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Abstract
Use-after-free vulnerabilities due to dangling pointers are
an important and growing threat to systems security. While
various solutions exist to address this problem, none of them
is sufficiently practical for real-world adoption. Some can
be bypassed by attackers, others cannot support complex
multithreaded applications prone to dangling pointers, and
the remainder have prohibitively high overhead. One major
source of overhead is the need to synchronize threads on
every pointer write due to pointer tracking.

In this paper, we present DangSan, a use-after-free de-
tection system that scales efficiently to large numbers of
pointer writes as well as to many concurrent threads. To
significantly reduce the overhead of existing solutions, we
observe that pointer tracking is write-intensive but requires
very few reads. Moreover, there is no need for strong consis-
tency guarantees as inconsistencies can be reconciled at read
(i.e., object deallocation) time. Building on these intuitions,
DangSan’s design mimics that of log-structured file systems,
which are ideally suited for similar workloads. Our results
show that DangSan can run heavily multithreaded applica-
tions, while introducing only half the overhead of previous
multithreaded use-after-free detectors.

CCS Concepts •Security and privacy→ Systems secu-
rity

Keywords Dangling pointers, use-after-free, LLVM

1. Introduction
Use-after-free vulnerabilities caused by inadvertent use of
dangling pointers are a major threat to systems security.
Compared to other types of vulnerabilities, use-after-frees
are relatively hard to detect by either manual inspection
or static analysis, since there may be a long time between
storing a pointer to memory, terminating the lifetime of
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the object it points to, and dereferencing the stored pointer
resulting in undefined behavior. While setting pointers to
NULL after freeing the object that they point into would seem
to be a relatively simple solution, in practice this is hard
to do because copies of pointers can be spread throughout
the many data structures of the program. Moreover, dangling
pointers that result in later use-after-free vulnerabilities are
readily exploitable [50] and often the exploitation method of
choice in real-world attacks [37, 51].

There are various ways to shield software from dangling
pointer exploits. A successful exploit requires three ele-
ments: (1) a pointer pointing into an object that has been
deallocated, (2) another memory object relevant to the at-
tacker reusing the memory area that used to be occupied
by the deallocated object, and (3) a (use-after-free) instruc-
tion where this pointer is dereferenced (read from or writ-
ten to). Consequently, there are three main ways to defend
against use-after-free vulnerabilities, each removing one of
the elements of a successful exploit. Secure memory al-
locators [12, 14, 40, 45] prevent exploitation of use-after-
free vulnerabilities by avoiding allocation of objects reusing
memory originally owned by deallocated objects. Unfortu-
nately, these approaches do not fully defend against deliber-
ate attacks because they can be circumvented through heap
spraying or massaging [37]. Approaches that prevent dan-
gling pointers from being dereferenced [19, 39] avoid this
problem by keeping track of each pointer’s origin and ver-
ifying whether that instance of the pointer has previously
been deallocated. However, the tracking and the need to
instrument every pointer dereference to perform a check
cause these approaches to incur very high overhead, hinder-
ing practical adoption.

The most promising design for practical run-time use-
after-free defenses prevents the creation of dangling pointers
altogether. This can be achieved by keeping track of point-
ers to each memory object and replacing them with invalid
pointers once the object is freed. Unlike the original dan-
gling pointer, the invalid pointer cannot be used to leak or
corrupt memory as any attempt to dereference it will be de-
tected as a segmentation fault. To the best of our knowledge,
there are currently two systems that follow this approach:
FreeSentry [51] and DangNULL [37]. While FreeSentry of-
fers reasonable overhead, much of its performance benefits



derive from the inability to support multithreaded programs,
hindering again practical adoption. DangNULL does sup-
port multithreading, but imposes prohibitive run-time over-
head. Moreover, it is particularly prone to false negatives,
as it only supports tracking pointers stored on the heap. For
these reasons, we conclude that there is currently no practi-
cal and widely applicable detection system available against
use-after-free vulnerabilities.

In this paper, we present DangSan, a new use-after-free
detection system which is efficient and readily applicable to
real-world C/C++ programs. Our overhead is on par with
the most efficient (and thread-unsafe) pointer tracking so-
lution, while offering much better performance, scalability,
and detection coverage than alternatives that do support mul-
tithreaded programs.

To efficiently support thread-safe semantics, we propose
a new lock-free design inspired by the way log-structured
file systems operate [44]. The key insight is that, much
like log-structure file systems, our system needs to perform
many frequent writes (due to pointer tracking instrumenta-
tion at every pointer store instruction) but relatively infre-
quent reads (due to pointer invalidation instrumentation at
every free call). Moreover, using locks to guarantee con-
sistent access to shared data structures at every write is not
only inefficient, but also unnecessary. Since we can verify at
free time whether a pointer to the freed object is still stored
at its previously recorded location, we can efficiently recover
from stale and duplicate pointer entries in our records. Based
on these insights, our design refrains from using complicated
shared data structures and simply opts for append-only per-
thread logs for each object in the common case.

While our new design offers competitive run-time perfor-
mance and scalability, the redundancy and stale pointers in
the per-thread logs can cause significant memory overhead.
To address this problem, we present a number of optimiza-
tions to reduce this overhead while retaining the good per-
formance of the basic design. We use a fixed-length look-
back to reduce redundancy and use a hash table as a fall-
back for excessively large logs. This fallback avoids the risk
of unbounded memory consumption in case duplicate point-
ers occur with cycles longer than the lookback. In addition,
we use static analysis to reduce the number of pointers that
need to be tracked and pointer compression to store multi-
ple pointers in a single log entry. Using these techniques, we
show how to achieve a reasonable balance between run-time
performance and memory overhead.

Contributions

• We present a novel design for practical use-after-free
detection inspired by log-structured file systems. Our de-
sign combined with an efficient shadow memory-based
metadata management scheme can offer considerably
better performance and scalability than existing multi-
threaded dangling pointer detectors.

• We present DangSan, a prototype implementation of our
design based on the LLVM compiler framework [36]
and the scalable tcmalloc allocator [24]. To foster further
research in the field, we will open source our DangSan
prototype upon acceptance.

• We present an evaluation of our prototype, demonstrating
that DangSan offers a new efficient and scalable design
point in use-after-free detection, at the cost of moderate
but realistic memory overhead in real-world settings.

