass places hooks
in the system components to keep track of every memory
write operation. It instruments every store instruction of
the LLVM intermediate representation with a call to the
checkpoint-recovery library which adds an entry to the undo
log. Each entry consists of the address and the original value
that was overwritten. At any point within the recovery window
it is possible to restore the checkpoint by rolling back the
entries in the undo log. We base OSIRIS’ approach on our prior
work on lightweight memory checkpointing [22], but with an

5

important optimization (see Section IV-D). Furthermore, we
use software fault isolation (SFI) to protect the checkpointing
library from any inadvertent corruption.

The benefit of using write logging rather than storing a
copy of the original state is that it is efficient for creating
checkpoints at a high frequency. This makes it a good fit for
our system, as operating system components typically deal
with many incoming messages while doing a relatively small
amount of work for each message. The latter property bounds
the number of per-message memory writes to a very limited
number in practice, favoring a simple undo log organization
over more sophisticated memory shadowing schemes [22].

One OS component, known as the Recovery Server (RS), is
responsible for detecting and reacting to crashes in the system.
RS receives a notification whenever a server crashes and
periodically sends heartbeat messages to detect hung servers.
In addition, it initiates the recovery procedure whenever it
detects a crash or hang. Recovery in our design is structured
in three phases: restart, rollback, and reconciliation.

In the restart phase, RS transparently replaces a deceased
component with a freshly forked clone component. However, if
the target component is one of the core system servers such as
PM, VM, or even RS itself, fork() and other fundamental
system functions would not work properly. Hence, for core
system servers, RS replaces the deceased component with a
clone prepared ahead of time. RS starts the clone and, in its
initialization code, the clone determines that it is in recovery
mode. After receiving a special capability from RS, kernel
support allows the clone to copy over the data sections from
the crashed component’s memory image. The clone has now
the same state as the original server when it crashed.

In the rollback phase, the initialization code in the clone
rolls back the local state using the undo log just transferred
from the crashed component. This restores the last checkpoint
taken at the start of the current recovery window, i.e., the top-
of-the-loop. At this point, the state is identical to the state at
the time when the crash-triggering request was received. Under
a fail-stop fault model, this is also the last known good state.

Finally, we enter the reconciliation phase. Now that the
local component state has been restored, we still need to ensure
that the global state is consistent. The recovery action to take
at this point is specified by the recovery model and depends
on the state of the recovery window at the time of the crash.
Although this model is extensible, we use two strategies in
our OSIRIS prototype. If the recovery window was open at the
time of the crash and the last received message was a request to
which we can reply, we perform error virtualization by sending
an error reply to the requesting process. We then discard the
original message. Doing so makes the state globally consistent
and allows OSIRIS to seamlessly handle persistent faults. In
the other cases, we know that we cannot reach a consistent
state and we then perform a controlled shutdown of the system.
Although this means giving up on a possibly successful recov-
ery, it allows us to guarantee a consistent state, eliminating the
unpredictable consequences of an unstable system.

D. Optimization

To support our checkpointing algorithm we need to
update the undo log for each memory write, which introduces

runtime overhead. However, as it is impossible to recover when
execution goes past the recovery window, the checkpoint is
not useful anymore. We reduce overhead by updating the undo
log only when the recovery window is open. For this purpose,
we rely on another LLVM-based compiler pass to create two
clones of every function in the component and replace the
original function with one that conditionally selects one of the
two clones based on whether the recovery window is open or
not. To ensure that recovery window status is checked every
time it enters the top-of-the-loop, we perform loop extraction
and wrap it in a new function prior to function cloning. Then,
our checkpointing instrumentation pass adds write logging
only to the cloned version that is used when the recovery
window is open. Finally, we force LLVM to inline the cloned
functions to avoid introducing function call overhead.

This optimization reduces the runtime performance
overhead by 11%. Furthermore, it provides an explicit trade-
off between recovery surface and performance overhead. De-
creasing the recovery surface (e.g., by switching to pessimistic
recovery) would lead to less frequent execution of instrumented
function clones and thus better performance (and vice versa).

E. Multithreading

It is possible to have multiple message loops run
simultaneously in the same component using multithreading,
which can possibly increase efficiency and/or lower complexity
in certain components. Our design supports multithreading
under the condition that the state is managed by the server
itself by using a cooperative thread library. The recovery
window is open when a thread becomes active (i.e., starts
processing a message) and forcefully closed when the
same thread becomes inactive (i.e., explicitly yields to other
threads). Restoring the state from a crashed server also restores
the state of the inactive threads. The active thread, on the other
hand, needs special handling. When we take a checkpoint,
we call the thread library that forces the context to be saved.
When we restore a checkpoint, the thread library thinks the
crashed thread is still running while the server is in fact
starting in the main thread. For this reason, we call a function
to fix the current thread variable and add the crashed thread
back to the run queue. After these steps, the thread library is
back to a consistent state and the server can run again.

