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ABSTRACT

Despite decades of research, buffer overflows still rank among the

most dangerous vulnerabilities in unsafe languages such as C and

C++. Compared to other memory corruption vulnerabilities, buffer

overflows are both common and typically easy to exploit. Yet, they

have proven so challenging to detect in real-world programs that

existing solutions either yield very poor performance, or introduce

incompatibilities with the C/C++ language standard.

We present Delta Pointers, a new solution for buffer overflow

detection based on efficient pointer tagging. By carefully altering

the pointer representation, without violating language specifica-

tions, Delta Pointers use existing hardware features to detect both

contiguous and non-contiguous overflows on dereferences, without

a single check incurring extra branch or memory access operations.

By focusing on buffer overflows rather than other vulnerabilities

(e.g., underflows), Delta Pointers offer a unique checkless design

to provide high performance while still maintaining compatibility.

We show that Delta Pointers are effective in detecting arbitrary

buffer overflows and, at 35% overhead on SPEC, offer much better

performance than competing solutions.
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1 INTRODUCTION

Almost 30 years after the Morris Worm famously used a buffer over-

flow bug in fingerd, such vulnerabilities are still rife in modern

C/C++ binaries. Ever since, researchers have searched for ways to

automatically detect and prevent the triggering of buffer overflows.

Unfortunately, existing solutions suffer from either unacceptable

overheads or poor compatibility. In this paper, we add an interest-

ing new point in the design space to detect both contiguous and

non-contiguous buffer overflows, with less overhead than compa-

rable solutions (35% performance overhead on SPEC CPU2006 and

negligible memory overhead).

Aiming for a practical defense against the most prevalent attacks,

we limit our focus to buffer overflow vulnerabilities whereby at-

tackers can overwrite memory after the end of the buffer, rather

than underflow vulnerabilities which are far less common [28]1.

On the other hand, since non-contiguous overflows are now more

common than contiguous overflows in real-world exploits [29],

simply surrounding all buffers with so-called red zones (as used by

AddressSanitizer [37] among others) no longer suffices, since doing

so prevents only contiguous ones. Instead, we strive for a solution

that prevents all types of overflow and works łout of the boxž on

programs written in standard C code, simply by recompiling the

code with a specific compiler flag.

Bounds checking is one of the oldest and most common defenses

against buffer overflows. By recording the bounds of an object with

each pointer, defenses can insert run-time checks to verify that

the pointer still falls in the valid range upon dereference. Sadly,

bounds checking is still costly due to metadata management, but

especially because of the checks. Reading the bounds data from

memory, verifying the validity of the pointer, and optionally branch-

ing if the pointer is temporarily out of bounds or missing metadata

due to uninstrumented code all incur significant overhead. As a

consequence, researchers during the past three decades have fo-

cused on improving both the performance of such systems and their

compatibility with the standard. Although the solutions have sig-

nificantly improved over time, state-of-the-art systems still suffer

from compatibility issues and non-practical overheads. For example,

the fastest contiguous and non-contiguous buffer overflow detector

today, Low-Fat Pointers [12], still incurs over 50% performance

overhead (SPEC CPU2006) and yet cannot automatically support

arbitrary off-by-one pointers allowed by the C/C++ standard and

required by many real-world programs [7].

To address these issues, we propose Delta Pointers, a new ap-

proach to detect buffer overflows. The Delta Pointers design is dif-

ferent from all existing approaches in that it implicitly invalidates

1Anecdotally, although labels in the CVE database are not very precise, buffer overflows
outnumber underflows by almost two orders of magnitude in such database: https:
//cve.mitre.org/

https://doi.org/10.1145/3190508.3190553
https://doi.org/10.1145/3190508.3190553
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pointers upon going out of bounds (providing good performance)

and revalidates them when going back in-bounds (providing good

compatibility). Specifically, we show that our solution is signifi-

cantly faster than existing solutions while providing compatibility

with the C standard (and we discuss remaining compatibility issues

in detail). We ensure that any dereference of an invalid pointer

leads to an automatic crash enforced by the hardwareÐsimilar to

how a dereference of a kernel pointer in user space leads to a crash.

As a result, Delta Pointers eliminate any need for additional memory

accesses or branches, pushing the overflow check to the hardware

and making pointer dereferences very efficient.

Intuitively, we utilize pointer tagging and ensure that any arith-

metic on the pointer that makes it point beyond the buffer’s upper

bound, will result in setting the most significant bit in the 64 bit

address, while any arithmetic that makes it point below the up-

per bound, will unset this bit. Prior to a dereference, we mask out

all other bits of the tag. If the most significant bit is not set, the

pointer is valid, but a dereference of a pointer where this bit is

set will immediately crash the application because such addresses

are non-canonical, triggering a fault in the processor’s memory

management unit.

Our approach makes minimal assumptions and is portable across

64-bit architectures. It works with existing hardware and most

C/C++ programs out of the box (and we elaborate on possible is-

sues in later sections). While pointer tagging itself provides good

compatibility, we outline some challenges faced by practical im-

plementations which have not been detailed by previous pointer

tagging-based solutions [25, 26].

To summarize, our contributions are:

• A novel, fully automated, design to detect buffer overflows

based on pointer tags that automatically invalidates out-of-

bounds pointers.

• An analysis of the practicality of pointer tagging for arbitrary

C/C++ applications.

• An LLVM-based prototype of our design, evaluated with

respect to effectiveness and performance. Our results show

that Delta Pointers can detect the dominant class of spatial

memory error vulnerabilities with competitive compatibil-

ity and overheads (35% slowdown on SPEC and negligible

memory overhead).

2 BACKGROUND

In C and C++, a programmer can allocate a buffer object, which is

a sequence of bytes somewhere in the address space. For instance,

variables on the stack are implicitly allocated on function entry and

a programmer can use malloc or new to explicitly allocate a buffer

object on the heap. These objects are referenced through pointers,

which point to the memory location of an object, or a location

therein. The C standard [21] specifies that pointer arithmetic only

produces defined behavior if the resulting pointer points inside

the same object or at the element directly past its end. In practice,

compilers produce invalid out-of-bounds pointers without warning.

Without any security measures, such pointers can be used to access

any object in the address space, regardless of which buffer the

original pointer pointed to.

For example, a call such as ptr = malloc(16) allocates a new

object on the heap and returns a pointer to its beginning. An offset

of exactly 16 would yield a pointer to the end of the object, which

is valid but results in undefined behavior upon dereference. Any

dereference of an index smaller than 0 (e.g., ptr[-10]) is an un-

derflow, and any dereference of index 16 or larger is an overflow.

It is common for programs to (benignly) create pointers pointing

outside the referent object [7]. However, if malicious users can lure

the program into dereferencing such pointers as a result of a buffer

overflow vulnerability, they may be able to leak or corrupt sensitive

information, for instance to divert control flow.

Overflow detection. To detect buffer overflows during the execu-

tion, existing spatial memory safety defenses insert run-time checks

in programs. Such instrumentation consists of one or more checks,

in the form of branches, on either pointer dereferences [11, 12, 18,

26, 31, 34, 37] or pointer arithmetic (e.g., ptr2 = &ptr[offset]) [1,

23, 38]. Moreover, the metadata describing object bounds must be

recorded, propagated and retrieved numerous times, often from

memory [18, 23, 26, 31, 34, 37, 38]. Given the many extra branches

and memory accesses required, the run-time checks can introduce

significant runtime overhead.

As a result, the reduction of the number of branches and (espe-

cially) memory accesses has been the motivation for most prior

research in spatial memory safety. Early defenses stored all their

metadata in memory, for instance recording the base and size for

every object in the program [23]. More recent defenses limit such

in-memory metadata to only pointers that reside in memory [31]

or to only the lower bounds of objects [26]. Alternative designs

avoid storing metadata in memory altogether by manipulating the

memory layout to implicitly encode the size and base of the object

in the address of its memory location [1, 11, 12].

The need for (expensive) branching has also been a target of opti-

mizations. Traditional spatial safety defenses require two branches:

one for the lower bound and one for the upper bound of an ob-

ject [31]. More recent defenses have suggested reducing pointer

validation to a single branch by enforcing predictable (but wasteful)

power-of-two alignment on allocated objects [1]. Besides pointer

validation, existing defenses also require additional branches for

compatibility with common real-world scenarios, such as branch-

ing on temporarily out-of-bounds pointers [1, 6, 38] and branching

on uninstrumented pointers with NULL metadata (e.g., in the case

of uninstrumented shared libraries) [26, 31].

