
Lightweight Memory Checkpointing

Dirk Vogt, Cristiano Giuffrida, Herbert Bos and Andrew S. Tanenbaum
Dept. of Computer Science
VU University Amsterdam

Amsterdam, The Netherlands
Email: d.vogt@vu.nl, {giuffrida, herbertb, ast}@cs.vu.nl

Abstract—Memory checkpointing is a pivotal technique in
systems reliability, with applications ranging from crash recov-
ery to replay debugging. Unfortunately, many traditional mem-
ory checkpointing use-cases require high-frequency checkpoints,
something for which existing application-level solutions are not
well-suited. The problem is that they incur either substantial run-
time performance overhead, or poor memory usage guarantees.
As a result, their application in practice is hampered. This
paper presents Lightweight Memory Checkpointing (LMC), a new
user-level memory checkpointing technique that combines low
performance overhead with strong memory usage guarantees
for high checkpointing frequencies. To this end, LMC relies
on compiler-based instrumentation to shadow the entire mem-
ory address space of the running program and incrementally
checkpoint modified memory bytes in a LMC-maintained shadow
state. Our evaluation on popular server applications demonstrates
the viability of our approach in practice, confirming that LMC
imposes low performance overhead with strictly bounded memory
usage at runtime.

Keywords—Memory checkpointing; Shadow memory; Compiler-
based instrumentation.

I. INTRODUCTION

Memory checkpointing has great potential to improve the
reliability of today’s software stack as it plays a vital role
in many important application domains. Unfortunately, prior
solutions generally impose awkward tradeoffs of deployability,
performance, and memory usage—in the common scenario of
high-frequency memory checkpointing. This paper presents
a novel memory checkpointing strategy that combines de-
ployability, performance, and memory usage guarantees for
such scenarios, facilitating practical deployment of memory
checkpointing in real-world systems.

A. Memory Checkpointing

The last decade has witnessed a growing interest in memory
checkpointing, an important technique that allows users to snap-
shot the memory image of a running program in main memory
(as opposed to the disk, which is much less efficient [1]), and
restore (or simply inspect) the checkpointed image later on.
This is, for example, a fundamental building block in automatic
error recovery techniques, which need to periodically revert
the active memory image to a safe and stable state [2]–[10].
Memory checkpointing has also been applied to several other
application scenarios, including debugging [11]–[14], software
transactional memory [5], program backtracking [15], [16], fast
initialization [17], and memory rejuvenation [17].

To be of practical use, most application scenarios require
high checkpointing frequencies. For example, automatic error

recovery techniques typically checkpoint the active memory
image at every client request [4], [5] or at carefully selected
rescue points [7], [10], commonly resulting in thousands of
checkpoints per second. In debugging applications, frequent
checkpoints allow users to efficiently inspect arbitrary memory
states throughout the observed execution [14].

Memory checkpointing can be implemented at the user or
at the kernel level. Kernel-level solutions are generally more ef-
ficient, but also increase the reliable computing base [18] of the
entire system. For this reason, prior kernel-level solutions [19]–
[22] have failed to reach adoption in commodity kernels—even
when explicitly seeking mainline inclusion [22]. The lack of
mainline support forces users to manually patch the kernel,
which ultimately results in poor deployability guarantees of
the solution in practice. Further, kernel-based implementations,
in general, are very specific to the targeted kernel and as a
consequence offer bad portability to other operating systems.

B. User-level Memory Checkpointing

Most existing solutions rely on page-granular copy-on-
write (COW) or dirty page tracking mechanisms. Both can be
implemented either by means of kernel mechanisms (e.g., fork-
based COW [6] and soft dirty bit-based dirty page tracking [23]),
or in userland using application-level page fault handling [24],
[25]. All these techniques, however, ultimately rely on hardware-
supported page protection mechanisms to trigger a minor page
fault every time the application tries to first modify a particular
memory page. At high checkpointing frequencies, the cost
for implementing checkpointing operations and handling those
minor page faults inevitably translates to poor performance,
confirming that traditional user-level interfaces are ill-suited for
efficient low-level memory management tasks such as memory
checkpointing [26]. To address these limitations, several recent
memory checkpointing solutions resort to more fine-grained
instrumentation-based strategies, which—as demonstrated by
preliminary results in our prior work [27]—are promising to
improve memory checkpointing performance especially in high-
frequency checkpointing scenarios. Some solutions rely on
static analysis [4], [9] to identify all the memory objects to
checkpoint, but are forced to make strong assumptions on the
system model to avoid unnecessary copying (and thus poor
performance) induced by the conservativeness of the analysis.

Those solutions record all the memory writes in an undo log
generated by static [5], [15] or dynamic [10] instrumentation.
Simply recording all writes in a log provides an efficient
checkpointing strategy, but also yields very poor memory
usage guarantees—as the log may grow uncontrollably when
programs repeatedly write data into the same memory location.



Current remedies to this problem are largely unsatisfactory.
These include swapping the log to disk [3]—translating to poor
performance—hashing to identify duplicate log entries [15]—
translating to poor performance—or relying on specialized
hardware support—translating to poor deployability.

In this paper, we present Lightweight Memory Checkpointing
(LMC), a new memory checkpointing technique, which com-
bines the performance guarantees of undolog-based checkpoint-
ing with the memory guarantees of traditional page-granular
checkpointing. LMC relies on a compiler-assisted shadow state
organization—similar, in spirit, to shadow memory approaches
used in state-of-the-art memory tracing techniques [28]–[35]—
to incrementally checkpoint the active memory image at the
byte granularity. Our prototype implementation of LMC is
targeted to Linux, but as it is a pure user-land solution it is
easily portable to other operating systems.

The contribution of this paper is threefold: (i) we present the
design of lightweight memory checkpointing; (ii) we present a
prototype implementation of LMC; (iii) we thoroughly evaluate
and compare our prototype implementation to existing user-
level memory checkpointing solutions and show that a carefully
optimized instrumentation design can provide strong memory
usage guarantees without sacrificing performance and, in some
cases, even significantly improve the performance of prior
undolog-based strategies [15].

II. OVERVIEW

Figure 1 presents a high-level overview of LMC. To deploy
LMC, users need to link their program against the LMC check-
pointing library (liblmc.a) and instrument it using the LMC
transformation/optimization passes (lmc.so/lmc-opt.so) im-
plemented using LLVM [36]. Both are accomplished by
instructing the linker (ld) to use our instrumentation strategy
via build flags. LMC is currently tailored to Linux programs,
but our prototype is portable to other UNIX systems—Linux-
specific extensions will be explicitly mentioned, hereafter.

The LMC checkpointing library exports a simple API to
create and restore memory checkpoints from user programs.
Internally, it also maintains LMC’s shadow state organiza-
tion and implements all the necessary hooks used by our
instrumentation. The LMC transformation pass relies on such
hooks to instrument all the memory writes in the program
and incrementally maintain memory checkpoints using byte-
granular copy-on-write semantics, i.e., copying every byte
of memory to the shadow state at the first modification in
the current checkpoint interval—interval between consecutive
memory checkpoint/restore operations. Finally, the LMC opti-
mization pass carefully reoptimizes the transformed code before
generating the final binary.

