
Dynamic Detection of Vulnerable DMA Race Conditions
Brian Johannesmeyer

∗†

Qualcomm Technologies, Inc.

San Diego, United States of America

brian.johannesmeyer@qualcomm.com

Raphael Isemann
∗

Vrije Universiteit Amsterdam

Amsterdam, The Netherlands

r.isemann@vu.nl

Cristiano Giuffrida

Vrije Universiteit Amsterdam

Amsterdam, The Netherlands

giuffrida@cs.vu.nl

Herbert Bos

Vrije Universiteit Amsterdam

Amsterdam, The Netherlands

herbertb@cs.vu.nl

Abstract

The drivers of modern operating systems use Direct Memory Access

(DMA) to efficiently communicate with peripheral devices. Since

the memory accessed by DMA is a shared resource between driver

and device, it is a possible source of race conditions. Peripheral

devices are also often untrusted, so these race conditions open up a

new potential attack vector against a trusted OS kernel.

In this paper, we present DMARacer, a dynamic detector called

for these DMA-based race conditions in kernel code. DMARacer

tracks memory accesses to DMA memory throughout the kernel’s

lifetime and analyses them for various indicators of race conditions.

Additionally, upon detecting a race condition, DMARacer uses taint

tracking to trace its impact and identify any potential vulnerabilities

it may trigger, such as memory corruption or denial-of-service. We

used DMARacer to search the drivers of the Linux kernel for DMA-

based errors and find that DMA-based race conditions are a systemic

issue in driver code. In total, DMARacer was able to detect 817

problematic memory accesses and 344 vulnerable operations in the

scanned Linux kernel drivers.

CCS Concepts

• Security and privacy → Operating systems security; • Soft-

ware and its engineering→ Dynamic analysis; • Hardware→
Communication hardware, interfaces and storage.

Keywords

Direct Memory Access, Race Condition Vulnerabilities, Dynamic

Taint Analysis, Linux Kernel

ACM Reference Format:

Brian Johannesmeyer, Raphael Isemann, Cristiano Giuffrida, and Herbert

Bos. 2025. Dynamic Detection of Vulnerable DMA Race Conditions. In

∗
Both authors contributed equally to this research.

†
Work done while at Vrije Universiteit Amsterdam.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’25, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1525-9/2025/10

https://doi.org/10.1145/3719027.3765126

Proceedings of the 2025 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’25), October 13–17, 2025, Taipei, Taiwan. ACM, New

York, NY, USA, 15 pages. https://doi.org/10.1145/3719027.3765126

1 Introduction

“We trust the hardware pretty implicitly. There are bits
and pieces of the kernel that are starting to nibble away
at the “do we trust this?” portion, but for the most part,
this is not how Linux was designed at all.”

— Greg Kroah-Hartman, Linux kernel maintainer (in response to our disclosure)

Where OS developers in the past limited their security concerns

to malicious user programs [43], operating system kernels today

have to include peripheral devices in their threat model [7]. In-

deed, most general-purpose computers now come equipped with

IOMMUs [7]—mirroring established protection mechanisms that

prevent unauthorized memory access by user programs, by means

of MMUs [36], to also isolate memory for external devices. How-

ever, there is also memory that the kernel intentionally shares to

communicate with either user space or peripherals—and doing so

introduces the risk of race conditions.

For example, the shared memory used to transfer data from a

user program to the kernel in a system call may easily become a

source of race conditions. Moreover, the kernel and user/device

have different privilege levels, putting them out of reach of standard

synchronization approaches and verification tools [6, 16, 17, 39, 44,

48] that rely on all processes synchronizing voluntarily. Previous

work extensively studied race conditions, such as double fetches,

at the system call interface [11, 15, 22, 28, 29, 46, 53, 54, 58].

However, the problem also exists for drivers at the boundary

between kernel and untrusted devices. As with the system call

interface, the kernel and device both access shared memory to com-

municate. Using Direct Memory Access (DMA), a malicious device

may surrepitiously modify data that the kernel assumes is valid.

Recent work studied DMA-based communication between driver

and device and highlighted that standard security practices (e.g.,

input validation and IOMMU protection) are not yet consistently

adopted [8, 10, 14, 18, 20, 25, 30, 31, 33, 37, 40, 49, 50, 52, 57, 59, 61].

Despite these findings, the research community has largely ig-

nored the issue of DMA-based race conditions. The shared memory

and the different privilege levels mirror the conditions that lead to

race conditions and double fetch bugs on the user-kernel interface.

However, at the device-kernel interface, they may lead not just

to “classic” TOCTOU-like conditions, but also other, less-known

https://doi.org/10.1145/3719027.3765126
https://doi.org/10.1145/3719027.3765126

CCS ’25, October 13–17, 2025, Taipei, Taiwan Brian Johannesmeyer, Raphael Isemann, Cristiano Giuffrida, and Herbert Bos

but equally dangerous, ones. Examples include races in streaming

DMA, as well as cases where attackers corrupt kernel-initialized

data. The latter category is of particular concern as they are often

exploitable [8, 31] and we find that such vulnerabilities are much

more common than TOCTOU ones. This raises the question of how

to detect such conditions in the various device drivers found in

modern kernels?

In this work, we fill this gap by identifying DMA-based race

conditions using insights from prior research on user-to-kernel race

conditions. Unfortunately, applying these insights to the device-
to-kernel domain poses unique challenges. For instance, few (if

any) of the interactions across this boundary are standardized and

interposition is hard: devices may interact with the kernel through

custom driver interrupts, and the kernel may access DMA through

ordinary memory operations. Thus, we cannot incorporate the

methods from previous studies of unsafe DMA accesses directly

and must instead adapt them specifically to DMA race conditions.

In particular, unlike unsafe DMA accesses, DMA race conditions

require analyzing memory accesses collectively, as well as tracking

of long-lived state. For this purpose, we use dynamic taint analysis

(DTA) [35] to track such complex state across complex interactions.

We present DMARacer, a dynamic DMA race condition detector

for the Linux kernel. DMARacer monitors runtime invariants to

determine whether DMA accesses are race-free. When DMARacer

identifies a violation—a race condition—it reports the access as an

errant access. If the errant access involves attacker-controllable data
(e.g., loading from coherent DMA), we apply taint to the data to

track it throughout the kernel’s execution. Finally, if the tainted

data reaches a security-sensitive operation (e.g., a memory write

pointer), DMARacer flags it as a vulnerable operation.
Like other sanitizers, DMARacer instruments the kernel to de-

tect these issues during runtime. Specifically, it (i) tracks DMA state

by hooking into every DMA operation, (ii) identifies errant accesses

by monitoring all memory accesses, (iii) identifies vulnerable opera-

tions through DTA policies, and (iv) covers DMA race conditions by

executing a variety of device-to-kernel interactions. In combiation,

it enables DMARacer to detect DMA race conditions.

By applying race condition detection to the novel domain of DMA

data, DMARacer identifies 817 errant accesses and 344 vulnerable

operations across the kernel—with false positive rates of 0% and

9%, respectively. Moreover, our case studies show that these race

conditions are not easily eliminated: many are deeply embedded in

the semantics of existing drivers and APIs.

Contributions.We make the following contributions:

• We present a new dynamic analysis approach for detecting DMA

race conditions and vulnerable device-to-kernel interactions.

• We develop DMARacer, an open-source
1
DMA race condition

detector for the Linux kernel.

• We evaluate DMARacer on a recent kernel to identify hundreds

of errant accesses and vulnerable operations, and present case

studies that highlight that the issues are difficult to mitigate.

1
DMARacer is available at https://github.com/vusec/dmaracer.

2 Background

Race conditions. Race conditions are non-deterministic errors

that occur when several processes access a shared resource without

synchronization[34, 44]. A common synchronization mechanism

are locks that grant exclusive access to the variable for a limited

time. Many synchronization primitives require the cooperation

of all involved processes to work correctly. They do not work if

one of the processes is malicious and ignores the synchronization

primitive.

TOCTOU bugs. A special kind of bug caused by race conditions

are time-of-check to time-of-use (TOCTOU) errors. Here, a piece

of code first checks whether a certain property holds for a shared

resource. The rest of the code then incorrectly assumes this prop-

erty still holds [41], even though there is no mechanism in place

that ensures the immutability of the shared resource. An unpriv-

ileged attacker can abuse this behavior to potentially exploit the

code that relies on the checked property. In a concrete attack, the

attacker would set the shared resource to a ’good’ state to satisfy

the check, and then modify it before the first to a ’bad’ state that

causes unintended behavior.

Double fetch bugs.A common attack scenario involving TOCTOU

errors are kernel system call handlers where they are also referred

to as double-fetch bugs [22, 28, 46, 53, 54, 58]. In this scenario, the

attacker performs a system call as an unprivileged user and the

shared resource is the memory containing the system call argu-

ments. This memory is accessible by both user and kernel while the

system call is being performed. The attacker can therefore modify

an argument between the time the kernel checks it for validity (1st

fetch) and the actual processing of the arguments (2nd fetch). If the

attacker is successful and is able to bypass a critical check such as

a buffer size check, the consequences of such an attack can result

in information leakage or privilege escalations [53].

Direct memory access. Direct memory access (DMA) is a hard-

ware feature that reduces the CPU workload when communicating

with peripheral hardware. In a system with DMA, a dedicated DMA

controller is responsible for moving data between system memory

and hardware. The CPU itself is only responsible for initiating the

data transfers and can be utilized for other tasks while the data is

being moved.

Kernel drivers utilize DMA by allocating a special DMA buffer

that is bound to a device’s registers or memory. The buffer itself is

used like any other plain memory buffer in C and can be directly

written to and read from without invoking special functions. The

driver can decide between two kinds of DMA buffers that differ in

when they synchronize their contents with the device.

(1) Streaming (or asynchronous) DMA buffers are used for single

DMA-based data transfers. The transfer to and from the device

is explicitly initialized by the driver. As the assumption is that

driver and device do not access the same memory region at

the same time, there are generally no strong guarantees with

respect to cache coherence.

(2) Coherent (or synchronous) DMA buffers are implicitly synchro-

nized between device and system memory. These buffers are

set up in cache-coherent memory, therefore any memory writes

https://github.com/vusec/dmaracer

Dynamic Detection of Vulnerable DMA Race Conditions CCS ’25, October 13–17, 2025, Taipei, Taiwan

done by either device or CPU are immediately made visible to

the other. Coherent buffers are used when the driver and the

device require concurrent write access.

DMA errors. The two kinds of DMA buffers impose each a very

different challenge for a driver that uses them. For streaming DMA

buffers, the main challenge is the correct timing of the synchroniza-

tion request. All data that needs to be transferred must have been

written to the buffer before it is synchronized with the device.

