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ABSTRACT

Combining the strengths of individual fuzzing methods is an ap-
pealing idea to find software faults more efficiently, especially when
the computing budget is limited. In prior work, ENFuzz introduced
the idea of ensemble fuzzing and devised three heuristics to classify
properties of fuzzers in terms of diversity. Based on these heuristics,
the authors manually picked a combination of different fuzzers that
collaborate.

In this paper, we generalize this idea by collecting and applying
empirical data from single, isolated fuzzer runs to automatically
identify a set of fuzzers that complement each other when exe-
cuted collaboratively. To this end, we present CUPID, a collaborative
fuzzing framework allowing automated, data-driven selection of
multiple complementary fuzzers for parallelized and distributed
fuzzing. We evaluate the automatically selected target-independent
combination of fuzzers by CupID on Google’s fuzzer-test-suite, a
collection of real-world binaries, as well as on the synthetic Lava-M
dataset. We find that CupIp outperforms two expert-guided, target-
specific and hand-picked combinations on Google’s fuzzer-test-suite
in terms of branch coverage, and improves bug finding on Lava-M
by 10%. Most importantly, we improve the latency for obtaining
95% and 99% of the coverage by 90% and 64%, respectively. Fur-
thermore, CuprID reduces the amount of CPU hours needed to find
a high-performing combination of fuzzers by multiple orders of
magnitude compared to an exhaustive evaluation.

CCS CONCEPTS

« Security and privacy — Software security engineering; «
Software and its engineering — Software testing and debug-
ging.
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1 INTRODUCTION

In recent years, fuzzing has become an essential tool for finding
bugs and vulnerabilities in software. Fuzzers such as AFL [29] and

HonggFuzz [12] have successfully been applied in practice to gener-
ate inputs to find bugs in a large number of applications [24]. Recent
work in fuzzing [1, 4, 15, 23, 25, 28] has focused on improving test
case generation by implementing new input mutation and branch
constraint solving techniques.

Since it is common to use automated bug-finding tools to find
newly introduced bugs in software development scenarios (e.g., on
every new commit/release), in pentesting scenarios (e.g., to find
evidence of vulnerabilities), or in server consolidation scenarios
(e.g., where spare CPU cycles can be dedicated to fuzzing), pro-
ducing results in bounded time is crucial. Consequently, we target
practical use cases where the time budget available for fuzzing
is limited and it may be difficult to saturate coverage within that
budget. It is, thus, important to look at how existing tools can be
utilized more efficiently. Large-scale fuzzing campaigns, such as
OSS-Fuzz [24], have shown that fuzzing scales well with additional
computing resources towards finding security-relevant bugs in soft-
ware. Moreover, researchers further improved the speed of fuzzing
by parallelizing and distributing the fuzzing workload [17, 18, 29].
Typically, in these setups, multiple instances of the same fuzzer
run in parallel, where the findings are periodically synchronized
between these fuzzers [24]. In contrast, ENFuzz [5] demonstrated
that running different fuzzers in combination leads to a noticeable
variation in performance, paving the way for further improvement.
Intuitively, this stems from the fact that fuzzers that have differ-
ent properties and advantages in some areas (e.g., certain types of
binaries or conditions) often come with disadvantages in others.
Hence, a collaborative fuzzing run using a combination of fuzzers
with different abilities can outperform multiple instances of the
same fuzzer. ENFuzz explored this idea and the authors introduced
heuristics that can be used to select different fuzzers that cooperate
to find bugs more efficiently.

We generalize this idea and show that, given a set of existing
fuzzers and a number of cores, selecting a good mix of fuzzers is a
non-trivial but crucial step in maximizing the overall performance
of a collaborative fuzzing process. To achieve this, we develop a
framework called CupID to optimize a collaborative fuzzing run by
automatically predicting which fuzzer combinations will perform
well together. We show that data from a single, isolated fuzzing
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campaign on a representative set of branches can be used to estimate
which fuzzers complement each other and maximize code coverage
in a collaborative fuzzing run on unknown binaries.

In an extensive evaluation on different data sets and more than
40,000 CPU hours spent, we not only show that our prediction
on how well fuzzer combinations will perform together closely
resembles real-world results, but we also show that our proposed
one-off data-driven and automatic prediction results in a fuzzer
combination that clearly outperforms two different expert-guided
and hand-picked combinations selected by ENFuzz in regards to
branch coverage, bug finding, and latency to find coverage. Further-
more, finding a high-performing combination of fuzzers takes linear
time and, compared to an exponentially growing exhaustive search,
reduces the computation time by multiple orders of magnitude.

In this paper, we make the following contributions:

e We demonstrate that a high-performing combination of
fuzzers can be predicted by measuring the single, isolated
performance of fuzzers on real-world binaries. Based on this
insight, we develop CuPID, an extensible and scalable tool to
predict high-performing collaborative fuzzer combinations.

e We present and evaluate a novel complementarity metric for
calculating how well multiple fuzzers collaborate.

e We demonstrate how our data-driven approach allows for a
linearly scaling, automated fuzzer selection process, avoid-
ing the need for expert guidance as well as avoiding expo-
nentially growing exhaustive search (and in comparison,
reducing the number of necessary CPU hours by multiple
orders of magnitude).

2 BACKGROUND

Fuzzing is the process of automatically finding bugs by generat-
ing randomly mutated inputs and observing the behavior of the
application under test [21]. Current fuzzers are mainly coverage-
guided [29], meaning that they try to generate inputs to maxi-
mize code coverage. The ever-growing code size of projects like
web browsers require developers to scale performance by running
fuzzers in parallel [18, 24, 29]. When automatically testing heavy-
weight applications like Chrome, with over 25 million lines of
code [6], it is clear that fuzzing tools need to utilize multi-core
and distributed systems to maximize code coverage and to increase
the likelihood of finding bugs. This strategy is already in use, e.g.,
by the ClusterFuzz project [24].

For this purpose, fuzzers like AFL ship with a parallel-mode [18,
29], where multiple AFL instances share a corpus and thus syn-
chronize their efforts. Although this approach does indeed increase
code coverage, it does not solve some of the limitations inherent
to a specific fuzzer in question. For example, when plain AFL has
difficulties solving magic bytes comparisons, multiple instances of
AFL will still have a low probability of solving these conditions.

To counter the limitations imposed by using one single type of
fuzzer, ENFuzz [5] introduces ensemble fuzzing. The authors demon-
strate that combining a diverse set of fuzzers leads to greater code
coverage compared to running multiple instances of the same fuzzer.
The boost in performance seems to stem from the symbiosis of the
different fuzzing techniques, where the combination of fuzzers are
more likely to cancel out individual disadvantages, while retaining
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Figure 1: Overview of CUPID and its different components.

their strengths. Thus, it is important to find a high-performing
combination of fuzzers to maximize the expected return.

3 OVERVIEW

Prior to our work, there were two main approaches for finding
a high-performing combination of fuzzers: (1) evaluating a hand-
picked selection of fuzzers, or (2) exhaustively evaluating every
possible combination of fuzzers on a number of applications. Both
approaches come with multiple downsides:

(1) Hand-picking combinations requires expert knowledge of
fuzzers and thus demands significant manual effort. Addi-
tionally, this process is likely to introduce human biases.

