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Abstract

The drivers of modern operating systems use Direct Memory Access
(DMA) to efficiently communicate with peripheral devices. Since
the memory accessed by DMA is a shared resource between driver
and device, it is a possible source of race conditions. Peripheral
devices are also often untrusted, so these race conditions open up a
new potential attack vector against a trusted OS kernel.

In this paper, we present DMARACER, a dynamic detector called
for these DM A-based race conditions in kernel code. DMARACER
tracks memory accesses to DMA memory throughout the kernel’s
lifetime and analyses them for various indicators of race conditions.
Additionally, upon detecting a race condition, DMARACER uses taint
tracking to trace its impact and identify any potential vulnerabilities
it may trigger, such as memory corruption or denial-of-service. We
used DMARACER to search the drivers of the Linux kernel for DMA-
based errors and find that DMA-based race conditions are a systemic
issue in driver code. In total, DMARACER was able to detect 817
problematic memory accesses and 344 vulnerable operations in the
scanned Linux kernel drivers.
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1 Introduction

“We trust the hardware pretty implicitly. There are bits
and pieces of the kernel that are starting to nibble away
at the “do we trust this?” portion, but for the most part,
this is not how Linux was designed at all.”

— Greg Kroah-Hartman, Linux kernel maintainer (in response to our disclosure)

Where OS developers in the past limited their security concerns
to malicious user programs [43], operating system kernels today
have to include peripheral devices in their threat model [7]. In-
deed, most general-purpose computers now come equipped with
IOMMUs [7]—mirroring established protection mechanisms that
prevent unauthorized memory access by user programs, by means
of MMUs [36], to also isolate memory for external devices. How-
ever, there is also memory that the kernel intentionally shares to
communicate with either user space or peripherals—and doing so
introduces the risk of race conditions.

For example, the shared memory used to transfer data from a
user program to the kernel in a system call may easily become a
source of race conditions. Moreover, the kernel and user/device
have different privilege levels, putting them out of reach of standard
synchronization approaches and verification tools [6, 16, 17, 39, 44,
48] that rely on all processes synchronizing voluntarily. Previous
work extensively studied race conditions, such as double fetches,
at the system call interface [11, 15, 22, 28, 29, 46, 53, 54, 58].

However, the problem also exists for drivers at the boundary
between kernel and untrusted devices. As with the system call
interface, the kernel and device both access shared memory to com-
municate. Using Direct Memory Access (DMA), a malicious device
may surrepitiously modify data that the kernel assumes is valid.
Recent work studied DMA-based communication between driver
and device and highlighted that standard security practices (e.g.,
input validation and IOMMU protection) are not yet consistently
adopted [8, 10, 14, 18, 20, 25, 30, 31, 33, 37, 40, 49, 50, 52, 57, 59, 61].

Despite these findings, the research community has largely ig-
nored the issue of DMA-based race conditions. The shared memory
and the different privilege levels mirror the conditions that lead to
race conditions and double fetch bugs on the user-kernel interface.
However, at the device-kernel interface, they may lead not just
to “classic” TOCTOU-like conditions, but also other, less-known
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but equally dangerous, ones. Examples include races in streaming
DMA, as well as cases where attackers corrupt kernel-initialized
data. The latter category is of particular concern as they are often
exploitable [8, 31] and we find that such vulnerabilities are much
more common than TOCTOU ones. This raises the question of how
to detect such conditions in the various device drivers found in
modern kernels?

In this work, we fill this gap by identifying DMA-based race
conditions using insights from prior research on user-to-kernel race
conditions. Unfortunately, applying these insights to the device-
to-kernel domain poses unique challenges. For instance, few (if
any) of the interactions across this boundary are standardized and
interposition is hard: devices may interact with the kernel through
custom driver interrupts, and the kernel may access DMA through
ordinary memory operations. Thus, we cannot incorporate the
methods from previous studies of unsafe DMA accesses directly
and must instead adapt them specifically to DMA race conditions.
In particular, unlike unsafe DMA accesses, DMA race conditions
require analyzing memory accesses collectively, as well as tracking
of long-lived state. For this purpose, we use dynamic taint analysis
(DTA) [35] to track such complex state across complex interactions.

We present DMARACER, a dynamic DMA race condition detector
for the Linux kernel. DMARACER monitors runtime invariants to
determine whether DMA accesses are race-free. When DMARACER
identifies a violation—a race condition—it reports the access as an
errant access. If the errant access involves attacker-controllable data
(e.g., loading from coherent DMA), we apply taint to the data to
track it throughout the kernel’s execution. Finally, if the tainted
data reaches a security-sensitive operation (e.g., a memory write
pointer), DMARACER flags it as a vulnerable operation.

Like other sanitizers, DMARACER instruments the kernel to de-
tect these issues during runtime. Specifically, it (i) tracks DMA state
by hooking into every DMA operation, (ii) identifies errant accesses
by monitoring all memory accesses, (iii) identifies vulnerable opera-
tions through DTA policies, and (iv) covers DMA race conditions by
executing a variety of device-to-kernel interactions. In combiation,
it enables DMARACER to detect DMA race conditions.

By applying race condition detection to the novel domain of DMA
data, DMARACER identifies 817 errant accesses and 344 vulnerable
operations across the kernel—with false positive rates of 0% and
9%, respectively. Moreover, our case studies show that these race
conditions are not easily eliminated: many are deeply embedded in
the semantics of existing drivers and APIs.

Contributions. We make the following contributions:

e We present a new dynamic analysis approach for detecting DMA
race conditions and vulnerable device-to-kernel interactions.

e We develop DMARACER, an open-source! DMA race condition
detector for the Linux kernel.

o We evaluate DMARACER on a recent kernel to identify hundreds
of errant accesses and vulnerable operations, and present case
studies that highlight that the issues are difficult to mitigate.

DMARACER is available at https:/github.com/vusec/dmaracer.
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2 Background

Race conditions. Race conditions are non-deterministic errors
that occur when several processes access a shared resource without
synchronization[34, 44]. A common synchronization mechanism
are locks that grant exclusive access to the variable for a limited
time. Many synchronization primitives require the cooperation
of all involved processes to work correctly. They do not work if
one of the processes is malicious and ignores the synchronization
primitive.

TOCTOU bugs. A special kind of bug caused by race conditions
are time-of-check to time-of-use (TOCTOU) errors. Here, a piece
of code first checks whether a certain property holds for a shared
resource. The rest of the code then incorrectly assumes this prop-
erty still holds [41], even though there is no mechanism in place
that ensures the immutability of the shared resource. An unpriv-
ileged attacker can abuse this behavior to potentially exploit the
code that relies on the checked property. In a concrete attack, the
attacker would set the shared resource to a ’good’ state to satisfy
the check, and then modify it before the first to a ’bad’ state that
causes unintended behavior.

Double fetch bugs. A common attack scenario involving TOCTOU
errors are kernel system call handlers where they are also referred
to as double-fetch bugs [22, 28, 46, 53, 54, 58]. In this scenario, the
attacker performs a system call as an unprivileged user and the
shared resource is the memory containing the system call argu-
ments. This memory is accessible by both user and kernel while the
system call is being performed. The attacker can therefore modify
an argument between the time the kernel checks it for validity (1st
fetch) and the actual processing of the arguments (2nd fetch). If the
attacker is successful and is able to bypass a critical check such as
a buffer size check, the consequences of such an attack can result
in information leakage or privilege escalations [53].

Direct memory access. Direct memory access (DMA) is a hard-
ware feature that reduces the CPU workload when communicating
with peripheral hardware. In a system with DMA, a dedicated DMA
controller is responsible for moving data between system memory
and hardware. The CPU itself is only responsible for initiating the
data transfers and can be utilized for other tasks while the data is
being moved.

Kernel drivers utilize DMA by allocating a special DMA buffer
that is bound to a device’s registers or memory. The buffer itself is
used like any other plain memory buffer in C and can be directly
written to and read from without invoking special functions. The
driver can decide between two kinds of DMA buffers that differ in
when they synchronize their contents with the device.

(1) Streaming (or asynchronous) DMA buffers are used for single
DMA-based data transfers. The transfer to and from the device
is explicitly initialized by the driver. As the assumption is that
driver and device do not access the same memory region at
the same time, there are generally no strong guarantees with
respect to cache coherence.