Coherent buffers do not impose this requirement, but instead

come with different security implications. Because their contents

can be concurrently accessed by an untrusted device and the kernel,

they can be a potential source of TOCTOU bugs. The possible attack

scenario using these bugs is very similar to the TOCTOU attacks

on kernel system call handlers (see the previous section). Instead

of the user switching out system call arguments, a device could

change the contents of a DMA buffer after the driver performed

the necessary sanity checks on it.

3 Threat Model

We adopt the threat model of previous work [10], which considers

a local attacker who controls a peripheral device (e.g., a USB key-

board) and its workload. The kernel and its drivers are trusted and

not compromised. The attacker’s goal is to cause a denial of service

(e.g., trigger a kernel panic) or achieve privilege escalation (e.g.,

corrupt kernel memory). The ability to control the peripheral device

allows the attacker to observe all DMA accesses performed by the

kernel driver and control the values of the accessed DMA mem-

ory. E.g., the attacker can observe that a certain part of the DMA

memory is accessed twice within a short time span and change

the memory contents so that two different values are read by each

access. The system memory is protected by an idealized IOMMU

that can protect each individual byte of memory against uninten-

tional writes from an external device. This means the system is

invulnerable against accidental exposure of memory caused by too

coarse-grained IOMMU protection capabilities [31].

4 Defining DMA Race Conditions

In this section, we will define three possible race conditions that

can arise out of improper DMA usage.

4.1 Coherent DMA-based Race Conditions

Coherent DMA is simultaneously accessible to both the kernel

and a malicious device, similar to how userspace data is simultane-

ously accessible to both the kernel and a malicious program. Hence,

we can gain insights from userspace-based race conditions when

defining coherent DMA-based race conditions.

TOCTOU bugs. Previous work on user-to-kernel TOCTOU

bugs [22] holds that the kernel should not load the same user data

twice within a single execution context (i.e., an interrupt, system

call, or new kernel thread). We apply this same rule to coherent

DMA:

Invariant 1. Avoiding TOCTOU bugs.

The kernel should not read coherent DMA data more than

once within an execution context.

If this invariant is violated, the kernel unsafely races against

a malicious device corrupting the previously kernel-loaded data.

Although drivers may sometimes busy-poll MMIO/PMIO status

registers for ultra-low-latency I/O [27], polling a DMA buffer itself

is uncommon—completion is normally reported via interrupts or

other asynchronous mechanisms [13]. Thus, our invariant holds in

practice (see Section 8).

TOITOU bugs. Recent DMA exploitation techniques [8, 31] target

bugs that involve the corruption of kernel-initialized DMA data. We

term such cases TOITOU, time-of-initialization to time-of-use, bugs.

A TOITOU bug is defined as a race condition with the following

three phases: (1) the victim stores valid data in a shared resource,

(ii) the attacker overwrites this data after it was stored, and (iii) the

victim later loads the data and assumes it is still valid, thus omitting

any validity checks. The difference to a TOCTOU bug is that instead

of a check being skipped, the user’s attempt to satisfy a check by

modifying a shared resource is disabled.

Unlike the user-to-kernel domain, where the kernel only rarely

initializes data in userspace for later use (e.g., when signal han-

dling [12]), kernel drivers will oftentimes initialize entire data struc-

tures in DMA. These drivers also expect the device to play nice and

only access the parts that it is supposed to. Typically, the kernel

initializes such data early on (e.g., during boot time), then uses it

much later on (i.e., after boot time), all the while, expecting it to

remain unchanged. Hence, we can derive a second invariant:

Invariant 2. Avoiding TOITOU bugs.

The kernel should not read coherent DMA data if it previ-

ously initialized it.

If this invariant is violated, the kernel unsafely races against a

malicious device corrupting the previously kernel-initialized data.

4.2 Streaming DMA-based Race Conditions

In contrast to coherent DMA, streaming DMA is only accessible

to either the kernel or the device—but not both. The kernel gov-

erns this accessibility by invoking synchronization operations that

transfer access rights between the kernel and the device.

Inconsistent access bugs. Previous work on identifying unsafe

DMA accesses notes that the kernel should not access a streaming

DMA region when it is synchronized for device access [10]. Doing

so results in an inconsistent DMA access bug because the data ac-

cessed by the kernel (either in the CPU cache or a bounce buffer)

may not be consistent with the actual data in the (device-accessible)

DMA buffer [13]. Hence, we apply this same invariant:

CCS ’25, October 13–17, 2025, Taipei, Taiwan Brian Johannesmeyer, Raphael Isemann, Cristiano Giuffrida, and Herbert Bos

Invariant 3. Avoiding inconsistent access bugs.

The kernel should not access streaming DMA data if the

region is synchronized with the device.

If this invariant is violated, the kernel unsafely races against the

CPU cache or bounce buffer inadvertently corrupting the data. No-

tably, this bug is very difficult for a malicious device to exploit, so we

consider such exploitation out of scope. Instead, it primarily poses

a reliability issue when the kernel later uses the corrupted data.

Moreover, because synchronization operations are non-blocking,

the manifestation of this bug is nondeterministic: the race condi-

tion may only occur when the synchronization commits, making it

difficult to consistently reproduce and diagnose.

5 Overview

Having defined the various DMA race conditions, we now present

the main design challenges and how we addressed them to detect

these conditions. To detect DMA race conditions, DMARacer has

to track all memory operations and determine which are accessing

DMA memory. DMARacer must then identify which parts of the

kernel are potentially affected by attacker-controlled data from

these errant accesses.

Figure 1 presents an example of how DMARacer detects vulner-

able code. Although this example features a hypothetical TOCTOU

bug for illustrative purposes (given its similarity to well-studied

double-fetch bugs), it is important to note that, as discussed in Sec-

tion 8.3.1, most vulnerabilities in practice stem from TOITOU bugs

instead.

A Tracking DMA regions. DMA memory regions are dynamically

created and then accessed like any other buffer via C pointers

in the rest of the kernel code base. We therefore cannot hook a

standardized access method (e.g., copy_from_user() on the kernel-

user barrier) to detect DMA memory accesses. Instead, DMARacer

hooks all relevant DMA methods and maintains its own metadata

for the location and state of all DMA buffer. In Section 6.1, we detail

how we hook the variety of DMA APIs within the kernel.

B Identifying errant accesses. DMARacer has to determine all

DMA memory operations and identify any unsafe DMA accesses

among them. As DMA is accessed via normal store and load instruc-

tions, DMARacer uses its collected DMA metadata to determine

which memory operations access DMA buffers. For errors like TOC-

TOU that involve several memory operations, DMARacer also has

to reason about the relationship between different memory accesses.

We support this post-hoc analysis of several DMA operations by

additionally maintaining a list of all DMA memory accesses. In

Section 6.2, we describe how our monitor checks whether DMA is

accessed, and if so, whether the access violates an invariant.

C Identifying vulnerable operations. Once DMARacer detects an

errant DMA access, it is still unclearwhether the attacker-controlled

from the access is actually vulnerable. DMARacer searches for

potentially exploitable code by applying taint to attacker-controlled

DMA data and tracking it through the kernel’s execution. This

taint spreads across the kernel during execution until it reaches

Table 1: DMA operations hooked by DMARacer to track

DMA state at runtime.

DMA Op. Function Hooked DMARacer Handler

Map

dma_alloc_attrs() Track a coherent DMA buffer

dma_map_single_attrs() Track a streaming DMA buffer

__dma_map_sg_attrs() Track a streaming DMA SG list

Unmap

dma_free_attrs() Untrack a coherent DMA buffer

dma_unmap_page_attrs() Untrack a streaming DMA buffer

dma_unmap_sg_attrs() Untrack a streaming DMA SG list

Sync

dma_sync_single_for_cpu() CPU -sync a DMA region

dma_sync_single_for_device() Device-sync a DMA region

operations that can enable exploits if certain operands are attacker-

controlled (e.g., the address of a store operation). In Section 6.3, we

describe our taint policies, and the subtleties in tracking DMA data.

D Covering DMA race conditions. Unlike the user-kernel boundary

with syzkaller [1], there is no production-ready tooling for testing

the device-kernel boundary. Given that DMARacer is a dynamic
analysis tool, we therefore also need a way to run drivers and give

themmeaningful workloads that utilize DMA operations and spread

them across the kernel. To overcome this challenge, we leverage

the flexibility of a virtual environment to invoke device-to-kernel

interactions. This allows us to easily configure the kernel to support

a variety of drivers, attach multiple devices, and run diverse device-

specific workloads. In Section 8.1, we explain this pipeline, and how

future work could build upon our flexible tooling.

6 Detecting DMA Race Conditions

In this section, we detail each component of our approach to de-

tecting DMA race conditions.

6.1 DMA Operation Hooks

Table 1 presents our DMA operation hooks, which allow us to track

DMA state at runtime. For both coherent and streaming DMA, we

begin tracking a region at a map (or allocate) operation, and stop

tracking it at an unmap (or free) operation. When streaming DMA

is mapped, we designate it is as device-accessible; for every syn-
chronization operation thereafter, we designate it as either CPU- or

device-accessible. Moreover, because the kernel may synchronize

DMA partially—i.e., only a subset of the region—we track synchro-

nization state at a per-byte granularity.

Applicability to various DMA APIs. The kernel offers a variety

of APIs to map, unmap, and synchronize DMA. However, because

we hook the lowest-level DMA operations, which are called by these

APIs, we therefore also hook into these various APIs. For example,

the various interfaces for allocating coherent DMA—e.g., the generic

(dma_alloc_coherent()), managed (dmam_alloc_coherent()), pool

(dma_pool_alloc()), and driver-specific (e.g., hcd_buffer_alloc())

APIs—all eventually call dma_alloc_attrs(). Therefore, by hooking

dma_alloc_attrs(), we also hook such allocation interfaces.

Dynamic Detection of Vulnerable DMA Race Conditions CCS ’25, October 13–17, 2025, Taipei, Taiwan

USB
keyboard
& audio

vmxnet3
NIC

e100
NIC

Overview

void driver_func() {

 dma_ptr = dma_alloc_attrs(...);

 if (*dma_ptr > 10) return;

 x = *dma_ptr;

 arr[x] = 0xdeadbeef;

 dma_free_attrs(..., dma_ptr, ...);

}

❷ Run various device-
specific workloads.

Ⓑ Monitor memory accesses to identify
errant DMA accesses.

Ⓐ Hook DMA operations to track DMA
regions.

Ⓒ Use taint policies to identify vulnerable
operations.

Ⓓ Invoke device-to-kernel interactions to
cover DMA race conditions.

❸ Track the coherent DMA
region at address dma_ptr.

❹ Record the first load from dma_ptr.
❺ Report the second load from
dma_ptr as an errant access.

❽ Stop tracking the coherent DMA
region at address dma_ptr.

❼ Report an attacker-controllable
memory write as a vulnerable operation.

❻ Add an attacker taint label
to attacker-controllable data.