Roadmap The remainder of this paper is laid out as fol-
lows. Section 2 presents the threat model addressed by Dan-
gSan. Section 3 give an overview of the high-level structure
of DangSan and Section 4 introduces the individual com-
ponents in more depth. Section 5 discusses implementation
details for our DangSan prototype and Section 6 presents
our optimizations. Section 7 discusses some limitations of
our design and their impact on the practical use of DangSan.
Section 8 presents and discussed our experimental results.
Section 9 compares DangSan against the state of the art in
use-after-free defenses. Finally, Section 10 concludes the pa-
per.

2. Threat model
We assume that the vulnerable program contains one or more
use-after-free vulnerabilities, where an attacker can force
the program to read from or write to a dangling pointer to
a deallocated memory object that potentially overlaps with
one or more other memory objects. We assume that defenses
are already in place for other types of memory errors such
that they cannot be exploited. Specifically, we assume that
the attacker cannot corrupt our data structures, which can
be achieved through orthogonal defenses such as hardened
information hiding [26, 41], re-randomization [20, 25, 49],
or efficient isolation techniques [22, 35, 48]. Such solutions
can provide metadata integrity with low performance impact
(typically less than 5% on average on SPEC CPU2006).

3. Overview
We designed DangSan as a LLVM compiler plug-in [36]
combined with a library to interpose on memory allocator
operations. To use DangSan, users need to pass the appro-
priate compiler flags when compiling their application to
protect it against use-after-free exploits. Our framework au-
tomatically tracks per-object pointers and invalidates them
when the corresponding object is freed.

Figure 1 provides an overview of DangSan’s components,
with the white parts already present in an unprotected pro-
gram and the gray parts added by DangSan. To be able to
invalidate pointers at free time, we need to track the mem-
ory locations containing pointers that point to each object in
memory. The pointer tracker is a compiler pass that instru-
ments all the stores of pointer-typed values. Whenever the
program stores a pointer to memory, the pointer tracker in-
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Figure 1. Overview of DangSan

strumentation invokes the pointer-to-object mapper to look
up which memory object the stored pointer points into. We
use the term memory object to refer to a contiguous re-
gion of virtual memory allocated by a single call to malloc,
realloc, etc. Finally, the pointer tracker calls the pointer
logger to register the newly stored pointer. The pointer log-
ger associates each memory object with a per-thread log that
stores a list of memory addresses containing pointers into
that object. The heap tracker uses this information to be able
to invalidate any references to a memory object once the ob-
ject is freed. This component hooks into the memory alloca-
tor to get notified whenever a memory object is allocated or
deallocated. We describe the individual components in more
details in Section 4.

4. Design
In this section, we discuss the design of DangSan. Each
subsection describes one of the components in Figure 1 and
its interactions with the other components. This section
discusses the key elements of our design, while optional
elements to improve performance are discussed in Section 6.

4.1 Pointer tracker
The main challenge when invalidating dangling pointers to
detect uses-after-free is to locate all the pointers to freed ob-
jects. For this purpose, DangSan relies on a pointer tracking
compiler pass. Our pointer tracker scans program code to
identify all the store instructions with pointer types and, for
each of them, inserts a call to a function registerptr sup-
plied by a static library. This function receives two parame-
ters: the store location (a pointer to a pointer) and the stored
value (possibly a pointer to a memory object). The function
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Figure 2. Interactions of the pointer tracker

first uses the ptr2obj functionality of the pointer-to-object
mapper (see Section 4.3) to look up the memory object ref-
erenced by the stored pointer value. Next, it uses the logptr
functionality of the pointer logger (see Section 4.4) to asso-
ciate the store location with the object. Figure 2 shows an
overview of the interactions of the pointer tracker with the
rest of DangSan. This approach allows us to build a list of
all the memory locations containing pointers into each allo-
cated object.

4.2 Heap tracker
In addition to tracking pointers to memory objects, DangSan
also needs to track the memory objects themselves. In par-
ticular, it needs to initialize the pointer-to-object mapping
whenever a new object is allocated and invalidate all point-
ers to an object whenever it is freed. For this purpose, Dan-
gSan hooks into allocation/deallocation calls (e.g., malloc,
realloc, free) in the memory allocator. In this section, we
discuss how DangSan handles each of these calls.

Whenever the protected program uses the malloc (or
similar) call to allocate memory, DangSan needs to en-
sure that every pointer pointing into the new object can be
mapped to the new object. For this purpose, DangSan uses
the createobj interface of the pointer-to-object mapper.
Figure 3 shows the interactions within DangSan whenever
memory is allocated.

Whenever the heap tracker intercepts a free call, Dan-
gSan performs its main job: it invalidates any pointers to the
memory object about to be freed. This action is performed
by the pointer logger, which already holds all the necessary
information. The heap logger retrieves the object identified
by the freed pointer using the pointer-to-object mapper and
passes it along to the invalptrs functionality of the pointer
logger. Figure 4 shows interactions within DangSan when-
ever memory is deallocated.

When the program calls realloc, we need to distinguish
three possible cases: the object remains as is, the object is
resized in place, or a new object is allocated and the contents
of the old object are copied into it. In the first two cases, the
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pointers to the object remain the same so they need not be
invalidated. However, if a block is grown in place we do need
to extend its mapping in the pointer-to-object mapper. This is
done by simply using the createobj interface again, which
overwrites the old mapping. In the third case, the hooked
malloc and free calls ensure that the object mapping is
adjusted and pointers to the old object are invalidated.

4.3 Pointer-to-object mapper
To be able to associate pointers with metadata for the mem-
ory objects, we need to keep track of a mapping from point-
ers to objects, associating metadata for use by the pointer
logger with each object. We use this mapping to implement
the ptr2obj call used by the pointer tracker. The pointer-
to-object mapper adds new mappings whenever the heap
tracker detects that a new memory object has been allocated
and invokes the createobj interface. In this section, we de-

scribe the data structures used to perform these tasks effi-
ciently.

The data structures need to support efficient range queries,
as we want to invalidate every pointer pointing within the
memory range of an object when that object is freed, not just
those pointing to the start of the object. This means that we
cannot use hash tables, which do not allow for range queries.
Lookups need to be very efficient to be able to achieve low
overhead because they are performed every time a pointer is
written to memory. This means that trees are not a suitable
data structure either, as their lookup performance degrades
as more memory objects are allocated [37]. For this reason,
we have opted to use memory shadowing [45], which pro-
vides efficient constant-time range queries.