(2) Coherent (or synchronous) DMA buffers are implicitly synchro-
nized between device and system memory. These buffers are
set up in cache-coherent memory, therefore any memory writes
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done by either device or CPU are immediately made visible to
the other. Coherent buffers are used when the driver and the
device require concurrent write access.

DMA errors. The two kinds of DMA buffers impose each a very
different challenge for a driver that uses them. For streaming DMA
buffers, the main challenge is the correct timing of the synchroniza-
tion request. All data that needs to be transferred must have been
written to the buffer before it is synchronized with the device.

Coherent buffers do not impose this requirement, but instead
come with different security implications. Because their contents
can be concurrently accessed by an untrusted device and the kernel,
they can be a potential source of TOCTOU bugs. The possible attack
scenario using these bugs is very similar to the TOCTOU attacks
on kernel system call handlers (see the previous section). Instead
of the user switching out system call arguments, a device could
change the contents of a DMA buffer after the driver performed
the necessary sanity checks on it.

3 Threat Model

We adopt the threat model of previous work [10], which considers
a local attacker who controls a peripheral device (e.g., a USB key-
board) and its workload. The kernel and its drivers are trusted and
not compromised. The attacker’s goal is to cause a denial of service
(e.g., trigger a kernel panic) or achieve privilege escalation (e.g.,
corrupt kernel memory). The ability to control the peripheral device
allows the attacker to observe all DMA accesses performed by the
kernel driver and control the values of the accessed DMA mem-
ory. E.g., the attacker can observe that a certain part of the DMA
memory is accessed twice within a short time span and change
the memory contents so that two different values are read by each
access. The system memory is protected by an idealized IOMMU
that can protect each individual byte of memory against uninten-
tional writes from an external device. This means the system is
invulnerable against accidental exposure of memory caused by too
coarse-grained IOMMU protection capabilities [31].

4 Defining DMA Race Conditions

In this section, we will define three possible race conditions that
can arise out of improper DMA usage.

4.1 Coherent DMA-based Race Conditions

Coherent DMA is simultaneously accessible to both the kernel
and a malicious device, similar to how userspace data is simultane-
ously accessible to both the kernel and a malicious program. Hence,
we can gain insights from userspace-based race conditions when
defining coherent DMA-based race conditions.

TOCTOU bugs. Previous work on user-to-kernel TOCTOU
bugs [22] holds that the kernel should not load the same user data
twice within a single execution context (i.e., an interrupt, system
call, or new kernel thread). We apply this same rule to coherent
DMA:
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Invariant 1. Avoiding TOCTOU bugs.

The kernel should not read coherent DMA data more than
once within an execution context.

If this invariant is violated, the kernel unsafely races against
a malicious device corrupting the previously kernel-loaded data.
Although drivers may sometimes busy-poll MMIO/PMIO status
registers for ultra-low-latency I/O [27], polling a DMA buffer itself
is uncommon—completion is normally reported via interrupts or
other asynchronous mechanisms [13]. Thus, our invariant holds in
practice (see Section 8).

TOITOU bugs. Recent DMA exploitation techniques [8, 31] target
bugs that involve the corruption of kernel-initialized DMA data. We
term such cases TOITOU, time-of-initialization to time-of-use, bugs.
A TOITOU bug is defined as a race condition with the following
three phases: (1) the victim stores valid data in a shared resource,
(ii) the attacker overwrites this data after it was stored, and (iii) the
victim later loads the data and assumes it is still valid, thus omitting
any validity checks. The difference to a TOCTOU bug is that instead
of a check being skipped, the user’s attempt to satisfy a check by
modifying a shared resource is disabled.

Unlike the user-to-kernel domain, where the kernel only rarely
initializes data in userspace for later use (e.g., when signal han-
dling [12]), kernel drivers will oftentimes initialize entire data struc-
tures in DMA. These drivers also expect the device to play nice and
only access the parts that it is supposed to. Typically, the kernel
initializes such data early on (e.g., during boot time), then uses it
much later on (i.e., after boot time), all the while, expecting it to
remain unchanged. Hence, we can derive a second invariant:

Invariant 2. Avoiding TOITOU bugs.

The kernel should not read coherent DMA data if it previ-
ously initialized it.

If this invariant is violated, the kernel unsafely races against a
malicious device corrupting the previously kernel-initialized data.

4.2 Streaming DMA-based Race Conditions

In contrast to coherent DMA, streaming DMA is only accessible
to either the kernel or the device—but not both. The kernel gov-
erns this accessibility by invoking synchronization operations that
transfer access rights between the kernel and the device.

Inconsistent access bugs. Previous work on identifying unsafe
DMA accesses notes that the kernel should not access a streaming
DMA region when it is synchronized for device access [10]. Doing
so results in an inconsistent DMA access bug because the data ac-
cessed by the kernel (either in the CPU cache or a bounce buffer)
may not be consistent with the actual data in the (device-accessible)
DMA buffer [13]. Hence, we apply this same invariant:
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Invariant 3. Avoiding inconsistent access bugs.

The kernel should not access streaming DMA data if the
region is synchronized with the device.

Brian Johannesmeyer, Raphael Isemann, Cristiano Giuffrida, and Herbert Bos

Table 1: DMA operations hooked by DMARACER to track
DMA state at runtime.

DMA Op. Function Hooked DMARACER Handler
dma_alloc_attrs() Track a coherent DMA buffer
If this invariant is violated, the kernel unsafely races against the Map dma_map_single_attrs() Track a streaming DMA buffer

CPU cache or bounce buffer inadvertently corrupting the data. No-
tably, this bug is very difficult for a malicious device to exploit, so we
consider such exploitation out of scope. Instead, it primarily poses
a reliability issue when the kernel later uses the corrupted data.
Moreover, because synchronization operations are non-blocking,
the manifestation of this bug is nondeterministic: the race condi-
tion may only occur when the synchronization commits, making it
difficult to consistently reproduce and diagnose.

5 Overview

Having defined the various DMA race conditions, we now present
the main design challenges and how we addressed them to detect
these conditions. To detect DMA race conditions, DMARACER has
to track all memory operations and determine which are accessing
DMA memory. DMARACER must then identify which parts of the
kernel are potentially affected by attacker-controlled data from
these errant accesses.

Figure 1 presents an example of how DMARACER detects vulner-
able code. Although this example features a hypothetical TOCTOU
bug for illustrative purposes (given its similarity to well-studied
double-fetch bugs), it is important to note that, as discussed in Sec-
tion 8.3.1, most vulnerabilities in practice stem from TOITOU bugs
instead.

(A) Tracking DMA regions. DMA memory regions are dynamically
created and then accessed like any other buffer via C pointers
in the rest of the kernel code base. We therefore cannot hook a
standardized access method (e.g., copy_from_user() on the kernel-
user barrier) to detect DMA memory accesses. Instead, DMARACER
hooks all relevant DMA methods and maintains its own metadata
for the location and state of all DMA buffer. In Section 6.1, we detail
how we hook the variety of DMA APIs within the kernel.

Identifying errant accesses. DMARACER has to determine all
DMA memory operations and identify any unsafe DMA accesses
among them. As DMA is accessed via normal store and load instruc-
tions, DMARACER uses its collected DMA metadata to determine
which memory operations access DMA buffers. For errors like TOC-
TOU that involve several memory operations, DMARACER also has
to reason about the relationship between different memory accesses.
We support this post-hoc analysis of several DMA operations by
additionally maintaining a list of all DMA memory accesses. In
Section 6.2, we describe how our monitor checks whether DMA is
accessed, and if so, whether the access violates an invariant.

(O 1dentifying vulnerable operations. Once DMARACER detects an
errant DMA access, it is still unclear whether the attacker-controlled
from the access is actually vulnerable. DMARACER searches for
potentially exploitable code by applying taint to attacker-controlled
DMA data and tracking it through the kernel’s execution. This
taint spreads across the kernel during execution until it reaches

Track a streaming DMA SG list

Untrack a coherent DMA buffer
Untrack a streaming DMA buffer
Untrack a streaming DMA SG list

dma_sync_single_for_cpu() CPU-sync a DMA region
dma_sync_single_for_device() Device-sync a DMA region

__dma_map_sg_attrs()

dma_free_attrs()
Unmap dma_unmap_page_attrs()
dma_unmap_sg_attrs()

Sync

operations that can enable exploits if certain operands are attacker-
controlled (e.g., the address of a store operation). In Section 6.3, we
describe our taint policies, and the subtleties in tracking DMA data.