V. IMPLEMENTATION

We implemented our OSIRIS prototype on top of
the MINIX 3 microkernel-based operating system architec-
ture [8]. The core operating system consists of a number of
OS user-space processes (referred to as system servers) isolated
from each other using the MMU and a small microkernel
that performs privileged low-level operations (e.g., scheduling
and message passing). The underlying design adheres to the
principle of least authority (POLA), which minimizes the con-
sequences of faults through a combination of memory isolation
and by restricting each component (i.e., process) to only those
operations that are necessary for it to do its job. This compart-
mentalized design serves as a basis for fault isolation, which
is a key prerequisite for OSIRIS’ crash recovery strategy (with
no uncontrolled fault propagation across OS components).

The system servers at the core of our OSIRIS prototype
are: the Process Manager (PM), which manages processes and

6

signals, the Virtual Memory Manager (VM), which manages
virtual memory, the Virtual Filesystem Server (VFS), which
provides a virtual file system interface, the Data Store (DS),
which provides a persistent key-value store service, and the
Recovery Server (RS), which detects and restores crashed OS
components in the system. The VFS server in our prototype is
multithreaded to prevent slow disk operations from effectively
blocking the system. Our prototype allows all these core
system components (including RS itself) to be recovered in
case of crashes using our design.

In addition, OSIRIS includes a set of LLVM link-time
instrumentation passes and static libraries together adding
up to 6,496 LOC1. The Recovery Server implements the
restart phase described in Section IV-C. The static libraries, in
turn, implement our checkpointing, rollback, and reconciliation
mechanisms. Compile-time settings allow SEEPs to be mapped
to their corresponding reconciliation mechanisms, which, as a
result, define the recovery policies supported by our system. To
enable OSIRIS’ recovery functionalities, we link every system
component against our static libraries and instrument (and
optimize) each component using our LLVM link-time passes.

A. Reliable Computing Base

The Reliable Computing Base (RCB) [34] consists of the
parts of the system that we need to trust to be free of faults.
The RCB in OSIRIS includes mechanisms that implement:

1) Checkpointing – Maintaining a simple per-request
undo log.

2) Restartability – Maintaining clones of OS compo-
nents, transferring state, and replacing crashed com-
ponents.

3) Recovery window management – Tracking whether
the per-component recovery window is open or not.

4) Initialization – Calling a component-specific function
to initialize the local state before entering the request
processing loop.

5) Message passing substrate - The underlying micro-
kernel in our prototype.

OSIRIS has a total of 237,270 LOC. The RCB adds up to
29,732 LOC which is only 12.5% of the entire code base.

VI. EVALUATION

We evaluate our system in terms of recovery coverage (Sec-
tion VI-A), survivability (Section VI-B), performance (Sec-
tion VI-C), and service disruption guarantees (Section VI-E).

For our experiments, we use two different workloads.
For our performance evaluation, we rely on Unixbench [35],
which is specifically designed and widely used to measure
OS performance. As a workload for recovery and survivability
tests, we use a homegrown set of 89 programs in total, written
to maximize code coverage in the system servers. In this
section, we refer to this set of programs as prototype test suite
(included in MINIX 3 [36]).

We use four recovery policies to evaluate OSIRIS. In
addition to the pessimistic and enhanced recovery policies

1Source lines of code generated using David A. Wheeler’s ‘SLOCCount’

Server Recovery coverage (%)
Pessimistic Enhanced

PM 54.9 61.7
VFS 72.3 72.3
VM 64.6 64.6
DS 47.1 92.8
RS 49.4 50.5

Weighted average 57.7 68.4

TABLE I. PERCENTAGE OF TIME SPENT INSIDE THE RECOVERY
WINDOW FOR EACH SERVER (MEAN WEIGHTED BY TIME SPENT RUNNING

SERVER)

described in Section VI, we define two more policies as a
baseline for comparison purposes:

1) Stateless restart. This serves as a baseline to com-
pare against existing “microreboot systems” operating
stateless recovery.

2) Naive recovery. This serves as a baseline to compare
against best-effort recovery strategies with no special
handling.

A. Recovery coverage

To measure the opportunity for recovery under our chosen
recovery models, we measure the cumulative execution time
each server spends inside and outside the recovery window
while executing the prototype test suite. We count the number
of basic blocks covered during the execution in each of
the five servers and compute the recovery coverage as the
fraction of number of basic blocks executed inside recovery
windows out of the total number of basic blocks executed
in the servers. This provides an indication of how often the
system remains recoverable. Table I presents the results for
our pessimistic and enhanced recovery policies. As shown in
the table, the execution spends a mean of 57.7% and 68.4%
of the execution time across all the servers inside recovery
windows, respectively.

As shown in the table, DS has the lowest recovery coverage
in pessimistic mode and the highest in enhanced mode. This
indicates the presence of a SEEP fairly early in DS’ request
processing loop—which is non-state-modifying as marked in
enhanced mode. DS is a relatively simple server, which rarely
issues state-modifying calls to the rest of the system. Hence,
it is almost always recoverable. Since enhanced mode allows
SEEPs that perform read-only interactions with other compo-
nents to keep recovery windows open, the increase in recovery
coverage for PM can be explained by the many read-mostly
system calls it implements. This property applies to many
other OS components (indeed OSes are known to exhibit read-
mostly behavior in typical workloads) and overall our system
can be recovered 68.4% of the time. This means OSIRIS can
guarantee safe recovery in the majority of the cases.