In this paper, we focus on the most common class of spatial safety

errors (buffer overflows) and investigate whether minimizing the

number of extra branches and memory accesses (and the overhead)

to detect overflows is possible. We start our analysis with a simple

adaptation of state-of-the-art solutions. Specifically, we developed

an adaptation of SGXBounds [26] that only stores the upper bound

of an object in the high bits of its base pointer and uses a (branching)

check on each memory access to compare the two parts of the

pointer and detect (only) overflows. This design eliminates extra

memory accesses, but still requires branching (for both pointer

validation and support of uninstrumented modules) and incurs

48% (SPEC) overhead in our experiments. With Delta Pointers, we

present a new design that can eliminate extra branches and memory

accesses altogether, while retaining the same security guarantees
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Figure 1: The encoding of Delta Pointers (tagged pointers). It

points to an object on the heap of 24 bytes. The delta tag en-

codes the distance from the current pointer to the end of the

object. The value of the delta tag is calculated as −distance

(here −24, in two’s complement). The most significant bit is

only set if the pointer is out-of-bounds.

and incurring only 35% (SPEC) overhead. In other words, removing

the branches reduces the overhead by roughly 25%.

3 THREAT MODEL

We consider an attacker able to exploit a buffer overflow by feeding

malicious inputs to a given vulnerable user program. We assume

the attacker can repeatedly interact with the program, and the pro-

gram is automatically restarted in case of crashes caused by failed

exploitation attempts. Our goal is to detect user-space exploitation

of arbitrary buffer overflows when memory is either written to of

read from, protecting both integrity and confidentiality.

4 DELTA POINTERS

Delta Pointers eliminate the need for branching checks by encoding

the out-of-bounds state of a pointer in the pointer itself. Rather than

relying on expensive instrumentation, we use hardware memory

protection mechanisms to implicitly invalidate pointers that go out-

of-bounds, and revalidate themwhen they go back in-bounds. Upon

dereference, out-of-bounds pointers automatically trigger a fault.

This is possible by encoding, in every pointer, a tag that describes

the distance to the end of the memory object. This scheme aims

to translate the buffer overflow detection problem into an arith-

metic overflow detection problem, which can be dealt with more

efficiently thanks to (i) detection offloaded to the hardware, (ii) ef-

ficient load/store and pointer arithmetic instrumentation with no

branching or memory accessing instructions, (iii) no extra branches

required to support common compatibility features, such as tem-

porarily out-of-bounds pointers and uninstrumented pointers.

The absence of memory accessing instructions and out-of-band

in-memory metadata provides two additional benefits other than

good performance. First, the lack of in-memory metadata ensures

a compact memory footprint (Delta Pointers introduce negligi-

ble memory overhead). Second, using only in-pointer metadata

eliminates any need for synchronization across threads for meta-

data management, ensuring scalability and thread-safety in multi-

threaded applications.

Pointer encoding. To enable our design, we make use of pointer

tagging both to implement implicit out-of-bounds pointer invalida-

tion and to ease propagation of metadata inside and across contexts.

Specifically, each pointer is tagged with the current distance from

the pointer to the end of the object, called the delta tag, and an

02 0c 40 100 7f ff ff e8

02 0c 40 270 7f ff ff ff

+23 +23

char p[24];

p += 23;

02 0c 40 281 00 00 00 00

+1 +1

ptr++;

02 0c 40 270 7f ff ff ff

-1 -1

ptr--;

carry

carry

Figure 2: Examples of how the metadata inside a pointer is

updated during pointer arithmetic: every operation on the

address (lower bits) is also performed on the tag (higher bits).

The most significant bit, indicating whether the pointer is

out-of-bounds, is implicitly set and unset during these oper-

ations.

overflow bit. As the distance from the current pointer to the end

of the object changes during pointer arithmetic, the delta tag is

kept consistently up to date. The overflow bit indicates whether the

pointer is out-of-bounds, and is implicitly set during delta tag up-

dates. To facilitate the implicit management of the overflow bit, the

delta tag is encoded as the negated remaining distance, as we will

explain later. Figure 1 illustrates our encoding scheme: the upper-

most bit is the overflow bit, followed by the delta tag. This encoding

allows for 32-bit tags, limiting addresses to 32 bits similar to prior

tag-based schemes [26]. However, in contrast to prior schemes, in

our design this division of bits can be changed arbitrarily depending

on the application; the address space need not be limited to 32 bits.

Instead, it allows a trade-off between the maximum object size and

the address space size: as one increases, the other decreases, both

by a factor of two.

The key insight exploited by our encoding scheme is that, by

updating the delta tag alongside the pointer itself (which can be

done efficiently), the state of the overflow bit is managed implicitly.

Figure 2 shows the state of the bits during several operations on the

pointer. The allocation on the first line creates a new pointer and

initializes the delta tag to −object_size . When adding an offset to

the pointer, the addition is replicated on the delta tag, as shown on

the second line. On the third line we do the same, this time causing

the pointer to go out-of-bounds: the accumulated offset added to

the delta tag is equal to the encoded object size. The pointer now

points to the end of the object and the distance towards the end is

0. The carry bit of the addition on the delta tag sets the overflow

bit implicitly. The fourth line shows that the same mechanism can

bring a pointer back in bounds. When we subtract 1 from the entire

upper part of the pointer (the delta tag and the overflow bit), it

returns to the same state as in the second line.

Whenever the program dereferences a pointer, we first apply a

bitwise AND operation to mask out the delta tag and create the

regular untagged pointer the CPU expects. By maintaining the

overflown state of a pointer in its upper bit we eliminate the need

for an explicit (branching) check when dereferencing the pointer.

Instead, we leave this bit intact by not masking it out with the

delta tag as illustrated in Figure 3. Through this approach, we

delegate the check to the memory management unit (MMU) of

the processor: a pointer can only be used if it is in a canonical
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02 0c 40 100 7f ff ff e8

ff ff ff ff1 00 00 00 00

Pointer:

Mask:

02 0c 40 280 00 00 00 00

&

Figure 3: Before using the pointer to accessmemory,wehave

tomask out themetadata to create a valid pointer. By using a

bitmask with the most significant bit, we keep the overflow

bit of the pointer intact. If the pointer was overflown, and

thus had its overflow bit set, this bit will still be set in the

resulting pointer. This is an invalid (non-canonical) pointer,

causing a run-time error.

form, where the 16 most significant bits are sign-extended [20].

For pointers in user space, this equates to 16 zero bits, since the

upper bit of an 48-bit pointer is reserved for kernel space in most

operating systems. A set overflow bit therefore makes the pointer

uncanonical, causing the MMU to generate a fault. The underlying

assumption is that bitwise masking operations, combined with

arithmetic operations on pointer additions, are highly optimized

on a microarchitectural level, and are therefore faster than explicit

checks with branches. Even though on modern architectures the

branch predictor is heavily optimized, branches still incur overhead.

Listing 1 shows the translation of these two concepts into code

instrumentation. 1○ creates the delta tag in the correct format and

places it in the upper bits of the pointer. At 2○ we replicate the

addition that happened in the lower bits to the upper bits. Finally, 3○

performs masking, leaving the pointer and the overflow bit intact.

Because the delta tag is part of the pointer itself, it is automatically

propagated across contexts, and will not result in any memory

accesses. Moreover, 2○ and the pointer arithmetic can be combined

to a single operation: nptr = ptr + (user_input + (user_input <<

32)), even down in the output assembly.

NULL pointer protection. The NULL pointer constitutes a special

case of a pointer that is not derived from any object, but still pro-

vides an (often neglected) attack surface for spatial errors. Exploits

for such bugs typically add an attacker-controlled offset with the

value of the target location to grant the attacker arbitrary memory

read or write capabilities [24]. For Delta Pointers, we set a delta

of 1 on all NULL pointers, thus replacing them with a value of

0x7fffffff00000000. This will cause any dereference of a pointer

derived from NULL to trigger a fault and hence detection.