Play
audio

file

Interact
with

keyboard

Handle
network
request

What we do…
- Take a generic/virtual/device-agnostic approach?

Why we do it…
- Maximizing:

- Number of drivers supported
- Number of devices attached
- Device-to-kernel coverage

//Run device-heavy workloads to invoke device-to-kernel
interactions.

Invoke device-to-kernel interactions to cover DMA race conditions.

❶ Attach a variety of devices.

Figure 1: The components (A – D) used by our approach and the steps (1 – 8) they take to identify an example TOCTOU bug and a

dependent attacker-controllable memory write. Design
Load from coherent_dma_ptr

Load from coherent_dma_ptr

(Later in the same execution context)

TOCTOU bug!

Store to coherent_dma_ptr

Map streaming_dma_ptr

Synchronize streaming_dma_ptr as CPU-accessible

Synchronize streaming_dma_ptr as device-accessible

Load from or store to streaming_dma_ptr

Load from or store to streaming_dma_ptr

Inconsistent access bug!

Load from coherent_dma_ptr

TOITOU bug!

Map coherent_dma_ptrMap coherent_dma_ptr

(a) Invariant 1 violation.

Design
Load from coherent_dma_ptr

Load from coherent_dma_ptr

(Later in the same execution context)

TOCTOU bug!

Store to coherent_dma_ptr

Map streaming_dma_ptr

Synchronize streaming_dma_ptr as CPU-accessible

Synchronize streaming_dma_ptr as device-accessible

Load from or store to streaming_dma_ptr

Load from or store to streaming_dma_ptr

Inconsistent access bug!

Load from coherent_dma_ptr

TOITOU bug!

Map coherent_dma_ptrMap coherent_dma_ptr

(b) Invariant 2 violation.

Design
Load from coherent_dma_ptr

Load from coherent_dma_ptr

(Later in the same execution context)

TOCTOU bug!

Store to coherent_dma_ptr

Map streaming_dma_ptr

Synchronize streaming_dma_ptr as CPU-accessible

Synchronize streaming_dma_ptr as device-accessible

Load from or store to streaming_dma_ptr

Load from or store to streaming_dma_ptr

Inconsistent access bug!

Load from coherent_dma_ptr

TOITOU bug!

Map coherent_dma_ptrMap coherent_dma_ptr

(c) Invariant 3 violation.

Figure 2: Policies of the memory access monitor in

determining whether an access violates an invariant.

6.2 Memory Access Monitor

To monitor every memory access, we insert callbacks to our

DMARacer runtime library at memory access instructions. From

our callback, we first check whether the access is to a DMA region,

and if so, whether it violates an invariant, as outlined in Figure 2.

6.2.1 Coherent DMA Accesses. For loads from coherent DMA data,

we check whether the data was previously accessed. Specifically,

whether it was previously: (i) loaded from within the same exe-

cution context, which indicates a TOCTOU error (Invariant 1), or

(ii) stored to within the lifetime of the kernel, which indicates a

TOITOU error (Invariant 2).

For this purpose, we record every access into one of two struc-

tures: (i) if an access loads from DMA, we record it into a local access
map, which is local to a particular execution context, and is cleared

when the execution context exits; or (ii) if an access stores to DMA,

we record it into a global access map, which is global to the entire

kernel, and persists through the kernel’s lifetime. If a load from

DMA has a preceding load in the local access map, then we report

a TOCTOU bug (as in Figure 2a). Otherwise, if it has a preceding

store in the global access map, then we report a TOITOU bug (as in

Figure 2b).

Storing kernel pointers to coherent DMA. We observe one

concerning pattern in DMA usage: the kernel frequently storing

pointers to DMA. Typically, this may be because it maintains a data

structure (e.g., a linked list) in DMA, and expects the device to only

access certain parts of the structure (e.g., the “data” of a linked list,

but not the pointers).

However, because devices generally do not have access to the

same address space as the kernel, the only practical reason that

the kernel would store a pointer to DMA is if it will use it later.

Hence, such an operation is either bad practice (at best), or the

beginning of a vulnerability
2
(at worst). If it uses the pointer later,

we would report it as a TOITOU bug. Therefore, if the kernel stores

a pointer to DMA, we report it as an errant access, because we

expect the kernel to use it later, which would then be a TOITOU

bug. By reporting the initial pointer store as an errant access, we

mitigate the case where our dynamic analysis’ imperfect coverage

fails to cover the subsequent pointer load.

6.2.2 Streaming DMA Accesses. For accesses to streaming DMA,

we check whether any part of the accessed region is device-

synchronized. If yes, the access violates Invariant 3 and demon-

strates an invalid DMA memory access. Figure 2c outlines this

process: The kernel may access streaming DMA data if it is imme-

diately preceded by a CPU-synchronization operation. However,

the kernel may not access it if it is immediately preceded by a map-

ping or device-synchronization operation; otherwise, we report the

access as an inconsistent access bug.

6.3 Taint Policies

Table 2 summarizes our taint policies, which track attacker data

from errant accesses to dependent vulnerable operations.

6.3.1 Taint Sources. From our memory access callbacks (Sec-

tion 6.2), we add a unique taint label to the output of attacker-

controllable errant accesses (i.e., TOCTOU or TOITOU bugs). Hence,

as is typical of DTA systems [35], we are able to track the flow of

attacker data at runtime by checking its taint label: untainted data is

2
This may also be considered information leakage (e.g., breaking KASLR). However,

we focus on the risk of race conditions in this work.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Brian Johannesmeyer, Raphael Isemann, Cristiano Giuffrida, and Herbert Bos

Table 2: Taint policies to track attacker data to dependent vulnerable operations, while avoiding taint explosion.

Taint Policy Type Operate On Justification

Source: Track attacker data Output of a TOCTOU/TOITOU bug Controllable by a malicious device

Sink: Identify vulnerable operations

Pointer of a memory write Enables an attacker-controllable memory corruption primitive

Condition of a loop/assertion Enables an attacker-controllable denial-of-service primitive

Clear: Avoid taint explosion

AND instruction Instruction used to access specific bits of DMA data

Kernel hot paths Execution may spill taint into frequently accessed global data

Execution context entry Cross-execution context dataflows are challenging to reproduce

not attacker data, and tainted data is attacker data. In our case, our

taint label identifies the specific errant access (i.e., the backtrace)

that loaded the attacker data.

6.3.2 Taint Sinks. We track the flow of attacker data to certain

security-sensitive operations. Following previous work [10], we tar-

get operations leading to memory corruption and denial-of-service

(DoS) vulnerabilities. Specifically, our security-sensitive operations

are: (i) A tainted pointer of a store instruction, because an attacker

may redirect it to corrupt memory; hence, we report it as a vulner-
able write. (ii) A tainted loop condition, because an attacker may

corrupt it to loop indefinitely, leading to a DoS or buffer overflow;

hence we we report it as a vulnerable loop. (iii) A tainted assertion

condition, because an attacker may corrupt it to fail the assertion,

leading to a DoS, so we report it as a vulnerable assert.
We note that this is not an exhaustive list of all possible security-

sensitive operations; rather, it is a set to demonstrate the feasibility

of our approach. DMARacer can be easily extended to hook into

more security-sensitive operations.

6.3.3 Taint Clears. A known challenge of DTA is avoiding taint

explosion—i.e., the accidental spilling of taint into data that is not

intended to be tainted. If unaddressed, we may incorrectly report

certain non-vulnerable operations as vulnerable. The ideal solu-

tion for avoiding taint explosion is to perfectly model all possible

dataflows in the program. However, doing so for every possible

operation in a program is a difficult task [60].

Instead, we follow an approach used by other DTA systems [21,

38, 45] and clear taint at various operations to mitigate this issue.

In general, our taint policies aim to be conservative to reduce false

positives. That is, we clear taint unless there is a likely dataflow for

a certain operation or code pattern.

Bit-level accesses. It is not uncommon for the kernel to access

specific bits of DMA data (e.g., a 1-bit flag). In such a case, the

kernel may e.g., load a one-byte word from DMA, then perform

a bitwise AND to isolate the particular bit. Unfortunately, bit-level
taint analysis—which could be used to accurately model such a

dataflow—is known to be difficult [60].

Hence, to avoid false positives arising from such a dataflow, we

instead clear its taint. Specifically, we modify the taint analysis’ AND

instruction callback—which normally propagates the taint from its

inputs to its output—to instead clear the taint of its output.

Flows to frequently-accessed global objects. Certain parts of

the kernel (e.g., the timer subsystem and the slab allocator) are

called frequently throughout the kernel’s execution and handle

globally-accessible data structures. Hence, if taint passes into one

of these kernel “hot paths”, it soon spills into unrelated operations

throughout the kernel. In principle, a heavyweight constraint solver

could address this (e.g., by only propagating verifiably controllable

dataflows to these hot paths). However, in practice, such approaches

do not scale to the size and complexity of the Linux kernel.

Therefore, to avoid false positives arising from such dataflows,

we adopt an approach from an existing kernel DTA system [38].

Specifically, we clear taint for all operations and accessed memory

within various kernel hot paths
3
.

Flows across execution contexts. The kernel maintains various

data structures (e.g., sockets and file descriptors) that persist state

from one execution context to another. If taint flows into one of

these structures in one execution context (e.g., a timer interrupt),

and is used in another execution context (e.g., some syscall), it is

often difficult to reproduce the dataflow, as it may rely on non-

deterministic (e.g., timing) constraints.

Hence, we maintain a notion of taint validity, which enforces

same-domain dataflows using the following semantics: (i) An exe-

cution context begins with all taint labels marked as invalid. (ii) If
a taint source (i.e., an errant access) is covered, its taint label is

marked as valid. (iii) A taint sink only reports vulnerable operations

if its taint label is valid. As a result, we ensure that the vulnerable
operations we identify are accurate and easily-reproducible.

7 Implementation

Figure 3 presents the workflow of DMARacer, which: (i) takes

the Linux kernel and our runtime library, (ii) builds them with our

LLVM instrumentation, and (iii) runs the instrumented kernel as a

VM in our custom QEMU hypervisor, where it identifies vulnerable

DMA race conditions at runtime.

Runtime library. Our runtime library consists of: (i) the Kernel-

DataFlowSanitizer (KDFSAN) [21] runtime library, which provides

support for DTA (e.g., by creating taint labels, combining labels,

etc.); and (ii) the handlers for DMARacer’s various instruction-level
and function-level callbacks, which collectively identify vulnerable

DMA race conditions.

Specifically, the DMARacer runtime library handles the follow-

ing function-level callbacks: First, for DMA operations, it tracks the
state of DMA regions. Second, for execution context entries and exits

3
The semantics are similar to those of KMSAN’s __no_kmsan_checks function at-

tribute; indeed, we clear taint in many of the same functions where it is applied.