The intuition behind memory shadowing is that, if ev-
ery memory object is aligned to a multiple of n bytes, we
can divide a memory address by n to obtain an index such
that bytes with the same index are always inside the same
memory object. We then allocate a huge array of metadata
and use the index to look up the metadata for a pointer. In
this design a memory object may span multiple entries in
the metadata array, in which case the metadata must be du-
plicated across all entries. One important variable is the ra-
tio between the amount of program data and the amount of
metadata, which we will refer to as the compression ratio.
If we assume the guaranteed alignment n is the same ev-
erywhere in memory and each metadata entry is m bytes,
the optimal compression ratio is n

m . This approach is used
in traditional memory shadowing systems, such as the one
used by AddressSanitizer [45]. Such systems can look up
metadata using just a single memory read. One problem with
traditional memory shadowing, however, is the fact that the
allocation of large memory objects requires a proportionally
large area of shadow memory to be initialized. While this
can be improved by increasing the compression ratio, doing
so requires that objects to be aligned to larger boundaries to
ensure that no two objects are mapped to the same location
in shadow memory. This increases memory fragmentation,
which is undesirable for both performance and memory us-
age. The alternative is to reduce the amount of metadata (like
in Baggy Bound Checking [13], which uses just one byte
of metadata per object). However, DangSan requires a full
pointer (eight bytes on 64-bit systems) to be able to map
memory objects to pointer logs. As a consequence, constant
compression ratio approaches incur unacceptable overhead
for pointer tracking.

To be able to efficiently map pointers to pointer logs,
we have chosen to use a variable compression ratio mem-
ory shadowing scheme proposed in recent research [28, 29].
With the variable compression ratio approach, the mapping
from memory addresses to shadow memory is not the same
everywhere. Instead, we keep track of the alignment of mem-
ory blocks and use a higher compression ratio for objects
aligned to larger boundaries. We use two levels of shadow
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memory and, as a consequence, metadata lookups require
two memory reads. Figure 5 shows how DangSan uses this
approach to look up metadata for a pointer. As a first step,
DangSan operates a fixed compression ratio lookup to de-
termine the variable compression ratio for that particular
pointer. This shadow memory region is a form of meta-
pagetable, which stores a single eight-byte long value for
every 4096-byte memory page. Seven bytes specify a pointer
to an array of metadata for memory objects within the mem-
ory page, while the eighth byte specifies the compression
ratio to apply. Finally, we locate the metadata by computing
the offset of the original pointer in the memory page, shifting
it using the variable compression ratio and adding the base
metadata pointer for the page.

4.4 Pointer logger
The pointer logger is the most important component and
the key enabler of DangSan’s practical use-after-free detec-
tion strategy. It keeps track of the pointer locations reported
through the regptr interface and invalidates pointers to an
object when invalptrs is called.

The core insight that drives the design of our pointer
logger is the fact that the workload is write-intensive (any
store of a pointer type invokes regptr) while there are rela-
tively few reads (invalptrs is only invoked for free calls).
Moreover, there is no need to enforce consistency between
threads. Duplicate logging of the same pointer location is
not harmful and there is no need to remove pointer loca-
tions that no longer point to an object because we can verify
this at free time. We draw inspiration from log-structured file
systems [44], which are optimized for similar workloads: in-
stead of using complicated data structures requiring locks to
ensure consistency, in the common case we simply keep a
per-thread log for each memory object to which we merely
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Figure 6. Pointer logger’s main data structure

add new pointer locations. This strategy yields a lock-free
design which completes frequent (and instrumented) write
operations very quickly.

Figure 6 shows the core data structures of the pointer
logger. Any request to the pointer logger for a specific ob-
ject includes metadata that identifies the object, which the
caller can look up from a pointer using the pointer-to-object
mapper. This metadata points to the first entry in a lock-free
singly linked list of logs, one for each thread that has stored
pointers to the object. The pointer logger walks the list until
it finds the log for the current thread. If there is no log for
the current thread, it allocates a new log and adds it at the
end of the linked list. We use a compare-and-exchange in-
struction to perform this operation in a thread-safe fashion.
Since modifications to the list are rare, this design ensures
few compare-and-exchange conflicts and, as a result, good
parallelism and scalability in practice.

While the choice to use a singly linked list even in pro-
grams with many threads seems counterintuitive given its
worst-case behavior, the latter occurs only if many threads
propagate pointers to the same object. Since in practice most
memory objects are either thread-local or shared among few
threads [33], in practice operations on this list complete very
quickly even with many running threads. A design alterna-
tive would be to preallocate an array containing an entry for
every thread. This would allow O(1) lookups, but would also
incur high memory overhead because many entries would be
unused for most objects. Moreover, it would require the pro-
grammer to set an upper bound on the number of threads that
can exist simultaneously.

The pointer logger provides the regptr interface to add
a pointer by specifying the object’s metadata and the loca-
tion where the pointer is stored. In the common case, it uses
the log entries embedded in the pointer location log shown
in Figure 7. It first verifies whether the same pointer loca-
tion has been added recently by looking back a fixed (but
compile-time configurable) number of entries and, if it is
not found, adds the pointer location at the end of the log.
The look-back prevents excessive log growth in cases where
a pointer to the object is stored into the same location over
and over again (e.g., loops with a pointer iterator variable).
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In our experiments, we have chosen to use a lookback size
of four. While the optimal lookback size differs slightly be-
tween benchmarks, overall performance is generally similar
in the range between one and four, and begins to degrade
with higher numbers. We opted for four so as to save mem-
ory at near-optimal performance. Performance could be im-
proved somewhat by selecting the ideal size for each individ-
ual benchmark, but preliminary measurements suggest the
potential performance gain is not large enough to justify the
additional complexity.

If the embedded log is full, we use a hash table rather
than a log. The reasoning is that we do not want the pointer
log to grow to arbitrary sizes if there are duplicate pointers
that our look-back mechanism cannot eliminate. This way,
our design yields the good performance offered by a simple
log for the common case while preventing excessive memory
usage on pathological cases.

Whenever the program frees a memory object, the heap
tracker invokes the invalptrs functionality to invalidate
any pointers into the to-be-freed object. This function walks
through the log and, if allocated, the hash table to retrieve
all locations where pointers into the object may be stored.
For each of them, we first verify whether it still points into
the object. If a location contains a valid pointer value, we
invalidate it using a compare-and-exchange operation. This
scheme prevents a race condition where we mistakenly over-
write a new pointer written by another thread to invalidate
the old one.