Thread safety. Delta Pointers are inherently safe with respect to

racy pointers. Added instrumentation on memory operations and

pointer arithmetic consists of arithmetic operations that operate on

registers, and no additional memory accesses are introduced. Modi-

fied pointers are written to memory in a single atomic operation (on

most architectures), causing the pointer tag to always be consistent

with its corresponding address. An existing race condition may be

influenced by the introduction of additional operations on either

end, but this is an inherent problem of racy pointers, not a race

condition introduced by Delta Pointers.

void *foo(int user_input) {

char *ptr = malloc (16);

delta_tag = (1 << 31) - 16; 1○

ptr |= delta_tag << 32;

char *nptr = &ptr[user_input ];

nptr += (uintptr_t)user_input << 32; 2○

tmp = nptr & 0x80000000ffffffff; 3○

*tmp = 'a';

}

Listing 1: C program instrumented with Delta Pointers. In-

strumentation is shown as pseudocode on the highlighted

lines. 1○ sets the delta tag, 2○ updates the delta tag alongside

the pointer, and 3○ strips out the metadata (but not the over-

flow bit) before a memory access.

Address space reduction. Since pointer tagging-based defenses

use part of a pointer to encode metadata, they reduce the amount of

bits left for addresses. Because this limits the addressable virtual ad-

dress space, ASLR entropy is reduced as well. For instance, Low-Fat

pointers [11] reserves a large virtual memory region for each object

size class, and SGXBounds [26] encodes two 32-bit addresses side

by side in each pointer, thus not fully utilizing the 36 bits of entropy

offered by SGX. Delta Pointers similarly limit addresses to 32 bits

by default (but configurable on a per-application basis). Although

ASLR has a wider scope than these schemes (e.g., use-after-free

bugs), it can only provide probabilistic safety at best, whereas Delta

Pointers provide deterministic (spatial) memory safety guarantees

on the upper bound. Because of its probabilistic nature, ASLR has

proven to be easily circumventable by memory massaging [16, 33]

or side channels [5, 15, 17] whereas this is not possible for deter-

ministic defenses such as Delta Pointers. Moreover, the impact of

address space reduction is limited in certain application domains.

As an example, similarly to SGXBounds, Delta Pointers are well

suited to run arbitrary programs in SGX enclaves, which only sup-

port 36-bit addresses currently. By encoding metadata in pointers

rather than in memory, the only memory overhead of Delta Point-

ers is that of added code (which is negligible), even amounting to

an advantage over, for example, shadow memory-based schemes in

SGX where virtual memory is limited.

Our Delta Pointers prototype uses 32 bits to address a 4 GB

address space. The remaining 31-bit delta tag allows for a maxi-

mum allocation size of 2 GB. This split is configurable and can be

tweaked depending on the application: a program that allocates

a lot of smaller objects can have a bigger address space. For in-

stance, without any address space reduction, an application would

have 47 bits of address space and 16-bit delta tags, allowing for

only 64 KB objects. For Delta Pointers we did all evaluation with

32-bit addresses and 31-bit delta tags because our experimentation

shows this achieves a good compatibility with a large set of complex

real-world programs under realistic workloads.
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5 POINTER TAGGING

Delta Pointers are an instance of pointer tagging to efficiently store

metadata per pointer, yielding a design that has low overhead for

lookups, negligible memory overhead and automatically works

with concurrent programs. These benefits do not come for free:

modifying the representation of pointer introduces various chal-

lenges regarding compatibility and performance. These challenges

are not limited to Delta Pointers, but are generic in nature and must

be dealt with by any defense that encodes metadata in pointers.

In this section, we discuss the challenges that need to be ad-

dressed by pointer tagging based approaches, with the aim of in-

spiring and assisting future research based on this increasingly

popular technique. We also present the solutions to the listed prob-

lems which are implemented in Delta Pointers, showing that high

compatibility with complex real-world applications is possible in

the presence of tagged pointers. We discuss four challenges with

pointer tagging. First, adding arbitrary metadata in pointers re-

quires careful implementation of pointer operations to conform

to the C standard and implicit assumptions of C programs on its

implementation. Second, compilers make certain transformations

that make pointer identification harder, in particular during op-

timizations. Third, defenses must deal with pointers that do not

have metadata due to optimizations or uninstrumented libraries.

Finally, the speed of decoding tagged pointers is influenced by

micro-architectural properties.

5.1 C pointer operations

The presence of metadata tags in pointers means that, without addi-

tional measures, the integer comparisons and arithmetic operations

may no longer accurately implement the semantics defined by the

C standard [21]. Moreover, while the C standard generally attempts

to leave data representation to be defined by the implementation, in

practice many C programs make assumptions that go much further

than the guarantees provided by the standard [7].

Additional instrumentation, in particular targeted removal of

pointer tags, is required to achieve compatibility of arbitrary pointer

tags with existing programs. Without this instrumentation, a pro-

gram would make different computations or control flow deci-

sions based on tagged pointers rather than regular ones. This can

cause the program to crash or produce incorrect results. The prob-

lem only arises, however, when tags encode per-pointer metadata.

This means that two pointers pointing to different locations in the

same memory object may have different tags, causing operation

semantics to change. Solutions using per-object metadata, such as

SGXBounds [26], do not experience this problem, since they do not

modify pointer tags after object allocation.

Pointer comparison. In the C standard, the outcome of compar-

ison operators on pointers is only defined if the pointers either

point to the same object or are part of the same aggregate object.

Although other cases are explicitly left undefined, the standard does

state in general that łthe result depends on the relative locations in

the address space of the objects pointed tož. In practice, however,

programs often assume that pointers are implemented as simple

integers and expect a total order on them, for instance for sorting.

When tagging pointers, this assumption no longer typically

holds, especially for dynamic tags. Tags should thus be masked

away before comparing pointers to avoid an incorrect result. For

Delta Pointers we mask away the tag including the overflow bit.

This is safe, since the masked pointers are only used for comparison

and never dereferenced, so no buffer overflow checks are needed.

Pointer subtraction. The C standard allows subtraction of point-

ers to the same array object. These are used to compute distances

between objects in the address space. While normally implemented

as an integer subtraction instruction, this may yield incorrect re-

sults in the presence of different pointer tags. The tags of subtracted

pointers must therefore be masked away. Some programs even sub-

tract pointers to different objects, thus violating the standard and

making assumptions on the memory layout. However, these ap-

plications are still supported when tags are removed. Note that

arithmetic optimizations by compilers may rewrite complex ex-

pressions involving pointers in such a way that these cases are

introduced as well, as also discussed below. All these scenarios are

supported by our Delta Pointers implementation.

Pointer alignment. Non-conforming programs often use bitwise

operations on pointers to detect or enforce alignment properties.

Such alignment works correctly for Delta Pointers without any

additional instrumentation, since it can only round pointers down,

increasing the distance to the end of the object. This will not lead to

false positives since applications themselves must assume that the

pointer remained unchanged and thus did not increase the distance

to the end of the object (which is what Delta Pointers enforce).

5.2 Compiler support

Pointer tagging requires type information to be able to distinguish

pointers, which, in turn, requires the defense to be implemented at

the compiler level. Code instrumentation can be done at different

compilation stages, in particular before and after optimizations.

Instrumenting before optimizations is easier because then the code

has not been transformed to patterns that hinder static analysis.

Instrumenting all pointer values, however, severely handicaps opti-

mizations: the instrumentation casts pointers to integers in order

to add, modify, or remove the tag, breaking alias analysis. Hence,

in order to attain high performance, pointer tagging must be ap-

plied after optimizations. This raises several issues that need to be

addressed by pointer tagging implementations. When left unad-

dressed, these issues can either cause the instrumentation passes

to fail due to unexpected inputs, or have them produce inaccurate

instrumentation code that corrupts the program state at runtime.

To the best of our knowledge, our Delta Pointers implementation

is the first to provide wide compatibility with complex source code

(e.g., SPEC CPU2006) due to the solutions described below.