When a user program issues a memory checkpoint request
to our checkpointing library, LMC prepares a new shadow state
for the current checkpoint and instructs our instrumentation to
track all the changes to the current program state into it. By
the end of the checkpoint interval, the shadow state contains a
copy of all the data in the original program state that has been
modified by the program since the last checkpoint operation,
as well as all the necessary tracking information to locate such
modifications. When a user program issues a memory restore
request to our checkpointing library, this information allows

prog

prog.c

ld

lmc.so

liblmc.a

Link Time Instrumentation

lmc-opt.so

Final Binary

Fig. 1. High-level overview of LMC.

LMC to automatically revert the current memory image to a
given memory checkpoint.

This strategy requires maintaining one shadow state for each
checkpoint stored in memory. In the following, we assume a
single checkpoint maintained in memory at any given time
for simplicity—a common assumption in traditional memory
checkpointing applications [3]–[10], [17]—but LMC can, in
principle, retain an arbitrary number of checkpoints during the
execution of the program. The latter is only constrained by the
amount of the virtual memory address space available—limited
on 32-bit programs, but a plentiful resource on modern 64-bit
architectures.

A. Memory Write Instrumentation

Our memory write instrumentation tracks all the possible
memory altering instructions in the original program, i.e., write
instructions and calls to standard memory intrinsics—memcpy
and memset—both referred to as store instructions from now
on. Our transformation pass replaces each store instruction
with a call to a store hook function provided by liblmc,
which (i) checks if the soon-to-be-altered memory location has
not already been saved in the current checkpoint interval, (ii)
copies the original data to the shadow state if necessary, and
finally (iii) performs the store instruction as originally intended.
Our instrumentation operates entirely at the LLVM IR level,
allowing LMC to employ effective optimization strategies on the
transformed code. In particular, for optimization purposes, LMC
relies both on standard compiler optimizations—e.g., inlining, to
reduce the costs associated to frequent calls to the store hook
function in our library—and on checkpointing-specific opti-
mizations implemented in our optimization pass (Section V).

B. Shadow State

Our memory checkpointing strategy splits the original
program state into a primary state—the portion of the memory
address space in use by the running program—and a shadow
state—the portion of the memory address space in use by our
instrumentation to incrementally store the data associated to
the current checkpoint. The tracking information for the check-
pointed data, in turn, is maintained in a separate per-shadow
state tagmap. Each tag in the tagmap refers to a predetermined
memory region, providing information on whether the corre-
sponding data in the primary state has already been saved in the



shadow state. The tagmap is entirely maintained in software and
fundamental to the internal operations of our store hook.

III. SHADOW STATE ORGANIZATION

Our shadow state organization fulfills three key design
goals: (i) deployability, that is no changes to commodity
operating systems, user programs, or widely deployed security
mechanisms such as address space layout randomization; (ii)
portability, that is support for multiple architectures; (iii)
efficiency, that is fast shadow state and tagmap management
with minimal run-time performance overhead.

A. Memory Address Space Layout

LMC’s shadow state strategy dictates splitting the virtual
memory address space of a program into three independent
memory areas accommodating the primary state, the shadow
state, and the tagmap. To support efficient memory lookups
across the different areas, LMC maintains predetermined linear
mappings for any given memory address from one area to
another. This approach ensures that, given an address in the
primary state, LMC can locate the corresponding address in
the shadow state and the corresponding tag in the tagmap
in constant time—using preassigned offsets. In the simplest
shadow state organization possible, this strategy can be enforced
by splitting the memory address space into three equally-sized
areas, with 1-byte tags in the tagmap each referring to 1 byte
in the primary (and shadow) state.

To increase the size of the primary state available to the
program and improve the memory locality of the checkpointing
activity, however, LMC relies on a more general tagmap imple-
mentation, with each tag referring to a generic primary/shadow
memory region of ρ bytes—with ρ selected by empirical
measurements by default (see Section IV-A). This design choice
results in a more general shadow state organization, with the
final sizing and positioning of the different memory areas
subject to the particular architecture adopted. Figure 2 shows
the final memory layout adopted by LMC for both 32-bit and
64-bit Linux programs.

1) 32-bit Address Space Layout: On 32-bit architec-
tures, LMC resorts to a compact memory layout—using the
ADDR COMPAT LAYOUT personality on Linux—to locate the
entire primary state in the lower half of the memory address
space. In particular, this strategy locates the text, data, and heap
segments at the very bottom of the memory address space and
memory mapped segments—i.e., anonymous mappings, file-
backed mappings, and shared library mappings—above, in the
first 1 GB of the address space. On Linux—and on typical UNIX
systems in general—this strategy leaves the stack as the only
memory area resident in the upper half of the program’s usable
address space. To implement its shadow state organization,
LMC relocates the stack (Section III-B) during early program
initialization to the lower half of the address space, leaving
the upper half—starting from 1.5 GB—entirely allocated to
the shadow state. The tagmap, finally, is placed at the top of
the lower half of the memory address space, with a total size
of 12 MB in the default ρ=128 configuration (Section IV-A).
This strategy yields a program-usable primary state size of less
than 1.5 GB, a necessary compromise for any shadow memory
organization on the limited 32-bit architecture, which, however,

0 GB

1.5 GB

3 GB

4 GB

text+data

heap

mmap

stack

tagmap

text+data

heap

mmap

stack

shadow

state

shadow

state

p
ri

m
a

ry
 s

ta
te

kernel

text+data

heap

mmap

stack

kernel

text+data

heap

mmap

stack

kernel

(a) (b) (c) (d)

0 GB

0.5 GB

64.5 GB

128 TB

-64 GB

128 TB

256 TB

text+data

heap

mmap

stack

upper

half

p
ri

m
a

ry
 s

ta
te

text+data

heap

mmap

stack

shadow

state

shadow

state

tagmap

Fig. 2. The address space layout used by LMC on Linux: (a) Unmodified 32-
bit layout. (b) Compact 32-bit layout. (c) Compact 32-bit layout with shadow
state organization. (e) 64-bit layout with shadow state organization.

did not prevent LMC from successfully running all the test
programs considered in our experimental evaluation.

2) 64-bit Address Space Layout: On 64-bit architectures,
LMC’s instrumentation generates position-independent exe-
cutable (PIE) binaries to freely relocate the primary state. Note
that, although position-independent code is known to introduce
nontrivial performance overhead on particular architectures [37],
64-bit architectures have been designed to efficiently support
PIE binaries. As a matter of fact, increasingly many operating
system distributions—e.g., Ubuntu—have started to ship 64-
bit software packages in PIE format, which also improves
the coverage of address space layout randomization and thus
software security. LMC follows the same strategy, which
automatically ensures relocation of the entire primary state
in the upper 64 GB of the memory address space. The tagmap
and the shadow state, in turn, are consecutively allocated at the
bottom of the memory address space. Under the default ρ=128
configuration (Section IV-A), this strategy yields a 512 MB
tagmap. The upper half—starting from 128 TB—finally, is
reserved at initialization time and made inaccessible to the
program, for simplicity. This strategy still leaves nearly 128 TB
of memory address space available to the running program.