B. Survivability

To demonstrate improved survivability of the system in the
presence of faults, we run large-scale fault injection experi-
ments. We conduct fault injection experiments by booting our
prototype inside a virtual machine and executing our prototype
test suite. We use a modified QEMU which allows us to log the
status of the system and outcomes of the tests in a way that is

7

Recovery mode Pass Fail Shutdown Crash

Stateless 19.6% 0.0% 0.0% 80.4%
Naive 20.6% 2.4% 0.0% 77.0%
Pessimistic 18.5% 0.0% 81.3% 0.2%
Enhanced 25.6% 6.5% 66.1% 1.9%

TABLE II. SURVIVABILITY UNDER RANDOM FAULT INJECTION OF
FAIL-STOP FAILURE-MODE FAULTS.

Recovery mode Pass Fail Shutdown Crash

Stateless 47.8% 10.5% 0.0% 41.7%
Naive 48.5% 11.9% 0.0% 39.6%
Pessimistic 47.3% 10.5% 38.2% 4.0%
Enhanced 50.4% 12.0% 32.9% 4.8%

TABLE III. SURVIVABILITY UNDER RANDOM FAULT INJECTION OF
FULL EDFI FAULTS.

not affected by the injected faults. We use EDFI [37] to inject
the faults. We perform a separate profiling run to determine
which fault candidates actually get triggered by our prototype
test suite to exclude those that are triggered during boot time or
are not triggered at all. Boot-time errors are not a good measure
for survivability and they are unrealistic because such faults
would be removed in the testing phase, while untriggered faults
would inflate the statistics with runs in which no recovery is
needed. The end result of each run is a log that we use to
classify the run based on whether the system crashed, whether
the tests succeeded, and what recovery decisions were taken.

We performed the experiments in eight different settings:
all combinations of two different fault models and four
different recovery models. The first fault model consists only
of fail-stop errors (dereferencing a NULL pointer). It allows
us to determine how effective our recovery mechanism is in
the fail-stop situation for which our system is designed. The
second fault model uses the full set of realistic software faults
available in EDFI, which shows to what extent the current
implementation of our approach also generalizes to other types
of common faults. To ensure comparability between recovery
strategies, we select faults to inject once for both fault models
and apply the same faults to each of the recovery models.

Tables II and III show the performance of our recovery
system under fault injection for the fail-stop and full EDFI
fault models respectively. We injected a total of 757 fail-stop
faults and 992 full EDFI faults, each in a separate run. This
covers all the appropriate fault injection locations based on
our criterion that boot time and unreached faults are to be
excluded. We classify the outcomes of the runs in one of four
groups: “pass” means that the test suite has completed and all
tests passed, “fail” means that the test suite has completed but
one or more tests failed, “shutdown” means a non-recoverable
fault was detected and a controlled shutdown was performed,
“crash” means the system suffered from an uncontrolled crash
or hang. Since our aim is to measure survivability, the goal is
to keep the system running even if there is some degradation
of service (visible as failed tests). Hence, we prefer to have
as many completed (passed or failed) runs as possible. As for
the remainder, a controlled shutdown is much preferred over
a crash, which may indicate random behavior and corruption.

With fail-stop errors (the fault model for which our so-
lution was designed), the enhanced recovery mode manages
to provide significantly better survivability than all the other

Benchmark Linux OSIRIS Slowdown (x)

dhry2reg 1,707.8 (4.2) 357.7 (1.1) 4.77
whetstone-double 464.1 (0.9) 200.4 (0.1) 2.32
execl 1,006.4 (3.8) 1,171.0 (3.9) 0.86
fstime 2,975.8 (3.9) 1,106.0 (1.9) 2.69
fsbuffer 320.7 (0.5) 1,299.0 (229.1) 0.25
fsdisk 1,398.9 (30.4) 106.8 (0.4) 13.09
pipe 1,143.3 (39.8) 65.2 (0.1) 17.54
context1 1,590.2 (7.8) 260.3 (0.5) 6.11
spawn 1,204.5 (3.4) 36.5 (0.3) 33.00
syscall 122.5 (0.2) 46.3 (1.8) 2.65
shell1 430.1 (4.2) 385.2 (102.0) 1.12
shell8 1,605.3 (10.3) 45.9 (0.1) 35.01

geomean 873.5 207.9 4.20

TABLE IV. BASELINE PERFORMANCE COMPARED TO LINUX (MEDIAN
UNIXBENCH SCORES, HIGHER IS BETTER, STD.DEV. IN PARENTHESES).

approaches, especially when considering the “fail” case where
the test fails but the system remains stable. The pessimistic
approach has somewhat lower survivability than the other
approaches, which is to be expected as it sometimes shuts
down in cases where recovery may work out even though it
cannot be proven to be safe. Both the pessimistic and enhanced
approaches are very effective in reducing the number of
crashes. We must note that crashes cannot be fully eliminated
as it is impossible to recover from faults injected into the code
involved in the recovery itself (such faults violate the single
fault assumption in our fault model). We conclude that for
faults within our fault model, our enhanced recovery method
offers superior survivability while still avoiding recovery in
cases where it cannot be proven to be safe.