(2) An exhaustive evaluation requires a number of fuzzing runs
that grows exponentially with the size of the combination
and the number of fuzzers to test. This amount of compute
quickly reaches infeasible levels.

With CupIp, we propose a scalable solution that requires no
human expertise in judging the performance of fuzzers and only lin-
ear computation time in the number of fuzzers. This is achieved
by evaluating fuzzers individually to collect information on their
performance, while only simulating the collaborative aspect. We
show that, given this data, it is possible to predict an approximate
performance ranking of fuzzer combinations in a collaborative set-
ting, which CuPID uses to select a diverse and high-performing
combination of fuzzers. As this data has to only be collected once
per fuzzer in isolation, adding new fuzzers does not lead to an
exponential growth of necessary evaluation runs. In addition, it
is not necessary to run additional evaluations when, for example,
the available number of CPU cores change. After the individual
fuzzer evaluation, CUPID is able to predict a likely candidate for
the highest-performing combination in a matter of seconds for all
practically relevant combination sizes.

An overview of our approach is shown in Figure 1. CupID is split
into a one-time offline phase to determine a likely candidate for a
generally applicable high-performing combination of fuzzers, which
is then used in future fuzzing scenarios (the online phase). The core
idea behind the one-off training phase is to collect data on how well
the single, isolated fuzzers perform on a representative set of real-
world binaries, which would allow us to predict a complementary
combination of fuzzers that would work independently of the future
fuzzing targets. While we cannot prove that there exists such a
universally representative set of binaries, our experiments show
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Figure 2: Different paths solved by fuzzer (A) and fuzzer (B)
even after multiple runs.

how we were able to select a training set that enabled CupID to
select a fuzzer combination that performed well on a broad range
of previously unseen test binaries.

4 DESIGN

When automatically searching for a high-performing combination
of fuzzers for a collaborative fuzzing campaign, we not only need
to define what constitutes a high-performing combination, but
also how it could be calculated and predicted using a data-driven
approach without guidance by a human.

Intuitively, fuzzers that reach different parts of the program
under test should benefit from sharing their progress, since they
will provide each other with new seed files that the other would
possibly never find (i.e., they are complementary). However, several
instances of the same fuzzer can also benefit from each other, as
their cooperation increases the chance to solve branches in a given
time-frame, i.e., their cooperation increases the average speed in
which they solve branches. In real-world scenarios, however, fuzzer
combinations neither show completely identical behavior nor are
they completely orthogonal—it is thus our goal to find candidates
with a high degree of complementarity.

4.1 Complementary Fuzzers

ENFuzz bases their prediction on the idea that the diversity of
fuzzers is paramount, i.e., using as many different strong fuzzers
as possible. While we agree with this approach in principle (Cupip
applies diversity as a selection criteria), we improve upon this by
ranking fuzzers based on a criteria that we call complementarity
of fuzzers. To conceptualize what constitutes a complementary
combination of fuzzers, we need to discuss several key questions:

(a) Why not run multiple instances of the best fuzzer?
(b) Why not just select for diversity?
(c) When are fuzzers complementary in practice?

To answer question (a), we refer to Figure 2. This figure illus-
trates a simplified example of two fuzzers (A and B) visiting two
different paths of the program space. Suppose that, in this scenario,
our performance data suggests that these fuzzers will always take
these paths, and assuming that we have two CPU cores for fuzzing
(combination of size two) to run collaboratively, there are only three
available combinations to run: (1) A and A, (2) B and B, (3) A and B.

In this example, simply going by the number of basic blocks
covered by each single fuzzer individually, one would erroneously
predict option (1) as the best choice. However, as fuzzer A will

always take the same path in this example, two instances of the
same fuzzer will not increase code coverage. In fact, they would
still find the same four basic blocks. Thus, the addition of more
resources (CPU cores) would not result in better performance. This
issue also affects option (2). In option (3), however, both fuzzers are
diverse as well as complementary and contribute seeds the other
is unable to generate. A collaborative run between the two would
lead to a total code coverage of six basic blocks.

Although this clear-cut split between two fuzzers rarely happens
in real-world scenarios, it illustrates an important point: running
the best-performing fuzzer is the best choice in single-instance
mode, but when two (or more) fuzzers run collaboratively, we want
them to maximize code coverage. As such, we want the union of
their coverage to add up to the maximum possible value—which is
the case when they complement each other well.

To answer research question (b), i.e., why we should not just
select for diversity, we refer back to Figure 2. In this case, the com-
bination of two different fuzzers led to the best possible outcome,
because they are guaranteed to cover the same basic blocks every
time, an assumption highly unlikely in the real world. Suppose, as a
very simplified example, fuzzer A can only solve the illustrated four
branches in 5% of its runs, and fuzzer B solves its three branches
in 60% of its runs. Although fuzzer A could potentially solve more
branches than B (four vs. three), it is unlikely for this to happen. The
expected number of branches that fuzzer A solves is 0.05 - 4 = 0.2.
On the other hand, it is likely for fuzzer B to solve three branches,
leading to an expected average number of branches of 0.6 - 3 = 1.8.

In this modified scenario, judging the performance of a combina-
tion of fuzzers is more complicated. Although only the combination
of fuzzers A and B could reach the highest possible coverage (the
union of the branches they can only reach in collaboration), this
scenario is unlikely given the probabilities above. That is, in the
average run, fuzzer A will not contribute any new branches due
to their low probabilities. In contrast, fuzzer B has a more consis-
tent performance. Regarding the combinations of two instances of
fuzzer A, the expected average number of branches would still be
low, whereas the two instances of fuzzer B would actually maximize
the expected average number of branches. In this case, diversity on
its own did not lead to the choice of the best fuzzer combination.

Thus, to answer research question (c), the complementarity met-
ric measures the degree in which multiple fuzzers are complemen-
tary, i.e., the union of the expected mean code coverage. As such, we
consider a combination to be high-performing (highly complemen-
tary), if the combination, on average, is expected to maximize code
coverage in the shortest amount of time.

In conclusion, our approach called CuPID combines the advan-
tages of both the data-driven complementarity metric as outlined in
this work, as well as the diversity heuristic as outlined by ENFuzz.
CuPID uses complementarity to automatically rank combinations
by their predicted performance, and applies the diversity heuristic
to select a single high-performing combination of fuzzers. Specifi-
cally, given the noise in the training data and the fact that CupPID’s
predictions are estimates, we consider two combinations to be rea-
sonably similar if the difference in their predicted performances
is less than 5%. As such, we collectively classify all combinations
that are similar to the top-ranking combination as high-ranking.
Cupip selects the highest ranked, most diverse combination out of
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Figure 3: Actual probabilities (first two images) and predicted synchronized probabilities for the branches in FREETYPE2 when
combining HoNGGFUzz and LI1BFUZZER. Every cell represents a single branch. The alpha value of a cell represents the probabil-
ity that this branch will be solved by this fuzzer (or fuzzer combination). For illustration purposes, we only selected an excerpt
of all branches to make the differences visually distinguishable.

those high-ranking combinations. Intuitively, given two combina-
tions that are predicted to perform similarly well, we should err on
the side of diversity and choose the combination with the greatest
number of different fuzzers, as this combination is less likely to be
negatively affected in case of an underperforming fuzzer on some
binaries (i.e., while maintaining a similar performance, a combina-
tion consisting of more different fuzzers makes it more unlikely
that all of them will fail on a given branch).