Pointers as integers. Modern compilers such as LLVM implement

optimizations that produce arbitrary typecasts from pointers to

integer types. Hence, static analysis is needed to determine which

values are pointers in optimized IR. For dereferencing operations,

the problem does not occur because the pointer value must al-

ways be cast to a pointer type prior to dereference. Comparison,

however, is defined on both integers and pointers, and subtraction

only on integers. Therefore, a pointer value that has an integer

type need not be typecast prior to these operations, making it un-

clear whether masking is needed. This problem can be solved using
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use-def chains [30] to trace back the origin of the pointer to its

definition (an allocation or function parameter) or a load frommem-

ory. Definitions contain the original variable type, which can be

used directly to determine if the value is a pointer. Pointer loads

from memory, however, can be transformed arbitrarily to integer

loads by optimizations. If the loaded pointer is never dereferenced,

the use-def chain does not provide information on its actual type,

and the value is not masked, producing incorrect behaviour. The

following example illustrates such a case:

int **a = ...; // uint64_t *a;

int **b = ...; // uint64_t *b;

diff = *b - *a; // diff = *b - *a;

The pointers pointed to by a and b are never dereferenced, their

values are only subtracted and the result is stored in memory. This

allows the compiler to remove the (implicit) type casts of *a and

*b to integers, effectively producing the code on the right, which

alters the type information of the values in memory.

This problem can be partially solved in two ways. First, metadata

describing the types can be added to values being loaded/stored

before running optimizations. Certain optimizations, such as type-

based alias analysis (TBAA) [10] already add such information,

which can be reused. However, such metadata can potentially be

removed by subsequent optimizations, and might thus not be com-

plete. The second solution is to trace back the pointee type through

the use-def chain of the address that is loaded, using nested type

inspection to find a pointer type. This on itself works reasonably

well since the folding of memory loads and type casts is often very

localized, requiring only limited backtracing of the use-def chain to

find the original pointer type. Our Delta Pointers implementation

uses a combination of these solutions, which our experiments show

is complete for all the tested programs.

Unions and pointer expressions. A union value of a pointer and

an integer may produce a typecast from a pointer to integer. The

operation can either be operating on the integer value or it can be

operating on the pointer value but preceded by a typecast because

the operation happens to only be defined on integers. For example,

bitwise operations are only defined on integers but are also used for

pointer alignment. Furthermore, compilers transform expressions

involving pointers in ways that sometimes produce unexpected

pointer operations. For example, consider (b − a) × 4 where a and b

are pointers. This should be caught as a regular pointer subtraction

as per Section 5.1, but the compiler may transform this to b × 4 +

a × −4, thus introducing pointer multiplication and then addition.

We observed similar cases in SPEC CPU2006 involving division,

remainder, bit shifts, bitwise OR, and bitwise XOR, all on pointer

operands. The case above is easily solved by masking the pointer

operands of multiplications, but the tag must be preserved when

the result is a pointer that may later be dereferenced in order to

do a bound check. In other words, the decision whether to mask

the pointer operand of an arithmetic expression thus depends on

whether the resulting expression is indeed used as a pointer (i.e., it

is dereferenced). This is determined by traversing its def-use chain

until such a use is encountered.

Although the combination of the above solutions theoretically

does not cover all code patterns expressible in compiler IR, it works

very well in practice. For instance, our Delta Pointers implementa-

tion correctly identifies all pointers in the C/C++ SPEC CPU2006

benchmark suite after full-fledged optimizations. Our design sig-

nificantly improves compatibility with respect to state-of-the-art

pointer tagging implementations such as SGXBounds [26], which

forcibly omits 6 out of 19 SPEC benchmarks due to incorrect pointer

identification.

5.3 Coverage considerations

Many pointer tagging applications assume that each dereferenced

pointer is tagged with metadata. For example, SGXBounds stores a

pointer in the tag that is dereferenced to retrieve further metadata.

When a pointer misses metadata, a NULL pointer is dereferenced

and the program crashes. However, reaching complete coverage

is not always possible or even desired. For instance, optimizations

by the defense may omit instrumentation on pointers that only

have safe uses. When these pointers are used at the same site as

unsafe pointers, the instrumentation at that site cannot assume the

presence of metadata in the pointer. Furthermore, uninstrumented

libraries may generate untagged pointers, and cannot handle tagged

pointers passed in library call parameters.

A robust pointer tagging-based defense should therefore be de-

signed to deal with missing metadata. Unfortunately, most existing

defenses require extra branches to deal with missing metadata. Al-

ternatively, and even less desirably, such defenses must instrument

all libraries and disable aggressive optimizations. In contrast, Delta

Pointers are robust by design against missing metadata because the

zeroed metadata is not dereferenced as a pointer. It effectively treats

missing metadata as a very large distance to the end of the object,

larger than the object can possibly be, therefore simply disabling

the bound check in a situation where metadata is missing (which is

the expected behavior).

Uninstrumented libraries are, in fact, part of a general prob-

lem with pointer tagging: there is always a protection boundary

at which marshalling must occur between tagged and untagged

pointers. Even if all libraries are statically linked and instrumented,

the boundary is only moved to system calls that cannot operate on

tagged pointers (unless even the OS kernel is rewritten). Ideally,

pointers handled by the protected application are always tagged

and pointers outside the boundary are not. In other words, the

storage of pointers can not be shared between protected and unpro-

tected code. A complex example is std::list::push_back in an

uninstrumented libstdc++. The implementation of this function

is defined in a header file and therefore resides in the protected

executable. It calls a library function that takes a generic node type

for doubly linked lists as a parameter. This data structure is created

in push_back, which is instrumented because it resides in the pro-

tected executable, and thus tags the node’s next and prev pointers

with metadata. Code inside libstdc++ does not mask the pointers

before dereferencing and crashes if these pointers are tagged.

Defining a protection boundary requires a set of rules that specify

when to add or remove tags to pointers. Rules for removing tags are

mostly universal, but rules for adding tags depend on the specific

defense being implemented.
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5.4 Performance considerations

The minimum instrumentation required to implement pointer tag-

ging consists of tagging and masking. These are bitwise operations

that are fast in modern, pipelined processors. However, they may

still have an effect on the pipeline and increase register pressure

when the masking constant does not fit in an immediate operand

(as is the case for 64-bit masks on x86-64). For this reason, recent

hardware designs are shipping with built-in support forMMU-based

masking: AArch64 supports virtual address tagging [2] which intro-

duces a top byte ignore option for the hardware to ignore the upper

16 pointer bits during dereference, specifically for the purpose of

encoding metadata. Oracle’s SPARC-M7 architecture [35] can even

ignore up to 32 bits of metadata. This completely eliminates the

need for software-based masking and paves the way for highly

efficient encoding of per-pointer metadata. In other cases, efficient

masking can be done with fewer restrictions on the bitmask width

than on x86-64. For instance, ARM64’s AND instructions support

efficient variable-length encoding of certain 64-bit immediates, in-

cluding the bitmask required by Delta Pointers.

Another performance consideration of pointer tagging solutions

is protection against metadata corruption. Arithmetic on a pointer

may overflow into the metadata bits, allowing an attacker to bypass

the implemented defense. SGXBounds experiences this problem,

and thus needs to move the metadata out of a pointer before every

pointer arithmetic instruction and move it back in afterwards, in-

curring significant additional overhead. Delta Pointers do not need

special treatment here: a pointer overflow will also overflow the

delta tag into the overflow bit, correctly invalidating the pointer.

6 IMPLEMENTATION

We have implemented a prototype of Delta Pointers for Linux on

the x86-64 architecture on top of the LLVM compiler infrastructure

[27] (version 3.8). The code consists of 3,749 SLOC of LLVM C++

passes, which add the instrumentation described in Sections 4 and 5.

An additional 846 SLOC make up runtime and helper libraries,

including a static library that shrinks the address space of the

process to make room for tags in pointers. The code is open source.2

In order to harden an existing program with Delta Pointers, the

programmer adds compiler flags that invoke our passes during the

compilation of source into the binary, and during linking to link

in our static library. The resulting binary is then run through a

post-processing script to shrink its address space. The resulting

binary can then run as-is, raising an error upon detection of an out-

of-bounds memory access. Dereferences of out-of-bounds pointers

will cause the MMU to trigger a general protection or stack segment

fault, which Linux will deliver to our process as a segmentation

fault or bus error. We install a signal handler to distinguish such

cases and report an appropriate error.

6.1 Address space reduction

User-space pointers in Linux are 47 bits. We limit this to 32 bits to

support 32-bit tags. Only changing the allocator is not sufficient

for this purpose, as the kernel maps the stack and loader at high

memory addresses. The loader itself will also run code performing

allocations before we get a chance to insert code. A kernel patch is

2https://github.com/vusec/deltapointers

the most straightforward way to limit the address space for map-

pings, but provides poor portability. Instead, we use the approach

of Mid-Fat Pointers [25] to limit the address space in user mode:

First, we prelink the binary, loader, and any shared libraries used

by the program at locations that fit 32 bits. Then, during program

startup, we move the stack and thread-local storage down in the

address space. Finally, we reserve the memory area above 32-bit

with an anonymous non-reserved mapping to avoid subsequent

allocations in this address range.