B. Stack Relocation

To relocate the stack on 32-bit architectures, the LMC
checkpointing library instruments the program to intercept
the application entry point and transparently perform the
relocation. On Linux, this is equivalent to overriding glibc’s

libc start main with a library function that allocates a
new stack, copies the arguments and environment variables
to the new stack location, and finally returns control to libc.
This strategy, however, is alone insufficient to relocate the
stack, given that the operating system is not aware of the
change and, for example, can no longer export the program
command-line arguments through the proc filesystem—i.e.,
/proc/pid/cmdline. To address this problem, LMC relies on
kernel support introduced by recent user-level checkpoint-restart
solutions [23], which allows a user program owning the neces-
sary capability (i.e., CAP SYS RESOURCE) to inform the kernel
of a new relocated stack via a dedicated interface (i.e., prctl).



16 32 64 128 256 512 1024 2048 4096
0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

nginx 

lighttpd

httpd

Region Size in Bytes

Th
ro

u
g

h
p

u
t

D
e

g
ra

d
a

ti
o

n
in

%

Fig. 3. Throughput degradation on lighttpd, nginx and Apache httpd for
different memory region sizes.

C. Tagmap

LMC maintains a tagmap using 1 byte tags and addressing
memory regions of a configurable size St. To reconfigure the
tagmap layout, users can specify a custom St (power of two)
and recompile the checkpointing library. When called by the
instrumented code, our store hook locates the tag associated
to the given store instruction by calculating (a >> log2(St))+
toff , where toff is the offset between the base address of
the primary state and the base address of the tagmap and a
is the destination address for the store instruction. If the tag
is not set, our store hook first copies the memory region
from the primary state into the shadow state and sets the tag
in the tagmap before issuing the given store instruction into
the primary state. The tagmap is reset to a pristine state at
the next checkpoint/restore operation associated to a given
shadow state. Store instructions based on memory intrinsics
are segmented into multiple memory writes according to the
region size selected.

IV. TAGMAP MANAGEMENT

This section details the key issues LMC addresses to manage
the tagmap as part of its checkpointing strategy.

A. Memory Region Size

The memory region size determines the size of the tagmap
and also the granularity of the checkpointing strategy, i.e., a
smaller region size results in a larger tagmap and a finer level
of granularity. Selecting a large region size has two advantages.
First, larger regions—and thus smaller tagmaps—yield more
program-usable address space. Second, larger regions increase
the probability of two given store instructions pointing into the
same region. This leads to fewer—albeit larger—copy opera-
tions and better program-perceived locality. Large regions, how-
ever, can also lead to unnecessary copying to the shadow state,
since the entire region is always copied to the shadow state even
when a single byte within the region is modified in the entire
checkpoint interval. These observations highlight the different
tradeoffs involved in selecting the optimal memory region size.

0 GB

1.5 GB

3 GB

4 GB

text+data

heap

mmap

stack

tagmap

text+data

heap

mmap

stack

shadow

state

shadow

state

p
ri

m
a

ry
 s

ta
te

kernel

tagmap

 (mapped)

metatagmap

(access protected)

0 GB

1.5 GB

3 GB

4 GB

text+data

heap

mmap

stack

text+data

heap

mmap

stack

shadow

state

shadow

state

p
ri

m
a

ry
 s

ta
te

kernel

stack

shadow

state

shadow

state

tagmap

Fig. 4. Tagmap and metatagmap mappings to memory regions.

To investigate the tradeoffs, we measured the LMC-induced
throughput degradation for the three most popular web servers
according to the experimental setup adopted in our evaluation
(Section VII). We repeated the experiment across several
different memory region sizes and reported the results in
Figure 3. The figure shows that, in all cases, the throughput
increases with the region size for ρ≤128 bytes and decreases
for ρ>128 bytes, due to the excessive amount of unnecessary
copying outweighing the benefits derived from increased
locality and degrading the overall run-time performance. Based
on this experiments, LMC currently assumes ρ=128 bytes in
its default configuration.

B. Metatagmap

Memory checkpointing is often used in error recovery
scenarios, where one cannot safely assume that program-issued
store instructions are free from errors that could corrupt
arbitrary memory address space areas, including the shadow
state and the tagmap itself. To protect the program against
accidental metadata corruption, LMC can be configured to
use a separate metatagmap—allocated within the tagmap and
with a similar rationale—to map all the store instructions that
erroneously specify a destination address inside the shadow
state, tagmap, or metatagmap itself. Inhibiting access to the
metatagmap using page protection mechanisms—a strategy
inspired by prior work on taint tracking techniques [33]—
is sufficient to prevent arbitrary metadata corruption on
invalid store instructions and induce fail-stop behavior—i.e.,
segmentation fault—that can be effectively handled by error
recovery techniques instead. LMC’s tagmap and metatagmap
mapping strategy is depicted in Figure 4.

C. Resetting the Tagmap

The most straightforward tagmap implementation is a
bitmap with boolean tag values. This strategy, however, requires
zeroing out the entire bitmap every time LMC needs to reset
the tagmap at the end of a given checkpoint interval. For
this purpose, an option is to simply bzero the entire tagmap.
Another option is to use the mmap system call to request the
kernel to overmap the tagmap with zero pages. The latter
strategy is generally more efficient—only the pages of the
tagmap that are actually mapped in are zeroed—but still
introduces nontrivial performance costs associated to increased



zeroing, page faulting—demand paging dictates zero pages
to be only mapped in at first access—and setting up a new
memory area in mmap. To eliminate the latter cost, our current
LMC implementation relies on the madvise system call and the
MADV DONTNEED flag to efficiently repopulate a given memory
area with zero pages without recreating the area, a strategy
commonly employed in modern memory allocators [38]. The
other costs, however, are much harder to eliminate without
dedicated kernel support.

To avoid incurring such costs at every checkpoint interval,
LMC opts for a more sophisticated tagmap implementation
based on epoch numbers. For this purpose, the LMC check-
pointing library keeps track of a 1-byte global epoch number
incremented at every checkpoint. Every tag in the tagmap is
set with the current epoch number when the corresponding
memory region is first modified in a given checkpoint interval.
To check whether a particular region has already been saved,
LMC simply compares the corresponding tag in the tagmap
with the current epoch number. This scheme eliminates the need
to zero out the tagmap at every checkpoint interval, only forcing
LMC to repopulate the entire tagmap with zero pages when
epoch numbers run over, i.e., every 255 intervals assuming
8-bit epoch numbers.

D. Thread Safety

LMC can natively support thread safe behavior, but our
current implementation disables thread safety by default. This
is to eliminate extra tagmap management complexity, which is
often unnecessary in practice given that memory checkpointing
applications typically enforce thread safety on their own to
guarantee a sound checkpointing model in a multithreaded
context. For example, error recovery techniques rely on a well-
defined thread model to implement their recovery activities,
assuming nonthreaded execution by construction [4], [15],
allowing only one thread to enter a new checkpoint interval
and explicitly blocking all the other threads [3], [9], [10], or
only allow checkpoint intervals that have been proven thread
safe by static program analysis [39].