4.2 Predicting high-performing fuzzer
combinations

In theory, collecting data on how well fuzzers perform on a diverse
set of branches is valuable information for assessing how comple-
mentary a combination of fuzzers is. If we assume that the set of
branches in this training phase was representative of real-world
binaries, we should be able to approximate which combination of
fuzzers, on average, would have the best chance of maximizing
code coverage in future runs on unknown binaries. Note that we
only need to make this prediction once when a new fuzzer is intro-
duced to the framework—the resulting choice of a specific fuzzer
combination is, on average, likely to perform reasonably well in
future collaborative fuzzing runs, independent of the binary. Given
this data, we calculate which fuzzers would be complementary. Fur-
thermore, we predict a ranking of all possible fuzzer combinations
and then select a high-performing combination of fuzzers. The
accuracy of the prediction, however, is dependent on the quality
of the training data, i.e., if the training data reflects the mixture
of branches seen outside of the training data reasonably well, our
prediction is more likely to hold true on unknown binaries.

To make these predictions, CUPID assumes a collaborative fuzzing
model, in which every fuzzer starts with the same seed and has
some limited time frame to fuzz on their own, after which they
share their seed files (synchronization). Afterward, each fuzzer con-
tinues on their own until the next synchronization happens. This is
similar to real-world scenarios, as multiple fuzzers in parallel will
start with the same seeds and try to solve the same branches reach-
able from these seeds. With a growing number of collaborating
fuzzers, more parallel attempts are made at solving these branches.

The likelihood of one branch being solved by multiple collab-
orating fuzzers in the given time period can be calculated by the
probability that at least one of the fuzzers will solve this branch.
For example, assume the collaborating fuzzers A and B both have

a probability of 50% for solving a branch in the given time period,
then the total predicted probability for this branch would be 75%.
That is, the branch would only not be solved if both fuzzers failed
to do so, which would only happen with a predicted probability of
25%, see Equation 1.

BranchProbp(b) =1 — 1_[(1 - by) (1)
feF

where F are the collaborating fuzzers, b the branch we want to
calculate the combined probability for, and by the probability of
fuzzer f for solving branch b. This calculates the probability on a
branch-basis, i.e., how likely it is that these collaborating fuzzers
would solve this branch in the given time period.

To calculate how well fuzzers complement each other in total, we
calculate the sum of all of their branch predictions (see Equation 2):

AverageBranchCoup = Z BranchProbp(b) (2)
beB

where F are the collaborating fuzzers, and B are all branches. This
represents the expected average number of branches that would be
solved by the collaborating fuzzers.

With this approach, we do not just calculate how many different
branches two fuzzers would find—as we run multiple fuzzers in
parallel, inevitably the probability of solving a branch will increase
if the branch probability was greater than zero and less than one.
Hence, two instances of the same fuzzer will also complement each
other to a certain degree, which is in line with real-world scenarios,
where it is expected that multiple synchronized instances of the
same fuzzer will outperform a single instance.

Although this design choice tries to maximize the expected av-
erage branch coverage, it also inherently selects for branches that
only one fuzzer can solve (rare branches). As an example, assume
fuzzer A can solve a branch with probability 0.9. Two instances of
this fuzzer would, given the above formula, achieve a probability of
0.99 for solving this branch, an increase of only 0.09. However, given
a fuzzer B that can solve a different rare branch with a probability
of only 0.2, the combination of A and B would increase the expected
average branch coverage by 0.2 as opposed to 0.09. As seen in this
case, CuPID leans toward fuzzers that solve rare branches if these
fuzzers would increase the expected average branch coverage more
than fuzzers with higher overall probabilities.
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Figure 4: CuPID lets every fuzzer work on a diverse and rep-
resentative set of branches to extract a probability map of
how often a fuzzer was able to solve a branch in a limited
time frame.

Note that one of our goals is to increase the return on investment,
which can be simply translated into maximizing coverage per time.
We achieve this only due to the way we collect the training data. By
limiting the time fuzzers have, we condition our selection process
to prefer faster fuzzers.

With these design choices, CupID balances two important aspects
of selecting fuzzers: (1) due to the complementarity metric, CurID
selects fuzzers that solve different branches, i.e., maximizes the total
coverage; and (2) due to the way we perform data collection, CupID
selects fuzzers that are faster at finding coverage.

As an illustration of the results of the complementarity metric,
refer to Figure 3. This figure depicts an excerpt of the resulting
probabilities by all three possible combinations of two collaborating
fuzzers (HONGGFUZz, L1BFUZZER) while fuzzing FREETYPE2. Each cell
represents a specific branch. For each cell, a darker color represents
a higher probability. In this case, the combined predicted bitmap of
two different fuzzers is the best combination. This also illustrates
how two instances of the same fuzzer will increase the probabilities
on the same branches, whereas different fuzzers complement each
other additionally on branches that only one of them could find.

4.3 Representative Branches

Since the prediction of CuPID is based on how well fuzzers perform
on individual branches, an important factor is the selection of which
branches to base that prediction on. The chosen branches should be
diverse, to reduce the possibility of overfitting, and be representative
of real-world binaries, to allow practical application. These branches
are collected by fuzzing a diverse set of binaries with each individual
fuzzer in isolation, while simulating a collaborative setting. This
process only needs to happen once for any fuzzer. Additionally,
adding a new fuzzer or changing configuration parameters of a
fuzzer require only re-evaluation of the new or affected fuzzer.

As we are not interested in the binaries themselves, but only
in their branches, we want to sample as many different branches
as possible from the program space. As such, every fuzzer is run
multiple times on all binaries, each time with different seed files that
were chosen to allow different areas of the binary to be reached.

Additionally, since we want to maximize the return on invest-
ment on a limited budget, we focus on maximizing code coverage
over time. Therefore, the empirical data on each fuzzer should re-
flect how well they operate on a given set of branches in a limited
time window. Here, the central idea is to let the fuzzers run only
for a limited time period and extract information on how many
branches they are able to solve.

Finally, when the empirical training data is collected, we have
a mapping from every fuzzer to a list of representative branches
and their corresponding probabilities (see Figure 4). Given this
mapping, as outlined earlier, CupID calculates and predicts how
complementary the fuzzers are.

With this in mind, a major novelty of CupID is showing how
data from a single, isolated fuzzing campaign on a representative
set of branches can be extrapolated to predict the candidates that
are likely to complement each other and maximize code coverage
in a collaborative fuzzing run on unknown binaries.