Dynamic Detection of Vulnerable DMA Race Conditions CCS ’25, October 13–17, 2025, Taipei, Taiwan

Workflow

Run in custom QEMU with
various target devices attached

Build with modified
KDFSAN passDMARACER

runtime library

DMARACER-
instrumented kernel

Linux kernel

Execution logs DMA race
condition statistics

Parse and
analyze

Figure 3: DMARacer’s workflow: Take the Linux kernel, identify DMA race conditions, and present statistics to aid mitigation.

(e.g., __enter_from_user_mode(), irq_enter_rcu()), it: (i) clears the

local access map and (ii) marks taint labels as invalid. Third, for

assertions (e.g., BUG_ON()), it performs the taint sink for vulnerable

asserts.

Furthermore, it handles the following instruction-level callbacks:

First, for memory accesses, it: (i) records DMA accesses, (ii) per-

forms the taint source for errant accesses, and (iii) performs the

taint sink for vulnerable writes. Second, for backward conditional
branches, it performs the taint sink for vulnerable loops. Third, for

AND operations, it clears the output’s taint.

LLVM instrumentation.We build the kernel with the KDFSAN

pass, which we modified to add the above instruction-level call-

backs. First, to hook memory accesses, we reuse KDFSAN’s call-

backs for LOAD, STORE, and MEMTRANSFER instructions. Second, to hook

backward conditional branches, we modify KDFSAN’s conditional

BranchInst visitor to check its direction (via the PostDominatorTree

API), and if it is backwards, to add our callback. Third, to hook AND

operations, we modify KDFSAN’s BinaryOperator visitor to add our

callback for AND instructions.

8 Evaluation

In this section, we evaluate DMARacer’s ability to detect DMA

race conditions.

8.1 Setup

Environment.We perform our evaluation on a host machine with

an AMD Ryzen 9 3950X CPU and 128GB of RAM, running Ubuntu

22.04.4 LTS (kernel v6.8). We instrument the kernel (based on Linux

v6.5.8) with a modified KDFSAN pass (based on LLVM v11.0.1), and

run the instrumented kernel as a guest VM in QEMU.

Device emulation with QEMU. Dynamic error detectors require

that the code is executed to be analyzed. In the case of DMARacer,

this means that a driver needs to allocate a DMA buffer and then

violate one of the invariants. Additionally, the detection of vulner-

able operations relies on tainted data from DMA to spread across

the kernel.

Device driver code can only be successfully executed if their

respective device is connected. Because we do not have access to

the multitude of physical devices supported by the Linux Kernel, we

instead decided to use the virtual device emulation feature of QEMU

for our evaluation. This emulation feature allows QEMU to mimic

a connected peripheral which includes the kernel-device communi-

cation via DMA. This emulation is only available for QEMU devices

for which the QEMU developers implemented a backend. The back-

end is responsible for communicating with the running kernel in

the same way as the real hardware would. Table 4 shows a sum-

mary of the 147 QEMU devices we used in our evaluation. These

147 devices include all QEMU devices except CPUs and various test

devices (e.g., devices that are only used for educational purposes).

Evaluation workloads. For each emulated QEMU device we de-

cided to evaluate, we also needed a way to exercise the DMA com-

munication of the device and spread the data from DMA across the

kernel. Unfortunately, standard kernel fuzzing techniques such as

syzkaller are not suitable for this purpose for two reasons. First,

they focus on general code coverage which is not directly relevant

for DMARacer. For example, just covering a corner case in a sys-

tem call handler will never lead to a report from DMARacer unless

the code accesses DMAmemory or handles tainted data from DMA.

Second, some driver logic depends heavily on input from DMA de-

vices itself (e.g. drivers for input devices), and fuzzers like syzkaller

focus on the unrelated user-kernel interface.

To overcome this, we instead decided to manually create work-

loads that are tailored for each device. Table 4 provides a summary

of each workload. In general, we mostly use shell scripts that ran-

domly invoke shell commands specific to the device for about 5

minutes per device. For example, the workload for storage devices

consists of a shell script that randomly manipulates files, file con-

tents and folders on the mounted storage device. The workload

for human interface devices was implemented by using a custom

version of QEMU that produces random mouse, touchpad and key-

board presses. We again use QEMU’s virtual device emulation fea-

ture for this and emit the same internal input events that QEMU

creates when being used with a graphical frontend. The emula-

tion backend then translates these generic QEMU input events into

device-specific device-to-kernel communication. For the network

devices, we start an HTTP server on the host machine and then

send random HTTP requests from the QEMU guest.

8.2 Overall Results

Table 3 presents the race conditions found by DMARacer, catego-

rized by: (i) the number of DMA regions affected by errant accesses,

(ii) the number of errant accesses, and (iii) the number of vulnerable

operations. We group DMA regions based on the calltrace of their
mapping operation, as this reflects the number of unique objects a
developer may need to address. This grouping is independent of any

intermediate DMA mapping APIs (e.g., dma_pool_alloc()), which

may ultimately perform a single low-level mapping operation (e.g.,

via dma_alloc_attrs()). Conversely, we group errant accesses and

vulnerable operations based on the offending instruction, represent-
ing the number of unique lines of code that a developer would need

to fix. It should be noted that the data flow from errant accesses can

span multiple files, which means that the vulnerable operations in

one row are not necessarily caused by the errant accesses in the

same row (see Section 8.3.2).

CCS ’25, October 13–17, 2025, Taipei, Taiwan Brian Johannesmeyer, Raphael Isemann, Cristiano Giuffrida, and Herbert Bos

Table 3: DMA race conditions found.

Kernel Source

Streaming DMA Coherent DMA

Aff. Regions Errant Accesses Aff. Regions Errant Accesses Vuln. Writes Vuln. Loops Vuln. Asserts

block/* - - - - 32 2 1

drivers/ata/* 3 - 1 2 49 2 -

drivers/hid/hid-core.c - - - 1 - - -

drivers/hid/usbhid/hid-core.c - - - - 1 - -

drivers/net/ethernet/amd/pcnet32.c 2 - 3 10 - - -

drivers/net/ethernet/dec/tulip/* 3 - 1 8 - - -

drivers/net/ethernet/intel/e100.c 2 10 2 35 37 1 -

drivers/net/ethernet/intel/e1000/e1000_main.c 3 - 2 7 - - -

drivers/net/ethernet/intel/e1000e/netdev.c - - 2 8 - - -

drivers/net/ethernet/realtek/8139cp.c - - 1 10 - - -

drivers/net/vmxnet3/* 1 455 5 30 - - -

drivers/pci/msi/msi.c - 4 - - - - -

drivers/scsi/* - - - - 46 - 1

drivers/tty/serial/serial_core.c - - - - - 1 -

drivers/usb/core/* 28 - 3 - - - -

drivers/usb/host/* - 8 16 119 18 - -

fs/ext4/* - 19 - - - - -

fs/fs-writeback.c - - - - 2 - -

fs/kernfs/dir.c - - - - - 1 -

kernel/dma/* - 4 - - 16 3 5

kernel/printk/printk.c - - - - 2 - -

kernel/sched/* - - - - 34 5 -

kernel/workqueue.c - - - - 4 - -

lib/* - 8 - - 58 6 2

mm/dmapool.c - - - 7 - - -

net/core/* - 68 - - 1 - -

net/ipv4/* - - - - 9 - 1

net/ipv6/addrconf.c - - - - 1 - -

security/keys/key.c - - - - - 1 -

sound/core/* - - 1 - 2 - -

sound/hda/hdac_stream.c - - - 1 - - -

sound/pci/hda/hda_controller.c - - - 2 - - -

sound/usb/pcm.c - - - 1 - - -

Total 42 576 37 241 312 22 10

Table 4: Tested devices and workloads.

Device Kind # Devices Workload

Audio Card 13 Playing/Recording audio files

GPU 12 Running OpenGL/GPU test software

Mouse/Keyboard 36 Random input events

Network Adapter 61 Handling random HTTP requests

Storage Device 25 Random file system operations

Our first observation is that the sheer number of errant accesses

(817) and vulnerable operations (344) highlights that DMA race con-

ditions pose a significant threat. However, this alone does not fully

convey the mitigation effort required: if errant accesses are confined

to a single DMA region, the fix is relatively straightforward; but if

they occur across multiple distinct DMA regions, remediation be-

comes more challenging. By examining the number of DMA regions

affected (79), we see that the problem is indeed widespread, indicat-

ing that mitigation may be difficult. Our second observation is that

the largest count of taint sinks for TOCTOU/TOITOU errors are

vulnerable writes. That is, the attacker has at least partial control

over the address of a store instruction. As DMARacer is a dynamic

analysis tool, it cannot determine all constraints enforced for each

write. However, any of these found vulnerable writes is a potential

arbitrary write primitive which can corrupt kernel memory and

lead to privilege escalation. In Sections 8.3 and 8.4, we draw more

insights by breaking down the numbers based on the source file

and type of DMA.

8.3 Coherent DMA-based Race Conditions

Our analysis of coherent DMA-based race conditions reveals two no-

table findings: (i) most vulnerabilities stem from drivers managing

complex data structures within DMA regions, which unfortunately

makes exploitation easier and mitigation more challenging; and

(ii) most dataflows to vulnerable operations occur across kernel

subsystems, making them difficult to track without DMARacer’s

DTA-based approach. To illustrate each finding, we present case

studies that share a common theme: a vulnerable high-level API,

which implies that any driver that uses the API may also be vulner-

able.

8.3.1 TOITOU-vulnerable data structures. Our analysis reveals that
although just over half (57%) of the identified errant accesses are

TOITOU bugs—as opposed to TOCTOU bugs—the vast majority

of the resulting vulnerabilities (99%) depend on TOITOU-loaded

data. Upon manual examination, we attribute this disparity to the

Dynamic Detection of Vulnerable DMA Race Conditions CCS ’25, October 13–17, 2025, Taipei, Taiwan

fact that TOITOU bugs typically stem from the kernel managing

critical data structures within DMA regions. Consequently, the

kernel performs complex operations on these data structures, many

of which can be exploited.

For example, it is common to find entire linked lists—with point-

ers and all—managed in DMA. We observe such DMA-resident lists

throughout the kernel code, e.g.: the UHCI driver maintains a list

of “queue headers”; the E100 driver maintains a list of “callbacks”;

and the DMA pool API maintains a list of “blocks” (which we will

discuss below). Whenever the kernel loads a pointer from these

linked lists, it loads an attacker-controllable pointer. Thus, when

the kernel dereferences it (e.g., to traverse the list), it performs an

attacker-controllable memory access.

In contrast, TOCTOU-based bugs are typically more limited,

as they involve simpler, less consequential data structures. For

example, a common source of a TOCTOU bug is reading a status

flag multiple times. If an attacker corrupts such a status flag, the

impact is limited because it usually does not allow control over

critical operations, such as the pointer used in a memory write.