Even when injecting all faults from the EDFI model, vio-
lating our fail-stop assumption, our enhanced recovery method
offers the best result in terms of both survivability and is very
effective at avoiding crashes. The higher number of crashes in
this case is to be expected as we can no longer assume our
checkpoint to be in a known-good state due to the possibility of
silent state corruption. The fact that our approach still performs
well shows its robustness in the face of violations of the fault
model and its ability to handle realistic software faults.

C. Performance overhead

To evaluate the performance of our system we used the
Unixbench benchmark [35]. We ran the benchmark 11 times on
a 4-core 2.3 GHz AMD Phenom processor with 6 GB of RAM.
Table IV compares the median Unixbench score of the baseline
system (without recovery) against Linux. Our prototype is
significantly slower than Linux in the Unixbench benchmark.
This can be explained by the overhead incurred by context-
switching between OS components due to the microkernel
design and the fact that Linux is a much more mature and opti-
mized system with performance as one of its major goals. Our
focus however remains on recoverability in compartmentalized
systems rather than on microkernel system performance, a
subject extensively explored in prior work [38], [39], [40].

To evaluate the overhead incurred by our recovery solution,
we compare the baseline against our unoptimized recovery
instrumentation, optimized for the pessimistic recovery policy,
and optimized for the enhanced recovery policy. The relative
slowdowns are listed in Table V. The results show that
our optimization of disabling undo log updates outside the
recovery window greatly pays off. Overall, in comparison

8

Benchmark Without opt. Pessimistic Enhanced

dhry2reg 1.001 (0.003) 0.996 (0.004) 0.991 (0.004)
whetstone-double 1.002 (0.001) 1.001 (0.001) 1.003 (0.001)
execl 1.326 (0.007) 0.750 (0.003) 0.762 (0.004)
fstime 1.321 (0.003) 0.749 (0.002) 0.762 (0.002)
fsbuffer 2.317 (0.879) 1.175 (0.207) 1.194 (0.211)
fsdisk 1.165 (0.008) 1.168 (0.006) 1.179 (0.007)
pipe 1.158 (0.007) 1.158 (0.004) 1.169 (0.006)
context1 1.137 (0.007) 1.146 (0.003) 1.156 (0.003)
spawn 1.228 (0.010) 1.213 (0.009) 1.253 (0.010)
syscall 1.173 (0.047) 1.164 (0.050) 1.164 (0.046)
shell1 1.110 (0.368) 0.942 (0.248) 0.928 (0.245)
shell8 1.256 (0.004) 1.261 (0.004) 1.266 (0.005)

geomean 1.235 1.046 1.054

TABLE V. SLOWDOWN RATIO (MEDIAN SLOWDOWN RATIO, LOWER IS
BETTER, STD.DEV. IN PARENTHESES).

to that without optimization, the performance overhead has
decreased from about 23% to only 5%. As a consequence,
the system incurs only a modest performance overhead of
around 5% for both recovery modes. The pessimistic mode
incurs lower overhead than the enhanced mode since recovery
windows remain open for shorter periods of time. We observe
a performance improvement in our execl and fstime tests
due to their multi-process interactions. In such tests, our
instrumentation seems to positively affect scheduling decisions
and improve overall performance [41].

D. Memory overhead

OSIRIS increases memory usage due to two main factors:
maintaining the undo log and keeping spare copies (clones)
of servers in memory for recovery purposes. We present the
resulting memory overhead in Table VI. The table shows
average runtime memory usage per component observed across
the baseline and instrumented variants of our prototype. We
measure the physical memory usage in a quiescent state for
each component. We then add the maximum undo log size
reported during the per-component execution of Unixbench.
We observe a total memory overhead of 50 MB, which
represents a 6-fold memory usage increase for those OS
servers. This is, however, mostly the overhead needed for VM
alone. Maintaining a VM clone for recoverability purposes
requires a lot of memory pre-allocation so that the new VM
does not depend on the defunct VM for memory allocation
during recovery. We note that even with this memory overhead,
the system servers consume only a small part of memory in
comparison to that typically used by user applications.

E. Service disruption

We show that OSIRIS guarantees continuity of execution
with acceptable service disruption in the face of even
high-intensity and consistent inflow of crashes. In contrast
to the randomized fault injection campaign presented in
Subsection VI-B, we designed this experiment to specifically
show performance and continuity of a long-running benchmark
(Unixbench) under a challenging (but synthetic) fault load.
To ensure consistent recoverability and run the benchmark
to completion, we only injected faults within the recovery
window. In particular, we injected fail-stop faults in the
PM server at regular time intervals. We selected PM, as it
is a heavily exercised operating system component during
the benchmark. We repeated this experiment several times,

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 10 100 1000 10000

P
e
rf

o
rm

a
n
ce

 i
n
d
e
x

Service disruption interval

Unixbench service disruption interval vs performance

context
dhry2reg

execl
fsbuffer

fsdisk
fstime

pipe
shell1
shell8
spawn
syscall

whetstone-double

Fig. 3. Unixbench scores as a function of service disruption interval.

each time doubling the influx of faults per interval. For each
run, we verified that the benchmark completed without any
functional service degradation and measured the resulting
benchmark performance. Figure 3 presents our results.