5 IMPLEMENTATION

In the data-driven approach used by CupIp, the quality of the data
directly influences the resulting prediction. Particularly, we need to
avoid basing the prediction on a set of branches that is not actually
representative. We can control data collection mainly with the
chosen binaries and parameters of the individual fuzzing runs.

5.1 Collecting empirical data

In particular, we choose ten different binaries as the training set
(FREETYPEZ2, RE2, BORINGSSL, LLVM-LIBCXXABI, LIBJPEG-TURBO, PCRE2,
WPANTUND, LCMS, VORBIS, HARFBUZZ) which contain a large vari-
ety of branches. These libraries are vastly diverse in their nature
and purpose, they cover categories such as font processing, regular
expressions, encryption, image parsing, network interface manage-
ment, color management, and audio processing. Hence, we think
that these binaries are well-suited for our evaluation purposes. Note
that adding binaries from additional application categories could
further improve the representativeness of the training data. To
ease the process of automation, for the evaluation, these training
binaries are provided by Google’s fuzzer-test-suite, as this allows
better extendability to a multitude of fuzzers through a unified
compilation process for all binaries. Note that, although all binaries
in the training and test set are from Google’s fuzzer-test-suite, the
projects themselves are separate and developed by different teams.

To create the seed files, which act as the starting points for the
individual fuzzing runs, we fuzz these training binaries for 12 hours.
This is a one-off effort that does not have to be repeated. Out of
these seed files, we select five seeds that were found 2-3 hours apart,
this temporal distance reduces the overlap between the branches
the fuzzers can reach. We observe the performance of each fuzzer
by letting them run once for each seed file for all training binaries.
This resembles the collaborative model outlined above, where every
new seed simulates a completed synchronization.

Due to inherent randomness in any fuzzing process, we let the
fuzzers run 30 times and calculate probabilities for all branches that
reflect how often a branch was found by this fuzzer in that time
period (i.e., a branch will have a probability of 50% for fuzzer A, if
fuzzer A was only able to solve that branch in 15 out of its 30 runs
in time t). Again, this is a one-off effort for each fuzzer, which does
not add any overhead to the actual fuzzing process in the future.

As we need to balance the required computation time to exhaus-
tiveness, we limit each run to ¢t = 30min for our evaluation. While
users may choose to tune it, in our analysis, we found this time
limit to work consistently well in practice. One disadvantage with
using such a time limit is that some fuzzers might need more time



to reach their peak performance. Although we were unable to em-
pirically observe this effect with our fuzzer selection, this might
be an issue for future fuzzers. Additionally, some fuzzers focus on
more difficult branches but take longer to solve them—these fuzzers
could be negatively affected by this time limit.

However, we believe that the numerous advantages vastly over-
shadow these possible disadvantages: First, limiting the run time
reduces the risk of fuzzers getting stuck on an initial branch, while
only one fuzzer might be able to solve that branch and get a dispro-
portional advantage by solving all the following branches. Although
it is important to reflect in the data the advantage this fuzzer brings,
if the timeout were longer, it would increasingly appear that many
branches were only solved by this one fuzzer, thus skewing how
many rare branches this fuzzer is actually able to solve (i.e., due
to the unsolvable initial branch, the other fuzzers were not given
the chance to directly test themselves on the following branches).
Second, even with this time limit, the data reflects the internal
short-term scheduling mechanism. Each fuzzer faces a multitude
of branches reachable from any given seed file—how it chooses
what branches to solve and what corpus files to mutate, impacts
the overall performance of the fuzzer. Third, due to the time limit,
the execution speed of the fuzzer is reflected in the data. Fuzzing
speed is an important factor in maximizing code coverage. [10, 13]
Fourth, our evaluation suggests that our prediction framework is
accurate in predicting a high-performing fuzzer combination. Al-
though improvements might be possible, this time limit does not
seem to impact the prediction accuracy significantly. In conclu-
sion, our approach approximates real-world fuzzing scenarios and
therefore we take many performance-relevant properties of fuzzers
into account. The empirical data reflects, at least, the following
attributes of fuzzers: (i) ability to solve a variety of branches, (ii)
short-term scheduling policies, and (iii) execution speed.

As mentioned earlier, note that Curip has to collect this data
only once per fuzzer to update the prediction. As the goal of the
prediction is to be generalized via a representative set of branches,
the prediction is made independent of the future fuzzing target. Addi-
tionally, it is not necessary to recollect data when the combination
size changes. Furthermore, if one were to add a new fuzzer to the
framework, one would only need to collect empirical data on this
new fuzzer. This is the main improvement that allows for predic-
tions that scale linearly with the number of fuzzers in the pool
(whereas an exhaustive search would grow exponentially with the
number of fuzzers as well as the combination size). However, as
mentioned earlier, the collected data is reliant on the same fuzzer
configuration for future runs (e.g., fuzzing mode or instrumentation
method), as such, significant changes to the fuzzer configuration
will require new runs and a new prediction for accurate results.

5.2 Components and Implementation

CuPID consists mainly of the prediction engine and some small
packaging for the different fuzzers.

5.2.1 Prediction engine (Python, ~4k LOC). This component col-
lects the resulting corpus files and generates code coverage infor-
mation. To collect this information, we developed a Python library
that internally uses AFL (built as a C library) to quickly collect code
coverage given a corpus directory. The resulting data is exported as

a bitmap converted to a NumMPY [22] array to allow for easy proba-
bility calculations. Finally, these probabilities are then converted to
a ranking of fuzzer combinations.

5.2.2  Fuzzer drivers (Python, ~2k LOC). Each fuzzer runs in its
own Docker [20] container which is controlled by a driver that
coordinates the Docker images, assigns them to their respective
CPU cores, and manages their start and stop times. The framework
is extensible, allowing developers of new fuzzers to easily add
support by simply creating a new container image and adding
around 100 lines of Python code to our driver. We implemented
support for eight fuzzers, AFL-based fuzzers are supported out-of-
the-box.

5.2.3  Patches for compatibility. We patched HoNGGFuzz [12] and
LiBFuzzeR [19] (both less than 150 LOC) to allow for external test
case syncing at runtime.

6 EVALUATION

To evaluate the effectiveness of the prediction of CupIp, we first
show that the predicted ranking of combinations corresponds to the
ranking based on real-world performance. Based on these results,
we predict a combination of fuzzers of length n = 4 to replicate
the evaluation of ENFuzz and show that our automatically selected
combination outperforms the expert-guided, hand-picked selection
of ENFuzz in terms of code coverage and bug finding capabilities.

For providing a valid evaluation, the set of fuzzer-test-suite bina-
ries is split in two for most experiments: the training set (FREETYPE2,
RE2, BORINGSSL, LLVM-LIBCXXABI, LIBJPEG-TURBO, PCRE2, WPAN-
TUND, LCMS, VORBIS, HARFBUZZ) and the test set (WOFF2, SQLITE,
PROJ4, OPENTHREAD, OPENSSL-1.1.0C, OPENSSL-1.0.2D, LIBXML2, LIB-
SSH, LIBPNG, LIBARCHIVE, JSON, GUETZLI, C-ARES). One binary out of
24 was excluded because it did not run for all of the fuzzers (OPENSSL-
1.0.1F). We used the seeds supplied with fuzzer-test-suite—if none
were available, we instead used a seed containing only the null
byte. As mentioned earlier, fuzzer-test-suite allows for a unified
compilation process, but the included projects are separate, diverse
and developed by different teams, which is required to be able to
train on a set of branches that is representative of unknown future
binaries.