(D) Covering DMA race conditions. Unlike the user-kernel boundary
with syzkaller [1], there is no production-ready tooling for testing
the device-kernel boundary. Given that DMARACER is a dynamic
analysis tool, we therefore also need a way to run drivers and give
them meaningful workloads that utilize DMA operations and spread
them across the kernel. To overcome this challenge, we leverage
the flexibility of a virtual environment to invoke device-to-kernel
interactions. This allows us to easily configure the kernel to support
a variety of drivers, attach multiple devices, and run diverse device-
specific workloads. In Section 8.1, we explain this pipeline, and how
future work could build upon our flexible tooling.

6 Detecting DMA Race Conditions

In this section, we detail each component of our approach to de-
tecting DMA race conditions.

6.1 DMA Operation Hooks

Table 1 presents our DMA operation hooks, which allow us to track
DMA state at runtime. For both coherent and streaming DMA, we
begin tracking a region at a map (or allocate) operation, and stop
tracking it at an unmap (or free) operation. When streaming DMA
is mapped, we designate it is as device-accessible; for every syn-
chronization operation thereafter, we designate it as either CPU- or
device-accessible. Moreover, because the kernel may synchronize
DMA partially—i.e., only a subset of the region—we track synchro-
nization state at a per-byte granularity.

Applicability to various DMA APIs. The kernel offers a variety
of APIs to map, unmap, and synchronize DMA. However, because
we hook the lowest-level DMA operations, which are called by these
APIs, we therefore also hook into these various APIs. For example,
the various interfaces for allocating coherent DMA—e.g., the generic
(dma_alloc_coherent()), managed (dmam_alloc_coherent()), pool
(dma_pool_alloc()), and driver-specific (e.g., hcd_buffer_alloc())
APIs—all eventually call dma_alloc_attrs(). Therefore, by hooking
dma_alloc_attrs(), we also hook such allocation interfaces.
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Figure 2: Policies of the memory access monitor in
determining whether an access violates an invariant.

6.2 Memory Access Monitor

To monitor every memory access, we insert callbacks to our
DMARACER runtime library at memory access instructions. From
our callback, we first check whether the access is to a DMA region,
and if so, whether it violates an invariant, as outlined in Figure 2.

6.2.1 Coherent DMA Accesses. For loads from coherent DMA data,
we check whether the data was previously accessed. Specifically,
whether it was previously: (i) loaded from within the same exe-
cution context, which indicates a TOCTOU error (Invariant 1), or
(ii) stored to within the lifetime of the kernel, which indicates a
TOITOU error (Invariant 2).

For this purpose, we record every access into one of two struc-
tures: (i) if an access loads from DMA, we record it into a local access
map, which is local to a particular execution context, and is cleared
when the execution context exits; or (ii) if an access stores to DMA,
we record it into a global access map, which is global to the entire
kernel, and persists through the kernel’s lifetime. If a load from
DMA has a preceding load in the local access map, then we report

a TOCTOU bug (as in Figure 2a). Otherwise, if it has a preceding
store in the global access map, then we report a TOITOU bug (as in
Figure 2b).

Storing kernel pointers to coherent DMA. We observe one
concerning pattern in DMA usage: the kernel frequently storing
pointers to DMA. Typically, this may be because it maintains a data
structure (e.g., a linked list) in DMA, and expects the device to only
access certain parts of the structure (e.g., the “data” of a linked list,
but not the pointers).

However, because devices generally do not have access to the
same address space as the kernel, the only practical reason that
the kernel would store a pointer to DMA is if it will use it later.
Hence, such an operation is either bad practice (at best), or the
beginning of a vulnerability? (at worst). If it uses the pointer later,
we would report it as a TOITOU bug. Therefore, if the kernel stores
a pointer to DMA, we report it as an errant access, because we
expect the kernel to use it later, which would then be a TOITOU
bug. By reporting the initial pointer store as an errant access, we
mitigate the case where our dynamic analysis’ imperfect coverage
fails to cover the subsequent pointer load.

6.2.2 Streaming DMA Accesses. For accesses to streaming DMA,
we check whether any part of the accessed region is device-
synchronized. If yes, the access violates Invariant 3 and demon-
strates an invalid DMA memory access. Figure 2c outlines this
process: The kernel may access streaming DMA data if it is imme-
diately preceded by a CPU-synchronization operation. However,
the kernel may not access it if it is immediately preceded by a map-
ping or device-synchronization operation; otherwise, we report the
access as an inconsistent access bug.

6.3 Taint Policies

Table 2 summarizes our taint policies, which track attacker data
from errant accesses to dependent vulnerable operations.

6.3.1 Taint Sources. From our memory access callbacks (Sec-
tion 6.2), we add a unique taint label to the output of attacker-
controllable errant accesses (i.e., TOCTOU or TOITOU bugs). Hence,
as is typical of DTA systems [35], we are able to track the flow of
attacker data at runtime by checking its taint label: untainted data is

2This may also be considered information leakage (e.g., breaking KASLR). However,
we focus on the risk of race conditions in this work.
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Table 2: Taint policies to track attacker data to dependent vulnerable operations, while avoiding taint explosion.

Taint Policy Type Operate On

Justification

Source: Track attacker data

Output of a TOCTOU/TOITOU bug

Controllable by a malicious device

Pointer of a memory write

Sink: Identify vulnerable operations Condition of a loop/assertion

Enables an attacker-controllable memory corruption primitive
Enables an attacker-controllable denial-of-service primitive

AND instruction
Kernel hot paths
Execution context entry

Clear: Avoid taint explosion

Instruction used to access specific bits of DMA data
Execution may spill taint into frequently accessed global data
Cross-execution context dataflows are challenging to reproduce

not attacker data, and tainted data is attacker data. In our case, our
taint label identifies the specific errant access (i.e., the backtrace)
that loaded the attacker data.

6.3.2 Taint Sinks. We track the flow of attacker data to certain
security-sensitive operations. Following previous work [10], we tar-
get operations leading to memory corruption and denial-of-service
(DoS) vulnerabilities. Specifically, our security-sensitive operations
are: (i) A tainted pointer of a store instruction, because an attacker
may redirect it to corrupt memory; hence, we report it as a vulner-
able write. (ii) A tainted loop condition, because an attacker may
corrupt it to loop indefinitely, leading to a DoS or buffer overflow;
hence we we report it as a vulnerable loop. (iii) A tainted assertion
condition, because an attacker may corrupt it to fail the assertion,
leading to a DoS, so we report it as a vulnerable assert.

We note that this is not an exhaustive list of all possible security-
sensitive operations; rather, it is a set to demonstrate the feasibility
of our approach. DMARACER can be easily extended to hook into
more security-sensitive operations.

6.3.3 Taint Clears. A known challenge of DTA is avoiding taint
explosion—i.e., the accidental spilling of taint into data that is not
intended to be tainted. If unaddressed, we may incorrectly report
certain non-vulnerable operations as vulnerable. The ideal solu-
tion for avoiding taint explosion is to perfectly model all possible
dataflows in the program. However, doing so for every possible
operation in a program is a difficult task [60].

Instead, we follow an approach used by other DTA systems [21,
38, 45] and clear taint at various operations to mitigate this issue.
In general, our taint policies aim to be conservative to reduce false
positives. That is, we clear taint unless there is a likely dataflow for
a certain operation or code pattern.

Bit-level accesses. It is not uncommon for the kernel to access
specific bits of DMA data (e.g., a 1-bit flag). In such a case, the
kernel may e.g., load a one-byte word from DMA, then perform
a bitwise AND to isolate the particular bit. Unfortunately, bit-level
taint analysis—which could be used to accurately model such a
dataflow—is known to be difficult [60].

Hence, to avoid false positives arising from such a dataflow, we
instead clear its taint. Specifically, we modify the taint analysis’ AND
instruction callback—which normally propagates the taint from its
inputs to its output—to instead clear the taint of its output.