Furthermore, we find that TOITOU bugs are more concerning

than TOCTOU bugs for two main reasons. First, they are easier
to exploit, as they involve the corruption of long-lived data. Con-

versely, exploiting TOCTOU bugs requires corrupting short-lived

data within a narrow time window, forcing attackers to employ

synchronization tricks to precisely time the corruption [2, 55, 56].

Second, they are more difficult to mitigate, as they affect critical

data structures, and may therefore require extensive algorithmic

rewrites of driver code. Conversely, TOCTOU bugs can often be

resolved with minor, localized changes (e.g., combining two reads

into a single read).

Case study: DMA pool API. A striking example of a TOITOU-

vulnerable linked list is in the widely used DMA pool API. A DMA

pool aims to reduce the overhead of coherent DMA allocations,

which are resource-intensive operations. It achieves this by creat-

ing a large coherent DMA buffer—the “pool”—from which smaller

buffers are allocated as needed.

Fundamentally, a DMA pool functions like a heap: it is a structure

composed of linked memory “blocks”, which, in this context, are

DMA buffers. When a driver employs a DMA pool, it grants the

device access not only to these blocks but also to the pointers

linking them. Consequently, similar to traditional heap corruption

vulnerabilities—where a malicious program corrupts heap metadata

to e.g., hijack control flow [9, 23]—a TOITOU bug allows a malicious

device to corrupt DMA pool metadata, which can trivially lead to

arbitrary kernel memory corruption from any driver that uses it,

as illustrated by Figure 4.

Unfortunately, because the DMA pool API is extensively used,

this vulnerability is not confined to a single instance. In fact, every

usage of the DMA pool API is potentially vulnerable. Each of these

instances could lead to arbitrary memory corruption, highlighting

the critical importance of addressing this issue.

8.3.2 Cross-subsystem dataflows. Coherent DMA-based race con-

ditions frequently involve dataflows across different kernel sub-

systems, making them challenging to detect. Typically, both the

mapping of a coherent DMA region and any errant accesses to it

occur within the same file, usually within the driver. However, the

Example: DMA pool

*next_block;

*next_block;

*next_block;

pool->next_block

--(in use)--

*next_block;

*next_block;

pool->next_block

kernel_addr

*next_block;

*next_block;

*next_block;

pool->next_block

kernel_addr

--sensitive--

-kernel-data-

-to-corrupt-pool->next_block

kernel_addr

...

...

...

❶ The DMA pool initializes its list of blocks, then points to the first block.

❹ The driver again calls dma_pool_alloc(), which
incorrectly returns kernel_addr. Therefore, anytime the
driver writes to this “block”, it corrupts sensitive kernel data.

❸ The driver makes its first call to dma_pool_alloc(), after which, the pool
should point to the second block. However, it instead points to kernel_addr.

❷ The malicious device overwrites the first block's next_block
pointer to an arbitrary kernel address, kernel_addr.

Figure 4: DMA pool exploitation: The DMA pool API

initializes a linked list in coherent DMA, which a device can

exploit to corrupt arbitrary kernel memory.

data loaded via DMA often propagates throughout the kernel, and

any vulnerable operations that depend on this data may occur in

separate files or entirely different subsystems.

This is understandable because drivers manage DMA, but the

data they load can flow into other kernel components. Tracking

such dataflows between disparate components is difficult for heavy-

weight analyses (e.g., symbolic execution) because it requires inter-

procedural and cross-module analysis. In contrast, DMARacer’s

lightweight DTA engine effectively tracks these dataflows, allowing

us to identify many vulnerable operations that might otherwise be

missed.

Case study: Driver-to-swiotlb dataflow. An illustrative example

of a cross-subsystem dataflow occurs when a driver improperly

saves the bus address of a streaming DMA mapping into a coherent
DMA region—thereby making it attacker-controllable—then uses it

in an unmapping operation. We observed this scenario in several

drivers (e.g., the Intel E100 NIC driver, RealTek 8139C+ NIC driver),

and we present one such occurrence in Figure 5.

This vulnerability is particularly challenging to detect with static

analysis due to several factors. First, the three interactions with

the coherent DMA region—i.e., the allocation, initialization, and

usage—occur in separate syscalls and interrupts, which complicates

CCS ’25, October 13–17, 2025, Taipei, Taiwan Brian Johannesmeyer, Raphael Isemann, Cristiano Giuffrida, and Herbert Bos

Example: E100

//---

// drivers/net/ethernet/intel/e100.c ----------------------------------

// From one syscall...

1872: int e100_alloc_cbs(...) {

1881: nic->cbs = dma_pool_zalloc(...);

1898: return 0;

1899: }

// From another syscall...

1735: int e100_xmit_prepare(...) {

1741: dma_addr = dma_map_single(...);

1763: cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);

1766: return 0;

1767: }

// From an interrupt...

1805: int e100_tx_clean(...) {

1827: dma_unmap_single(..., cb->u.tcb.tbd.buf_addr, ...);

//---

// kernel/dma/swiotlb.c ---

// Called by dma_unmap_single()...

820: void swiotlb_release_slots(..., phys_addr_t tlb_addr) {

825: int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;

827: int aindex = index / mem->area_nslabs;

837: BUG_ON(aindex >= mem->nareas);

849: for (i = index + nslots - 1; i >= index; i--) {

850: mem->slots[i].list = ++count;

❶ The driver allocates a coherent DMA region.

❷ The driver initializes the coherent DMA-resident buf_addr
to the bus address returned by dma_map_single().

❸ The driver reads the attacker-controllable buf_addr from
coherent DMA and passes it to dma_unmap_single().

❹ The unmap operation asserts that the passed
in tlb_addr (dependent on buf_addr) will
not cause a buffer overflow.

Figure 5: Driver-to-swiotlb exploitation: A driver saves a

(mapped) bus address to coherent DMA, and later passes it

to an unmapping operation with a vulnerable assertion,

which a malicious device can exploit to cause a DoS.

control flow analysis and requires modeling asynchronous events.

Second, the dataflow from the errant access (in e100_tx_clean())

to the vulnerable assertion (in swiotlb_release_slots()) crosses

several subsystems: from the driver, to the mapping API, then to

the swiotlb (i.e., “software I/O translation lookaside buffer”) API.

Even along this single control path, there are multiple intermediate

indirect calls (e.g., the driver may use custom mapping operations

via function pointers), which are notoriously difficult for static anal-

ysis to resolve. Consistent with this, our review of SADA’s reported

findings (Appendix B) suggests that the vulnerable operations it

flags are typically contained within a single function, whereas the

bug here spans multiple functions and subsystems.

This cross-subsystem dataflow raises a crucial question: Which
subsystem is responsible for mitigation? On one hand, the driver

should not save a bus address in an attacker-controllable DMA

region and expect it to remain uncorrupted. On the other hand, the

swiotlb API should handle errors more gracefully than by invoking

a kernel panic
4
. Given the widespread nature of such vulnerable

DMA-based race conditions, we propose that mitigation efforts

should occur at both ends.

Example: VMXNET3

//---

// drivers/net/vmxnet3/vmxnet3_drv.c ----------------------------------

3594: int vmxnet3_probe_device(...) {

3619: struct vmxnet3_adapter *adapter;

3665: adapter->adapter_pa = dma_map_single(...,

adapter, sizeof(struct vmxnet3_adapter), ...);

3673: adapter->shared = dma_alloc_coherent(&adapter->pdev->dev, ...);

3683: err = vmxnet3_alloc_pci_resources(adapter);

3687: ver = VMXNET3_READ_BAR1_REG(adapter, ...);

❶ The driver maps the entire
adapter struct into streaming
DMA, making it device-accessible.

❷ Every access to
*adapter thereafter is
an inconsistent access.

Figure 6: A misunderstanding of the rules regarding DMA

synchronization leads to hundreds of inconsistent access in

the VMXNET3 NIC driver.

8.4 Streaming DMA-based Race Conditions

Our analysis of streaming DMA-based errant accesses reveals two

significant findings: (i) many are caused by developers seemingly

misunderstanding the DMAmapping API; and (ii) many involve im-

proper synchronization across entirely different kernel subsystems,

making them difficult to detect without DMARacer’s dynamic

approach. Additionally, we present a case study to highlight the

first finding, which also demonstrates a critical insight: a single

incorrect synchronization can result in hundreds of errors.

8.4.1 Mapping API misuse. As explained in Section 6.2.2, an incon-

sistent access bug occurs when the accessed region is immediately

preceded by either a device-synchronizing operation or a mapping

operation. We found that among all errant accesses identified by

DMARacer, only 10 were preceded by a device-synchronizing op-

eration; the remaining 569 were preceded by a mapping operation

and lacked any subsequent synchronization before the errant access.

Evidence from prior work and commit history indicates that many

of these issues stem from developers being unaware of the rules

for DMA buffer synchronization—particularly, the assumption that

accessing a streaming DMA buffer immediately after mapping it

is safe. These findings align with SADA’s analysis of inconsistent

accesses [10]. Given the widespread use of the streaming DMA and

the evident misunderstanding of it, we conclude that misuse of the

API is a systemic problem.

Case study: VMXNET3 driver. A striking example of DMA

mapping API misuse is found in the VMXNET3 driver, a high-

performance NIC driver from VMware. Figure 6 illustrates how a

single incorrect synchronization in this driver leads to hundreds of

inconsistent access bugs.

During boot time, the driver initializes its data structures and

maps the struct vmxnet3_adapter *adapter structure—which in-

cludes critical fields such as the transmit and receive queues—into

a streaming DMA region. Immediately after the mapping opera-

tion, on the same line of code, it stores the returned value into

the adapter->adapter_pa field, thereby committing an inconsistent

access. This example highlights developers’ apparent misunder-

standings of DMA synchronization rules—the bug occurs on the

same line as the mapping operation.

Subsequently, within the same function, the driver performs

52 additional inconsistent accesses to this object while initializing

its various fields. Proper mitigation would involve deferring the

Dynamic Detection of Vulnerable DMA Race Conditions CCS ’25, October 13–17, 2025, Taipei, Taiwan

mapping operation until after initialization and adding synchro-

nization operations when the object transitions between kernel

and device access. However, such a mitigation is non-trivial, as it

requires defining synchronization points in a driver not originally

designed with these considerations. We are currently collaborating

with the developers to address these issue, and mitigation efforts

are underway.

8.4.2 Cross-subsystem synchronization. Similar to the cross-

subsystem dataflows observed in coherent DMA-based race condi-

tions, streaming DMA-based race conditions often involve cross-

subsystem dependencies—though in this case, the issue revolves

around synchronization rather than data propagation. In streaming

DMA, the mapping of the DMA region and any errant accesses

often occur in different files or subsystems.