6.2 Instrumentation

Listing 1 in Section 4 describes the instrumentation added by our

LLVM passes. We apply these changes after optimizations, includ-

ing link-time optimization (LTO), so that these optimizations are

not hindered by our inserted pointer-to-integer casts. A final opti-

mization pass performs optimizations such as constant folding on

the added instrumentation.

For dereferencing instructions, we consider LLVM’s load and

store instructions and memory intrinsics (which cover calls to the

memcpy family). For memory intrinsics, we update the pointer tag

with the size of the dereferenced memory range minus one so that

the highest dereferenced pointer is checked. The size is truncated

to the maximum object size of 31 bits to also check very large sizes

caused by implicit casts from signed to unsigned integers.

6.3 Coverage

Finding all heap allocations. Detecting overflows for all buffers

requires identification of all memory allocations so that the re-

sulting pointers can be tagged. Stack allocations and globals are

trivially identified by their unique representation in LLVM, but

heap allocations are performed by calls to memory allocator func-

tions. We currently support all allocation functions in the C and

C++ standard libraries. Custom allocators that preallocate a pool

of memory using malloc or mmap, however, must expose alloca-

tion function names and the position of their size arguments to

the Delta Pointers implementation in order to support per-object

buffer overflow detection (otherwise only per-pool overflows can

be detected). This is the case for nginx which we support by adding

its custom pool allocation functions to our predefined list.

Pointer marshalling at library calls. As explained in Section 5.3,

making sure that all pointers in the protected executable have a tag

requires a set of rules that define how pointers tags are added and

removed at the protection boundary. For Delta Pointers, we have

opted to place this boundary at the level of dynamic library calls

in order to provide portability and maintainability, preserving the

ability to update libraries without having to recompile all protected

programs that use these libraries.

Pointers passed as parameters to library calls are masked in the

same way as dereferencing operations, so the overflow bit is left in-

tact. This design even prevents an attacker from using a vulnerable

library function to dereference an already out-of-bounds pointer

(however does not protect against out-of-bounds dereferences if

the library code adds an offset to the pointer). Nested pointers in

data structures, such as those used in std::list::push_back, are

stripped of metadata when a pointer to the data structure is passed

to a library function. The tags are not restored after the function

https://github.com/vusec/deltapointers
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call, so these pointers remain unprotected inside the protected ex-

ecutable as well, thus assuming that the library implementations

handling the data structures are safe. No tag is added back to the

pointer, since it is not known how the function alters pointers in

the data structure. Although this introduces untagged pointers in

the protected executable, all functions that operate on the data

structure are in fact implementations of standard library functions

in header files. These functions are in fact outside the protection

boundary, only included in the executable for optimization reasons

(inlining). The only other case requiring similar instrumentation is

std::string::operator+=.

Finally, data pointers returned by library functions are tagged

to offer protection inside the executable. In particular, the rules

specify how the distance from the returned pointer to the end of

the referent object can be inferred from the call parameters. We

have analyzed all functions in the C and C++ standard libraries and

identified six categories:

• copy: Copy the tag of an argument. E.g., strdup.

• diff: rettaд = paramtaд+(retaddress −paramaddress ). E.g.,

strchr.

• static: Tag is constant, size inferred from return type. E.g.,

fopen.

• strlen: rettaд = strlen(retaddress ). E.g., getenv.

• strtok: Special case for strtok: replace its implementation

with a version that maintains the current end-of-object dis-

tance in a global variable.

• noarith: Disallow pointer arithmetic by assuming an object

size of 1 byte. This is used for opaque return types such as

that of opendir, whose returned pointer is not dereferenced

inside the executable itself but only passed as a parameter

to library calls.

Using these categories, we are able to instrument 99.7% of all

dereferenced pointers in SPEC CPU2006. The remaining 0.3% are

all related to shared state between protected code and unprotected

library code. We verified through manual inspection that these

cases can either be fixed with static analysis (e.g., argv) or can

safely be ignored. An example of the latter case are C++ VTables

which contain code pointers to virtual methods of objects. Each

object stores an object to its VTable, which if instrumented cannot

be dereferenced by libraries. The table structure is, however, an

implementation detail of the compiler and not transparent to the

programmer. All accesses to VTables are compiler-generated and

can therefore be assumed to be in bounds (not accounting for com-

piler or type-confusion bugs). Our Delta Pointers implementation

therefore omits tags on VTable pointers in favor of compatibil-

ity. Note that no checks need to be inserted on pointers without

metadata, which Delta Pointers support by design.

6.4 Optimization

Some existing bounds checkers implement analyses that identify

safe memory accesses, which are statically known to be in-bounds.

Unfortunately, these optimizations are not directly applicable to

Delta Pointers, because the bounds checks are implicitly performed

at pointer arithmetic sites. Masking instrumentation can only be

removed from a memory access if none of the possible pointer

values can have a tag, meaning that any instrumentation that adds

or modifies the tag must first be removed. This is not always safe

to do, for example when the same allocation is also passed to a

function that does a possibly out-of-bounds memory access.

We use static analysis to find allocations, propagation sites (pointer

arithmetic) and masking sites (loads/stores) that do not need instru-

mentation. In particular, we use LLVM’s scalar evolution (SCEV)

analysis [13] to trace back pointer bounds from loads and stores

and omit instrumentation where the pointer can be proven to be in

bounds. The analysis records the distances to the object start and

end (0, size) at each allocation site. These bounds are then propa-

gated over the def-use chain of the allocation. At a propagation site,

the offset is added to the recorded start distance and subtracted

from the end distance. At a load or store, the recorded distances

are used in combination with the dereferenced number of bytes to

check if the dereferenced pointer is in bounds. Instrumentation is

omitted on pointers produced by allocations or propagation sites

that are only dereferenced in bounds. Masks are also omitted from

dereferenced pointers that do not contain a tag because of optimiza-

tions. Note that since we use SCEV analysis, which represents IR

operations as expressions, both size and pointer offsets need not

be constants, thus allowing for aggressive optimizations.

Another optimization we perform is the hoisting of bounds

checks out of loops. Consider a simple loop that requires a bounds

check in each iteration:

for (i = 0; i < 10; i++)

buf[i] = `x';

It is easy to see that this check only needs to be performed once on

buf[9]. We use the same SCEV analysis as described above to infer

the maximum value at compile time and insert a dummy load before

the loop to trigger a fault if the computed offset is out-of-bounds.

Instrumentation on the operations inside the loop is removed. This

optimization can only be performed if the pointer &buf[i] does

not escape the loop body. Unfortunately, LLVM rewrites the exit

condition in the above loop to i == 10, thus making &buf[10]

the maximum value of the pointer inferred by SCEV. Although the

pointer has this value after the loop, it is never actually dereferenced.

We have implemented a simple pattern detection to support this

case, but the problem still exists for complex loops found in real-

world programs such as in the SPEC benchmarks. We consider this

a limitation of the SCEV implementation and therefore out of scope

for this work.

7 EVALUATION

To evaluate Delta Pointers we look at both their performance and

security. To study the performance we benchmark SPEC CPU2006

and other real-world applications. We then evaluate the effective-

ness of Delta Pointers by determining if they mitigate a number of

recent CVEs reported by related work.

7.1 Runtime performance

We have evaluated Delta Pointers on the C and C++ programs of

the SPEC CPU2006 benchmarking suite [19]. This suite contains

a wide variety of complex real-world programs, including a Perl

interpreter, XML parser and simulations. Additionally, we evalu-

ated Delta Pointers on Nginx 1.10.2. We used Intel Xeon E5-2630v3

machines with 16 cores at 2.40 GHz and 64 GB of memory, running
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Figure 4: Runtime overhead of SPEC CPU2006 for our Delta

Pointers prototype.