As shown in the figure, some of the performance tests
are not at all affected by the injected faults. However,
others undergo significant slowdown, most noticeably
shell1, shell8, and execl. This is explained by a
heavy dependence on PM for these tests. Correspondingly,
the slowdown is absent for tests with no dependence on PM,
such as dhry2reg, whetstone-double, fsdisk, and
fsbuffer. We conclude that the performance degradation
induced by periodic crash recovery operations is workload-
dependent and, despite the performance impact in some cases,
OSIRIS can effectively guarantee survivability and continuity
of execution even in extreme high-frequency failure scenarios.

VII. LIMITATIONS AND FUTURE WORK

Controlled shutdown: Fault injection results show that
our approach substantially reduces the number of crashes. We
perform a controlled shutdown whenever we cannot guarantee
that a recovery attempt leads to a consistent global state.
In this case, state is still lost. However, the system is still
consistent, which is often more important. In future work, we
could extend our approach to provide opportunities for user
applications to save their state before restarting the system—a
strategy similar to what Otherworld [12] supports after a
system crash using annotations.

Extensibility: Although our prototype implements a
small set of classes of SEEPs and recovery actions, our
framework is extensible to allow alternatives tailored towards
specific use cases. For example, certain state changes in
the system could be limited to updating requester-specific
information in several compartments. Killing the requester
process could automatically clean up such state changes. In
future work, we could define a new class of SEEPs to identify
such interactions in the system and a corresponding new
reconciliation action to kill the requester process.

Composable recovery policies: The ability to classify
the nature of inter-compartment communication by their re-
spective SEEP types allows co-existence of multiple compos-
able recovery policies. For example, a recovery window may

9

Server Base memory usage (kB) +clone (kB) +undo log (kB) Total Overhead (kB)

PM 628 944 1 945
VFS 1,252 1,600 13 1,613
VM 4,532 18,032 24,576 42,608
DS 248 488 1 489
RS 1,696 5,004 1 5,005

total 8,356 26,068 24,592 50,660

TABLE VI. PER-COMPONENT MEMORY OVERHEAD.

gradually switch from strict recovery policies to more lenient
recovery policies, depending on the series of SEEP interactions
encountered on a given execution path. OSIRIS could then
perform tailored recovery actions accordingly.

Generality of the framework: Our recovery framework
is generic and can be retrofitted to other systems. Our LLVM-
based instrumentation and recovery libraries can easily be
reused in other settings. For example, the recovery framework
is independent of inter-compartmental communication proto-
cols used in the target system. This design makes our system
more adaptable and lowers the cost of maintenance. How-
ever, the target system should be composed of modular and
restartable components. Modular server applications, multi-tier
distributed systems and applications are promising candidates.

Fail-silent software faults: Recovery in OSIRIS aims
to protect the system from crashes due to software bugs
in untested parts of the system. However, it cannot provide
the same guarantees in case of bugs that cause silent data
corruption. In this case, we cannot determine whether the last
checkpoint contains a safe state to recover to. Moreover, since
our current failure detection strategy is based on the occurrence
of a crash or hang in the affected compartment, we cannot
protect against non-fatal manifestations of bugs. Nonetheless,
with better fault detection mechanisms in place (e.g., memory
safety solutions), we can approximate a fail-stop model for a
broader class of real-world faults.

Recovery surface: SEEP is a foundational element of
our approach. While it is possible to tailor the SEEP mech-
anism for another system, a target system design that yields a
high frequency of inter-compartmental communications with
global side effects, is likely to result in a small recovery sur-
face. However, given that such a design is unfavorable even for
performance-sensitive systems, we believe this limitation does
not greatly affect the general applicability of our approach.

Performance: As we have shown in Section VI, our re-
covery mechanism incurs very low overhead on our prototype.
However, our system is just a research prototype and not a ma-
ture system. It is possible that relative overheads would work
out differently on, say, a more efficient baseline system. More-
over, compartmentalization is a prerequisite for OSIRIS and, as
it requires the overhead of switching between compartments,
such systems are unlikely to reach the level of performance
of a system such as Linux. That said, compartmentalization
offers major reliability advantages to compensate for the loss in
performance even without recovery. Nevertheless, to improve
performance and balance the performance-reliability trade-off,
one could, in principle, retrofit our compartment-based design
to high-performance monolithic OS architectures, for example,
using virtualization-based isolation as in VirtuOS [17].

VIII. RELATED WORK

The ability to shield systems from software faults has been
the subject of many prior research efforts. Techniques include
software rejuvenation, checkpoint-restart, and component de-
pendency tracking. These techniques have been applied for
recovering from faults in device drivers, operating systems,
server and multi-tier applications, and distributed systems. In
this section, we discuss prior research work in each of these
areas and how it relates to ours.