There are two ways in which our check to determine
whether the pointer still points into the object could be un-
safe: an out-of-bounds pointer to another object is mistaken
for a pointer to the freed object and an integer stored at the
location where the pointer used to be happens to have the
same value as the pointer. We avoid the former case by in-
creasing all malloc allocation sizes by one byte, guarantee-
ing that a pointer to the end of an object does not point to an-
other object. Pointers that are further out of bounds result in
undefined behavior according to the C standard [3], so that,
even in the very unlikely case of accidental invalidation, we
would merely catch an additional bug.

For the latter case, values with a non-pointer type that
still take the value of a pointer within the object would

be incorrectly invalidated if they end up in a place that
previously stored a pointer to the object, but this case is
irrelevant in practice. On modern 64-bit systems, integer
values are unlikely to match any valid pointer value in the
address space, enabling type-accurate conservative garbage
collection [32]. The likelihood of a match decreases even
further for DangSan, where we need to limit the analysis to
only pointers in the target object.

A more interesting case is partial type-unsafe memory
reuse [18]. For example, this may occur when a memory lo-
cation containing a pointer value is reused by another object
to store a single byte (e.g., char) value, overwriting only its
least significant byte after reuse. The end result is a pointer-
sized value that may still match a valid address in the range
of the original pointed object. To address this problem, we
only overwrite the most significant byte when invalidating
pointer values at free time (see below). This leaves the un-
likely case of code reusing a pointer value as a pointer-sized
integer value and only initializing its most significant byte
(while leaving other bytes uninitialized). Although these hy-
pothetical instances can be further mitigated with a secure
deallocation strategy [21], we do not believe them to be of
concern in practice. We also note that these cases are not
explicitly addressed by existing solutions [51].

Another potential issue is the case where the object stor-
ing the pointer has been deallocated and its memory has been
returned to the operating system. In this case, our attempt to
read the pointer from the stored pointer location would re-
sult in a segmentation fault. For this scenario, we catch the
SIGSEGV signal and skip pointer locations that trigger this
fault (alternatively, we could use Intel TSX to catch the fault
directly in userland [34]). While this could be prevented by
removing pointers from the log whenever the memory they
are stored in is released, doing so efficiently would require
an additional data structure to keep track of pointers based
on the object they are stored in rather than just the one they
point to. Keeping this data structure up-to-date would re-
quire considerably more work on pointer propagation, re-
sulting in more overhead. Through these safeguards, we
can implement invalptrs in a way that does not result in
any false positives in practice without the need for expensive
mechanisms to track pointer deletions.

While we have discussed how to find pointers to invali-
date, we have not yet determined which value to overwrite
the original pointer with. Some prior work writes a fixed in-
valid pointer value (DangNULL [37]) while others modify
the pointer by setting bits that are not allowed in user-space
pointers (FreeSentry [51]). We opt for the latter approach,
which has the benefit of reporting a fault address that can
still be related to the original pointer if the dangling pointer
is dereferenced, making debugging easier. Moreover, some
programs such as soplex rebase pointers after a realloc
call by adding the difference between the old and the new
pointer. This approach still results in correct behavior if an



unused bit of the old pointer is set. Finally, this approach effi-
ciently mitigates the issues with partial type-unsafe memory
reuse detailed earlier. As such, we believe setting the most
significant bit (resulting in an invalid address in canonical
x86-64 form) is the most practical as well as prudent ap-
proach.

5. Implementation
We have implemented a prototype of our DangSan design
to protect C and C++ programs running on 64-bit Linux.
We implemented the pointer tracker as a compiler pass in
the LLVM compiler framework [36]. We use link-time op-
timizations (LTO) and invoke our pass through the LLVM-
gold plug-in for the GNU gold linker to run on the LLVM
bitcode of the full program. This allows our system to be
easily integrated into common build systems for C and C++
programs by simply passing compiler flags to enable LTO,
using the GNU gold linker instead of the traditional BFD
linker, and specifying a linker flag to invoke the DangSan
pointer tracker pass. Note that our design as such does not
fundamentally require LTO and could be implemented with-
out it. We used LTO to simplify the implementation and in-
tegration in existing projects.

The pointer-to-object mapper is based on the tcmal-
loc [24] memory allocator, which enforces a memory layout
that allows for efficient variable compression ratio memory
shadowing—as also observed in prior work [28, 29]. As a
consequence, we implemented our heap tracker as a tcmal-
loc extension. Finally, we implemented the pointer logger
as a static library linked against the final binary whenever
DangSan is enabled through a linker flag.

6. Optimizations
To achieve good performance and reasonable memory over-
head, we have implemented a number of optimizations in our
prototype compared to the design described in Section 4.

Even though we have designed DangSan to reduce over-
head on instrumented pointer stores, this operation is very
common and therefore still has an important impact on
performance. Furthermore, a large number of instrumented
pointer stores can result in many duplicated entries in Dan-
gSan’s pointer logs, which may lead to excessive memory
overhead and, as a side effect, performance overhead (e.g.,
due to poorer cache utilization).

To further speed up DangSan and lower its impact on
the memory footprint, we use static analysis to reduce the
number of required instrumentation hooks. We can elimi-
nate calls to regptr in two cases: loops and pointers we
know are already registered for a given object. In the case of
loops, we use an optimization inspired by prior work [51]:
if conservative static analysis shows that the loop body does
not call free (possibly through other functions), it is possi-
ble to move loop-invariant pointer registrations outside the
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Figure 8. Pointer compression

loop. This allows us to eliminate pointer registrations in lo-
cations that are overwritten before free is called.

As for pointers that we know are already registered for a
given object, we specifically consider pointers derived from
pointer arithmetic. This is justified by the fact that the C
standard considers pointers that go out of bounds to result
in undefined behavior except for the special case of point-
ing directly past the last element of an array [3]. Since we
cover this case by increasing all allocation sizes by one byte,
we know that pointer arithmetic is never allowed to cause
a pointer to point to a different memory object. As a con-
sequence, we can safely omit pointer registrations in cases
where the program merely adds to or subtracts from a stored
pointer. Since we register only the address of the pointer and
not its value, pointer arithmetic requires no updates in the
metadata. Both these optimizations reduce the number of
pointer registrations, improving run-time performance and
memory usage.