Flows to frequently-accessed global objects. Certain parts of
the kernel (e.g., the timer subsystem and the slab allocator) are

called frequently throughout the kernel’s execution and handle
globally-accessible data structures. Hence, if taint passes into one
of these kernel “hot paths”, it soon spills into unrelated operations
throughout the kernel. In principle, a heavyweight constraint solver
could address this (e.g., by only propagating verifiably controllable
dataflows to these hot paths). However, in practice, such approaches
do not scale to the size and complexity of the Linux kernel.

Therefore, to avoid false positives arising from such dataflows,
we adopt an approach from an existing kernel DTA system [38].
Specifically, we clear taint for all operations and accessed memory
within various kernel hot paths®.

Flows across execution contexts. The kernel maintains various
data structures (e.g., sockets and file descriptors) that persist state
from one execution context to another. If taint flows into one of
these structures in one execution context (e.g., a timer interrupt),
and is used in another execution context (e.g., some syscall), it is
often difficult to reproduce the dataflow, as it may rely on non-
deterministic (e.g., timing) constraints.

Hence, we maintain a notion of taint validity, which enforces
same-domain dataflows using the following semantics: (i) An exe-
cution context begins with all taint labels marked as invalid. (ii) If
a taint source (i.e., an errant access) is covered, its taint label is
marked as valid. (iii) A taint sink only reports vulnerable operations
if its taint label is valid. As a result, we ensure that the vulnerable
operations we identify are accurate and easily-reproducible.

7 Implementation

Figure 3 presents the workflow of DMARACER, which: (i) takes
the Linux kernel and our runtime library, (ii) builds them with our
LLVM instrumentation, and (iii) runs the instrumented kernel as a
VM in our custom QEMU hypervisor, where it identifies vulnerable
DMA race conditions at runtime.

Runtime library. Our runtime library consists of: (i) the Kernel-
DataFlowSanitizer (KDFSAN) [21] runtime library, which provides
support for DTA (e.g., by creating taint labels, combining labels,
etc.); and (ii) the handlers for DMARACER’s various instruction-level
and function-level callbacks, which collectively identify vulnerable
DMA race conditions.

Specifically, the DMARACER runtime library handles the follow-
ing function-level callbacks: First, for DMA operations, it tracks the
state of DMA regions. Second, for execution context entries and exits

3The semantics are similar to those of KMSAN’s __no_kmsan_checks function at-
tribute; indeed, we clear taint in many of the same functions where it is applied.
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Figure 3: DMARACER’s workflow: Take the Linux kernel, identify DMA race conditions, and present statistics to aid mitigation.

(e.g., __enter_from_user_mode(), irq_enter_rcu()), it: (i) clears the
local access map and (ii) marks taint labels as invalid. Third, for
assertions (e.g., BUG_ON()), it performs the taint sink for vulnerable
asserts.

Furthermore, it handles the following instruction-level callbacks:
First, for memory accesses, it: (i) records DMA accesses, (ii) per-
forms the taint source for errant accesses, and (iii) performs the
taint sink for vulnerable writes. Second, for backward conditional
branches, it performs the taint sink for vulnerable loops. Third, for
AND operations, it clears the output’s taint.

LLVM instrumentation. We build the kernel with the KDFSAN
pass, which we modified to add the above instruction-level call-
backs. First, to hook memory accesses, we reuse KDFSAN’s call-
backs for LOAD, STORE, and MEMTRANSFER instructions. Second, to hook
backward conditional branches, we modify KDFSAN’s conditional
BranchInst visitor to check its direction (via the PostDominatorTree
API), and if it is backwards, to add our callback. Third, to hook AND
operations, we modify KDFSAN’s BinaryOperator visitor to add our
callback for AND instructions.

8 Evaluation

In this section, we evaluate DMARACER’s ability to detect DMA
race conditions.

8.1 Setup

Environment. We perform our evaluation on a host machine with
an AMD Ryzen 9 3950X CPU and 128GB of RAM, running Ubuntu
22.04.4 LTS (kernel v6.8). We instrument the kernel (based on Linux
v6.5.8) with a modified KDFSAN pass (based on LLVM v11.0.1), and
run the instrumented kernel as a guest VM in QEMU.

Device emulation with QEMU. Dynamic error detectors require
that the code is executed to be analyzed. In the case of DMARACER,
this means that a driver needs to allocate a DMA buffer and then
violate one of the invariants. Additionally, the detection of vulner-
able operations relies on tainted data from DMA to spread across
the kernel.

Device driver code can only be successfully executed if their
respective device is connected. Because we do not have access to
the multitude of physical devices supported by the Linux Kernel, we
instead decided to use the virtual device emulation feature of QEMU
for our evaluation. This emulation feature allows QEMU to mimic
a connected peripheral which includes the kernel-device communi-
cation via DMA. This emulation is only available for QEMU devices
for which the QEMU developers implemented a backend. The back-
end is responsible for communicating with the running kernel in
the same way as the real hardware would. Table 4 shows a sum-
mary of the 147 QEMU devices we used in our evaluation. These

147 devices include all QEMU devices except CPUs and various test
devices (e.g., devices that are only used for educational purposes).

Evaluation workloads. For each emulated QEMU device we de-
cided to evaluate, we also needed a way to exercise the DMA com-
munication of the device and spread the data from DMA across the
kernel. Unfortunately, standard kernel fuzzing techniques such as
syzkaller are not suitable for this purpose for two reasons. First,
they focus on general code coverage which is not directly relevant
for DMARACER. For example, just covering a corner case in a sys-
tem call handler will never lead to a report from DMARACER unless
the code accesses DMA memory or handles tainted data from DMA.
Second, some driver logic depends heavily on input from DMA de-
vices itself (e.g. drivers for input devices), and fuzzers like syzkaller
focus on the unrelated user-kernel interface.

To overcome this, we instead decided to manually create work-
loads that are tailored for each device. Table 4 provides a summary
of each workload. In general, we mostly use shell scripts that ran-
domly invoke shell commands specific to the device for about 5
minutes per device. For example, the workload for storage devices
consists of a shell script that randomly manipulates files, file con-
tents and folders on the mounted storage device. The workload
for human interface devices was implemented by using a custom
version of QEMU that produces random mouse, touchpad and key-
board presses. We again use QEMU’s virtual device emulation fea-
ture for this and emit the same internal input events that QEMU
creates when being used with a graphical frontend. The emula-
tion backend then translates these generic QEMU input events into
device-specific device-to-kernel communication. For the network
devices, we start an HTTP server on the host machine and then
send random HTTP requests from the QEMU guest.

8.2 Overall Results

Table 3 presents the race conditions found by DMARACER, catego-
rized by: (i) the number of DMA regions affected by errant accesses,
(ii) the number of errant accesses, and (iii) the number of vulnerable
operations. We group DMA regions based on the calltrace of their
mapping operation, as this reflects the number of unique objects a
developer may need to address. This grouping is independent of any
intermediate DMA mapping APIs (e.g., dna_pool_alloc()), which
may ultimately perform a single low-level mapping operation (e.g.,
via dma_alloc_attrs()). Conversely, we group errant accesses and
vulnerable operations based on the offending instruction, represent-
ing the number of unique lines of code that a developer would need
to fix. It should be noted that the data flow from errant accesses can
span multiple files, which means that the vulnerable operations in
one row are not necessarily caused by the errant accesses in the
same row (see Section 8.3.2).
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Table 3: DMA race conditions found.