Enforcing thread safety at the memory checkpointing level
requires LMC to synchronize accesses to LMC-maintained
metadata, so that no race conditions can result from multiple
threads writing into the same memory region at the same time.
To address this problem, the obvious solution is to serialize
accesses to the tagmap, epoch numbers, and shadow state using
dedicated locks—e.g., mutexes. This strategy, however, may
introduce nontrivial complexity and lock contention overhead at
runtime. For this reason, LMC opts for a simpler solution which
piggybacks on the synchronization mechanisms already present
in the original program. To this end, LMC lowers the memory
region size to 1 byte—similar to prior memory shadowing
techniques for multithreaded programs [32]—a strategy which
naturally yields thread safety by construction as long as the
original program did not contain race conditions with two
threads attempting to modify the same memory byte at the
same time. This assumption may be overly conservative in
error recovery applications, but such applications generally
deal with thread safety explicitly, as mentioned earlier. Further,
LMC needs to translate all the atomic instructions—e.g., atomic
increment—into fully synchronized store operations.

V. OPTIMIZATIONS

This section details the optimizations adopted in our
prototype to minimize the LMC-induced performance overhead.

A. Reducing Instrumentation Costs

Instrumented store instructions introduce nontrivial perfor-
mance costs even if the target memory region has already been
checkpointed. Such costs have two main sources: (i) new call
instructions to the store hook function and (ii) new load and
branch instructions to check the tagmap as part of the check-
pointing activity. As a result, the LMC optimization pass can
minimize the performance overhead by preventing instrumenta-
tion of store instructions that static analysis can prove (i) redun-
dant—i.e., operating on already checkpointed memory regions—
or (ii) transient—i.e., operating on short-lived memory regions
whose effects are never exposed outside the associated check-
point interval and are thus not relevant for the checkpoint. Fur-
ther, the LMC optimization pass aggregates store instructions
for which the pass can statically assess good spatial locality.

1) Redundant Stores: To avoid instrumenting redundant
stores, the LMC optimization pass examines each instrumented
store instruction I and its pointer operand p, and creates a set
S including all the other store instructions that store into the
memory location pointed to by p. The analysis establish this
fact by checking for equivalence of the pointer operands, i.e.,
stays conservative in the case of pointer aliasing. In a second
step, LMC tests for each instruction Icanditate included in S, if
Icanditate is dominated by I—i.e., I is proven to be always ex-
ecuted before Icanditate—and if so, un-instruments Icanditate.

2) Transient Stores: To avoid instrumenting transient stores,
the LMC optimization pass seeks to identify both heap transient
stores—i.e., store instructions referring to heap objects allocated
and freed within a single checkpoint interval—and stack
transient stores—i.e., store instructions referring to stack objects
in short-lived functions, whose lifetime never spans across
multiple checkpoint intervals by construction.

Heap transient stores are identified using checkpoint escape
analysis, which follows the same static analysis strategy used
in standard thread escape analysis techniques [40]. To assess
whether a memory object escapes a function in the checkpoint
interval, LMC relies on data structure analysis [41], an
efficient context-sensitive and field-sensitive points-to analysis
implemented in LLVM [36]. In particular, LMC follows the
approach adopted by poolalloc [42] to identify function-local
memory pools. This strategy allows LMC to identify store
instructions that never escape a given checkpoint interval and
can thus be safely left uninstrumented in the final binary.

To prevent instrumenting stack transient stores, LMC eagerly
checkpoints the active call stack at checkpointing time and
relies on the points-to information provided by data structure
analysis [41] to avoid instrumenting all the store instructions
that are statically proven to always refer to stack objects within
the checkpoint interval. This strategy reflects the intuition that
checkpoint requests are usually issued when the amount of
state active on the call stack—and thus the amount of data
to checkpoint eagerly—is relatively small. This is especially
evident in common request-oriented checkpointing models [4],
[5] in long-running applications, which typically yield minimal
long-lived call stack state at memory checkpointing time.



TABLE I. LONG-LIVED CALL STACK SIZE FOR DIFFERENT SERVER
APPLICATIONS.

Server Long-lived stack in kB

nginx 1224
lighttpd 712
httpd 784
prostgresql 3048
bind 352
proftpd 5784
pureftpd 4608
vsftpd 1088

Table I confirms our intuition, showing that the size of the
long-lived call stack for all the server applications considered
in our evaluation is typically smaller than 1 memory page,
which introduces minimal copying costs—and thus minimal
performance degradation—at checkpointing time.

3) Aggregating Store Instrumenation: While not instru-
menting redundant store instructions is effective for single
memory locations, it cannot account for stores to different,
but spatially collocated memory locations. Aggregating the
instrumentation for these collocated store instructions, however,
has the advantage that stores to the same underlying memory
region are potentially only instrumented once.

LMC performs this optimization for store instructions into
the same underlying object by constructing dominator chains
of store instructions for each memory object (e.g., struct).
The pass identifies the underlying memory object by stripping
all constant offsets of LLVM’s getelementptr instruction,
and stays conservative in the case of pointer aliasing. After
establishing the modified range of the memory object for
each chain, all the store instruction in the chain are left
uninstrumented and a call to LMC’s store hook covering the
entire region is placed before the chain’s leading instruction.

B. Reducing Checkpointing Costs

In its current form, our LMC prototype naturally imposes
an always-on checkpointing strategy, given that all the relevant
store instructions always run instrumented throughout the exe-
cution. In other words, either an implicit or explicit checkpoint
interval is always active during the execution. While the cost of
copying is gradually amortized throughout the execution when
no explicit checkpoint request is issued—i.e., the same memory
region is never checkpointed more than once—or can even be
eliminated altogether by explicitly setting all the tags in the
tagmap, the running program is still exposed to nonmarginal
tagmap management costs.

To eliminate such costs, an option is to rely on program
instrumentation to implement a simple basic block cloning
strategy, a well-known technique incurring a relatively small
memory [43] and performance impact [44], [45]. Basic block
cloning results in a final binary containing two versions of
each basic block and additional code to efficiently switch from
one version to another on demand. For our purposes, one
version would reflect code from the original uninstrumented
program and the other version would reflect the corresponding
code with store instructions instrumented to perform memory
checkpointing. We are planning to thoroughly investigate the
impact of such a basic block cloning strategy in our future work.

VI. ALTERNATIVE TECHNIQUES

This section provides a general overview of existing memory
checkpointing techniques and draws a high-level comparison
with LMC. An experimental comparison, in turn, is presented in
Section VII. We focus here on user-level memory checkpointing,
and refer the reader to existing surveys [46], [47] for more
intrusive kernel-level [19]–[22], [48]–[51] and VMM-level [52]
checkpointing techniques.