If a program does not conform to the standard and com-
putes intermediate pointers that are too far out-of-bounds, it
is possible that these pointers are registered as pointing to
another object. If that object is freed, the pointer would be
invalidated, resulting in a false positive. This could result in a
segmentation fault if the invalidated pointer is dereferenced,
revealing that the program performs nonconforming pointer
arithmetic and should thereby be fixed to ensure adherence
to the standard.

The pointer logs make up most of the memory overhead
imposed by DangSan. To reduce this overhead, it is impor-
tant to store the pointers as efficiently as possible. We use
the fact that on 64-bit x86 CPUs, the two most significant
bytes in pointers are unused for user-space pointers. If we
need to store up to three pointers that only differ in their
least significant byte, we shift the part they have in common
two bytes to the left to eliminate the zeroes and then use
the three least significant bytes to store the least significant
bytes of the three pointers. Figure 8 shows this approach to
compress pointers. This optimization can save up to a factor
three on space overhead depending on spatial and temporal
locality in pointer stores.



7. Limitations
While our design should be able to efficiently detect dan-
gling pointer vulnerabilities in practical settings, it has a few
fundamental limitations. We discuss these limitations in this
section.

Our design requires source code to be available because
we infer which stores are pointer-typed using information
from the compiler’s intermediate representation and insert
our pointer tracker instrumentation at that same level. This
information is lost after the compiler generates binary code.
While it would be possible to build a similar system that uses
only the binary code, we believe this would not result in a
practical system. There are two options to implement such
a system: using a static approach or a dynamic approach. A
static solution would perform static analysis on the binary
code to identify pointer-typed values and then rewrite the
binary to instrument stores of these values. However, static
analysis is generally unable to identify many cases where
pointers are copied without being dereferenced or passed
to library functions with pointer-typed arguments [47]. In
other words, this approach would likely result in low de-
tection coverage in practice. A dynamic solution could ef-
fectively track pointers using techniques such as taint track-
ing, which, despite efforts, still imposes significant run-time
overhead [17]. Moreover, every store would have to be in-
strumented if it is not known beforehand whether the stored
value will be of a pointer type, further increasing run-time
overhead. For this reason, we believe requiring source code
to be available is a practical (rather than fundamental) limi-
tation.

A related limitation is the fact that we cannot track meta-
data for uninstrumented shared libraries. This means that
pointers stored in those libraries will not be invalidated when
the objects they point to are freed (reducing use-after-free
detection coverage). This limitation is easy to overcome if
the source code of the libraries is available. One can sim-
ply recompile those libraries using the DangSan compiler
options.

In some particular cases, our design is not compatible
with existing unmodified software. In particular, programs
that rely on arithmetic or comparison of previously deal-
located pointers may need to be changed slightly to deal
with the fact that these pointers change. However, in cases
where the difference is computed between two old point-
ers or where two old pointers are compared, no changes are
needed because we merely set an unused bit. As such, we
provide better compatibility than solutions such as Dang-
NULL [37] that replace invalid pointers with a fixed value.
An example where changes would be needed is the use of
a hash table to rebase pointers after a call to realloc. It
should be noted that the C standard explicitly states that
pointer values become indeterminate when the object they
point into reaches the end of its lifetime [3]. Nonetheless,
we believe the strong protection offered by DangSan is suffi-

cient to justify making these minor changes in the rare cases
programs rely on undefined behavior.

DangSan is unable to track pointers that are copied in a
type-unsafe way. Examples include pointers cast to integers
and pointers copied by the memcpy function. The latter case
is important whenever realloc is used to change the size of
a buffer storing pointers. If the buffer cannot be resized in-
place, realloc uses memcpy internally to move the contents
of the buffer to their new location. As a consequence, one
can no longer identify the copied values as pointers and
invalidate them. This issue could be solved by hooking the
memcpy function and copying over metadata for any pointers
that are encountered. This can be done by looking up every
pointer-sized value in a given chunk to determine whether it
points to an object. However, we opted not to implement this
strategy as it would greatly slow down memcpy, while we
do not expect a large gain in detection coverage. Moreover,
there would be a small risk of false positives unless we verify
that the pointer locations are in the pointer log, increasing
overhead even further. For these reasons, we believe it is
not worthwhile to support type-unsafe copies of pointers.
Similar to previous solutions [37, 51], our current DangSan
prototype cannot automatically handle such copies.

We only track and invalidate pointers that are explicitly
stored in memory. This means that there are two cases in
which we do not track or invalidate pointers: pointers that
are stored in registers and pointers that are spilled onto the
stack by a function prologue to be restored to a register when
the function returns to its caller. In practice, only the latter
case is relevant because, when our free hook is called, the in-
termediate functions on the call stack have typically already
spilled all preserved registers onto the stack. Unfortunately,
however, there is no practical way to track such pointers be-
cause the callee does not know which registers were used by
the caller to store pointers. As a consequence, these pointers
are not tracked and will not be invalidated, resulting in the
possibility of false negatives. To the best of our knowledge,
this is a limitation shared with all pointer invalidation sys-
tems [37, 51], not just DangSan. A possible solution would
be to walk the stack and check all values, but this comes
with a risk of false positives. Moreover, it would be very in-
efficient if there is a deep call stack. We believe our design
ultimately achieves a reasonable compromise.

In addition to the previous point, one can also consider
the more complex case of an application with free-time race
conditions, where one thread performs the free operation
while another thread propagates the freed pointer via a reg-
ister without proper synchronization. For example, consider
the following sequence of events: thread A loads a pointer
into a register, thread B then frees the object pointed to, and
thread A then copies the pointer back into memory. In this
case, the pointer will not be invalidated. The only solution
to such race conditions in the application would be to stop
all other threads whenever a free operation is performed and



modify their state to invalidate pointers to the freed object
in each thread’s registers. This results in unacceptable over-
head, especially since the worst-case impact of this race con-
dition is just a false negative. As such, we consider this limi-
tation inherent in pointer invalidation approaches. Nonethe-
less, our lockless approach makes the probability of this
race condition slightly higher because the freeing thread may
miss a newly propagated pointer added in a list slot that was
already invalidated. In addition, our approach requires care-
ful reuse of per-object metadata structures to prevent such
race conditions from breaching metadata integrity. We be-
lieve our design is worthwhile as the risk of false negatives
is inherent in pointer invalidation and our approach has the
great benefit of preventing the need for synchronization in
all cases.