64-bit CentOS 7.2.1511. Each overhead number is the median of 16

iterations of the same program (using the reference workset for

SPEC), and we manually verified standard deviations to be negligi-

ble. For the baseline, we enabled link-time optimizations. Two of

the 19 benchmarks are not compatible out-of-the-box with Delta

Pointers: 403.gcc uses upper pointer bits of pointers larger than 32

bits for page ordering, and corrupts a pointer tag by using NULL

pointer subtraction and addition instead of a regular typecasts for

type conversion between pointers and integers. 450.soplex is incom-

patible with per-pointer bounds checkers: it patches pointers to

point to out-of-bounds locations using pointer subtraction after

reallocating a buffer containing pointers. This violation of the C

standard is well-documented in related work [26, 34], and other

researchers either patch or omit these programs as well. In order to

avoid the impact of omitting benchmarks on the overall overhead,

we wrote small source patches for 403.gcc to configure pointer bit-

size at 32 bits and to preserve a pointer tag at a single NULL pointer

subtraction, and for 450.soplex to fix the delta tag on patched point-

ers after realloc. The evaluation numbers thus include the entire

C/C++ subset of SPEC CPU2006 (19 benchmarks in total).

We have benchmarked Delta Pointers both with and without

the optimizations from Section 6.4. Figure 4 shows the measured

runtime overhead for these configurations (raw runtimes are avail-

able at the end of the paper). In all cases, Delta Pointers show

a negligible memory overhead. The instrumentation causes 41%

geometric mean (geomean) runtime overhead, which is reduced

to 35% by optimizations. In comparison, our implementation of

using branches for upper-bound checks (which is equivalent to

SGXBounds without underflow checks) achieves 48%, confirming

that bitwise and arithmetic instrumentation is significantly faster

than using branches. The instrumented binaries are on average 80%

bigger, both in terms of instructions and file size.

To accurately compare these results with related work, we tried

to reproduce competing results on the same setup in order to com-

pare to the same efficient baseline on modern hardware. We evalu-

ated SGXBounds on our setup and obtained 94% geomean overhead

0% 25% 50% 75% 100%

400.perlbench

401.bzip2

403.gcc

429.mcf

433.milc

444.namd

445.gobmk

447.dealII

450.soplex

453.povray

456.hmmer

458.sjeng

462.libquantum

464.h264ref

470.lbm

471.omnetpp

473.astar

482.sphinx3

483.xalancbmk

masking

tagging

arithmetic

Figure 5: Runtime overhead of SPEC CPU2006 for different

components of Delta Pointers instrumentation (with opti-

mizations disabled).

which is much higher than the 55% reported in the paper. After

consistently seeing these results across machines, we contacted the

authors but together we were not able to determine the root cause

of this difference. The authors of Low-Fat Pointers were unable to

share their prototype due to it being in an alpha state, and Baggy

Bounds [1] is closed-source. We could easily evaluate AddressSan-

itizer because it is part of LLVM. The run times obtained on our

experimental setup are available at the end of the paper.

Overall, we can see that our overflow detection design is far

more efficient than ASan, which has 80% overhead. We only have

slightly lower compatibility: we require small source patches for

two SPEC 2006 benchmarks whereas ASan requires this for one

benchmark. ASan also has a large memory overhead, whereas Delta

Pointers have negligible memory overhead. Also note that ASan

has weaker spatial detection guarantees, since it can only detect

contiguous overflows. On the subset of SPEC 2006 benchmarks

supported by SGXBounds, Delta Pointers have a 35% overall over-

head, compared to the 94% of SGXBounds, while achieving higher

compatibility (SGXBounds cannot run 6 benchmarks because it

does not deal with some issues described in Section 5). Low-Fat

Pointers does not support 4 out of the 19 SPEC benchmarks, but

can be benchmarked using manual source fixes. The paper reports

52% overhead versus 35% for Delta Pointers. In addition, Low-Fat

does not cover globals or the NULL pointer and provides lower

compatibility overall.

To gain insight in the origin of the measured overhead, we have

independently measured the overheads of different instrumenta-

tion components (with optimizations disabled). The results are in

Figure 5. We observe that the overhead of masking at every pointer

dereference is geomean 20%. This is perhaps higher than expected

since the operations are bitwise ANDs which are expected to be

fast. But the performance impact of register pinning and pipeline

stalls, as described in Section 5.4, evidently proves non-trivial and

likely requires hardware optimizations to further reduce the over-

head. Tagging all allocations with delta tags is cheap, adding only
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Figure 6: Overhead of Nginx web server for Delta Pointers.

2 percent point overhead. This is expected, since allocations typi-

cally happen outside of the main computation loops. Finally, like

masking, instrumentation on pointer arithmetic is higher than ex-

pected at 19 percent point, making the overall overhead 41%. We

have investigated the assembly generated for our instrumentation

by the compiler and concluded that the instrumentation hinders

optimizations made by the LLVM x86-64 backend. In particular, the

instruction selection chooses to emit separate addition and multi-

plication instructions for pointer offset computations rather than

using efficient scaling-based addressing mode as supported by lea

and mov. This is especially the case for dynamic offsets that cannot

be constant-folded. Unfortunately, dynamic offsets are prevalent in

SPEC: we found that 72% of all pointer arithmetic instructions in the

reported benchmarks use dynamic offsets. Thus, although our cur-

rent overhead is already competitive, (admittedly non-trivialÐdue

to the LLVM architecture) optimizations of the instrumentation of

dynamic pointer arithmetic in the compiler backend may improve

the results even more.

We have also tested Delta Pointers on the Nginx web server. The

performance of Nginx primarily depends on I/O, and Nginx does

relatively few pointer operations. Because of this we observed negli-

gible effects on performance, as shown in Figure 6. Our benchmarks

were performed requesting 64 byte pages with 8 workers over a

54 Gbit/s link. On average we observe a 4% increase in latency, with

a maximum of 6% for the unsaturated case going down to 3% when

saturation is reached. When the server is saturated we observe only

a 2% drop in throughput for Delta Pointers.

7.2 Security

We have evaluated the effectiveness of Delta Pointers by exam-

ining a number of recent common vulnerabilities and exposures

(CVEs) [8]. To be able to compare to previous work, we have ex-

amined all CVEs reported in recent work [12, 26]: 8 CVEs across

6 popular programs, including Heartbleed in OpenSSL and bugs

in Nginx and PHP. Rather than only checking if existing exploits

are circumvented, we used manual analysis to determine if the

exploitability of an attack is affected.

As detailed below, Delta Pointers completely prevent 7 of the

8 analyzed attacks, with the uncaught bug only supported by a

single existing bounds checker, demonstrating that Delta Point-

ers offer practical security guarantees. The undetected bug is not

fundamental to the design of Delta Pointers, but is outside the pro-

tection boundary of our implementation. Adding support for the

bug is trivial (a single line of code) by treating recv as a memory

intrinsic. This could be done for all standard C library functions, as

done by SGXBounds, to extend protection to outside the protection

boundary.

CVE-2011-4971 in MemCached 1.4.15. A signed integer is set to a

negative value by the attacker, and passed as a large unsigned size

to memcpy. Our instrumentation on memory intrinsics covers this

case, preventing out-of-bounds reads.

CVE-2013-2028 in Nginx 1.4.0. An attacker-controlled negative

signed integer is passed as a large unsigned size to recv which

copies data into a limited-size buffer. Delta Pointers cannot not

detect this case since the write resides in an uninstrumented libc

function. To cover this vulnerability, functions like recv could be

encapsulated in wrappers that implement checks on the underlying

memory accesses. Note that this requires manual analysis of the

semantics of all library functions that access memory buffers based

on parameter values which is only done by SGXBounds, so the bug

is not covered automatically by any other existing defense.

CVE-2014-0160 in OpenSSL 1.0.1f (Heartbleed). A 2-byte attacker

controlled response length is used to transmit back a buffer of an

attacker-controlled size, allowing the attacker to leak up to 64KB

of memory, including private keys. The buffer pointer is correctly

tagged and the overread is detected successfully.

CVE-2016-1234 in glibc-2.19. While glibc is not compatible with

LLVM out-of-the-box, we still analyze this CVE to compare effec-

tiveness of our design to that of Low-Fat Pointers which reports

it. The bug is a stack buffer overflow due to an access with the

length of a directory name as offset, which can be up to 510 bytes

larger than the buffer size on for instance the NTFS file system. Our

Delta Pointers design would correctly tag the allocated buffer and

prevent the attack.