Streaming DMA Coherent DMA
Kernel Source
Aff. Regions  Errant Accesses  Aff. Regions  Errant Accesses ~ Vuln. Writes ~ Vuln. Loops ~ Vuln. Asserts
block/* - - - - 32 2 1
drivers/ata/* 3 - 1 2 49 2 -
drivers/hid/hid-core.c - - - 1 - - -
drivers/hid/usbhid/hid-core.c - - - - 1 - -
drivers/net/ethernet/amd/pcnet32.c 2 - 3 10 - - -
drivers/net/ethernet/dec/tulip/* 3 - 1 8 - - -
drivers/net/ethernet/intel/e100.c 2 10 2 35 37 1 -
drivers/net/ethernet/intel/e1000/e1000_main.c 3 - 2 7 - - -
drivers/net/ethernet/intel/e1000e/netdev.c - - 2 8 - - -
drivers/net/ethernet/realtek/8139cp.c - - 1 10 - - -
drivers/net/vmxnet3/* 1 455 5 30 - - -
drivers/pci/msi/msi.c - 4 - - - - -
drivers/scsi/x - - - - 46 - 1
drivers/tty/serial/serial_core.c - - - - - 1 -
drivers/usb/core/* 28 - 3 - - - -
drivers/usb/host/* - 8 16 119 18 -
fs/ext4/* - 19 - - - - -
fs/fs-writeback.c - - - - 2 - -
fs/kernfs/dir.c - - - - - 1 -
kernel/dma/* - 4 - - 16 3 5
kernel/printk/printk.c - - - - 2 - -
kernel/sched/* - - - - 34 5 -
kernel/workqueue.c - - - - 4 - -
lib/* - 8 - - 58 6 2
mm/dmapool.c - - - 7 - - -
net/core/* - 68 - - 1 - -
net/ipv4/* - - - - 9 1
net/ipv6/addrconf.c - - - - 1 - -
security/keys/key.c - - - - - 1 -
sound/core/* - - 1 - 2 - -
sound/hda/hdac_stream.c - - - 1 - - -
sound/pci/hda/hda_controller.c - - - 2 - - -
sound/usb/pcm. c - - - 1 - -
Total 42 576 37 241 312 22 10
Table 4: Tested devices and workloads. write. However, any of these found vulnerable writes is a potential
arbitrary write primitive which can corrupt kernel memory and
Device Kind 4 Devices Workload lead to privilege escalation. In Sections 8.3 and 8.4, we draw more
insights by breaking down the numbers based on the source file
Audio Card 13 Playing/Recording audio files and type of DMA.
GPU 12 Running OpenGL/GPU test software
Mouse/Keyboard 36 Random input events 8.3 Coherent DMA-based Race Conditions
Network Adapter 61 Handling random HTTP requests . o
Storage Device 25 Random file system operations Our analysis of coherent DMA-based race conditions reveals two no-

Our first observation is that the sheer number of errant accesses
(817) and vulnerable operations (344) highlights that DMA race con-
ditions pose a significant threat. However, this alone does not fully
convey the mitigation effort required: if errant accesses are confined
to a single DMA region, the fix is relatively straightforward; but if
they occur across multiple distinct DMA regions, remediation be-
comes more challenging. By examining the number of DMA regions
affected (79), we see that the problem is indeed widespread, indicat-
ing that mitigation may be difficult. Our second observation is that
the largest count of taint sinks for TOCTOU/TOITOU errors are
vulnerable writes. That is, the attacker has at least partial control
over the address of a store instruction. As DMARACER is a dynamic
analysis tool, it cannot determine all constraints enforced for each

table findings: (i) most vulnerabilities stem from drivers managing
complex data structures within DMA regions, which unfortunately
makes exploitation easier and mitigation more challenging; and
(ii) most dataflows to vulnerable operations occur across kernel
subsystems, making them difficult to track without DMARACER’s
DTA-based approach. To illustrate each finding, we present case
studies that share a common theme: a vulnerable high-level API,
which implies that any driver that uses the API may also be vulner-
able.

8.3.1 TOITOU-vulnerable data structures. Our analysis reveals that
although just over half (57%) of the identified errant accesses are
TOITOU bugs—as opposed to TOCTOU bugs—the vast majority
of the resulting vulnerabilities (99%) depend on TOITOU-loaded
data. Upon manual examination, we attribute this disparity to the
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fact that TOITOU bugs typically stem from the kernel managing
critical data structures within DMA regions. Consequently, the
kernel performs complex operations on these data structures, many
of which can be exploited.

For example, it is common to find entire linked lists—with point-
ers and all—-managed in DMA. We observe such DMA-resident lists
throughout the kernel code, e.g.: the UHCI driver maintains a list
of “queue headers”; the E100 driver maintains a list of “callbacks”;
and the DMA pool API maintains a list of “blocks” (which we will
discuss below). Whenever the kernel loads a pointer from these
linked lists, it loads an attacker-controllable pointer. Thus, when
the kernel dereferences it (e.g., to traverse the list), it performs an
attacker-controllable memory access.

In contrast, TOCTOU-based bugs are typically more limited,
as they involve simpler, less consequential data structures. For
example, a common source of a TOCTOU bug is reading a status
flag multiple times. If an attacker corrupts such a status flag, the
impact is limited because it usually does not allow control over
critical operations, such as the pointer used in a memory write.

Furthermore, we find that TOITOU bugs are more concerning
than TOCTOU bugs for two main reasons. First, they are easier
to exploit, as they involve the corruption of long-lived data. Con-
versely, exploiting TOCTOU bugs requires corrupting short-lived
data within a narrow time window, forcing attackers to employ
synchronization tricks to precisely time the corruption [2, 55, 56].
Second, they are more difficult to mitigate, as they affect critical
data structures, and may therefore require extensive algorithmic
rewrites of driver code. Conversely, TOCTOU bugs can often be
resolved with minor, localized changes (e.g., combining two reads
into a single read).

Case study: DMA pool API. A striking example of a TOITOU-
vulnerable linked list is in the widely used DMA pool API. A DMA
pool aims to reduce the overhead of coherent DMA allocations,
which are resource-intensive operations. It achieves this by creat-
ing a large coherent DMA buffer—the “pool”—from which smaller
buffers are allocated as needed.

Fundamentally, a DMA pool functions like a heap: it is a structure
composed of linked memory “blocks”, which, in this context, are
DMA buffers. When a driver employs a DMA pool, it grants the
device access not only to these blocks but also to the pointers
linking them. Consequently, similar to traditional heap corruption
vulnerabilities—where a malicious program corrupts heap metadata
to e.g., hijack control flow [9, 23]—a TOITOU bug allows a malicious
device to corrupt DMA pool metadata, which can trivially lead to
arbitrary kernel memory corruption from any driver that uses it,
as illustrated by Figure 4.

Unfortunately, because the DMA pool API is extensively used,
this vulnerability is not confined to a single instance. In fact, every
usage of the DMA pool APl is potentially vulnerable. Each of these
instances could lead to arbitrary memory corruption, highlighting
the critical importance of addressing this issue.

8.3.2  Cross-subsystem dataflows. Coherent DMA-based race con-
ditions frequently involve dataflows across different kernel sub-
systems, making them challenging to detect. Typically, both the
mapping of a coherent DMA region and any errant accesses to it
occur within the same file, usually within the driver. However, the
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o The DMA pool initializes its list of blocks, then points to the first block.

pool->next_block — N N
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9 The malicious device overwrites the first block's next_block
pointer to an arbitrary kernel address, kernel addr.
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9 The driver again calls dma_pool_alloc (), which
incorrectly returns kernel_addr. Therefore, anytime the
| driver writes to this “block”, it corrupts sensitive kernel data.

--sensitive--

-kernel-data-

1
-to-corrupt-

@ The driver makes its first call to dma_pool_alloc (), after which, the pool
should point to the second block. However, it instead points to kernel addr.

/ kernel_addr
pool->next_block

AN

Figure 4: DMA pool exploitation: The DMA pool API
initializes a linked list in coherent DMA, which a device can
exploit to corrupt arbitrary kernel memory.

data loaded via DMA often propagates throughout the kernel, and
any vulnerable operations that depend on this data may occur in
separate files or entirely different subsystems.

This is understandable because drivers manage DMA, but the
data they load can flow into other kernel components. Tracking
such dataflows between disparate components is difficult for heavy-
weight analyses (e.g., symbolic execution) because it requires inter-
procedural and cross-module analysis. In contrast, DMARACER’s
lightweight DTA engine effectively tracks these dataflows, allowing
us to identify many vulnerable operations that might otherwise be
missed.

Case study: Driver-to-swiotlb dataflow. An illustrative example
of a cross-subsystem dataflow occurs when a driver improperly
saves the bus address of a streaming DMA mapping into a coherent
DMA region—thereby making it attacker-controllable—then uses it
in an unmapping operation. We observed this scenario in several
drivers (e.g., the Intel E100 NIC driver, RealTek 8139C+ NIC driver),
and we present one such occurrence in Figure 5.