8. Evaluation
In our evaluation, we compare programs instrumented
by DangSan against a baseline configuration without
instrumentation. We compiled both configurations with
Clang 3.8 [36] using link-time optimization, which im-
plies the maximum optimization level. We use the tcmal-
loc [24] allocator for both configurations to report unbiased
results, given that tcmalloc generally introduces a speedup
that should not be attributed to DangSan. We ran our bench-
marks on Intel Xeon E5-2630 machines with 16 cores at 2.40
GHz and 128 GB of memory, running the 64-bit CentOS
7.2.1511 Linux distribution.

8.1 Effectiveness
To test whether DangSan can effectively mitigate use-after-
free vulnerabilities in real-world applications, we instru-
mented three programs with known use-after-free vulnera-
bilities and ran exploits to determine whether they were still
vulnerable. We specifically selected programs with publicly
available exploits. In all cases, DangSan prevented the pos-
sibility of an attack.

For the OpenSSL [9] client we tested CVE-2010-
2939 [5], a double free vulnerability with critical security
impact. Rather than corrupting the client’s memory, it caused
the program to terminate prematurely:

src/tcmalloc.cc:290] Attempt to free invalid
pointer 0x80000000022ba510

The address in the message shows that our system cor-
rectly set the most significant bit of the dangling pointer and
prevented the vulnerability from being exploitable.

We also tested CVE-2016-4077 [6] for Wireshark and a
use-after-free vulnerability [8] on the Open Litespeed web
server and found that, in both cases, dangling pointer invali-
dation crashes the program when the attacker tries to deref-
erence the dangling pointer.

8.2 Performance and scalability
To measure the performance impact of DangSan, we ran a
number of demanding CPU-intensive benchmarks, compar-
ing the run time between an uninstrumented baseline version
and a version protected by DangSan. In particular, we used
the SPEC CPU2006 [31] benchmarking suite to test single-
threaded performance and PARSEC [15] and SPLASH-
2X [11] to test scalability to an increasing number of threads.
We also tested the Apache 2.2.23 [1], Nginx 1.11.4 [7], and
Cherokee [4] web servers with the ApacheBench [2] work-
load to show that our system works efficiently on modern
multithreaded applications.

The performance results for the C and C++ programs of
the SPEC CPU2006 benchmark suite are presented in Fig-
ure 9 and compared against the results reported by Dang-
NULL [37] and FreeSentry [51]. The DangNULL results
were estimated from the graph in the paper, while we re-
ceived the raw data for an LLVM-based version of Free-
Sentry from its author. It should be noted that FreeSentry’s
numbers are measured with CIL, the platform the system
is built on, as a baseline. Unfortunately, we were unable
to rerun these systems on our own machine as no source
is available for DangNULL and the public source for Free-
Sentry is less optimized than the one measured in the paper.
However, the overheads should be reasonably comparable
given that they are all normalized to a baseline run on the
same system. DangNULL did not report results for libquan-
tum, perlbench, dealII, and omnetpp. FreeSentry only re-
ports a few SPEC CPU2006 benchmarks because they used
the older CPU2000 where those were available. Unfortu-
nately, however, these are not comparable to CPU2006 be-
cause CPU2000 uses simpler input files for its benchmarks.
Our geometric mean over all benchmarks is 1.41, a slow-
down of 41%. However, this includes omnetpp, a challeng-
ing memory-intensive benchmark that neither of the other
systems evaluated. Therefore, to compare performance it is
most appropriate to compare geometric means over inter-
section of the sets of benchmarks used by systems being
compared. The geometric mean over the benchmarks run by
DangNULL is a 55% slowdown while DangSan has a slow-
down of just 22% over those same benchmarks. The geomet-
ric mean for FreeSentry is 30% and our own geometric mean
over the same set of benchmarks is just 23%. Therefore,
we conclude that we achieve much better performance than
DangNULL, which also supports threads and does not track
stack pointers, while we perform at par with FreeSentry de-
spite its lack of support for multithreading.

We present scalability results for PARSEC and SPLASH-
2X in Figure 10. Unfortunately, we could not run all bench-
marks because many would not compile with LLVM due to
nonstandard C/C++ language constructs. Note that this is not
due to DangSan, as even the LLVM baseline does not com-
pile. On almost all benchmarks, DangSan scales nearly as
well as the baseline. The exceptions are Barnes and Canneal,
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Figure 9. Performance overhead on SPEC CPU2006

where the baseline performance levels off while DangSan
slows down as many threads are used. In practical situations,
this would not make much of a difference as there is no rea-
son to add threads if it does not improve the baseline perfor-
mance (for example, with Barnes the baseline performs best
at 32 threads with a runtime of 11.0s, but is already at 11.8s
with 16 threads). There is a substantial negative overhead
for Vips, which we believe may be due to systematic mea-
surement error [38]. The geometric mean over the included
benchmarks is 12.4% for one thread, and remains within the
narrow range 17.3%-20.7% for 2-16 threads. It increases af-
terwards (29.7% for 32 and 33.6% for 64 threads), but it
should be noted that the baseline is barely faster than for 16
threads in these cases on our system, which means that these
configurations would be unlikely in practice. As such, we
conclude that DangSan has reasonable overhead and good
scalability on multithreaded workloads.

We benchmarked both web servers using Apachebench
with the following settings: 128 concurrent connections in
the client, 100000 requests issued, 32 worker threads and
one worker process in the server. We have chosen this config-
uration to ensure a large amount of concurrency in the web
server process to stress DangSan’s multithreading ability.
We transfer a very small file (44 bytes) locally to reduce I/O
to a minimum and stress the CPU so as to provide a conser-
vative estimate of the overhead incurred by DangSan. With
Apache, we achieve 35634 requests per second on the base-
line and 28274 when using DangSan. This corresponds with
a slowdown of 21%. Nginx handles 11931 requests per sec-
ond in the baseline and 8331 requests per second when using
DangSan, corresponding with a slowdown of 30%. Chero-
kee handles 100155 requests per second in the baseline and

99841 with DangSan, a negligible slowdown. These num-
bers are similar to the results achieved on SPEC CPU2006
and show that DangSan is able to scale to programs with
substantial concurrency.