CVE-2016-2554 in PHP-5.5.31. A string inside struct _tar_header

is assumed to be null-terminated but can be attacker controller. By

crafting a struct without any null-bytes this intra-struct overflow

can be extended far beyond the size of the struct. This finally ends

up in a strncpy with the overflowed size of the struct, which Delta

Pointers detect because of our strncpy instrumentation.

CVE-2016-3191 in PCRE2-10.20. An attacker-controlled regex can

cause a contiguous overflow on a stack buffer, as the (*ACCEPT)

verb will write a closing parenthesis for any currently open paren-

thesis, without checking for the presence of such closing paren-

thesis nor whether there is space in the buffer. Our Delta Pointers

design easily detects this case.

CVE-2016-6289 in PHP-7.0.3. Similar to CVE-2011-4971 a signed

integer is passed to a memcpy call. Our Delta Pointers implementa-

tion instruments the intrinsic and detects any overflow.

CVE-2016-6297 in PHP-7.0.3. An attacker can supply a large string

triggering an integer overflow in strlen. The resulting length is

then passed to memcpy where it is cast to a size_t similar to CVE-

2011-4971, which is detected.

SPEC CPU2006. We have also confirmed a number of benign

buffer overflows in SPEC CPU2006 which are reported by related
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work [26, 37]. perlbench contains a benign buffer overread in

a memcmp call, which is caught by Delta Pointers because of our

intrinsic handling. h264ref contains two bugs: one involving a

global variable and one on the stack. The stack-based overflow is

entirely optimized away by LLVM during vectorization (as LLVM

can statically determine there is undefined behavior). If we disable

these optimizations, Delta Pointers detect the bug. The bug where

a global variable is overflown is also detected by Delta Pointers, in

contrast to, for instance, Low-Fat Pointers. For the performance

evaluation of Delta Pointers, we fixed these bugs using the source

patch from AddressSanitizer.

8 DISCUSSION

Bounds narrowing. Our prototype does currently not support

bounds narrowing, where bounds of sub-objects in composite types

are enforced (e.g., an array in a struct). Since our Delta Pointers

design records per-pointer metadata, such a feature could easily

be added. Such strict enforcement of bounds is knows to cause

compatibility problems [7, 34].

Integer overflow on pointers. Most processor architectures imple-

ment arithmetic overflow on regular integer additions: when all

bits in an integer are set and 1 is added, the number wraps around

to zero. In our pointer encoding scheme, an attacker may be able to

clear the overflow bit by adding a very large offset that causes such

an overflow. This can normally be mitigated by simply limiting

offsets to 32 bits (which is already normally the case in real-world

programs), but, in some cases, the attacker might be able to use a

pointer addition inside a loop to iteratively overflow the pointer.

Thus, in order to provide complete protection on the upper bound,

Delta Pointers require an upper bound on the result of pointer ad-

ditions. This is called saturation arithmetic. Saturating operations

clamp their results to a given minimum and maximum, typically

with all-zero and all-one bits respectively.

Some architectures have dedicated instructions for saturation

arithmetic. For instance, ARM offers the UQADD instruction to per-

form saturating addition on 64-bit unsigned integers, which consti-

tute our use case. Intel x86-64, however, only supports 8/16-bit satu-

ration through PADDUSB/PADDUSW. 64-bit saturation on x86-64 is most

efficiently performed by conditional (but non-branching) instruc-

tions (CMOVcc) which replace the result of an addition based on the

value of the FLAGS register. To support saturation arithmetic, Delta

Pointers could optionally use conditional instructions to replace the

result of pointer arithmetic with the maximum integer value. Such

instructions are reasonably fast since they operate only on registers,

but they must be inserted on all pointer arithmetic, hence resulting

in higher overhead. For our Delta Pointers prototype, we felt this

was not a feature to prioritize given the additional performance cost

and limited security improvement. Namely, the feature is only nec-

essary if an attacker can add an offset of (1 << 31) + object_size

bits to a pointer, either at once or iteratively, without dereferencing

it in the meantime (since the intermediate pointers are detected as

out-of-bounds). This is rarely an option in practice, since a pointer

computed inside a loop is usually dereferenced inside the loop, and

otherwise hoisted out of the loop by compiler optimizations. We

have manually confirmed this for all the vulnerabilities analyzed in

Section 7, for which saturation arithmetic would thus not provide

any security improvement.

Unaligned access. When a pointer is cast to an arbitrary type and

dereferenced, the number of dereferenced bytes may differ from

the allocated pointer type. Delta Pointers do not support detection

of such unaligned accesses, since the situation only arises in the

context of a type confusion bug which is not in our threat model.

For intellectual curiosity, we have, however, implemented optional

support for unaligned access detection in the form of an additional

pointer arithmetic that adds the dereferenced number of bytes

minus one to the delta tag before each dereferencing instruction.

This adds 3% overhead on SPEC 2006.

Delta tag compression. Delta tags take up half the pointer in

the current design of Delta Pointers, severely limiting the address

space (and thus ASLR entropy) in return for strong memory safety

guarantees. Reducing the number of bits needed for the delta tag

could alleviate this trade-off, as done in similar schemes. For exam-

ple, Baggy Bounds [1] compresses object size tags in pointers by

allocating power-of-two sized objects, storing only the exponent.

Compression for Delta Pointers is not trivial since the delta tag

stores the distance to the end of the object rather than the object

size. At first sight it might seem possible to compress this by align-

ing all objects and their size to a number of compression bits (n).

However, this naive scheme breaks when a pointer is unaligned

with respect to its compression. For example, if we align all objects

to 8 bytes (n = 3), we store 3 fewer bits in the tag. This makes it

impossible to update the tag with offsets smaller than 8 bytes, e.g.,

p=(char*)malloc(N)+1. When done iteratively, 8 such pointer

additions would overflow the object without being detected.

Arbitrary compression is possible by adding additional arith-

metic operations to each pointer modification. The intuition is that,

when aligning all objects to n bits, the lower n bits of the delta tag

and the address contain the same information. Thus, we can store

this information in only the address itself, enabling compression of

the tag. Any addition smaller than 2n only occurs on the address,

but if it carries into the (n + 1)th address bit we continue the addi-

tion on the delta tag. The remainder (the part of the offset that is

a multiple of 2n ) is added directly to the tag. The following code

shows how this is done using bitwise operators, when adding offset

a to a pointer while using n compression bits:

carry = (( ptr_old ^ ptr_new ^ a) >> n) & 1

tag_new = tag_old + (a >> n) + carry

The first line determines whether the lower n bits of the address

carried into the next bit, and the second line replicates the carry

on the tag. This scheme offers a larger address space, but incurs

memory overhead due to alignment, and runtime overhead due to

the additional instrumentation required.

Backend optimization. Section 7 details the performance hit of

pointer arithmetic instrumentation on x86-64. Future work could

feature an optimization of the LLVM backend that allows for effi-

cient code generation of instrumented pointer arithmetic, better

utilizing the scaling-based addressing mode of x86-64 instructions.
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Table 1: Comparison of overflow checkers. Most evalua-

tions use (nonoverlapping) sets of benchmarks, making the

overhead numbers difficult to compare. The table is catego-

rized by benchmarks used, using a random set of CPU ’95,

’00, ’06 and Olden, CPU2000 and CPU2006 respectively. The

reported overhead are geometric means of the respective

benchmark suite.
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Softbound ✗ Table Deref ✓ ✓ 67% 64%

Baggy Bounds ✗ Layout Arith ✓a ✓ 72% 11%

PAriCheck ✗ Shadow Arith ✓ ✓b 96% 18%
LBC ✗ Shadow Deref ✓ ✗ 22% 7.7%

ASan ✓ Shadow Deref ✓ ✗ 80% 237%
Intel MPX ✓ Table Deref ✓ ✓ 139% 90%
LowFat ✓ Layout Deref ✗ ✓ 54% 5.2%
SGXBounds ✓ Tag Deref ✓ ✓ 89% 0.1%
Delta Pointers ✓ Tag Ð ✓ ✓ 35% 0%

a Only up to alloc_size/2 on 32-bit.
b Unless wrap-around on 16-bit labels occurs.