To avoid discrepancies due to implementation details, we use
our own framework and Docker images to evaluate both ENFuzz
and CupIp. This is to keep the playing field as leveled as possible,
so that the recorded differences are only due to the selection of
fuzzers and not due to any other factors.

Note that the numbers presented by ENFuzz [5] report the im-
provement over the sum of the coverage of the whole dataset. For
comparison, we also report this number (as Improvement (sum)),
but we believe that this metric heavily skews the results as large
programs are weighted higher and thus, this metric is not very in-
formative. When not stated otherwise, we use the geometric mean
to calculate the overall improvement across programs, which is
standard practice in the field, to circumvent this issue. We limit
the experiments to 10 hours to reduce the total time needed for
the experiments (in total, the experiments presented in this section
have required 40,000 CPU hours or ~4.5 CPU years). Furthermore,
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Figure 5: The totals column and row show the solved
branches for an average fuzzing run with the respective
fuzzer. The inner blocks show the predicted performance of
each two fuzzer combination. Note that two instances of the
same fuzzer is also a valid combination. The upper value rep-
resents the complementarity, the lower value is the percent-
age increase compared to the “How is” fuzzer.

even with the runtime limit of 10 hours, we saturate the fuzzing
coverage for all binaries except two.

6.1 Evaluated fuzzers
Cupip ships with eight default fuzzers in total:

e AFL [29] is a superseded fuzzer that requires little set-up.
However, as seen by several fuzzers we use for the evaluation,
AFL is often used as a starting point for new research.

e QSYM [28] is the concolic execution engine of a hybrid fuzzer
together with AFL. QSYM shows that loosening the strict
soundness requirements of concolic executors leads to better
performance and showcases how integration with a fuzzer
can help validate and improve the speed of the concolic
engine. For our evaluation, QSYM acts as a fuzzer that trades
targeted solving of branches against higher execution count.

e AFLFasT [3] is based on AFL, and improves the scheduling of
testcases. The basic idea is that fuzzers with simple schedul-
ing algorithms spend a lot of time on testcases that exercise
a small number of paths. The authors show that time would
be better spent on less frequently visited branches.

e RADAMSA [11] is a black-box mutator with more sophisticated
mutators than AFL. We use AFL++ in RADAMSA mode, which
adds coverage feedback.

e FaIrFuzz [16] improves upon AFL by putting more focus
on rare branches, as well as a mutation mask that specifies

which parts of a testcase to modify. Both of these techniques
act as a form of attention to focus more time on interesting
parts of the binary.

e LAFINTEL [15] is a collection of compiler passes that help
fuzzers to progress through difficult branches by splitting
them up into several branches. These individual branches are
easier to solve. Due to difficulties compiling libraries from
the fuzzer-test-suite, we instead use the CompCov mode of
AFL++ [8] in QEMU mode.

o LIBFUZZER [19] is a library that adds a fuzzer stub into the
program at compile time. LIBFUZZER can be run in-process,
which vastly reduces the overhead compared to the common
fork server approach (AFL). However, the programs needs
to be of high quality, since memory leaks and crashes also
affect the fuzzing run. LIBFUZZER comes with a multi-process
fork mode that makes it easier to ignore crashes, which is
what we use in our case. LIBFUZZER is not based on AFL and
thus is another diverse addition. We patched LIBFUZZER to
allow for external test case syncing at runtime.

e HoNGGFuzz [12] is another fuzzer that is not based on AFL
and thus differs significantly in its code base, e.g., it intro-
duces a different seed scheduling algorithm, as well as muta-
tors and different coverage metrics. We patched HoNnGGFuzz
to allow for external test case syncing at runtime.

For an overview of the configuration parameters for each fuzzer,
refer to Table 5 in the appendix.

Despite the fact that we support eight fuzzers out-of-the-box,
to ensure fairness in the evaluation, we limit the pool of fuzzers
to those that ENFuzz had access to (AFL, AFLFAsT, FAIRFUZZ, LIB-
Fuzzer, QSYM, RaDAMSA). Although this guarantees a fair compari-
son to ENFuzz, these fuzzers have a lower overall diversity, which is
a crucial factor in maximizing possible performance improvements
in a collaborative run [5], so the restriction on fuzzers also limits
the possible magnitude of our results.

For a visual representation of the diversity in the pool of fuzzers,
refer to Figure 5. The top value in every cell represents the average
predicted branch coverage for this combination, and the bottom
value describes the improvement provided by the second fuzzer
compared to a single instance of the first fuzzer. For instance, AFL
and QSYM complement each other well: when run collaboratively,
the predicted average branch coverage will increase by 18% (from
~55k to ~64k) as compared to a single AFL instance. Although an
improvement by 18% is valuable, the total predicted average branch
coverage is still low compared to the best predicted combination of
HonGGruzz and L1BFUzZzER (~95k). Furthermore, AFL-based combi-
nations show only low improvements when combined with most
other AFL-based fuzzers, but their average predicted branch cover-
age is also significantly lower than non-AFL based combinations.

In conclusion, we recommend to extend the pool of fuzzers by
non-AFL based fuzzers to increase the diversity and thus improve
the overall performance of collaborative fuzzing. However, as men-
tioned before, to keep the evaluation fair, we use the same fuzzers
that ENFuzz has access to as well.



Table 1: The result of the prediction framework for n=2.
"Complementarity" represents the predicted total probabil-
ity for this fuzzer combination, i.e. the predicted average
number of branches visited on all of the training data by this
fuzzer combination. Combinations in bold are the selections
we used in Experiment 1.

Ranking Combination Complementarity
1. LIBFUZZER, LIBFUZZER 93456.32
2. FairFuzz, LIBFUZZER 93099.12
3. AFL, L1BFUZZER 92510.05
10. Fa1rFuzz, RADAMSA 76347.06
11. FairFuzz, QSYM 75623.01
12. AFL, AFL 73953.05
19. AFLFAsT, QSYM 70916.66
20. QSYM, RADAMSA 69329.05
21. QSYM, QSYM 62795.15

6.2 Prediction of fuzzer combinations

In this section, we evaluate the accuracy of our prediction frame-
work by comparing the predicted rankings to real-world results.
Additionally, we evaluate against fuzzer-test-suite and LAva-M to
compare the performance of our best-predicted combination to
EnFuzz.

6.2.1 Comparing predicted and actual rankings. CUPID uses em-
pirical data to predict a ranking for fuzzer combinations. In this
instance, ranking describes the performance of one combination
relative to other combinations. Because our predicted ranking is
based on empirical data extracted through time-limited fuzzing runs
in isolation, it is necessary to evaluate if our ranking accurately
resembles real-world results in collaborative runs.