Specifically, apart from those in the VMXNET3 and E100 drivers,

all errant accesses involve DMA regions that are mapped in a driver

(e.g., the ATA, E1000, and USB drivers), whereas the errant access

occurs in a completely different subsystem (e.g., the filesystem or

networking subsystems). This is perhaps unsurprising, as drivers

are typically responsible for mapping and synchronizing DMA

buffers, whereas higher layers of the stack simply access these

buffers. Consequently, if a driver fails to synchronize DMA correctly,

it affects accesses elsewhere in the kernel.

Because control transfers between these disparate parts of the

kernel occur via indirect branches, hardware interrupts, and similar

mechanisms, static analysis approaches can struggle to identify

such errant accesses. In particular, SADA [10] reports that it does

not analyze function pointer calls when building call graphs; conse-

quently, it cannot construct a complete call graph and would miss

the kind of cross-subsystem synchronization bugs we observe here.

In contrast, DMARacer’s dynamic approach effectively tracks DMA

state through these control transfers, thereby identifying these syn-

chronization issues.

8.5 Accuracy, Performance, & Coverage

8.5.1 Accuracy. We manually inspected results to estimate

DMARacer’s false positive (FP) rate. Unfortunately, full inspec-

tion is infeasible due to two challenges: First, some errant accesses

span multiple execution contexts (e.g., across syscalls or interrupts),

making complete tracing impractical. Second, due to a limited taint

space (256 colors), taint labels are assigned per instruction rather

than per calltrace. As a result, frequently used instructions (e.g., in

memcpy()) may conflate independent execution paths.

Instead, we manually reviewed the 179 errant accesses and 56

vulnerable operations that we could definitively assess. We found

a 0% FP rate for errant accesses and a 9% FP rate for vulnerable

operations—both acceptably low. Errant accesses are precise by

design, as DMARacer tracks concrete memory accesses to real

DMA regions. False positives in vulnerable operations arise from

not modeling dataflow constraints.

For instance, in the ALSA audio driver, the kernel reads a

previously-initialized index via DMA and returns it to the PCM

subsystem. While this appears attacker-controllable, the PCM layer

bounds-checks the index and resets it to zero if it exceeds the buffer

size. Thus, although the data is tainted, the actual access is safe—

demonstrating a FP due to an unmodeled constraint. However,

Table 5: Runtime overhead of DMARacer’s components.

Enabled Component

Mean Geomean

Overhead Δ Overhead Δ

Default Kernel (Baseline) 0% 0%

+ KDFSan (Taint Tracking) 194% +194% 232% +232%

+ DMA Region Tracking 194% ≈ 0% 232% ≈ 0%

+ Load Monitoring 333% +139% 488% +257%

+ Store Monitoring 349% +16% 508% +20%

+ Compare Monitoring 400% +51% 584% +76%

+ Reporting (DMARacer) 401% +1% 588% +4%

Table 6: DMA mapping (or allocation) sites.

Kernel Source Maps

Maps

Covered

Aff. Maps

Covered

drivers/ata/ 13 2 2

drivers/net/ 589 48 23

drivers/usb/ 58 16 11

drivers/ (other dirs.) 932 1 -

sound/core/ 3 1 1

sound/ (other dirs.) 7 - -

/ (other dirs.) 29 - -

Total 1631 68 37

such cases are uncommon in practice: they require explicit checks

against known-safe values, which most DMA-handling code does

not perform. We further discuss false positives and false negatives

in Section 9.

8.5.2 Performance. We evaluated the performance of DMARacer

using the OS subset of LMBench [32] and measured a mean runtime

overhead of 402% across 20 iterations. Additionally, we performed

an ablation study using LMBench to understand the overhead in-

curred by each component. Table 5 shows the incremental and total

overhead of each component in LMBench. According to our mea-

surements, the taint tracking logic and load instruction monitoring

are the largest contributors to runtime overhead.

In the context of other widely used sanitizers, the overhead of

DMARacer is higher than AddressSanitizer [47] (73% to 100% [3]),

comparable to that of MemorySanitizer [51] (between 200% to

400% [4]) and faster than ThreadSanitizer (between 400% to

1400% [5]).

8.5.3 Coverage. The findings of this evaluation depend on the

DMA-specific codewe covered in the kernel. ThemoreDMA-related

code we exercise, the more DMA race conditions we can detect. In

this section, we analyze how much of the kernel’s DMA code we

reached with our evaluation workloads.

Table 6 presents: (i) the total number of DMA mapping sites in

the entire kernel; (ii) the number of DMA mapping sites we covered;
and (iii) the number of DMA mapping sites we covered that are

affected by a race condition. Note that, unlike Table 3, which groups

DMA regions by mapping calltraces, we count mapping callsites
here to enable direct comparison with the total number of callsites

CCS ’25, October 13–17, 2025, Taipei, Taiwan Brian Johannesmeyer, Raphael Isemann, Cristiano Giuffrida, and Herbert Bos

in the kernel. Additionally, the total number of DMA mapping sites

are gathered from source code analysis, so they also include sites

that are potentially unreachable with the devices/drivers used in

our evaluation setup.

Our first observation is that approximately half of the covered

mapping sites (37 out of 68) are affected by a DMA race condi-

tion. This high proportion indicates that DMA race conditions are

prevalent among the code we exercised. However, this figure rep-

resents an upper bound: some mapping sites may be used to map

multiple DMA regions, and not all of these regions are necessarily

affected—only at least one is.

Our second observation is that we covered only a fraction of the

total mapping sites in the kernel (68 out of 1631). We attribute this

mainly to the relatively low number of devices that can be emulated

by QEMU (see also Section 9). Additionally, several of 147 devices

we emulated with QEMU use the same driver and therefore share

a mapping site. The reason for this is that they are either similar

devices (e.g., the i82557a and i82557b network adapters) or follow
a standard communication protocol (such as USB human interface

devices).

9 Discussion & Limitations

Completeness. DMARacer may incur false negatives for two

reasons. First, since KDFSAN does not track implicit data flows,

DMARacer may miss vulnerabilities that rely on them. We con-

sider this preferable to the alternative approach of approximating

implicit flows, which can be a source of over-tainting and thus false-

positives [24]. Second, our taint policies aimed at reducing false

positives (Section 6.3.3) may occasionally result in false negatives.

For instance, a vulnerability dependent on bit-level dataflows might

be missed due to our policy of clearing taint for AND instructions.

A possible alternative to removing taint is to use bit-precise taint

tracking. This removes the need to completely clear taint after bit-

wise operations, and reduces false-positives caused by overtainting

due to DMARacer’s byte-accurate tainting approach.

Soundness. DMARacer may also produce false positives where

DMA race conditions exist, but the code explicitly defends against

abuse. This is primarily because, like any DTA system, DMARacer

does not fully model all dataflow constraints. For example, if a

driver verifies each value it loads from DMA against an expected

value, DMARacer would not capture this constraint. However,

manual inspection reveals that such cases contribute to only a few

false positives. Addressing this inherent limitation would require

heavyweight constraint solving, which we intentionally avoided

to keep our prototype scalable and practical, encouraging its real-

world adoption.

Access to devices. Unlike static analyzers, DMARacer requires

that each driver can be executed and perform its normal communi-

cation with its respective device. This also means that the device

has to be emulated or physically connected to the system. The rise

of device emulation with tools such as QEMU alleviates this issue

to some degree. However, creating these drivers requires in-depth

understanding of how each device works, as the kernel-device com-

munication has to be recreated exactly in the emulation layer. It

is therefore possible that some devices can never be emulated by

QEMU, and therefore DMARacer is unable to find DMA errors in

their respective drivers unless the physical device is available.

Comparison to Static Analysis. Compared to a static analysis

approaches such as SADA [10], DMARacer can detect DMA mis-

use across long execution traces. DMARacer can also analyze

traces that involve asynchronous completions, indirect function

calls or control flow based on hardware-triggers (see Sections 8.3.1

and 8.3.2).

10 Related Work

DMA errors. Previous work investigated the security implications

of communicating with peripheral devices using DMA. [31] and

[8] characterize possible DMA attack scenarios in the presence

of various IOMMU protections. This also includes the accidental

exposure of OS-internal data to the device, which is a superset of the

TOITOU bugs that are detected by DMARacer. SADA [10] proposes

using static analysis to search code for various DMA bugs, which

includes the TOCTOU bugs and other errant accesses detectable by

DMARacer. Other work is concerned with dynamic detection of

race conditions in the DMAmemory controller itself [26, 42]. These

race conditions are a superset of the ones detectable by DMARacer.

Double fetches. Existing work has studied double fetches and

proposed detection approaches by e.g., using static analysis [28,

53, 54, 58]. Other approaches are based on dynamic analysis of

memory accesses. DECAF [46] is a dynamic detection tool using

modern CPU features and hardware side-channels to detect mem-

ory accesses that indicate double fetch bugs. Bochspwn [22] is a

dynamic detection tool that simulates the target OS and searches

the simulated memory accesses for indications of double fetches. It

should be noted that the attack vector studied by previous work on

double fetches is mainly concerned with the system call interface.

There are no DMA-based memory accesses in this scenario and

instead the memory is manipulated by a malicious thread running

in user space. However, the general issue of double fetching from

untrusted memory is the same in DMA-based drivers and system

call handlers. The mitigations proposed for double fetches in sys-

tem handlers [11, 15] are in theory also applicable to the DMA

interface in drivers. However, whether their overhead is practical

in the context of DMA-based device drivers is unclear.

Race conditions. The problem of detecting race conditions in

concurrent programs has a significant body of research covering

it. This includes approaches based on static [16, 39] and dynamic

analysis [19, 44, 48] which verify the proper use of synchronization

primitives within a program. However, there are no viable synchro-

nization primitives when interacting with coherent DMA, so the

applicability of these approaches to DMA data races is limited.

Kernel race detectors. Other previous work focuses on detecting

data races within OS kernels [6, 17] by observing values read from

memory locations via memory watchpoints. The concurrent read of

different values from the same address is here used as an indication

of a race condition. Because these tools do not rely on observing

synchronization primitives, they can detect when peripheral devices

and the kernel concurrently access memory via DMA. However, as

Dynamic Detection of Vulnerable DMA Race Conditions CCS ’25, October 13–17, 2025, Taipei, Taiwan

the information is limited to a single point in time within a thread’s

execution, this information is not suitable to detect TOCTOU errors.

Kernel fuzzing. Sanitizers like DMARacer provide reliable bug

detection for fuzzers which drive the dynamic analysis. Previous

work has proposed a wide variety of solutions for performing ran-

dom testing on device driver code. This includes fuzzing approaches

specific to USB [20, 37, 59], mobile devices [40, 52] or peripherals

using DMA [33]. Other fuzzing methods improve the generating

coverage by more accurately simulating the real interface behavior

of peripheral devices [14, 18, 30, 61].

11 Conclusion

Modern OS kernels use direct memory access (DMA) to efficiently

communicate with untrusted peripheral devices. However, when

DMA is used incorrectly, it can lead to potentially dangerous race

conditions within the kernel. In this paper, we propose a dynamic

detection approach named DMARacer that detects race conditions

caused by the incorrect usage of DMA buffers in kernel drivers.