This vulnerability is particularly challenging to detect with static
analysis due to several factors. First, the three interactions with
the coherent DMA region—i.e., the allocation, initialization, and
usage—occur in separate syscalls and interrupts, which complicates
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@ N

// drivers/net/ethernet/intel/el00.c -——

o The driver allocates a coherent DMA region. ]

// From one syscall...

1872: int el00_alloc cbs(...) {

1881: nic->cbs = dma_pool_zalloc({...);

1898: return 0:

1899: } 9 The driver initializes the coherent DMA-resident buf_addr

to the bus address returned by dma_map _single().

// From another syscall...

1735: int el00_xmit prepare(...) {

1741: dma_addr = dma_map_single(...);

1763: cb->u. tcb. tbd.buf_addr = cpu_to_le32(dma_addr) ;
1766: return 0;

1767: }

9 The driver reads the attacker-controllable buf_addr from
coherent DMA and passes it to dma_unmap single ().
// From an interrupt T

1805: int el00_tx_clean(...) {
1827: dma_unmap_single(..., cb->u.tcb.tbd.
// - ==

@ The unmap operation asserts that the passed
in t1b_addr (dependent on buf _addr) will
not cause a buffer overflow.

ar_t EBJEdaE) |

// kernel/dma/swiotlb.c ------

// Called by dma unmap_single ()

820: void swiotlb_release_slots(.,

825: int index = (| set - mem->start) >> IO_TLB SHIFT;
827: int aindex = in mem->area_nslabs;
837: BUG_ON (aindex” >= mem->nareas) ;
849: for (i = index + nslots - 1; i >= index; i--) {
\850: mem->slots[i] .list = ++count; /

Figure 5: Driver-to-swiotlb exploitation: A driver saves a
(mapped) bus address to coherent DMA, and later passes it
to an unmapping operation with a vulnerable assertion,
which a malicious device can exploit to cause a DoS.

control flow analysis and requires modeling asynchronous events.
Second, the dataflow from the errant access (in e100_tx_clean())
to the vulnerable assertion (in swiotlb_release_slots()) crosses
several subsystems: from the driver, to the mapping API, then to
the swiotlb (i.e., “software I/O translation lookaside buffer”) APL
Even along this single control path, there are multiple intermediate
indirect calls (e.g., the driver may use custom mapping operations
via function pointers), which are notoriously difficult for static anal-
ysis to resolve. Consistent with this, our review of SADA’s reported
findings (Appendix B) suggests that the vulnerable operations it
flags are typically contained within a single function, whereas the
bug here spans multiple functions and subsystems.

This cross-subsystem dataflow raises a crucial question: Which
subsystem is responsible for mitigation? On one hand, the driver
should not save a bus address in an attacker-controllable DMA
region and expect it to remain uncorrupted. On the other hand, the
swiotlb API should handle errors more gracefully than by invoking
a kernel panic?. Given the widespread nature of such vulnerable
DMA-based race conditions, we propose that mitigation efforts
should occur at both ends.
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o The driver maps the entire
adapter struct into streaming
DMA, making it device-accessible.

3594: int vmxnet3_probe device(...) {
3619: struct vmxnet3 adapter *adapter;
3665: adapter->adapter_pa = dma_map_single(...,

adapter, sizeof(struct vmxnet3_ adapter), ...);

3673: adapter->shared = dma_alloc_coherent (&adapt:

9 Every access to
*adapter thereafter is
an inconsistent access.

3683: err = vmxnet3_alloc_pci_resources (adapter) ;

3687: ver = VMXNET3_READ BAR1_REG (adapter, ...);

Figure 6: A misunderstanding of the rules regarding DMA
synchronization leads to hundreds of inconsistent access in
the VMXNET?3 NIC driver.

8.4 Streaming DMA-based Race Conditions

Our analysis of streaming DMA-based errant accesses reveals two
significant findings: (i) many are caused by developers seemingly
misunderstanding the DMA mapping APJ; and (ii) many involve im-
proper synchronization across entirely different kernel subsystems,
making them difficult to detect without DMARACER’s dynamic
approach. Additionally, we present a case study to highlight the
first finding, which also demonstrates a critical insight: a single
incorrect synchronization can result in hundreds of errors.

84.1 Mapping APl misuse. As explained in Section 6.2.2, an incon-
sistent access bug occurs when the accessed region is immediately
preceded by either a device-synchronizing operation or a mapping
operation. We found that among all errant accesses identified by
DMARACER, only 10 were preceded by a device-synchronizing op-
eration; the remaining 569 were preceded by a mapping operation
and lacked any subsequent synchronization before the errant access.
Evidence from prior work and commit history indicates that many
of these issues stem from developers being unaware of the rules
for DMA buffer synchronization—particularly, the assumption that
accessing a streaming DMA buffer immediately after mapping it
is safe. These findings align with SADA’s analysis of inconsistent
accesses [10]. Given the widespread use of the streaming DMA and
the evident misunderstanding of it, we conclude that misuse of the
APl is a systemic problem.

Case study: VMXNET3 driver. A striking example of DMA
mapping API misuse is found in the VMXNET3 driver, a high-
performance NIC driver from VMware. Figure 6 illustrates how a
single incorrect synchronization in this driver leads to hundreds of
inconsistent access bugs.

During boot time, the driver initializes its data structures and
maps the struct vmxnet3_adapter *adapter structure—which in-
cludes critical fields such as the transmit and receive queues—into
a streaming DMA region. Immediately after the mapping opera-
tion, on the same line of code, it stores the returned value into
the adapter->adapter_pa field, thereby committing an inconsistent
access. This example highlights developers’ apparent misunder-
standings of DMA synchronization rules—the bug occurs on the
same line as the mapping operation.

Subsequently, within the same function, the driver performs
52 additional inconsistent accesses to this object while initializing
its various fields. Proper mitigation would involve deferring the
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mapping operation until after initialization and adding synchro-
nization operations when the object transitions between kernel
and device access. However, such a mitigation is non-trivial, as it
requires defining synchronization points in a driver not originally
designed with these considerations. We are currently collaborating
with the developers to address these issue, and mitigation efforts
are underway.

8.4.2 Cross-subsystem synchronization. Similar to the cross-
subsystem dataflows observed in coherent DMA-based race condi-
tions, streaming DMA-based race conditions often involve cross-
subsystem dependencies—though in this case, the issue revolves
around synchronization rather than data propagation. In streaming
DMA, the mapping of the DMA region and any errant accesses
often occur in different files or subsystems.

Specifically, apart from those in the VMXNET3 and E100 drivers,
all errant accesses involve DMA regions that are mapped in a driver
(e.g., the ATA, E1000, and USB drivers), whereas the errant access
occurs in a completely different subsystem (e.g., the filesystem or
networking subsystems). This is perhaps unsurprising, as drivers
are typically responsible for mapping and synchronizing DMA
buffers, whereas higher layers of the stack simply access these
buffers. Consequently, if a driver fails to synchronize DMA correctly,
it affects accesses elsewhere in the kernel.

Because control transfers between these disparate parts of the
kernel occur via indirect branches, hardware interrupts, and similar
mechanisms, static analysis approaches can struggle to identify
such errant accesses. In particular, SADA [10] reports that it does
not analyze function pointer calls when building call graphs; conse-
quently, it cannot construct a complete call graph and would miss
the kind of cross-subsystem synchronization bugs we observe here.
In contrast, DMARACER’s dynamic approach effectively tracks DMA
state through these control transfers, thereby identifying these syn-
chronization issues.

8.5 Accuracy, Performance, & Coverage

8.5.1 Accuracy. We manually inspected results to estimate
DMARACER’s false positive (FP) rate. Unfortunately, full inspec-
tion is infeasible due to two challenges: First, some errant accesses
span multiple execution contexts (e.g., across syscalls or interrupts),
making complete tracing impractical. Second, due to a limited taint
space (256 colors), taint labels are assigned per instruction rather
than per calltrace. As a result, frequently used instructions (e.g., in
memcpy ()) may conflate independent execution paths.

Instead, we manually reviewed the 179 errant accesses and 56
vulnerable operations that we could definitively assess. We found
a 0% FP rate for errant accesses and a 9% FP rate for vulnerable
operations—both acceptably low. Errant accesses are precise by
design, as DMARACER tracks concrete memory accesses to real
DMA regions. False positives in vulnerable operations arise from
not modeling dataflow constraints.