9 RELATED WORK

Overflow detection. There has been a plethora of research on

buffer overflow detection over the past decades. Table 1 present a

summary of the major systems. Early systems often relied on fat

pointers which had a high overhead and introduced many com-

patibility issues, often requiring programmers to change existing

code [4, 22, 32]. The system proposed by Jones and Kelly [23] in-

stead relied on external metadata, associated per-object. Since such

per-object designs retrieve pointer bounds by looking at the ob-

jects, they cannot support temporarily out-of-bound pointers, and

perform their checks during arithmetic. Later designs attempted to

fix these limitations [36] and performance issues [9].

The first practical design was that of Baggy Bounds [1], which

encodes metadata in the memory layout. Similarly to Delta Pointers,

Baggy Bounds also uses pointer tagging to store the size-class of

an object, and encodes encodes out-of-bound pointers as invalid

(non-canonical) to cause automatic hardware crashes. Instead of

masking pointers before every memory access, Baggy Bounds in-

stead places tags for valid pointers in the upper bits of the lower

48 bits, and creates aliased mappings for each tag. This way every

tagged pointer is still valid in the address space, with the limitation

that even fewer bits are available for both the tag and the pointer.

Low-Fat pointers [11, 12] takes the baggy bounds design and opti-

mizes it even more by grouping size-classes together in the address

space. By sacrificing compatibility of not supporting out-of-bound

pointers between contexts Low-Fat can achieve a higher perfor-

mance. Like any other bounds checker, the Delta Pointers design

supports out-of-bound pointers.

Instead of relying on per-object metadata, Delta Pointers rely

on per-pointer metadata. SoftBound [31] transforms the source to

keep track of the metadata for pointers, and stores them separately

whenever pointers leak to memory. Because of its limited static anal-

ysis, SoftBound suffers from a low compatibility. Intel MPX [34]

achieves a similar design with the support of hardware, introduced

with the Skylake microarchitecture but incurs high overhead.

SGXBounds [26] presents a design well geared towards the

current version of SGX, which has a limited address space. It en-

codes the upper bound inside the pointers, with a design based on

Boundless [6]. Boundless stores distance information similar to

Delta Pointers, but only to ultimately compute the upper bound

as used by SGXBounds. These systems thus still require branches,

and rely on memory accesses to record lower bounds. SGXBounds

suffers from a low compatibility due to its limited static analysis, a

problem which Delta Pointers address. Delta Pointers could also

work well inside SGX enclaves. Outside of enclaves SGXBounds is

shown to suffer from much higher overheads.

Some alternative designs do not record the bounds information

itself. PAriCheck [38] instead tags every few bytes with a label,

and during pointer arithmetic enforces that every pointer points

to memory with the same tag. Sadly such a design suffers from

impractical high overheads. LBC [18] and AddressSanitizer [37]

instead place guard zones around every object, and verify every

memory access is outside of a guard zone. Guard zones and their

metadata incur a large memory overhead, and moreover, can only

detect contiguous buffer overflows.

Pointer tagging. The concept of tagged pointers has been used for

decades, but generally concerns the lower bit(s) of a pointer [3, 14].

Baggy Bounds [1], Boundless [6], SGXBounds [26], andMid-Fat [25]

all store tags in the upper bits of pointers. Our design provides a

more comprehensive analysis increasing compatibility of pointer

tagging over these approaches. Hardware support for pointer tag-

ging can be found in recent architectures with ARMv8’s virtual

address tagging [2] and Oracle’s SPARC-M7 SSM/VA masking [35].

10 CONCLUSION

In this paper we presented Delta Pointers, a design for a fast and

compatible buffer overflow detector. In contrast to existing solu-

tions, Delta Pointers do not rely on memory lookups nor branches,

yielding a competitive, low-overhead design with 35% performance

overhead and negligible memory overhead. Our design relies on

pointer tagging to maintain the distance from the current pointer

to the end of the object to implicitly invalidate overflowed pointers.

We hope our findings on pointer tagging will encourage future

research, and as such, our framework and Delta Pointers prototype

are available open source.
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OVERHEADS AND RAW RUNTIMES

Table 2: Normalized runtime overheads of SPEC CPU2006 for Delta Pointers, an imple-

mention using the pointer tagging framework on Delta Pointers but using branches for

upper bound checks (łBranches uboundž), and related work.

Components Delta Pointers Branches ubound Related work

Benchmark Lang. Mask Mask + tag No opts Opts No opts Opts ASan SGXBounds

400.perlbench C 1.47 1.51 1.83 1.62 3.34 1.97 4.01 -

401.bzip2 C 1.23 1.24 1.54 1.50 1.72 1.63 1.70 2.22

403.gcc C 1.14 1.16 1.24 1.23 1.47 1.34 2.23 -

429.mcf C 1.15 1.15 1.24 1.18 1.36 1.29 1.70 1.58

433.milc C 1.07 1.08 1.15 1.08 1.27 1.09 1.35 1.59

444.namd C++ 1.17 1.18 1.38 1.32 1.42 1.36 1.52 1.84

445.gobmk C 1.21 1.31 1.56 1.53 2.17 1.91 1.66 2.18

447.dealII C++ 1.17 1.18 1.40 1.32 1.56 1.32 2.26 -

450.soplex C++ 1.12 1.13 1.29 1.22 1.37 1.22 1.57 -

453.povray C++ 1.37 1.39 1.64 1.52 2.47 2.00 2.72 -

456.hmmer C 1.26 1.26 1.52 1.53 2.00 1.60 1.91 2.51

458.sjeng C 1.25 1.29 1.57 1.56 2.47 1.98 1.73 2.32

462.libquantum C 1.03 1.07 1.09 1.09 1.12 1.11 1.08 1.19

464.h264ref C 1.31 1.30 1.65 1.39 2.32 1.44 2.15 -

470.lbm C 1.03 1.03 1.38 1.44 1.21 1.19 1.01 1.63

471.omnetpp C++ 1.16 1.18 1.24 1.22 1.43 1.30 2.09 -

473.astar C++ 1.22 1.30 1.49 1.45 1.76 1.57 1.54 1.84

482.sphinx3 C 1.19 1.17 1.35 1.33 1.74 1.57 1.69 2.24

483.xalancbmk C++ 1.32 1.30 1.44 1.35 1.84 1.64 2.08 2.68

Geomean 1.20 1.22 1.41 1.35 1.72 1.48 1.80 -

Subset sgxbounds 1.17 1.19 1.38 1.35 1.63 1.47 1.55 1.94

Table 3: Raw runtimes of SPEC in seconds, corresponding to the overheads in Table 2. All numbers were

gathered on the DAS-5 cluster (https://www.cs.vu.nl/das5/), each number is the median of 16 runs. Note that

Delta Pointers and other overflow checkers each require a different build configuration and baseline.

Baselines Components Delta Pointers Branches ubound Related work

Benchmark LTO ASana SGXBoundsb Mask Mask + tag No opts Opts No opts Opts ASan SGXBounds

400.perlbench 262 282 - 386 396 480 424 878 518 1133 -

401.bzip2 440 432 438 542 545 678 662 758 719 736 974

403.gcc 255 259 - 291 296 317 313 374 342 577 -

429.mcf 228 227 227 262 262 283 270 310 295 387 359

433.milc 458 482 491 490 494 525 493 581 501 650 780

444.namd 331 328 328 388 392 457 438 471 451 498 604

445.gobmk 380 404 389 462 498 593 584 827 727 671 850

447.dealII 225 253 - 263 266 315 298 350 297 572 -

450.soplex 197 195 - 220 222 254 239 270 240 306 -

453.povray 118 130 - 163 164 194 180 293 236 356 -

456.hmmer 380 382 385 478 479 577 582 762 610 731 966

458.sjeng 417 427 413 520 536 655 650 1032 828 737 957

462.libquantum 336 339 343 347 358 366 368 375 374 367 409

464.h264ref 468 481 - 612 610 774 651 1085 674 1034 -

470.lbm 353 354 339 362 365 487 509 427 421 357 551

471.omnetpp 280 291 - 326 331 348 342 400 365 607 -

473.astar 319 351 343 388 416 474 463 561 500 542 630

482.sphinx3 453 428 446 540 529 614 604 787 712 724 1001

483.xalancbmk 171 184 179 225 223 246 230 314 280 383 480
a No LTO, since ASan does not support LTO on all benchmarks.
b Linked against musl, no LTO but all bitcode is combined in a single module with O3, libc++ inlined as bitcode.

https://www.cs.vu.nl/das5/
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