DMARacer tracks all DMA-based memory accesses and checks

them for various kinds of DMA-specific race conditions. DMARacer

can also estimate the security impact of the detected bugs. This is

done by taint tracking the data from problematic memory reads

and pinpointing vulnerable code that operates on this data. We

applied DMARacer to the drivers in the Linux kernel and found

817 problematic memory accesses and 344 vulnerable operations.

This suggests that DMA-based race conditions in driver code are a

systemic issue.

Disclosure. We disclosed our general findings, the three case stud-

ies and possible mitigations, to the Linux kernel on November 13,

2024. Our DMA pool API case study was considered valid, but our

proposed fix had a too large API change and performance impact to

be practical. The Driver-to-swiotlb case study was acknowledged

and has been addressed in recent kernel versions. The VMXNET3

case study received no response after reporting it to the developers.

No CVEs were assigned for the reported issues.

Acknowledgements

We thank the anonymous reviewers for their valuable comments,

Kaan Kara for helping hook the various DMA operations, and Vic-

tor Duta for helping port KDFSAN to a recent kernel. This work

was funded/co-funded by the European Union (ERC, Ghostbuster,
101141972) and further supported by its Horizon Europe programme

under grant agreement No. 101120962 (“Rescale”) and by the NWO

through project InterSect, project Theseus, and the Gravitation CiCS
project grant 024.006.037. Views and opinions expressed are how-

ever those of the author(s) only and do not necessarily reflect those

of the European Union, the European Research Council or any of

the funding agencies. Neither the European Union nor the granting

authority can be held responsible for them.

References

[1] 2015. syzkaller. https://github.com/google/syzkaller.

[2] 2016. CVE-2016-5195. https://nvd.nist.gov/vuln/detail/CVE-2016-5195.

[3] 2019. Clang 19.1.0 documentation - AddressSanitizer. https://releases.llvm.org/

19.1.0/tools/clang/docs/AddressSanitizer.html.

[4] 2019. Clang 19.1.0 documentation - MemorySanitizer. https://releases.llvm.org/

19.1.0/tools/clang/docs/MemorySanitizer.html#origin-tracking.

[5] 2019. Clang 19.1.0 documentation - ThreadSanitizer. https://releases.llvm.org/19.

1.0/tools/clang/docs/ThreadSanitizer.html.

[6] 2020. KCSAN: Kernel Concurrency Sanitizer. https://www.kernel.org/doc/html/

latest/dev-tools/kcsan.html.

[7] Advanced Micro Devices, Inc. 2007. IOMMU Architectural Specification.

[8] Markuze Alex, Shay Vargaftik, Gil Kupfer, Boris Pismeny, Nadav Amit, Adam

Morrison, and Dan Tsafrir. 2021. Characterizing, Exploiting, and Detecting DMA

Code Injection Vulnerabilities in the Presence of an IOMMU. EuroSys (2021).
[9] Anonymous. 2001. Once upon a free(). Phrack (2001).

[10] Jia-Ju Bai, Tuo Li, Kangjie Lu, and Shi-Min Hu. 2021. Static Detection of Unsafe

DMA Accesses in Device Drivers. USENIX Security (2021).

[11] Atri Bhattacharyya, Uros Tesic, and Mathias Payer. 2022. Midas: Systematic

Kernel TOCTTOU Protection. USENIX Security (2022).

[12] Erik Bosman and Herbert Bos. 2014. Framing Signals—A Return to Portable

Shellcode. S&P (2014).

[13] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. 2005. Linux
Device Drivers. O’Reilly Media, Inc.

[14] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili, Shuang

Hao, Christopher Kruegel, and Giovanni Vigna. 2017. DIFUZE: Interface Aware

Fuzzing for Kernel Drivers. CCS (2017).
[15] Victor Duta, Mitchel Josephus Aloserij, and Cristiano Giuffrida. 2024. SafeFetch:

Practical Double-Fetch Protection with Kernel-Fetch Caching. USENIX Security
(2024).

[16] Dawson Engler and Ken Ashcraft. 2003. RacerX: Effective, Static Detection of

Race Conditions and Deadlocks. SOSP (2003).

[17] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk Olynyk.

2010. Effective Data-Race Detection for the Kernel. OSDI (2010).
[18] Bo Feng, Alejandro Mera, and Long Lu. 2020. P2IM: Scalable and Hardware-

independent Firmware Testing via Automatic Peripheral Interface Modeling.

USENIX Security (2020).

[19] Cormac Flanagan and Stephen N Freund. 2009. FastTrack: Efficient and Precise

Dynamic Race Detection. PLDI (2009).
[20] Jisoo Jang, Minsuk Kang, and Dokyung Song. 2023. ReUSB: Replay-Guided USB

Driver Fuzzing. USENIX Security (2023).

[21] Brian Johannesmeyer, Jakob Koschel, Kaveh Razavi, Herbert Bos, and Cristiano

Giuffrida. 2022. Kasper: Scanning for Generalized Transient Execution Gadgets

in the Linux Kernel. NDSS (2022).
[22] Mateusz Jurczyk and Gynvael Coldwind. 2013. Identifying and Exploiting Win-

dows Kernel Race Conditions via Memory Access Patterns. (2013).

[23] Michel Kaempf. 2001. Vudo malloc tricks. Phrack (2001).

[24] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Song.

2011. DTA++: Dynamic Taint Analysis with Targeted Control-Flow Propagation.

NDSS (2011).
[25] Kyungtae Kim, Taegyu Kim, Ertza Warraich, Byoungyoung Lee, Kevin RB Butler,

Antonio Bianchi, and Dave Jing Tian. 2022. FuzzUSB: Hybrid Stateful Fuzzing of

USB Gadget Stacks. S&P (2022).

[26] Michael Kistler and Daniel Brokenshire. 2011. Detecting race conditions in

asynchronous DMA operations with full system simulation. ISPASS (2011).
[27] Damien Le Moal. 2017. I/O Latency Optimization with Polling. Vault (2017).
[28] Kai Lu, Peng-Fei Wang, Gen Li, and Xu Zhou. 2018. Untrusted Hardware Causes

Double-Fetch Problems in the I/O Memory. JCST (2018).

[29] Yingqi Luo, Pengfei Wang, Xu Zhou, and Kai Lu. 2018. DFTinker: Detecting and

Fixing Double-fetch Bugs in an Automated Way. WASA (2018).

[30] Zheyu Ma, Bodong Zhao, Letu Ren, Zheming Li, Siqi Ma, Xiapu Luo, and Chao

Zhang. 2022. PrIntFuzz: Fuzzing Linux Drivers via Automated Virtual Device

Simulation. ISSTA (2022).

[31] A Theodore Markettos, Colin Rothwell, Brett F Gutstein, Allison Pearce, Peter G

Neumann, Simon W Moore, and Robert NM Watson. 2019. Thunderclap: Ex-

ploring Vulnerabilities in Operating System IOMMU Protection via DMA from

Untrustworthy Peripherals. NDSS (2019).
[32] Larry McVoy and Carl Staelin. 1996. lmbench: Portable Tools for Performance

Analysis. ATC (1996).

[33] Alejandro Mera, Bo Feng, Long Lu, and Engin Kirda. 2021. DICE: Automatic

Emulation of DMA Input Channels for Dynamic Firmware Analysis. S&P (2021).

[34] Robert HB Netzer and Barton P Miller. 1992. What Are Race Conditions? Some

Issues and Formalizations. LOPLAS (1992).
[35] James Newsome and Dawn Xiaodong Song. 2005. Dynamic Taint Analysis

for Automatic Detection, Analysis, and Signature Generation of Exploits on

Commodity Software. NDSS (2005).
[36] Elliott I Organick. 1972. The Multics System: An Examination of its Structure. MIT

Press.

[37] Hui Peng and Mathias Payer. 2020. USBFuzz: A Framework for Fuzzing USB

Drivers by Device Emulation. USENIX Security (2020).

[38] Alexander Potapenko. 2022. Kernel Memory Sanitizer (KMSAN). https://docs.

kernel.org/dev-tools/kmsan.html.

[39] Polyvios Pratikakis, Jeffrey S Foster, andMichael Hicks. 2006. Locksmith: Context-

Sensitive Correlation Analysis for Race Detection. PLDI (2006).

https://github.com/google/syzkaller
https://nvd.nist.gov/vuln/detail/CVE-2016-5195
https://releases.llvm.org/19.1.0/tools/clang/docs/AddressSanitizer.html
https://releases.llvm.org/19.1.0/tools/clang/docs/AddressSanitizer.html
https://releases.llvm.org/19.1.0/tools/clang/docs/MemorySanitizer.html#origin-tracking
https://releases.llvm.org/19.1.0/tools/clang/docs/MemorySanitizer.html#origin-tracking
https://releases.llvm.org/19.1.0/tools/clang/docs/ThreadSanitizer.html
https://releases.llvm.org/19.1.0/tools/clang/docs/ThreadSanitizer.html
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://docs.kernel.org/dev-tools/kmsan.html
https://docs.kernel.org/dev-tools/kmsan.html

CCS ’25, October 13–17, 2025, Taipei, Taiwan Brian Johannesmeyer, Raphael Isemann, Cristiano Giuffrida, and Herbert Bos

[40] Ivan Pustogarov, Qian Wu, and David Lie. 2020. Ex-vivo dynamic analysis

framework for Android device drivers. S&P (2020).

[41] Razvan Raducu, Ricardo J Rodríguez, and Pedro Álvarez. 2022. Defense and

Attack Techniques Against File-Based TOCTOU Vulnerabilities: A Systematic

Review. IEEE Access (2022).
[42] Selma Saidi and Ylies Falcone. 2015. Dynamic Detection and Mitigation of DMA

Races in MPSoCs. DSD (2015).

[43] Jerome H Saltzer. 1974. Protection and the Control of Information Sharing in

Multics. CACM (1974).

[44] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas

Anderson. 1997. Eraser: A Dynamic Data Race Detector for Multithreaded

Programs. TOCS (1997).
[45] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You

Ever Wanted to Know About Dynamic Taint Analysis and Forward Symbolic

Execution (but might have been afraid to ask). S&P (2010).

[46] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémentine Maurice, Thomas Schus-

ter, Anders Fogh, and Stefan Mangard. 2018. Automated Detection, Exploitation,

and Elimination of Double-Fetch Bugs using Modern CPU Features. AsiaCCS
(2018).

[47] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy

Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. ATC (2012).

[48] Konstantin Serebryany, Alexander Potapenko, Timur Iskhodzhanov, and Dmitriy

Vyukov. 2011. Dynamic Race Detection with LLVM Compiler: Compile-time

instrumentation for ThreadSanitizer. RV (2011).