For instance, in the ALSA audio driver, the kernel reads a
previously-initialized index via DMA and returns it to the PCM
subsystem. While this appears attacker-controllable, the PCM layer
bounds-checks the index and resets it to zero if it exceeds the buffer
size. Thus, although the data is tainted, the actual access is safe—
demonstrating a FP due to an unmodeled constraint. However,
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Table 5: Runtime overhead of DMARACER’s components.

Mean Geomean
Enabled Component

Overhead A Overhead A
Default Kernel (Baseline) 0% 0%
+ KDFSan (Taint Tracking) 194% +194% 232%  +232%
+ DMA Region Tracking 194% ~ 0% 232% ~ 0%
+ Load Monitoring 333%  +139% 488%  +257%
+ Store Monitoring 349% +16% 508% +20%
+ Compare Monitoring 400% +51% 584% +76%
+ Reporting (DMARacer) 401% +1% 588% +4%

Table 6: DMA mapping (or allocation) sites.

Maps Aff. Maps

Kernel Source Maps Covered  Covered
drivers/ata/ 13 2 2
drivers/net/ 589 48 23
drivers/usb/ 58 16 11
drivers/ (other dirs.) 932 1 -
sound/core/ 3 1 1
sound/ (other dirs.) 7 - -
/ (other dirs.) 29 - -
Total 1631 68 37

such cases are uncommon in practice: they require explicit checks
against known-safe values, which most DMA-handling code does
not perform. We further discuss false positives and false negatives
in Section 9.

8.5.2  Performance. We evaluated the performance of DMARACER
using the OS subset of LMBench [32] and measured a mean runtime
overhead of 402% across 20 iterations. Additionally, we performed
an ablation study using LMBench to understand the overhead in-
curred by each component. Table 5 shows the incremental and total
overhead of each component in LMBench. According to our mea-
surements, the taint tracking logic and load instruction monitoring
are the largest contributors to runtime overhead.

In the context of other widely used sanitizers, the overhead of
DMARACER is higher than AddressSanitizer [47] (73% to 100% [3]),
comparable to that of MemorySanitizer [51] (between 200% to
400% [4]) and faster than ThreadSanitizer (between 400% to
1400% [5]).

8.5.3 Coverage. The findings of this evaluation depend on the
DMA-specific code we covered in the kernel. The more DMA-related
code we exercise, the more DMA race conditions we can detect. In
this section, we analyze how much of the kernel’s DMA code we
reached with our evaluation workloads.

Table 6 presents: (i) the total number of DMA mapping sites in
the entire kernel; (i) the number of DMA mapping sites we covered;
and (iii) the number of DMA mapping sites we covered that are
affected by a race condition. Note that, unlike Table 3, which groups
DMA regions by mapping calltraces, we count mapping callsites
here to enable direct comparison with the total number of callsites
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in the kernel. Additionally, the total number of DMA mapping sites
are gathered from source code analysis, so they also include sites
that are potentially unreachable with the devices/drivers used in
our evaluation setup.

Our first observation is that approximately half of the covered
mapping sites (37 out of 68) are affected by a DMA race condi-
tion. This high proportion indicates that DMA race conditions are
prevalent among the code we exercised. However, this figure rep-
resents an upper bound: some mapping sites may be used to map
multiple DMA regions, and not all of these regions are necessarily
affected—only at least one is.

Our second observation is that we covered only a fraction of the
total mapping sites in the kernel (68 out of 1631). We attribute this
mainly to the relatively low number of devices that can be emulated
by QEMU (see also Section 9). Additionally, several of 147 devices
we emulated with QEMU use the same driver and therefore share
a mapping site. The reason for this is that they are either similar
devices (e.g., the 182557a and 182557b network adapters) or follow
a standard communication protocol (such as USB human interface
devices).

9 Discussion & Limitations

Completeness. DMARACER may incur false negatives for two
reasons. First, since KDFSAN does not track implicit data flows,
DMARACER may miss vulnerabilities that rely on them. We con-
sider this preferable to the alternative approach of approximating
implicit flows, which can be a source of over-tainting and thus false-
positives [24]. Second, our taint policies aimed at reducing false
positives (Section 6.3.3) may occasionally result in false negatives.
For instance, a vulnerability dependent on bit-level dataflows might
be missed due to our policy of clearing taint for AND instructions.

A possible alternative to removing taint is to use bit-precise taint
tracking. This removes the need to completely clear taint after bit-
wise operations, and reduces false-positives caused by overtainting
due to DMARACER’s byte-accurate tainting approach.

Soundness. DMARACER may also produce false positives where
DMA race conditions exist, but the code explicitly defends against
abuse. This is primarily because, like any DTA system, DMARACER
does not fully model all dataflow constraints. For example, if a
driver verifies each value it loads from DMA against an expected
value, DMARACER would not capture this constraint. However,
manual inspection reveals that such cases contribute to only a few
false positives. Addressing this inherent limitation would require
heavyweight constraint solving, which we intentionally avoided
to keep our prototype scalable and practical, encouraging its real-
world adoption.

Access to devices. Unlike static analyzers, DMARACER requires
that each driver can be executed and perform its normal communi-
cation with its respective device. This also means that the device
has to be emulated or physically connected to the system. The rise
of device emulation with tools such as QEMU alleviates this issue
to some degree. However, creating these drivers requires in-depth
understanding of how each device works, as the kernel-device com-
munication has to be recreated exactly in the emulation layer. It
is therefore possible that some devices can never be emulated by
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QEMU, and therefore DMARACER is unable to find DMA errors in
their respective drivers unless the physical device is available.

Comparison to Static Analysis. Compared to a static analysis
approaches such as SADA [10], DMARACER can detect DMA mis-
use across long execution traces. DMARACER can also analyze
traces that involve asynchronous completions, indirect function
calls or control flow based on hardware-triggers (see Sections 8.3.1
and 8.3.2).

10 Related Work

DMA errors. Previous work investigated the security implications
of communicating with peripheral devices using DMA. [31] and
[8] characterize possible DMA attack scenarios in the presence
of various IOMMU protections. This also includes the accidental
exposure of OS-internal data to the device, which is a superset of the
TOITOU bugs that are detected by DMARACER. SADA [10] proposes
using static analysis to search code for various DMA bugs, which
includes the TOCTOU bugs and other errant accesses detectable by
DMARACER. Other work is concerned with dynamic detection of
race conditions in the DMA memory controller itself [26, 42]. These
race conditions are a superset of the ones detectable by DMARACER.

Double fetches. Existing work has studied double fetches and
proposed detection approaches by e.g., using static analysis [28,
53, 54, 58]. Other approaches are based on dynamic analysis of
memory accesses. DECAF [46] is a dynamic detection tool using
modern CPU features and hardware side-channels to detect mem-
ory accesses that indicate double fetch bugs. Bochspwn [22] is a
dynamic detection tool that simulates the target OS and searches
the simulated memory accesses for indications of double fetches. It
should be noted that the attack vector studied by previous work on
double fetches is mainly concerned with the system call interface.
There are no DMA-based memory accesses in this scenario and
instead the memory is manipulated by a malicious thread running
in user space. However, the general issue of double fetching from
untrusted memory is the same in DMA-based drivers and system
call handlers. The mitigations proposed for double fetches in sys-
tem handlers [11, 15] are in theory also applicable to the DMA
interface in drivers. However, whether their overhead is practical
in the context of DMA-based device drivers is unclear.

Race conditions. The problem of detecting race conditions in
concurrent programs has a significant body of research covering
it. This includes approaches based on static [16, 39] and dynamic
analysis [19, 44, 48] which verify the proper use of synchronization
primitives within a program. However, there are no viable synchro-
nization primitives when interacting with coherent DMA, so the
applicability of these approaches to DMA data races is limited.

Kernel race detectors. Other previous work focuses on detecting
data races within OS kernels [6, 17] by observing values read from
memory locations via memory watchpoints. The concurrent read of
different values from the same address is here used as an indication
of a race condition. Because these tools do not rely on observing
synchronization primitives, they can detect when peripheral devices
and the kernel concurrently access memory via DMA. However, as
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the information is limited to a single point in time within a thread’s
execution, this information is not suitable to detect TOCTOU errors.