8.3 Memory overhead
To determine the impact of our system on memory usage, we
have measured the mean resident set size (RSS) while run-
ning the SPEC CPU2006 benchmark suite and the Apache
and Nginx servers.

Figure 11 shows memory overhead for SPEC CPU2006.
We have included memory overhead reported by Dang-
NULL, while unfortunately FreeSentry does not report its
memory overhead. The results show that pointer tracking can
be very memory-intensive, especially for applications such
as omnetpp that perform many allocations and keep many
pointers to the allocated blocks of memory (see Table 1).
This is the case for both DangSan and DangNULL. The ge-
ometric mean for DangSan is 2.4x memory overhead. The
geometric mean for DangNULL is 2.3x, but they did not run
some of the most memory-intensive benchmarks. The ge-
ometric mean for DangSan for the benchmarks reported by
DangNULL is 1.8x. While this memory overhead is substan-
tial, we improve overall memory overhead compared to the
state of the art and we believe the overhead is worthwhile
for the strong protection offered. Moreover, as we will show
in Section 8.4, DangSan tracks and invalidates many more
pointers than DangNULL does, so the memory overhead per
pointer is actually much lower.

Figure 12 shows memory usage for PARSEC and
SPLASH-2X measured as the maximum resident set size
(RSS). Memory overhead differs greatly between bench-
marks, but generally the number of threads does not have
a strong impact. The main exception is water_nsquared,
where memory overhead grows from 117.8% at one thread
to 609.2% at 64 threads. This is due to the fact that it allo-
cates a number of objects that is proportional to the num-
ber of threads and never frees most of them. While most
benchmarks have low memory overhead, freqmine stands
out for having 471.2% overhead, regardless of the number
of threads. This is due to it propagating many pointers, even
though the number of memory objects is not very large. As
such, almost all of the memory is in the hash tables that hold
these pointers. The geometric mean memory overhead over
all benchmarks is 56.3% for a single thread, gradually grows
to 66.6% for 16 threads and levels off. As such, we believe
memory overhead not to be an issue for scalability to many
threads.

To benchmark server memory overhead, we used the
same configurations as in Section 8.2 and measured the
mean RSS. Apache uses 40MB in the baseline configura-
tion and 179MB when protected by DangSan. This means
the memory overhead is 4.5x. For Nginx, the baseline uses
20MB while DangSan uses 36MB, resulting in an overhead
of 1.8x. Cherokee uses 137MB in the baseline and 148MB



Figure 10. Scalability on PARSEC and SPLASH-2X
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Figure 11. Memory overhead on SPEC CPU2006

with DangSan, corresponding with 1.1x. While the relative
memory overhead on these servers is significant, it is im-

portant to note that in absolute numbers these amounts of
memory should not matter much in typical server settings.

8.4 Coverage and statistics
Table 1 shows how many memory objects (# obj alloc) and
pointers (# ptrs) we track and how many pointers we in-
validated (# inval). We compare our results against Dang-
NULL [37]. Unfortunately, no statistics are available for
FreeSentry [51] to compare against. The table shows that,
despite much lower overhead, we manage to invalidate many
more pointers than DangNULL, providing better security.
We manage to identify dangling pointers in nearly every pro-
gram while DangNULL fails to do so in many cases, provid-
ing no additional security. Moreover, in all cases where both
programs invalidate pointers, DangSan clears more than 100
times as many as DangNULL does. The differences are
likely due to the fact that DangNULL can only track pointers
stored on the heap while DangSan can track pointers stored
in any area of memory. The fact that we offer both better per-
formance and much better coverage demonstrates that our
system can handle pointer registrations very efficiently.

In addition, Table 1 shows statistics about our approach
itself. The number of hash tables allocated (# hashtable) is
usually much smaller than the number of objects allocated.
This means that many objects have only few pointers to them



Figure 12. Memory usage on PARSEC and SPLASH2X

stored in memory, allowing them all to be stored in the static
log allocated by default. The only benchmark that requires
more than a million hash tables is omnetpp, which allocates
a very large number of objects and stores a large number of
pointers for almost half of those objects. This explains the
relatively high memory overhead for this particular bench-
mark. The number of stale pointers listed in the table (#
stale) indicates how many pointers were in the log for an
object, but no longer referenced that object at free time. This
differs greatly between benchmarks. milc stands out for hav-
ing only six pointers invalidated, but almost a billion stale
pointers. This means that pointers are often overwritten with
pointers to other objects. In this case our design saves run-
time overhead, because we do not need to remove the stale
pointers from the log, but incurs additional memory over-
head because we store pointers that are no longer relevant.
Finally, the number of duplicate pointers (# dup) indicates
how many pointers were prevented from being stored multi-
ple times by our lookback and hash table. The extreme num-
ber of duplicate pointers for benchmarks such as perlbench
shows that these mechanisms in our design are necessary to
prevent near-unbounded memory consumption if only a log
were used.

9. Related Work
There are several ways to automatically defend programs
against use-after-free exploits: pointer invalidation systems,
systems that check pointer dereferences, secure memory al-
locators, static analysis, taint tracking, and garbage collec-
tion. In this section we discuss each type of defense to com-
pare their effectiveness and practicality against DangSan.

Pointer invalidation The closest to our design are Dang-
NULL [37] and FreeSentry [51] which, like DangSan, keep
track of pointers to each object and invalidate them once
an object is freed. However, these systems have important
limitations that hinder practicals adoption. DangNULL can
only track pointers that are themselves embedded in heap ob-
jects, which means that it cannot invalidate pointers stored
on the stack or in global memory. DangSan, on the other
hand, is able to track pointers anywhere in memory. An-
other issue with DangNULL is the fact that it incurs consid-
erably higher overhead compared to DangSan, despite the
much smaller number of pointers it invalidates. Moreover,
it uses data structures that require locking. Although the au-
thors did not measure scalability, we expect DangSan’s lock-
free design to naturally scale much better to a large number
of threads. FreeSentry [51] can track all pointers and offers
run-time overhead comparable to ours, but it cannot sup-



benchmark DangSan DangNULL
# obj alloc # hashtable # ptrs # inval # stale # dup # obj alloc # ptrs # inval