A. Fork-based Checkpointing

The most common way to implement page-granular check-
pointing at the user level is to rely on the copy-on-write
semantics supported by the fork system call. For our purposes,
memory checkpointing can be simply implemented by spawning
a new child process at the beginning of a checkpoint interval
and programmatically terminate the process at the end of the
interval. For its simplicity and isolation properties, fork-based
checkpointing has been widely used in prior solutions [3],
[6], [8], [12], [25]. This technique, however, can introduce
substantial checkpoint-time overhead—fork requires creating
a new process context—and is not entirely transparent—a new
process instance is made “visible” to the running program.

B. Mprotect-based Checkpointing

Another popular page-granular checkpointing strategy is to
rely on the mprotect system call to write-protect all the user
memory pages and intercept the resulting write faults from
a user-level SIGSEGV signal handler, a mechanism frequently
used to implement generic user-level page fault handling.
This mechanism can be used to implement COW semantics
similar to fork-based checkpointing or, as an alternative, to
implement dirty page tracking entirely in user space—and
incrementally copy dirty pages at the end of each checkpoint
interval, starting with an initial full memory checkpoint. After
copying (or tracking) the faulting page, the write protection
can be removed and reestablished only at the next checkpoint
request. When compared to fork-based checkpointing, this
technique typically introduces a more modest checkpoint-time
overhead, but, at the same time, substantially increases the cost
of page fault handling and lowers the isolation guarantees—the
checkpointed data resides in the same address space as
the running program and extra protection mechanisms are
necessary to prevent data corruption.Further, this technique
cannot be made application-transparent without additional
recovery mechanisms in place, given that kernel execution
page faulting on a write-protected page may result in a
system call returning an error code to the application—i.e.,
EFAULT, according to POSIX [25]. For all these reasons,
mprotect-based checkpointing has found relatively limited use
in prior checkpointing solutions [16], [24], [25].

C. Soft Dirty Bit-based Checkpointing

A popular dirty page tracking strategy suitable for page-
granular memory checkpointing is to rely on the dirty bit
information maintained by the hardware in individual page
tables entries. Traditional UNIX systems do not directly
expose dirty bit information to user programs and typically
require nontrivial kernel extensions to implement reliable dirty
page tracking for checkpointing purposes [53], a strategy



lig
ht

tp
d

ng
in

x

ht
tp

d

vs
ftp

d

pr
of

tp
d

pu
re

−
ftp

d

bi
nd

po
st

gr
es

ql

ge
om

ea
n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0.0

0.2

0.4

0.6

0.8

1.0
LMC
Undolog
Fork
MProtect
Softdirty

Fig. 5. Normalized throughput for our server programs across different
memory checkpointing techniques (64-bit results).

often explored in prior kernel-level solutions [49], [51], [53].
On recent Linux releases, however, kernel support adopted
for emerging checkpoint-restart frameworks [23] allow user
programs to implement dirty page tracking by periodically
reading and clearing software-maintained dirty bits—or soft
dirty bits. This scheme, however, still requires extra protection
mechanisms to prevent checkpoint data corruption and does not
efficiently scale to large address spaces—reading soft dirty bits
requires scanning all the mapped memory regions in the address
space. Other user-level solutions have also suggested emulating
soft dirty bit tracking using block-level checksumming [54],
[55], an approach which still shares the same limitations of
soft dirty bit-based tracking.

D. Undolog-based Checkpointing

Undolog-based checkpointing relies on program instrumen-
tation techniques to log all the store instructions—i.e., their
data, size, and target addresses—issued by the program within
a checkpoint interval and revert the logged changes at restore
time. Both dynamic [10] and static instrumentation [5], [15]
techniques can be used to instrument the store instructions—we
implemented the latter approach in our prototype implemen-
tation (similar to the instrumentation strategy used in LMC)
to ensure a fair experimental comparison. Previous work on
instrumentation-based undolog approaches [15] apply optimiza-
tions similar to LMC’s “uninstrumentation” optimizations, but
do not thoroughly evaluate their impact on runtime performance.
To prevent checkpoint data corruption, the instrumented code
needs to perform bounds checking at every store instruction to
verify that the target address is not in the range in use by the
undolog itself.

VII. EVALUATION

We implemented LMC on Linux for Intel x86 and x64
architectures. We evaluated the resulting solution on a Intel
Core2 E6550 clocked at 2.4 GHz and equipped with 4 GB of
RAM (32-bit experiments) and a Intel Core i5-3340M clocked
at 2.4 GHz with 8 GB of RAM (64-bit experiments).

0 2 4 6 8 10 12 14 16

Redundancy factor

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

N
o
rm

a
liz

e
d
 e

xe
cu

ti
o
n
 t

im
e

Undo log

LMC

Fig. 6. Checkpointing-induced microbenchmark execution time for different
redundancy factors normalized against the baseline (64-bit results).

For our experimental evaluation, we selected the three most
popular open-source web servers—nginx (v0.8.54), lighttpd
(v1.4.28), and Apache httpd (v2.2.23)—the three most popular
open-source ftp servers—proftpd (v1.3.3), pureftpd (v1.0.36),
and vsftpd (v1.2.1)—the most popular open-source name
server—bind (v9.9.3)—and a popular open-source database
server—postgresql (v9.0.10). We also considered all the C
benchmarks in the SPEC CPU2006 benchmark suite. We
instrumented all our test programs across different memory
checkpointing techniques and enabled all the optimizations
described in Section V for all the compiler-based checkpointing
techniques (undolog and LMC itself) unless otherwise stated.

To stress the web servers, we relied on the Apache
benchmark (AB) [56] part of the Apache httpd suite. To emulate
a realistic workload, we configured AB to issue a total number of
25,000 requests with 10 concurrent connections and 10 requests
per connection through the loopback device. To benchmark
the FTP servers, we relied on the pyftpbench benchmark [57],
configured to open 100 control connections and request 100
1 KB-sized files per connection. Finally, we relied on the
sysbench [58] and queryperf [59] benchmarks to evaluate
postgresql and the bind name server, respectively. We ran all
our experiments 11 times—while checking that the CPUs were
fully loaded throughout our tests—and reported the median.

A. Checkpointing Performance

To evaluate the checkpointing-induced performance over-
head, we measured the throughput degradation on our server
programs while checkpointing at every client request, following
the common request-oriented checkpointing model adopted in
prior work [4], [5]. Figure 5 presents our results for 64-bit
Linux—we omit 32-bit results exhibiting similar behavior.

As shown in the figure, fork-based checkpointing induces
the highest checkpointing performance overhead compared to
all the other techniques (88.5% degradation, geometric mean).
Further, mprotect-based checkpointing is the top-performing
page-granular checkpointing technique in this scenario (55.5%
degradation, geometric mean). In particular, mprotect-based



pe
rlb

en
ch

bz
ip

2

hm
m

er

sp
hi

nx
3

lb
m

go
bm

k

h2
64

re
f

lib
qu

an
tu

m

m
cf

sj
en

g

m
ilc gc
c

N
or

m
al

iz
ed

 R
un

tim
e

0

2

4

6

8
LMC
undolog

Fig. 7. Checkpointing performance on SPEC for LMC and undolog (64-bit
results).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

lighttpd

nginx

httpd

proftpd

pure-ftpd

vsftpd

bind

postgresql

%
 S

to
re

 I
n

s
tr

u
c
tio

n
s

Instrumented
Double Store

Transient
Aggregation

Fig. 8. Relative number of uninstrumented store instructions for different
server programs.

checkpointing reported remarkable performance for programs
that exhibit good locality, e.g., Apache httpd, which mem-
ory profiling revealed modifying the smallest number of
memory pages in the selected checkpoint interval. Finally,
instrumentation-based techniques significantly outperform page-
granular techniques in most cases, as anticipated. In particular,
our results show that LMC performs comparably, and even bet-
ter on average (15.0% vs 20.0% degradation, geometric mean),
than undo log-based checkpointing. In detail, LMC consistently
outperforms undolog-based checkpointing for memory-intensive
programs, e.g., bind, and programs that exhibit significant write
locality, e.g., Apache httpd. In both scenarios, a large number
of duplicate writes can cause the undolog to grow quickly,
disrupting spatial locality and increasing cache trashing.