A. Recovering by reboot/restart

Restartability is a method to recover from failures or
even proactively avoid failures, particularly transient and
aging-related bugs [42]. Such restarts can be performed at
both the operating system and application level. Phase-based
reboot [29] aims at speeding up rebooting the operating system
by reusing system state from previous reboots. A reboot is
expected to bring back the system to a known consistent state.
However, it comes at the cost of losing prior execution state
of the system and contributes to downtime. MINIX 3 [25], [8]
applies fault isolation in its design to enable restarting only
crashed drivers. This is effective for performing stateless recov-
ery, whereas our approach can support fully stateful recovery
for arbitrary OS components. Application recovery has also
been made possible by design-level considerations to enable
restarting only the affected constituent components [43],
[30]. In the distributed systems domain, Neutron [44] takes
a similar approach towards reviving by restarting components
in sensor network systems. In our work, hardware-assisted
fault isolation has a similar effect in organizing the operating
system into individually restartable fault domains. Although
restart-based systems are relatively efficient and have the
benefit of being relatively simple to implement, they all suffer
from loss of state, which means that they can only be applied
to stateless components for transparent recovery purposes.

B. Checkpoint-restart/rollback

Checkpointing enables reviving a system without losing
much of its execution context. Checkpointing solutions have
been implemented at the level of operating systems, individual
applications, and distributed systems.

At the operating system level, CuriOS [18] takes a virtual
memory isolated multi-server approach where server state
is persisted in respective client-side memory. This allows
affected servers to be restarted without losing clients’ context.
While this circumvents the need for checkpointing, it is only
suitable for systems where frequent (per-request or more)
accesses to the clients’ address space from the server processes
are inexpensive. Fine-grained fault tolerance [15] relies on
power management code to record device states—while also

10

checkpointing device driver state. A crash causes the system
to roll back to the last driver entry-point state and restore
the corresponding device state. While this has the benefit of
being able to reuse existing code, this solution only applies to
drivers. In addition, enforcing entry-point execution on a copy
of required driver and kernel state obtained through static
analysis cannot scale well to generic and complex operating
system’s core components.

Checkpoint-based recovery has been proposed for
application recovery in various forms [45], [19], [46],
ranging from applying hypervisor-assisted techniques to fast
in-memory checkpointing. Vogt et al. [22] describe user-space
memory checkpointing techniques that rely on compiler-based
instrumentation to support high-frequency checkpointing.
OSIRIS relies on similar compiler-based techniques, but
selectively disables the checkpointing instrumentation during
out-of-window execution.

Fault tolerance is a well-studied topic in distributed
systems. Other than redundancy- and replication-based fault
tolerance, checkpoint/snapshot-based recovery and message
logging are also popular in distributed systems. Participant
nodes take local snapshots in a coordinated or uncoordinated
fashion to achieve fault tolerance in the face of faults or intru-
sions in the system [20], [44], [47], [48]. Message logging and
replay is another alternative applied to message passing-based
distributed systems [49], [21]. The multi-server architecture
coupled with message passing-based communication in
OSIRIS resembles a miniature distributed system. However,
high-frequency and near-instantaneous message transfers ob-
served in an operating system setting make a request-oriented
local checkpointing scheme more suitable for our design.

C. Dependency tracking

Consistent recovery entails rolling back not just the com-
ponent that failed, but also all its dependent components whose
state may get invalidated due to the rollback that occurred in
the crashed component. Nooks [24] performs runtime object
tracking to track manipulations of kernel data structures
by kernel extensions in order to clean them up, should the
extension crash. This is to protect the entire kernel from
faulty extensions. Swift et al. [14] introduce a shadow driver
mechanism that monitors driver-kernel interactions and when a
driver fails, it turns a crash into an error condition by servicing
requests on its behalf. Akeso [19] organizes the Linux kernel
in a request-oriented hierarchy of recovery domains. Inter-
recovery domain dependencies are tracked at runtime. When a
fault occurs, Akeso initiates recovery of the dependent domains
and recovers the failed recovery domain. In distributed
systems, optimistic recovery [21] uses causal dependency
tracking to detect computational dependencies among
participating processes, so that dependent processes can be also
rolled back during recovery. However, runtime dependency
tracking generally incurs nontrivial performance overhead.
Inter-component/process dependencies may even lead to a
cascade of component rollbacks, which requires special care
to avoid a domino effect. The SEEP channel in our design
eliminates runtime dependency monitoring and the associated
complexities, thereby limiting performance degradation.

D. Other techniques

In addition to traditional checkpoint/restart, prior research
has looked at recovering from system crashes in various
ways. For example, ASSURE [26] and REASSURE [27] reuse
existing error handling logic in the application to turn crashes
into erroneous function return values. Carburizer [50], in turn,
uses shadow drivers to turn device failures into software errors
and avoid kernel crashes. OSIRIS relies on similar error virtu-
alization strategies, but gracefully propagates error conditions
through the message passing interface in compartmentalized
operating system architectures.