Kernel fuzzing. Sanitizers like DMARACER provide reliable bug
detection for fuzzers which drive the dynamic analysis. Previous
work has proposed a wide variety of solutions for performing ran-
dom testing on device driver code. This includes fuzzing approaches
specific to USB [20, 37, 59], mobile devices [40, 52] or peripherals
using DMA [33]. Other fuzzing methods improve the generating
coverage by more accurately simulating the real interface behavior
of peripheral devices [14, 18, 30, 61].

11 Conclusion

Modern OS kernels use direct memory access (DMA) to efficiently
communicate with untrusted peripheral devices. However, when
DMA is used incorrectly, it can lead to potentially dangerous race
conditions within the kernel. In this paper, we propose a dynamic
detection approach named DMARACER that detects race conditions
caused by the incorrect usage of DMA buffers in kernel drivers.
DMARACER tracks all DMA-based memory accesses and checks
them for various kinds of DMA-specific race conditions. DMARACER
can also estimate the security impact of the detected bugs. This is
done by taint tracking the data from problematic memory reads
and pinpointing vulnerable code that operates on this data. We
applied DMARACER to the drivers in the Linux kernel and found
817 problematic memory accesses and 344 vulnerable operations.
This suggests that DMA-based race conditions in driver code are a
systemic issue.

Disclosure. We disclosed our general findings, the three case stud-
ies and possible mitigations, to the Linux kernel on November 13,
2024. Our DMA pool API case study was considered valid, but our
proposed fix had a too large API change and performance impact to
be practical. The Driver-to-swiotlb case study was acknowledged
and has been addressed in recent kernel versions. The VMXNET3
case study received no response after reporting it to the developers.
No CVEs were assigned for the reported issues.
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Appendix
A LMBench performance data

Table 7 shows the per-benchmark LMBench results of DMARacer
compared to an unsanitized kernel.

B SADA Findings

There is no publicly available code or artifact of SADA, so we
could not run a direct comparison against DMARACER. Instead, we
provide an analysis of the issues reported by SADA. We found these
issues by searching the Linux kernel mailing list for reports and
patches that are referencing the paper’s authors. The list of found
issues is to our knowledge complete except for privately reported
and unpatched bugs.
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Table 7: Runtime overhead of DMARACER.

. DMARACER
Benchmark Bi}s;;lll:e

Time Overhead  Increase
Simple syscall 0.25us 0.84us 0.59us  +234%
Simple read 0.32ps 1.60us 1.27ps  +392%
Simple write 0.32us 1.31pus 0.99us +315%
Simple stat 0.62us 5.58us 4.96ps  +797%
Simple fstat 0.37ps 1.67us 1.30us  +353%
Simple open/close 1.21pus 10.75us 9.54ps  +788%
Select on 10 fd’s 0.41pus 1.76us 1.35us +331%
Select on 100 fd’s 1.36us 13.81pus 12.45pus  +917%
Select on 250 fd’s 2.90us 33.53us 30.63us  +1055%
Select on 500 fd’s 5.53us 66.52p5 61.00us  +1104%
Select on 10 tcp fd’s 0.49us 2.41pus 1.92us +393%
Select on 100 tcp fd’s 3.72ps 40.58s 36.85us  +990%
Select on 250 tcp fd’s 9.00us 104.91pus 95.91us  +1066%
Select on 500 tcp fd’s 18.07us  212.22us  194.15ps  +1074%
Signal handler installation 0.31us 1.02us 0.71pus +227%
Signal handler overhead 0.76ps 4.95us 4.19ps  +548%
Protection fault 0.47pus 0.92us 0.45us +96%
Pipe latency 2.61ps 24.31pus 21.70us  +831%
UNIX sock stream latency 3.17us 29.94us 26.77us +843%
Process fork+exit 69.86us  354.08us  284.22us +407%
Process fork+execve 215.01us  961.15us  746.14us +347%

Process fork+/bin/sh -c 465.10us  1919.48us  1454.38us  +313%

UDP latency 4.05us 52.10us 48.05us  +1187%
TCP latency 5.40us 87.20u1s 81.80us  +1514%
TCP/IP connection cost 21.18us 238.17us 216.99us  +1024%

Table 8 shows the 20 patches/reports we found. Some reports
describe multiple issues affecting several DMA memory regions.
We indicated if this is the case using the third table column. In total,
24 unique bugs were reported that involve a problematic DMA
memory access.

The reports do not contain the actual trace that SADA analyzed.
We therefore approximated the detection logic using the bug expla-
nation in each report. Specifically, we tried to determine how often
SADA finds issues involving long and complex traces.

Column 4 shows whether the vulnerable DMA operations that
needed to be analyzed occurred in the same function. For a bad
streaming DMA mapping, the involved code piece are the to-device
mapping operation and the subsequent memory access. For a
TOCTOU error, the vulnerable operations are the check and use.
Unchecked DMA access only involve one read operation, so we
omitted them in this column. In summary, all found issues had
their vulnerable operations contained within a single function. If
we consider all DMA operations including the DMA allocation call
itself, then 12 of the 20 reports (16 of 24 bugs) have traces that only
spanned a single function (Column 5).

The last column indicates whether a patch has been merged or
the respective bug was fixed by a maintainer. In total, 10 reports
containing 14 bugs were fixed.
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Table 8: DMA errors detected by SADA.
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Number of Vulnerable All
Subject Line on Mailing List Issue Affected Operatlons O.p erations Patch
Class Allocati in Same in Same Merged?
ocations . .
Function? Function?
rtlwifi: rtl8723ae: avoid accessing the data  Bad Streaming 1 v v v
mapped to streaming DMA DMA Mapping
rtlwifi: rtl8192de: avoid accessing the data  Bad Streaming 1 v v 4
mapped to streaming DMA DMA Mapping
rtlwifi: rtl8192ce: avoid accessing the data  Bad Streaming 1 4 v 4
mapped to streaming DMA DMA Mapping
rtlwifi: rtl8188ee: avoid accessing the data  Bad Streaming 1 v v v
mapped to streaming DMA DMA Mapping
p54: avoid accessing the data mapped to stream-  Bad Streaming 1 v v v
ing DMA DMA Mapping
atm: 1dt77252: avoid accessing the data mapped ~ Bad Streaming 1 v v v
to streaming DMA DMA Mapping
atm: eni: avoid accessing the data mapped to Bad Streaming 1 v v v
streaming DMA DMA Mapping
net: vmxnet3: avoid accessing the data mapped  Bad Streaming 1 v v X
to streaming DMA DMA Mapping
crypto: hisilicon: accessing the data mapped to ~ Bad Streaming 4 4 v v
streaming DMA DMA Mapping
crypto: qat: accessing the data mapped to Bad Streaming 2 v v X
streaming DMA DMA Mapping
net: rocker: accessing the data mapped to Bad Streaming 1 v v X
streaming DMA DMA Mapping
scsi: wd719x: accessing the data mapped to Bad Streaming 1 v v X
streaming DMA DMA Mapping
media: venus: fix possible buffer overlow casued ~ Time-of-Check 1 v X X
bad DMA value in venus_sfr_print() to Time-of-Use
media: pci: ttpei: av7110: avoid compiler opti-  Time-of-Check 1 v X v
mization of reading data[0] in debiirq() to Time-of-Use
scsi: esas2r: fix possible buffer overflow caused ~ Time-of-Check 1 v X X
by bad DMA value in esas2r_process_fs_ioctl() to Time-of-Use
net: sfc: fix possible buffer overflow caused by ~ Time-of-Check 1 v X X
bad DMA value in efx_siena_sriov_vfdi() to Time-of-Use
usb: cdns3: fix possible buffer overflow caused No DMA 1 - X X
by bad DMA value Value Check
input: tablet: aiptek: fix possible buffer overflow No DMA 1 - X X
caused by bad DMA value in aiptek_irq() Value Check
usb: storage: alauda: fix possible buffer No DMA 1 - X X
overflow casued by bad DMA value in Value Check
alauda_read_map()
net: vmxnet3: fix possible buffer overflow No DMA 1 — X v
caused by bad DMA value in vmxnet3_get_rss() Value Check
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