400.perlbench 350m 380k 40490m 362m 53m 31557m
401.bzip2 258 0 2200k 108 90 1868k 7 0 0
403.gcc 28m 524k 7170m 76m 110m 6738m 165k 3167k 14k
429.mcf 20 3 7658m 0 56m 7602m 2 0 0
433.milc 6530 6128 2585m 6 977m 1600m 38 0 0
444.namd 1339 0 2970k 3148 2159 1864k 964 0 0
445.gobmk 622k 15 607m 687k 46k 597m 12k 0 0
447.dealII 151m 49 117m 27m 3975k 4220k
450.soplex 236k 18k 836m 2913k 45m 785m 1k 14k 140
453.povray 2427k 281 4679m 2218k 1565k 4457m 15k 7923k 6k
456.hmmer 2394k 56 3829k 1669k 100k 2040k 84k 0 0
458.sjeng 20 0 4 0 0 0 1 0 0
462.libquantum 164 0 130 16 49 30 49 0 0
464.h264ref 178k 271 11m 318k 125k 5164k 9k 906 101
470.lbm 19 0 6004 0 2 3002 2 0 0
471.omnetpp 267m 104m 13099m 36m 3421m 9207m
473.astar 4800k 207k 1235m 11m 111m 1110m 130k 2k 20
482.sphinx3 14m 2910 302m 9880k 476k 280m 6k 814k 0
483.xalancbmk 135m 342k 2387m 152m 157m 1450m 28k 256k 10k

Table 1. Statistics for SPEC CPU2006.

port multithreaded programs, including important classes of
vulnerable applications such as servers and browsers. While
locking could be added to their design to preserve consis-
tency of their shared data structures, it is to be expected that
this would dramatically increase their overhead. DangSan,
on the other hand, has been designed from the ground up to
deal with concurrency efficiently.

Pointer dereference checking Some other systems to de-
fend against dangling pointer exploits also track which re-
gions are allocated, but perform checks when pointers are
dereferenced rather than invalidating them when they are
deallocated. CETS [39] attaches a label to each allocation
and performs a check when the allocated pointer is derefer-
enced. While this approach is very complete, covering even
cases where pointers are temporarily converted into inte-
gers, it imposes a higher run-time overhead compared to
pointer invalidation systems. Moreover, it is prone to false
positives and has poorer compatibility than competing so-
lutions [37, 51]. For these reasons, we believe this class of
detection systems to be less suitable for practical adoption.

Secure memory allocators Another class of systems that
defends against various classes of memory errors including
use-after-free are systems based on secure memory alloca-
tors. These systems do not track individual allocations but
rather try to prevent allocated objects from ending up at the
same address as previously freed objects. Typical examples
are DieHard [14], DieHarder [40], Cling [12], and Address-
Sanitizer [45]. While these systems can effectively detect ac-
cidental use-after-free operations and some of them achieve
reasonably low overheads, they are less suitable as detec-

tion systems against deliberate attacks. For example, Lee at
al. [37] have shown that these systems allow the attacker to
force the reuse of a freed memory region.

Static analysis While the approaches discussed so far op-
erate at run time, it is also possible to use purely static tech-
niques to detect use-after-free vulnerabilities. GUEB [23] is
an example of this approach. The main benefit of using only
static analysis is that no performance overhead is imposed
during the execution. Unfortunately, however, purely static
approaches can only recognize relatively simple cases and
are therefore inherently prone to false negatives. Moreover,
GUEB only targets small programs. While static approaches
are very suitable as a way to find some vulnerabilities in
a fully automated fashion, they need to be complemented
by dynamic approaches to harden software against attacks
based on residual vulnerabilities.

Taint tracking Approaches based on taint tracking do not
use the programmer-assigned variable types to determine
which values are pointers, but instead track the pointer value
from its allocation site onward. An example of taint tracking
being applied to dangling pointers is Undangle [19]. This ap-
proach has the benefit of avoiding the loss of metadata when
pointers are copied in a type-unsafe way and can therefore
achieve very good protection. Nevertheless, cases that cause
taint propagation and thus dynamic pointer tracking to fail
do exist in practice [46], resulting in incomplete use-after-
free detection coverage. In addition, the taint tracking over-
head is too high for production usage.



Garbage collection There are various safe programming
languages that aim to replace the traditional C/C++ lan-
guages in such a way that common temporal memory er-
rors are unlikely or even impossible. One typical example is
Java [42]. To solve the problem of dangling pointers, these
languages often rely on garbage collection rather than on ex-
plicit freeing of memory. As a consequence, dangling point-
ers cause the object they point to to remain allocated, con-
verting the problem into a less exploitable memory leak in-
stead. Rust [10] takes an intermediate approach, letting the
programmer manage memory but providing smart pointer
primitives that allow the programmer to do efficient garbage
collection in specific cases. However, while these solutions
are suitable for many newly created application programs,
using them for existing software with precise garbage col-
lection semantics requires a nontrivial porting effort for sys-
tems programs [43].

A more viable alternative is to use conservative garbage
collection libraries tailored to C/C++ programs. For exam-
ple, the Boehm garbage collector [16] provides a dedicated
memory allocation API that offers conservative garbage col-
lection. Although this alleviates the porting effort, semantic
differences between the memory allocation interfaces may
mean that it still requires a significant porting effort for large
programs. In addition, compared to DangSan, conservative
garbage collection is more prone to false positives due to
type accuracy issues (although this risk is still small on 64-
bit systems [32]) and can introduce other security problems,
for example, providing attackers with a side channel (al-
though others exist [18, 27, 41]) to bypass address space
layout randomization (ASLR) [30]. Finally, garbage collec-
tion in general offers poor use-after-free detection guaran-
tees, leaving a window of vulnerability between free and
pointer invalidation operations.

10. Conclusion
Although use-after-frees are a major threat to systems se-
curity, no existing detection system is both practical, com-
plete, and applicable to widespread multithreaded applica-
tions. To address all these concerns, we presented DangSan,
a new use-after-free detection system based on pointer track-
ing and invalidation. Our design relies on efficient variable
compression ratio memory shadowing and on scalable per-
thread pointer logs inspired by the way log-structured file
systems operate. As a result, DangSan is as efficient as ex-
isting detection systems that do not support multithread-
ing, and much more efficient and scalable than state-of-the-
art multithreaded solutions despite tracking and invalidating
many more pointers. To foster further research in the field,
we have made the source code of our DangSan prototype
available as open source at https://github.com/vusec/
dangsan.
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