IX. CONCLUSION

We presented a recovery strategy for fatal persistent
software faults in compartmentalized operating systems
that does not compromise on system state consistency. We
demonstrated the effectiveness of our design, which trades off
total recovery surface of the system for performance and design
simplicity. The key idea is to limit recoverability to execution
paths that do not affect the global state of the system, greatly
reducing runtime complexity. This enabled us to limit the RCB
size to only 12.5% of our OSIRIS prototype—demonstrating
that its reliability goals are practically achievable. We
implemented our recoverability mechanisms using LLVM-
based instrumentation, which can be also reused for other
compartmentalized systems. Our framework is customizable
and allows new classes of SEEPs and recovery actions to
be defined for new target systems. Our experimental results
demonstrate that OSIRIS’ design is practical and effective in
consistently recovering from even persistent software faults.

Overall, OSIRIS demonstrates that balancing recoverabil-
ity, runtime performance, and simplicity of the reliable com-
puting base can be an effective strategy to enhance depend-
ability of compartmentalized operating systems. To foster
further research in the area and in support of open science,
we are open sourcing our OSIRIS prototype, available at
http://github.com/vusec/osiris.

X. ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
comments. This work was supported by the European Commis-
sion through project H2020 ICT-32-2014 “SHARCS” under
Grant Agreement No. 644571 and by the Netherlands Organ-
isation for Scientific Research through the NWO 639.023.309
VICI “Dowsing” project and the NWO “Re-Cover” project.

REFERENCES

[1] A. Ganapathi and D. A. Patterson, “Crash data collection: A windows
case study.” in DSN, 2005, pp. 280–285.

[2] R. Matias, M. Prince, L. Borges, C. Sousa, and L. Henrique, “An
empirical exploratory study on operating system reliability,” in SAC,
2014, pp. 1523–1528.

[3] T. J. Ostrand and E. J. Weyuker, “The distribution of faults in a large
industrial software system,” in ISSTA, 2002, pp. 55–64.

[4] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Where the bugs are,” in
ISSTA, 2004, pp. 86–96.

[5] T.-H. Chen, M. Nagappan, E. Shihab, and A. E. Hassan, “An empirical
study of dormant bugs,” in MSR, 2014, pp. 82–91.

11

[6] M. M. Swift, B. N. Bershad, and H. M. Levy, “Improving the reliability
of commodity operating systems,” ACM Trans. Comput. Syst., vol. 23,
no. 1, pp. 77–110, Feb. 2005.

[7] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical
study of operating systems errors,” in SOSP, 2001, pp. 73–88.

[8] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum,
“Construction of a highly dependable operating system,” in EDCC,
2006, pp. 3–12.

[9] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and G. Muller,
“Faults in linux: ten years later,” in ACM SIGARCH Computer Archi-
tecture News, vol. 39, no. 1, 2011, pp. 305–318.

[10] S. Chandra and P. M. Chen, “Whither generic recovery from application
faults? a fault study using open-source software,” in DSN, 2000, pp. 97–
106.

[11] J. Gray, “Why do computers stop and what can be done about it?” in
The 5th Symposium on Reliablity in Dist. Softw. and Database Sys.,
1985.

[12] A. Depoutovitch and M. Stumm, “Otherworld: giving applications a
chance to survive os kernel crashes,” in Proceedings of the 5th European
conference on Computer systems, 2010, pp. 181–194.

[13] S. Sundararaman, S. Subramanian, A. Rajimwale, A. C. Arpaci-
Dusseau, R. H. Arpaci-Dusseau, and M. M. Swift, “Membrane: Op-
erating system support for restartable file systems,” TOS, vol. 6, no. 3,
p. 11, 2010.

[14] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy, “Recov-
ering device drivers,” ACM Transactions on Computer Systems (TOCS),
vol. 24, no. 4, pp. 333–360, 2006.

[15] A. Kadav, M. J. Renzelmann, and M. M. Swift, “Fine-grained fault
tolerance using device checkpoints,” in ACM SIGARCH Computer
Architecture News, vol. 41, no. 1. ACM, 2013, pp. 473–484.

[16] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals, M. Harren,
G. Necula, and E. Brewer, “Safedrive: Safe and recoverable extensions
using language-based techniques,” in OSDI, 2006, pp. 45–60.

[17] R. Nikolaev and G. Back, “Virtuos: an operating system with kernel
virtualization,” in SOSP, 2013, pp. 116–132.

[18] F. M. David, E. Chan, J. C. Carlyle, and R. H. Campbell, “Curios:
Improving reliability through operating system structure.” in OSDI,
2008, pp. 59–72.

[19] A. Lenharth, V. S. Adve, and S. T. King, “Recovery domains: an orga-
nizing principle for recoverable operating systems,” in ACM SIGARCH
Computer Architecture News, vol. 37, no. 1, 2009, pp. 49–60.

[20] D. J. Sorin, M. M. Martin, M. D. Hill, D. Wood et al., “Safetynet:
improving the availability of shared memory multiprocessors with
global checkpoint/recovery,” in ISCA, 2002, pp. 123–134.

[21] R. Strom and S. Yemini, “Optimistic recovery in distributed systems,”
TOCS, vol. 3, no. 3, pp. 204–226, 1985.