B. Effectiveness of the Optimizations

Figure 7 shows the checkpointing performance for the SPEC
CPU2006 benchmark suite using our LMC and the undolog
checkpointing technique. To simulate an event-based recovery
scenario, we identified an inner loop inside the programs. Dur-

lig
ht

tp
d

ng
in

x

ht
tp

d

vs
ftp

d

pr
of

tp
d

pu
re

−
ftp

d

bi
nd

po
st

gr
es

ql

ge
om

ea
n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0.0

0.2

0.4

0.6

0.8

1.0
None
DS+TRANS
DS+TRANS+AGR

Fig. 9. Throughput of server programs with LMC using different combinations
of optimizations.

pe
rlb

en
ch

bz
ip

2

gc
c

m
cf

m
ilc

go
bm

k

hm
m

er

sj
en

g

lib
qu

an
tu

m

h2
64

re
f

lb
m

sp
hi

nx
3

g−
m

ea
n

N
or

m
al

iz
ed

 R
un

tim
e

0.0

0.5

1.0

1.5

2.0

2.5

3.0
LMC(x86)
Undolog(x86)
LMC(x64)
Undolog(x64)

Fig. 10. Instrumentation-induced execution time for the C programs in the
SPEC CPU2006 benchmark suite normalized against the baseline. Actual state
saving is disabled in the store hook.

ing each iteration of the loop, a checkpoint is taken, resulting in
checkpoint intervals ranging from 13 microseconds (perlbench)
to 391 seconds (milc). A special case is gcc, in which case only
one checkpoint is taken, since no inner loop could be identified.
The results in the figure are ordered by checkpoint frequency.

We limited the undolog to 4 GB leading to programs
crashing, due to undolog overflows in cases where the check-
point interval is fairly large. Programs start to crash when
checkpointed with a frequency of 0.39 seconds (gobmk). This
underlines the necessity of memory boundedness. Further,
the figure shows that in nearly all cases LMC outperforms
the undolog-based technique. Only for perlbench, which is
checkpointed with an extremely high frequency, the undolog
performs better than LMC. In this case, the very low cost
incurred by the undolog to start a new checkpoint—i.e.,
simply resetting the index into the log—is the key to better
performance.

To evaluate the effectiveness of the optimizations operated
by LMC to reduce the instrumentation overhead, we measured
(1) the number of store instructions that are uninstrumented by



TABLE II. CHECKPOINTING-INDUCED PSS INCREASE FOR OUR SERVER PROGRAMS ACROSS DIFFERENT MEMORY CHECKPOINTING TECHNIQUES AND
INTERVALS.

Baseline PSS LMC Undolog mprotect

Requests: 1 10 100 1 10 100 1 10 100

nginx 1872 KB 20 % 19 % 20 % 9 % 21 % 136 % 12 % 12.6 % 12 %

lighttpd 851 KB 33 % 43 % 33 % 8 % 32% 184 % 16 % 19 % 15 %

httpd 3257 KB 52 % 54 % 52 % 26 % 128 % 1193 % 16 % 16% 15 %

proftpd 71982 KB 94 % 94 % 93 % 420% 900 % 5900 % 8 % 5 % 5 %

pureftpd 268 KB 41 % 39 % 39 % 14 % 33 % 208 % 111 % 121 % 195 %

vsftpd 89 KB 29 % 35 % 35 % 5 % 9 % 11 % 5 % 13% 11 %

bind 8897 KB 27 % 26 % 27 % 79 % 94% 218 % 2 % 3 % 1 %

postgresql 20919 KB 11 % 29 % 13 % 412 % 470 % 1104 % 16 % 5 % 1 %

the different optimization stages and (2) the resulting impact
on the run-time performance of the server programs.

1) Uninstrumented Store Instructions: Figure 8 shows the
percentage of store instructions that are uninstrumented by
the different optimization stages. The results show that our
optimizations are generally effective, leading to a reduction
of instrumented store instructions of between 29 % (bind)
and 72 % (pure-ftpd). In addition, the effectiveness of the
double store optimization (3.6–7.6 % of all store instructions
uninstrumented) is outweighted by the effectiveness of the
transient store and aggregation optimizations.

Further, our results show that, in some cases, (proftpd, nginx,
httpd, and postgresql) the aggregation optimization is able to
uninstrument the largest fraction of store instructions. In the
other cases (lighttpd, pureftpd, vsftpd, and bind), the transient
store optimization is able to uninstrument the largest fraction
of store instructions. We attribute this behavior to the latter
programs’ heavier use of stack-allocated variables.

2) Run-time Impact of the Optimizations: Figure 9 shows
the normalized throughput of our unoptimized (None), doubles
store and transient store optimized(DS+Trans) and fully opti-
mized(DS+Trans+AGR) server programs. The general trend
shows that uninstrumenting store instructions is indeed reflected
in better run-time performance, leading, on average, to a
performance gain of 1.8 % for the DS+TRANS case and and ad-
ditional 4.8 % when also enabling the aggregation optimization.

At the same time, our results also show that an increase in
the number of uninstrumented instructions induced by a certain
optimization is not necessarily reflected in an equally-sized
performance gain, since the uninstrumented store instructions
may happen to lie in cold (i.e., nonperformance critical) code
paths. This was, for example, the case for postgresql, where
the aggregation optimization uninstruments the largest fraction
of store instructions but has a smaller impact on the overall
performance. Finally, in some cases (lighttpd, vsftpd, and
proftpd), our results seem to suggest that optimizations may
occasionally have a slightly negative performance impact. In
practice, the reported slowdowns are well within the noise
caused by optimization-induced memory layout changes [60].

C. Impact of Duplicate Writes

To compare the previously noted impact of duplicate writes
on instrumentation-based memory checkpointing techniques, we

relied on a homegrown microbenchmark, which runs through
5000 loop iterations, each of which checkpoints the entire mem-
ory image and subsequently writes 1 KB of data into a 128 KB
memory range—sampled uniformly at each iteration. To simu-
late duplicate writes with a redundancy factor of R, we repeated
each write operation inside the loop R times. Figure 6 shows
the time to complete the checkpointing-enabled version of
our (64-bit) microbenchmark normalized against the baseline—
for growing values of R. As we can see, undolog-based
checkpointing yields better performance only for R={0, 1} but
it is increasingly outperformed by LMC for greater values of R.