In order to evaluate the quality of certain combinations of fuzzers,
the most indicative metric is the median code coverage at the end
of the selected time frame. However, for some of the binaries, most
fuzzer combinations reach the maximal coverage too quickly. For
this reason, we decided to calculate the area-under-curve (AUC)
as well because it takes into account the time taken to reach every
given value of coverage. As a result, if two combinations find the
same total code coverage, we prefer the combination that achieves
this in the shortest amount of time, which would be reflected by a
larger AUC.

To conduct this experiment, we face two issues:

(1) On some binaries, fuzzers find nearly all coverage in a frac-
tion of the total scheduled runtime (i.e., they flat line after
a short time). For these binaries, the performance measure-
ments are difficult to compare. If most fuzzers reach the same
code coverage after a few minutes, not only will the mean or
median code coverage be near identical after 10h, but also
the area-under-curve.

(2) Some combinations of fuzzers reach very similar perfor-
mance, thus predicting an accurate ranking is not only diffi-
cult but could also be misleading, since the ranking obfus-
cates how similar combinations are.

To address the first issue, we set combination size of n = 2,
a smaller number of parallel fuzzers will take longer to achieve
maximum coverage and thus, allow for more accurate rankings.
Additionally, due to the magnitude of necessary CPU hours for
10 runs for all 21 combinations on all 13 test binaries, we let all
combinations fuzz every binary 10 times for only 1h. With these
settings, it will take longer to hit the upper bound of code coverage
on a binary in the given time window.

To address the second issue, we first evaluate those fuzzer com-
binations that significantly differ in their predicted performance
and, subsequently, we perform an exhaustive ranking correlation
with all n = 2 combinations. Thus, for our first experiment, we
reduce our list of combinations to the best predicted combination,
the worst predicted combination, and an additional combination
in-between the two (as highlighted in Table 1) and compare how
well their predicted rankings match real-world results. The evalua-
tion was done on six machines with 40-core/80-thread Intel Xeon
Gold 6230 CPU @ 2.10GHz processors and 192GB RAM, where
each fuzzer got assigned a dedicated core.

Experiment 1. We fuzz the 13 test binaries 10 times for 1h each,
select the median coverage over time and calculate the area-under-
curve. Then we rank the three selected fuzzer combinations using
this value. We use the Pearson correlation coefficient to measure the
linear correlation between our predicted ranking and the real-world
ranking. Additionally, we use the predicted performance value and
the actual median AUC to calculate a more detailed correlation
coefficient on a per-binary basis.

Results. The Pearson coefficient is calculated as r = 0.81 with
p < 0.01. This represents, according to Evans [7], a very strong pos-
itive correlation (0.8 < r < 1.0). On a per-binary basis, 11 out of 13
binaries have a very strong positive correlation with r > 0.9 when
their predicted performance is compared to the actual median AUC,
while only two binaries have a negative correlation. The rankings
of 10 binaries are identical to our prediction. In conclusion, our
framework is indeed able to accurately predict the rankings when
the combinations are dissimilar in their predicted performance.

Experiment 2. To showcase that similarly predicted combina-
tions will still match reasonably well, we rerun the evaluation for
not just the three distinct combinations, but all possible 21 fuzzer
combinations for n = 2. More specifically, we modify the previous
experiment to rank all possible 21 fuzzer combinations for each of
the 13 test binaries.

Results. For this case, the correlation coefficient drops to r = 0.6
with p < 0.01. This is, according to Evans [7] slightly above a
moderate positive correlation (0.4 < r < 0.59). With experimental
data, this is expected: our prediction relies on data collected over
a range of binaries and input seeds and thus CuPID is only able
to predict the average performance over multiple fuzzing runs
and binaries. Due to inherent randomness in any fuzzing process,
a greater variance in the performance of some combinations is
expected, and thus, combinations that are predicted to be similar in
their performance will not match their predicted ranking perfectly
in all cases. However, even in this scenario, 7 out of 13 binaries
display a very strong positive correlation coefficient, with r > 0.8.

Note that although this evaluation is important in determining
the accuracy of the predicted ranking, in real-world scenarios a
security analyst is only interested in the top results. While there



Table 2: Median branch coverage on the test binaries from fuzzer-test-suite (10 runs with a run time of 10h). Bold values
highlight the best result. The four following columns represent the speed-up in latency to reach the given percentage of the
observed coverage. Bold values highlight positive speed-ups. The last column represents the p-value according to the Mann-
Whitney U test between ENFuzz and Cupip. Bold values highlight statistical significance (p < 0.05). No test was possible for

c-ARES because both results were identical.

Fuzzer Combination

Curip Coverage Speed-up

Binary EnFuzz CupiD 90% Coverage 95% Coverage 97% Coverage 99% Coverage | p-value
C-ARES 58 58 0.00% +10.00% +10.00% +10.00% =
GUETZLI 2617 2603 -6.28% -11.73% -2.58% -3.62% 0.26
JSON 707 711 +135.91% +59.89% +45.03% +1827.58% 0.01
LIBARCHIVE 3161 3577 +36.54% +10.50% +3.06% +2.39% < 0.01
LIBPNG 668 697 +64.57% +543.47% +1135.38% +54.97% <0.01
LIBSSH 809 811 +51.18% +16.96% -20.29% -44.23% 0.48
LIBXML2 2014 2123 +160.85% +268.99% +169.16% +74.59% <0.01
OPENSSL-1.0.2D 786 784 -5.26% +6.38% -3.39% +8.22% 0.08
OPENSSL-1.1.0c 777 779 +29.17% +29.17% +29.17% +84.92% 0.07
OPENTHREAD 864 863 +69.23% +27.68% -33.14% -14.83% 0.48
PROJ4 2715 2819 -2.80% +57.57% +45.21% +28.68% 0.11
SQLITE 913 913 +489.64% +489.64% +489.64% +489.64% 0.08
WOFF2 1058 1102 +75.32% +432.28% +351.31% +48.58% <0.01
Total | 17147 17835 | \

Improvement (sum) | - +4.01% | |

Improvement (geomean) | - 4231% | +59% +90% +74% +64% |

Table 3: Median branch coverage on the trainings binaries
from fuzzer-test-suite (10 runs with a run time of 10h). Bold
values highlight the best result. The last column represents
the p-value according to the Mann-Whitney U test between
ENFuzz and Cupip. Bold values highlight statistical signifi-
cance (p < 0.05).

Binary EnFuzz Cupip p-value
BORINGSSL 1145 1145 0.47
FREETYPE2 5235 6055 < 0.01
HARFBUZZ 4124 4272 < 0.01
LCMS 970 1385 < 0.01
LIBJPEG-TURBO 1227 1386 < 0.01
LLVM-LIBCXXABI 3305 3432 < 0.01
PCRE2 4377 4189 < 0.01
RE2 2190 2205 0.03
VORBIS 932 946 0.12
WPANTUND 4186 4302 0.02
Total 27691 29317
Improvement (sum) - +5.87%
Improvement (geomean) - +7.25%

might not exist one ultimate combination of fuzzers that outper-
forms all other combinations on all future binaries - as there are
fuzzers that work exceptionally well on some specific binaries but
not on others — we are able to find a combination that outperforms
all other combinations on average. In this regard, our top predicted
combination was indeed most often and more consistently ranked
in the first place than all other combinations (i.e., if one were to
use the real-world rankings to extract what should have been the
best-predicted combination, one would end up with our prediction).