[49] Zekun Shen, Ritik Roongta, and Brendan Dolan-Gavitt. 2022. Drifuzz: Harvesting

Bugs in Device Drivers from Golden Seeds. USENIX Security (2022).

[50] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky, Yeoul Na, Stijn

Volckaert, Giovanni Vigna, Christopher Kruegel, Jean-Pierre Seifert, and Michael

Franz. 2019. PeriScope: An Effective Probing and Fuzzing Framework for the

Hardware-OS Boundary. NDSS (2019).
[51] Evgeniy Stepanov and Konstantin Serebryany. 2015. MemorySanitizer: fast

detector of uninitialized memory use in C++. CGO (2015).

[52] Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli, Hang Zhang, Zheng

Zhang, Ardalan Amiri Sani, and Zhiyun Qian. 2018. Charm: Facilitating Dynamic

Analysis of Device Drivers of Mobile Systems. USENIX Security (2018).

[53] Pengfei Wang, Jens Krinke, Kai Lu, Gen Li, and Steve Dodier-Lazaro. 2017. How

Double-Fetch Situations turn into Double-Fetch Vulnerabilities: A Study of Dou-

ble Fetches in the Linux Kernel. USENIX Security (2017).

[54] Pengfei Wang, Kai Lu, Gen Li, and Xu Zhou. 2019. DFTracker: Detecting Double-

fetch Bugs by Multi-taint Parallel Tracking. FCS (2019).
[55] Robert NM Watson. 2007. Exploiting Concurrency Vulnerabilities in System Call

Wrappers. WOOT (2007).

[56] NicoWeichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza. 2016. Async-

Shock: Exploiting Synchronisation Bugs in Intel SGX Enclaves. ESORICS (2016).
[57] Yilun Wu, Tong Zhang, Changhee Jung, and Dongyoon Lee. 2023. DevFuzz:

Automatic Device Model-Guided Device Driver Fuzzing. S&P (2023).

[58] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael Backes, and Taesoo Kim. 2018.

Precise and Scalable Detection of Double-Fetch Bugs in OS Kernels. S&P (2018).

[59] Yiru Xu, Hao Sun, Jianzhong Liu, Yuheng Shen, and Yu Jiang. 2024. Saturn:

Host-Gadget Synergistic USB Driver Fuzzing. S&P (2024).

[60] Babak Yadegari and Saumya Debray. 2014. Bit-Level Taint Analysis. SCAM
(2014).

[61] Wenjia Zhao, Kangjie Lu, Qiushi Wu, and Yong Qi. 2022. Semantic-Informed

Driver Fuzzing Without Both the Hardware Devices and the Emulators. NDSS
(2022).

Appendix

A LMBench performance data

Table 7 shows the per-benchmark LMBench results of DMARacer

compared to an unsanitized kernel.

B SADA Findings

There is no publicly available code or artifact of SADA, so we

could not run a direct comparison against DMARacer. Instead, we

provide an analysis of the issues reported by SADA. We found these

issues by searching the Linux kernel mailing list for reports and

patches that are referencing the paper’s authors. The list of found

issues is to our knowledge complete except for privately reported

and unpatched bugs.

Table 7: Runtime overhead of DMARacer.

Benchmark

Baseline

Time

DMARacer

Time Overhead Increase

Simple syscall 0.25𝜇s 0.84𝜇s 0.59𝜇s +234%

Simple read 0.32𝜇s 1.60𝜇s 1.27𝜇s +392%

Simple write 0.32𝜇s 1.31𝜇s 0.99𝜇s +315%

Simple stat 0.62𝜇s 5.58𝜇s 4.96𝜇s +797%

Simple fstat 0.37𝜇s 1.67𝜇s 1.30𝜇s +353%

Simple open/close 1.21𝜇s 10.75𝜇s 9.54𝜇s +788%

Select on 10 fd’s 0.41𝜇s 1.76𝜇s 1.35𝜇s +331%

Select on 100 fd’s 1.36𝜇s 13.81𝜇s 12.45𝜇s +917%

Select on 250 fd’s 2.90𝜇s 33.53𝜇s 30.63𝜇s +1055%

Select on 500 fd’s 5.53𝜇s 66.52𝜇s 61.00𝜇s +1104%

Select on 10 tcp fd’s 0.49𝜇s 2.41𝜇s 1.92𝜇s +393%

Select on 100 tcp fd’s 3.72𝜇s 40.58𝜇s 36.85𝜇s +990%

Select on 250 tcp fd’s 9.00𝜇s 104.91𝜇s 95.91𝜇s +1066%

Select on 500 tcp fd’s 18.07𝜇s 212.22𝜇s 194.15𝜇s +1074%

Signal handler installation 0.31𝜇s 1.02𝜇s 0.71𝜇s +227%

Signal handler overhead 0.76𝜇s 4.95𝜇s 4.19𝜇s +548%

Protection fault 0.47𝜇s 0.92𝜇s 0.45𝜇s +96%

Pipe latency 2.61𝜇s 24.31𝜇s 21.70𝜇s +831%

UNIX sock stream latency 3.17𝜇s 29.94𝜇s 26.77𝜇s +843%

Process fork+exit 69.86𝜇s 354.08𝜇s 284.22𝜇s +407%

Process fork+execve 215.01𝜇s 961.15𝜇s 746.14𝜇s +347%

Process fork+/bin/sh -c 465.10𝜇s 1919.48𝜇s 1454.38𝜇s +313%

UDP latency 4.05𝜇s 52.10𝜇s 48.05𝜇s +1187%

TCP latency 5.40𝜇s 87.20𝜇s 81.80𝜇s +1514%

TCP/IP connection cost 21.18𝜇s 238.17𝜇s 216.99𝜇s +1024%

Table 8 shows the 20 patches/reports we found. Some reports

describe multiple issues affecting several DMA memory regions.

We indicated if this is the case using the third table column. In total,

24 unique bugs were reported that involve a problematic DMA

memory access.

The reports do not contain the actual trace that SADA analyzed.

We therefore approximated the detection logic using the bug expla-

nation in each report. Specifically, we tried to determine how often

SADA finds issues involving long and complex traces.

Column 4 shows whether the vulnerable DMA operations that

needed to be analyzed occurred in the same function. For a bad

streaming DMA mapping, the involved code piece are the to-device

mapping operation and the subsequent memory access. For a

TOCTOU error, the vulnerable operations are the check and use.

Unchecked DMA access only involve one read operation, so we

omitted them in this column. In summary, all found issues had

their vulnerable operations contained within a single function. If

we consider all DMA operations including the DMA allocation call

itself, then 12 of the 20 reports (16 of 24 bugs) have traces that only

spanned a single function (Column 5).

The last column indicates whether a patch has been merged or

the respective bug was fixed by a maintainer. In total, 10 reports

containing 14 bugs were fixed.

Dynamic Detection of Vulnerable DMA Race Conditions CCS ’25, October 13–17, 2025, Taipei, Taiwan

Table 8: DMA errors detected by SADA.

Subject Line on Mailing List

Issue

Class

Number of

Affected

Allocations

Vulnerable

Operations

in Same

Function?

All

Operations

in Same

Function?

Patch

Merged?

rtlwifi: rtl8723ae: avoid accessing the data

mapped to streaming DMA

Bad Streaming

DMA Mapping

1 ✓ ✓ ✓

rtlwifi: rtl8192de: avoid accessing the data

mapped to streaming DMA

Bad Streaming

DMA Mapping

1 ✓ ✓ ✓

rtlwifi: rtl8192ce: avoid accessing the data

mapped to streaming DMA

Bad Streaming

DMA Mapping

1 ✓ ✓ ✓

rtlwifi: rtl8188ee: avoid accessing the data

mapped to streaming DMA

Bad Streaming

DMA Mapping

1 ✓ ✓ ✓

p54: avoid accessing the data mapped to stream-

ing DMA

Bad Streaming

DMA Mapping

1 ✓ ✓ ✓

atm: idt77252: avoid accessing the data mapped

to streaming DMA

Bad Streaming

DMA Mapping

1 ✓ ✓ ✓

atm: eni: avoid accessing the data mapped to

streaming DMA

Bad Streaming

DMA Mapping

1 ✓ ✓ ✓

net: vmxnet3: avoid accessing the data mapped

to streaming DMA

Bad Streaming

DMA Mapping

1 ✓ ✓ ✗

crypto: hisilicon: accessing the data mapped to

streaming DMA

Bad Streaming

DMA Mapping

4 ✓ ✓ ✓

crypto: qat: accessing the data mapped to

streaming DMA

Bad Streaming

DMA Mapping

2 ✓ ✓ ✗

net: rocker: accessing the data mapped to

streaming DMA

Bad Streaming

DMA Mapping

1 ✓ ✓ ✗

scsi: wd719x: accessing the data mapped to

streaming DMA

Bad Streaming

DMA Mapping

1 ✓ ✓ ✗

media: venus: fix possible buffer overlow casued

bad DMA value in venus_sfr_print()

Time-of-Check

to Time-of-Use

1 ✓ ✗ ✗

media: pci: ttpci: av7110: avoid compiler opti-

mization of reading data[0] in debiirq()

Time-of-Check

to Time-of-Use

1 ✓ ✗ ✓

scsi: esas2r: fix possible buffer overflow caused

by bad DMA value in esas2r_process_fs_ioctl()

Time-of-Check

to Time-of-Use

1 ✓ ✗ ✗

net: sfc: fix possible buffer overflow caused by

bad DMA value in efx_siena_sriov_vfdi()

Time-of-Check

to Time-of-Use

1 ✓ ✗ ✗

usb: cdns3: fix possible buffer overflow caused

by bad DMA value

No DMA

Value Check

1 — ✗ ✗

input: tablet: aiptek: fix possible buffer overflow

caused by bad DMA value in aiptek_irq()

No DMA

Value Check

1 — ✗ ✗

usb: storage: alauda: fix possible buffer

overflow casued by bad DMA value in

alauda_read_map()

No DMA

Value Check

1 — ✗ ✗

net: vmxnet3: fix possible buffer overflow

caused by bad DMA value in vmxnet3_get_rss()

No DMA

Value Check

1 — ✗ ✓

	Abstract
	1 Introduction
	2 Background
	3 Threat Model
	4 Defining DMA Race Conditions
	4.1 Coherent DMA-based Race Conditions
	4.2 Streaming DMA-based Race Conditions

	5 Overview
	6 Detecting DMA Race Conditions
	6.1 DMA Operation Hooks
	6.2 Memory Access Monitor
	6.3 Taint Policies

	7 Implementation
	8 Evaluation
	8.1 Setup
	8.2 Overall Results
	8.3 Coherent DMA-based Race Conditions
	8.4 Streaming DMA-based Race Conditions
	8.5 Accuracy, Performance, & Coverage

	9 Discussion & Limitations
	10 Related Work
	11 Conclusion
	References
	A LMBench performance data
	B SADA Findings