D. Instrumentation Performance

To evaluate the performance overhead induced by
instrumentation-based memory checkpointing techniques with
no checkpoint operation issued during regular execution, we
measured the time to complete an instrumented version of the C
programs in the SPEC CPU2006 benchmark suite compared to
the baseline. As checkpointing-induced costs are not considered,
we disabled logging for undolog-based checkpointing and epoch
number management for LMC.

Figure 10 shows that the instrumentation-induced perfor-
mance overhead lies between 17 % and 206 %. Further,
the overhead for LMC is slightly higher than that for the
undolog. This is especially the case for libquantum and lbm,
which introduce significant cache pressure [61]. The latter is
further increased by tagmap management operations operated
by LMC’s store hook function. Finally, Figure 10 shows
that the overall overhead is slightly higher for 64-bit systems,
which we attribute to the position-independent code used by
our prototype implementation on such systems. The apparent
speedup reported for hmmer, in turn, is likely caused by a
higher instruction per cycle ratio on 64-bit architectures [61].

E. Memory Usage

To evaluate the checkpointing-induced memory usage over-
head, we measured the Proportional Set Size (PSS)—physical
memory usage normalized to account for shared memory pages
in a multiprocess context—increase on our servers programs
while checkpointing at every R = {1, 10, 100} requests—
highlighting the memory usage growth for the different tech-
niques. Table II presents our findings—omitting fork-based
checkpointing results, comparable to mprotect-based results but



harder to stabilize with nonatomic PSS measurements across
multiple processes. As expected, LMC generally consumes
more memory than page-granular checkpointing techniques
(32% vs 12% increase with R=1, geometric mean), but induces
a similarly limited and steady memory usage increase across
different checkpoint intervals. Undo log-based checkpointing, in
contrast, introduces a substantial memory usage increase, which
grows very quickly as we relax the duration of the checkpoint
interval. For example, with R=10, undolog-based checkpoint-
ing induces a PSS increase of 900 % in the worst case—i.e.,
proftpd—which quickly grows up to 6000 % with R=100.

VIII. CONCLUSION

Existing high-frequency memory checkpointing techniques
operating at the user level force users to tradeoff performance
and memory usage guarantees, a painful compromise when
systems reliability is at stake. To address these concerns, this
paper presented LMC, a new memory checkpointing technique
based on a compiler-assisted shadow state organization which
efficiently implements byte-granular copy-on-write semantics.
To evaluate the viability of our approach, we implemented LMC
for generic 32- and 64-bit Linux programs and evaluated it on
eight popular open-source server applications using the common
request-oriented checkpointing model. Our experimental results
show that LMC matches the performance guarantees of state-of-
the-art instrumentation-based strategies—i.e., undolog—while
also providing much stronger memory usage guarantees.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
their comments. This work was partially supported by “the
Rosetta” (ERC Starting Grant 259108) and “Re-Cover” (NWO
628.001.006) projects.

REFERENCES

[1] J. S. Plank, K. Li, and M. A. Puening, “Diskless checkpointing,” TPDS,
vol. 9, no. 10, p. 972–986, Oct. 1998.

[2] J. L. Lawall and G. Muller, “Efficient incremental checkpointing of Java
programs,” in DSN, 2000, pp. 61–70.

[3] A. Zavou, G. Portokalidis, and A. D. Keromytis, “Self-healing multitier
architectures using cascading rescue points,” in ACSAC, 2012, pp. 379–
388.

[4] C. Giuffrida, L. Cavallaro, and A. S. Tanenbaum, “We crashed, now
what?” in HotDep, 2010, pp. 1–8.

[5] A. Lenharth, V. S. Adve, and S. T. King, “Recovery domains: An
organizing principle for recoverable operating systems,” in ASPLOS.
ACM, 2009, pp. 49–60.

[6] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou, “Rx: Treating bugs as
allergies—a safe method to survive software failures,” in SOSP, 2005,
pp. 235–248.

[7] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and A. D.
Keromytis, “ASSURE: Automatic software self-healing using rescue
points,” in ASPLOS, 2009, pp. 37–48.

[8] Q. Gao, W. Zhang, Y. Tang, and F. Qin, “First-aid: Surviving and
preventing memory management bugs during production runs,” in
EUROSYS, 2009, pp. 159–172.

[9] A. Kadav, M. J. Renzelmann, and M. M. Swift, “Fine-grained fault
tolerance using device checkpoints,” in ASPLOS, 2013, pp. 473–484.

[10] G. Portokalidis and A. D. Keromytis, “REASSURE: A self-contained
mechanism for healing software using rescue points,” in ACSAC, 2011,
pp. 16–32.

[11] D. Subhraveti and J. Nieh, “Record and transplay: Partial checkpointing
for replay debugging across heterogeneous systems,” in SIGMETRICS,
2011, pp. 109–120.

[12] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou, “Flashback:
A lightweight extension for rollback and deterministic replay for software
debugging,” in USENIX ATC, 2004, p. 3.

[13] J. Hursey, C. January, M. O’Connor, P. H. Hargrove, D. Lecomber,
J. M. Squyres, and A. Lumsdaine, “Checkpoint/restart-enabled parallel
debugging,” in EuroMPI, 2010, pp. 219–228.

[14] S. T. King, G. W. Dunlap, and P. M. Chen, “Debugging operating
systems with time-traveling virtual machines,” in USENIX ATC, 2005,
p. 1.

[15] C. C. Zhao, J. G. Steffan, C. Amza, and A. Kielstra, “Compiler support
for fine-grain software-only checkpointing,” in CC, 2012, pp. 200–219.

[16] E. Bugnion, V. Chipounov, and G. Candea, “Lightweight snapshots and
system-level backtracking,” in HotOS, 2013, p. 23.

[17] Y.-M. Wang, Y. Huang, K.-P. Vo, P.-Y. Chung, and C. Kintala,
“Checkpointing and its applications,” in FTCS, 1995, p. 22.

[18] B. Döbel and H. Härtig, “Who watches the watchmen? – protecting
operating system reliability mechanisms,” in HotDep, 2012.

[19] “OpenVZ,” http://openvz.org.
[20] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The design and

implementation of zap: A system for migrating computing environments,”
in OSDI, Dec. 2002, p. 361–376.

[21] O. Laadan and J. Nieh, “Transparent checkpoint-restart of multiple
processes on commodity operating systems,” in USENIX ATC, 2007, pp.
1–14.

[22] O. Laadan and S. E. Hallyn, “Linux-CR: Transparent application
checkpoint-restart in linux,” in Linux Symposium, 2010, pp. 159–172.

[23] “CRIU,” http://criu.org.
[24] J. F. Ruscio, M. A. Heffner, and S. Varadarajan, “DejaVu: Transparent

user-level checkpointing, migration and recovery for distributed systems,”
in SC, 2006.

[25] J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent
checkpointing under unix,” in USENIX ATC, 1995, p. 18.

[26] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières, and
C. Kozyrakis, “Dune: Safe user-level access to privileged CPU features,”
in OSDI, 2012, pp. 335–348.