In conclusion, our predicted ranking is effective in finding well-
performing combinations of fuzzers that realistically represents the
real-world performance seen by the combinations in question.

6.2.2 Evaluating on fuzzer-test-suite. To replicate the evaluation
against ENFuzz for the fuzzer-test-suite binaries, we first predict
the best n = 4 combination of fuzzers. As the empirical performance
data was already collected for the previous experiment and no new
fuzzers were introduced, only the prediction had to be updated.
Predicting the full n = 4 combination of fuzzers takes less than a
second on a off-the-shelf notebook (single process on an Intel(R)
Core(TM) i7-8550U @ 1.80GHz with 32 GB RAM)—even for a rather
unrealistic extreme case of n = 10, 000 it takes less than five minutes
to calculate the top 1,000 predictions. An excerpt of the resulting
prediction ranking of n = 4 is displayed in Table 7 in the appendix.
Given the training data, CuPID uses the complementarity metric
and diversity heuristic, as outlined above, to automatically select
the highest ranking, most diverse set of fuzzers: FAIRFuzz, LIBFUZZER,
QSYM, AFL. The fuzzers included in the ENFuzz combination are
AFL, L1BFUZZER, AFLFAST, RADAMSA.

It is important to note that, according to our predicted ranking,
due to the low diversity in the pool of fuzzers, our selected com-
bination and ENFuzz will be very similar performance-wise—the
difference in their predicted performances is less than 1.4%—so in
total, only a small improvement is expected. Nevertheless, when
an expert-guided, hand-picked selection (ENFuzz) is outperformed
by a data-driven, linearly-scaling automatic process (CUPID), that is
already in itself a significant improvement in terms of man-power,
human bias, and processing time.

Experiment As the complementarity metric of CupID is de-
signed to prefer fuzzers that achieve the same code coverage in a
shorter amount of time, we also calculate the speed-up of CupID, in
comparison to ENFuzz, to reach 90%, 95%, 97% and 99% of the max-
imum code coverage (i.e., the improvements in the median time to



Table 4: Median number of unique bugs found in the Lava-
M set (10 runs for 10h each). The improvement is measured
in comparison to ENFuzz-Q (which outperformed EnFuzz).
(*) MD5sum was excluded from the improvement calculation
as ENFuzz-Q did not run properly for this binary.

Binary EnFuzz EnFuzz-Q  Cupip
BASE64 42 48 48
MD5SUM™ 24 - 25
UNIQ 7 22 29
WHO 95 340 360
Total bugs 144 410 437
Improvement (sum) - - +6.59%
Improvement (geomean) - - +11.75%

reach that coverage). Calculating the speed up to compare fuzzers
is also suggested in a recent work, that discusses the scalability of
fuzzing [2].

Results. Cupip outperforms ENFuzz in terms of median code
coverage in 16 out of 23 runs. The geomean improvement in branch
coverage is +2.31% for the test binaries (see Table 2) and +7.25%
for the training binaries (see Table 3). Furthermore, we achieve a
+90% speed-up to reach 95% of the maximum coverage, and +64%
to reach 99% of the maximum coverage. Our results show that the
differences in branch coverage are often less than 100, i.e., the
binaries flatline too fast and do not make much difference in the
total branch coverage after a 10h run. In fact, the median branch
difference (in the cases where ENFuzz has a higher score) is only
eight branches.

When we repeated the experiment with more diversity in the
pool of fuzzers (i. e., by adding HONGGFUZz and LAFINTEL), it re-
sulted in even better and more statistically significant results with
+6.4% for the median branch coverage on the test binaries (see
Table 6 in the appendix).

In conclusion, our automatic, data-driven process was able to
select a better combination than a process consisting of expert guid-
ance and extensive evaluation. Furthermore, no additional human
action or runs are necessary if a different combination size (e. g.
n = 5) is required—the new prediction would take less than a sec-
ond, as opposed to multiple CPU years in an exhaustive evaluation.
Additionally, the results suggest our combination did not overfit
on the training data and generalizes well to the test binaries.

6.2.3  Evaluating on LAva-M. Although we do not encourage eval-
uating against LAva-M as recent research suggests that it is rather
unlike real-world vulnerabilities, mostly due do to its simplicity[9]
(i.e., bugs are triggered by finding a 4-byte magic value), we include
this experiment to replicate the Lava-M experiment of ENFuzz. To
this end, we compare the median number of bugs found by EnFuzz
to CupID. As the authors of ENFuzz introduced a new combina-
tion called ENFuzz-Q (AFL, AFLFAsT, FAIRFuzz, QSYM) specifically
picked for this evaluation, we additionally compare against this
combination of fuzzers.

Also, as LIBFUzZzER is included in the evaluation, we have to add
L1BFUZZER support to Lava-M, which requires a LLVMFuzzeRTE-
STONEINPUT function that uses the given data to call the function

to be fuzzed in persistent mode. As no other fuzzer needs this
functionality, we only allowed L1BFUZZER to run in persistent mode.

We had to exclude the binary Mp5suM from the improvement cal-
culation as one of the fuzzer combinations (ENFuzz-Q) did not run
properly on this binary. The combination of Mp5sum and ENFuzz-Q
are the only ones affected by this.

Experiment We run each combination 10 times for 10h and
collect all corpus files to later extract all triggered bug IDs. For the
evaluation, we compare the median number of unique bugs each
fuzzer combination found.

Results. As shown in Table 4, the median run of CurID finds
6.39% more bugs than ENFuzz in the same time (with the geometric
mean of the improvements being +11.75%). Note that the authors
of ENFuzz manually chose this selection of fuzzers (EnFuzz-Q) to
specifically target the LAvA-M binaries, while we did not.

6.2.4 Summary. Not only does our evaluation show a strong pos-
itive correlation of CuPID’s approximate ranking of fuzzers with
real-world performances, but the same automatically selected target-
independent combination of fuzzers by CuriD outperforms two
expert-guided, hand-picked target-specific selections (for Google’s
fuzzer-test-suite and LAva-M).

7 RELATED WORK

Previous work on supporting fuzzing at a large scale has focused
on implementing parallel fuzzer synchronisation [18, 29], where
multiple parallel instances of the same fuzzer (e.g., AFL) share a
single corpus and synchronize their efforts.

EnFuzz [5] introduces the idea of ensemble fuzzing, i.e., a set of
fuzzers that synchronize, showing how selecting an ensemble of
diverse fuzzers can increase code coverage. The authors of EnFuzz
hand-pick a number of fuzzer configurations that perform best in
different scenarios (e.g., ENFuzz-Q performs better on LAVA-M,
while their ENFuzz selection performs better on Google’s fuzzer-
test-suite). In this paper, we generalize the intuition provided by
EnFuzz. In contrast to ENFuzz, CuPID presents an automated, data-
driven way of selecting a set of fuzzers to be used, without requiring
a knowledgeable expert to manually select the set of fuzzers best
suited for the task.