[22] D. Vogt, C. Giuffrida, H. Bos, and A. S. Tanenbaum, “Lightweight
memory checkpointing,” in DSN, 2015, pp. 474–484.

[23] G. C. Hunt and J. R. Larus, “Singularity: rethinking the software stack,”
SIGOPS OSR, vol. 41, no. 2, pp. 37–49, 2007.

[24] M. M. Swift, S. Martin, H. M. Levy, and S. J. Eggers, “Nooks: An
architecture for reliable device drivers,” in ACM SIGOPS European
workshop, 2002, pp. 102–107.

[25] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum,
“Failure resilience for device drivers,” in DSN, 2007, pp. 41–50.

[26] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and A. D.
Keromytis, “Assure: automatic software self-healing using rescue
points,” ACM SIGARCH Computer Architecture News, vol. 37, no. 1,
pp. 37–48, 2009.

[27] G. Portokalidis and A. D. Keromytis, “Reassure: A self-contained

[27] G. Portokalidis and A. D. Keromytis, “Reassure: A self-contained
mechanism for healing software using rescue points,” in IWSEC, 2011,
pp. 16–32.

[28] G. Janakiraman, J. R. Santos, D. Subhraveti, and Y. Turner, “Cruz:
Application-transparent distributed checkpoint-restart on standard oper-
ating systems,” in DSN, 2005, pp. 260–269.

[29] K. Yamakita, H. Yamada, and K. Kono, “Phase-based reboot: Reusing
operating system execution phases for cheap reboot-based recovery,” in
DSN, 2011, pp. 169–180.

[30] G. Candea, J. Cutler, A. Fox, R. Doshi, P. Garg, and R. Gowda,
“Reducing recovery time in a small recursively restartable system,” in
DSN, 2002, pp. 605–614.

[31] C. Giuffrida, L. Cavallaro, and A. S. Tanenbaum, “We crashed, now
what,” in HotDep, 2010, pp. 1–8.

[32] D. Vogt, A. Miraglia, G. Portokalidis, H. Bos, A. Tanenbaum, and
C. Giuffrida, “Speculative memory checkpointing,” in Middleware,
2015, pp. 197–209.

[33] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in CGO, 2004, pp. 75–86.

[34] M. Engel and B. Dbel, “The reliable computing base: A paradigm for
software-based reliability,” in Workshop on SOBRES, 2012.

[35] “A unixbenchmark suite, the original byte unix benchmark suite,
updated and revised by many people over the years.” https://github.
com/kdlucas/byte-unixbench, accessed: July 24th, 2015.

[36] “Minix 3 source repository,” http://git.minix3.org/index.cgi?p=minix.
git.

[37] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Edfi: A dependable
fault injection tool for dependability benchmarking experiments,” in
PRDC, 2013, pp. 1–10.

[38] H. H. M. H. J. Liedtke and S. S. J. Wolter, “The performance of micro-
kernel-based systems,” in SOSP, 1997.

[39] J. Liedtke, On micro-kernel construction. ACM, 1995, vol. 29, no. 5.
[40] J. Liedtke, “Improving ipc by kernel design,” in SIGOPS OSR, vol. 27,

no. 5, 1994, pp. 175–188.
[41] J. Wu, H. Cui, and J. Yang, “Bypassing races in live applications with

execution filters.” in OSDI, vol. 10, 2010, pp. 1–13.
[42] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software rejuvena-

tion: Analysis, module and applications,” in FTCS, 1995, pp. 381–390.
[43] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox,

“Microreboot-a technique for cheap recovery.” in OSDI, vol. 4, 2004,
pp. 31–44.

[44] Y. Chen, O. Gnawali, M. Kazandjieva, P. Levis, and J. Regehr, “Sur-
viving sensor network software faults,” in SOSP, 2009, pp. 235–246.

[45] M. Lee, A. Krishnakumar, P. Krishnan, N. Singh, and S. Yajnik,
“Hypervisor-assisted application checkpointing in virtualized environ-
ments,” in DSN, 2011, pp. 371–382.

[46] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou, “Rx: treating bugs as
allergies—a safe method to survive software failures,” in SIGOPS OSR,
vol. 39, no. 5, 2005, pp. 235–248.

[47] P. Sousa, A. N. Bessani, M. Correia, N. F. Neves, and P. Verissimo,
“Highly available intrusion-tolerant services with proactive-reactive
recovery,” TPDS, vol. 21, no. 4, pp. 452–465, 2010.

[48] A. Agbaria and R. Friedman, “Starfish: Fault-tolerant dynamic mpi
programs on clusters of workstations,” Cluster Computing, vol. 6, no. 3,
pp. 227–236, 2003.

[49] A. Borg, J. Baumbach, and S. Glazer, “A message system supporting
fault tolerance,” ACM SIGOPS Operating Systems Review, vol. 17,
no. 5, pp. 90–99, 1983.

[50] A. Kadav, M. J. Renzelmann, and M. M. Swift, “Tolerating hardware
device failures in software,” in SOSP, 2009, pp. 59–72.

12