[27] D. Vogt, C. Giuffrida, H. Bos, and A. S. Tanenbaum, “Techniques for
efficient in-memory checkpointing,” in HotDep, 2013.

[28] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
Sanitizer: A fast address sanity checker,” 2012, p. 28.

[29] Q. Zhao, D. Bruening, and S. Amarasinghe, “Efficient memory shadow-
ing for 64-bit architectures,” in ISMM, 2010, pp. 93–102.

[30] Q. Zhao, R. Rabbah, S. Amarasinghe, L. Rudolph, and W.-F. Wong,
“How to do a million watchpoints: Efficient debugging using dynamic
instrumentation,” in CC, 2008, pp. 147–162.

[31] N. Nethercote and J. Seward, “How to shadow every byte of memory
used by a program,” in VEE, 2007, pp. 65–74.

[32] M. Payer, E. Kravina, and T. R. Gross, “Lightweight memory tracing,”
in USENIX ATC, 2013.

[33] W. Xu, S. Bhatkar, and R. Sekar, “Taint-enhanced policy enforcement:
a practical approach to defeat a wide range of attacks,” in USENIX
Security, 2006, pp. 121–136.

[34] Q. Zhao, D. Bruening, and S. Amarasinghe, “Umbra: Efficient and
scalable memory shadowing,” in CGO, 2010, pp. 22–31.

[35] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” in PLDI, 2007, pp. 89–100.

[36] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in CGO, 2004, p. 75.

[37] M. Payer, “Too much PIE is bad for performance,” Tech. Rep., 2012.
[38] P. Akritidis, “Cling: A memory allocator to mitigate dangling pointers,”

in USENIX Security, 2010, p. 12.
[39] W. Zhang, M. de Kruijf, A. Li, S. Lu, and K. Sankaralingam, “ConAir:

Featherweight concurrency bug recovery via single-threaded idempotent
execution,” in ASPLOS, 2013, pp. 113–126.

[40] Y. Sade, M. Sagiv, and R. Shaham, “Optimizing C multithreaded memory
management using thread-local storage,” in Compiler Construction, pp.
137–155.

[41] C. Lattner, A. Lenharth, and V. Adve, “Making context-sensitive points-
to analysis with heap cloning practical for the real world,” in PLDI,
2007, pp. 278–289.

[42] C. Lattner and V. Adve, “Automatic Pool Allocation: Improving
Performance by Controlling Data Structure Layout in the Heap,” in
PLDI, Chigago, Illinois, June 2005.

[43] A. Jimborean, V. Loechner, and P. Clauss, “Handling multi-versioning
in LLVM: Code tracking and cloning,” in Workshop on Intermediate
Representations, Apr. 2011.

http://openvz.org
http://criu.org


[44] J. Wu, H. Cui, and J. Yang, “Bypassing races in live applications with
execution filters,” in OSDI, 2010.

[45] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “EDFI: A dependable
fault injection tool for dependability benchmarking experiments,” in
PRDC, 2013.

[46] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey of fault
tolerance mechanisms and Checkpoint/Restart implementations for high
performance computing systems,” J. Supercomput., vol. 65, no. 3, p.
1302–1326, Sep. 2013.

[47] J. C. Sancho, F. Petrini, K. Davis, R. Gioiosa, and S. Jiang, “Current
practice and a direction forward in Checkpoint/Restart implementations
for fault tolerance,” in IPDPS, 2005, p. 300.

[48] P. H. Hargrove and J. C. Duell, “Berkeley lab checkpoint/restart (BLCR)
for linux clusters,” Journal of Physics: Conference Series, vol. 46, no. 1,
p. 494, Sep. 2006.

[49] Y. Li and Z. Lan, “FREM: A fast restart mechanism for general
Checkpoint/Restart,” IEEE Trans. Comput., vol. 60, no. 5, p. 639–652,
May 2011.

[50] A. Zarrabi, K. Samsudin, and W. A. Wan Adnan, “Linux support for
fast transparent general purpose Checkpoint/Restart of multithreaded
processes in loadable kernel module,” J. Grid Comput., vol. 11, no. 2,
pp. 187–210, Jun. 2013.

[51] R. Gioiosa, J. C. Sancho, S. Jiang, F. Petrini, and K. Davis, “Transparent,
incremental checkpointing at kernel level: A foundation for fault

incremental checkpointing at kernel level: A foundation for fault
tolerance for parallel computers,” in Super Computing, 2005, p. 9.

[52] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
SOSP, 2003, pp. 164–177.

[53] M. Vasavada, F. Mueller, P. H. Hargrove, and E. Roman, “Comparing
different approaches for incremental checkpointing: The showdown,” in
Linux Symposium, 2011, pp. 69–79.

[54] K. B. Ferreira, R. Riesen, R. Brighwell, P. Bridges, and D. Arnold,
“libhashckpt: Hash-based incremental checkpointing using GPU’s,” in
EuroMPI, 2011, pp. 272–281.

[55] H.-c. Nam, J. Kim, S. Hong, and S. Lee, “Probabilistic checkpointing,”
in FTCS, 1997, p. 48.

[56] “Apache benchmark (AB),” http://httpd.apache.org/docs/2.0/programs/ab.
html.

[57] “pyftpdlib,” https://code.google.com/p/pyftpdlib.
[58] “SysBench,” http://sysbench.sourceforge.net.
[59] “BIND,” http://www.isc.org/downloads/bind.
[60] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney, “Producing

wrong data without doing anything obviously wrong!” in ASPLOS, 2009,
pp. 265–276.

[61] D. Ye, J. Ray, C. Harle, and D. R. Kaeli, “Performance characterization
of SPEC CPU2006 integer benchmarks on x86-64 architecture.” in

IISWC, 2006, pp. 120–127.

http://httpd.apache.org/docs/2.0/programs/ab.html
http://httpd.apache.org/docs/2.0/programs/ab.html
https://code.google.com/p/pyftpdlib
http://sysbench.sourceforge.net
http://www.isc.org/downloads/bind

	Introduction
	Memory Checkpointing
	User-level Memory Checkpointing

	Overview
	Memory Write Instrumentation
	Shadow State

	Shadow State Organization
	Memory Address Space Layout
	32-bit Address Space Layout
	64-bit Address Space Layout

	Stack Relocation
	Tagmap

	Tagmap Management
	Memory Region Size
	Metatagmap
	Resetting the Tagmap
	Thread Safety

	Optimizations
	Reducing Instrumentation Costs
	Redundant Stores
	Transient Stores
	Aggregating Store Instrumenation

	Reducing Checkpointing Costs

	Alternative Techniques
	Fork-based Checkpointing
	Mprotect-based Checkpointing
	Soft Dirty Bit-based Checkpointing
	Undolog-based Checkpointing

	Evaluation
	Checkpointing Performance
	Effectiveness of the Optimizations
	Uninstrumented Store Instructions
	Run-time Impact of the Optimizations

	Impact of Duplicate Writes
	Instrumentation Performance
	Memory Usage

	Conclusion
	References