Previous work on hybrid fuzzing [25, 28, 30] can be considered
close in nature to ensemble fuzzing, in the sense that these solution
often contain a fast, lightweight base fuzzer (typically AFL) which
delegates hard-to-solve test cases to the heavyweight symbolic
execution engine. In fact, hybrid fuzzing can be expressed as an
instance of ensemble fuzzing.

Xu et al. [27] have identified fork (mainly due to kernel-side
locking mechanisms) and file system operations as bottlenecks in
L1BFUzzER and AFL-based fuzzers in collaborative fuzzing runs. To
avoid the negative impact of this on the scalability of fuzzers, they
propose new operating primitives, i.e., they replace the fork system
call, add a file system service that is specifically designed for small
file operations, and introduce a new test-case syncing mechanism.

Recent work by Bohme and Falk [2] shows that finding a linear
number of new bugs using parallel instances of the same fuzzer
requires an exponential increase in the number of fuzzing instances.
Whether this assumption holds when scaling up using a diverse set



of fuzzers has not been investigated yet and would be an interesting
area for future research.

8 DISCUSSION

In this paper, we have focused on having fuzzers collaborate to
achieve a higher coverage. As such, in our evaluation, all the fuzzers
we have showcased are mutation-oriented, coverage-guided fuzzers.
We have not yet evaluated how, for instance, grammar-based fuzzers
would fit into our design. Moreover, we have limited ourselves
to COTS fuzzers with the explicit goal of not making significant
modifications to the fuzzers. We are thus limited to the interface
that the selected fuzzers provide.

In our current implementation, the set of selected fuzzers is static
over the whole run. In some cases, dynamically changing the set
of fuzzers over the fuzzing campaign, might yield a better result
(although we have not yet found practical cases of interest). In this
paper, we focus on the selection of fuzzers, and leave the question
of scheduling different fuzzers as a future research topic.

Similarly, a future area for research could be testcase scheduling
and distribution, i.e., deciding which testcase to assign to which
fuzzers during runtime. A smarter approach to distributing all test-
cases to all fuzzers might be to determine which fuzzer would
benefit the most from a particular testcase and avoid assigning
sharing less beneficial ones.

As CupID tries to make a target-independent prediction, it may
be possible to make target-specific predictions as well. However,
although it would be possible to collect data and train on the same
fuzzing target for which the prediction is for, this target-specific
approach may offer less benefit than expected. The training data
gathered from the parts of the fuzzing process that were already
seen may not necessarily reflect the remaining unseen parts of the
same binary. Therefore, any prediction based on this data might
actually be misleading. This is why CuPID is trained on a vast
variety of different branches, sampled from the whole program
space of different binaries and not only on the initial stages of one
specific binary.

The data we collect to make our predictions are based on branch-
based coverage metrics. However, recent research has shown that
there are significant differences in how coverage is measured [26].
Different measurement could potentially improve our complemen-
tarity metric by taking other information into account, such as
memory-access or context-sensitive information.

For our evaluation, to bound the (lengthy) required time to run
the experiments, we set a time limit of 10 hours for each run. Two
of the larger programs are not fully saturated within this timeout.
If saturated, these programs might show a different end result.
However, since these programs are a small part of the overall dataset,
and we use geometric means for average improvement calculation,
the overall impact is marginal. We refer the reader to the work by
Klees et al. [14] for a comprehensive work on best practices when
evaluating fuzzers.

9 CONCLUSION

In this paper we present CUPID, a collaborative fuzzing framework
that uses single, isolated fuzzer runs to automatically predict and
select, in linear evaluation time, a high-performing combination of

fuzzers to use in a collaborative fuzzing scenario. We show how
different combinations of fuzzers influence the overall result and
how CupID is capable of automatically selecting a good, comple-
mentary set of fuzzers, eliminating the need for manual selection
or an exhaustive (exponentially costly) evaluation of all possible
fuzzer combinations. In summary, we have shown how selecting
complementary fuzzers can improve the both the final coverage,
as well as the latency of finding coverage significantly. To fos-
ter further research in the area, we will open source CUPID at
https://github.com/RUB-SysSec/cupid.
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Table 5: Configuration parameters of all fuzzers.

Fuzzer Version Environment Variables Configuration

AFL v2.52b AFL_NO_AFFINITY=1 afl-fuzz -M/-S -i input_dir -o output_dir -m none -- binary_command

AFLFAsT Commit e672d6e92 AFL_NO_AFFINITY=1 afl-fuzz -M/-S -i input_dir -o output_dir -m none -- binary_command

FairFuzz Commit 9¢1f1b366 AFL_NO_AFFINITY=1 afl-fuzz -M/-S -i input_dir -o output_dir -m none -- binary_command

RADAMSA AFL++, commit 2ff174e58 AFL_NO_AFFINITY=1 afl-fuzz -M/-S -i input_dir -o output_dir -m none -R -- binary_command

L1BFUZZER Commit dce08fd05 with custom patch binary_path -fork=1 -ignore_crashes=1 -artifact_prefix=crash_dir/ cov_dir in-
put_dir libfuzzer_simulated_sync

QSYM AFL: v2.52b, QSYM: commit aabec86ea77 =~ AFL_NO_AFFINITY=1 afl-fuzz -M/-S -i input_dir -o output_dir -m none -- binary_command &&

python /workdir/qsym/bin/run_gsym_afl.py -a docker_name -o output_dir -n
gsym_name -- uninstrumented_binary_command
HoNGGFUzz  v2.0 with custom patch /home/coll/honggfuzz/honggfuzz --input input_dir --workspace workspace_dir
--crashdir crash_dir --covdir_all cov_dir -n 1 -y honggfuzz_simulated_sync -Y 60
-- binary_command
LAFINTEL AFL++, commit 2ff174e58 AFL_NO_AFFINITY=1 afl-fuzz -M/-S -i input_dir -o output_dir -m none -t 1000000 -Q -- binary_command
AFL_PRELOAD-=libcompcov.so
AFL_COMPCOV_LEVEL=2

Table 6: Median branch coverage on the test binaries from Table 7: The result of the framework prediction for n=4.
fuzzer-test-suite (10 runs with a run time of 10h) when "Complementarity" represents the predicted total probabil-
HoNGGFuzz and LAFINTEL are included in the training ity for this fuzzer combination, i.e. the predicted average
phase. CuPID selected the combination consisting of QSYM, number of branches visited on all of the training data by this
L1BFUzZER, HONGGFUZZ, HONGGFUZZ (denoted as CUPIDEXT). fuzzer combination. Combination in bold is the selection by
Bold values highlight the best result. The last column repre- CupID due to complementarity and diversity.
sents the p-value according to the Mann-Whitney U test be-
tween ENFuzz and Cupip. Bold values highlight statistical Position Combination Complementarity
s1gn1ﬁcance (P < 0'05)' 1. FA1rFuzz,L1BFUZZER,LIBFUZZER,LIBFUZZER 99691.98
2. AFL,L1BFUZZER,LIBFUZZER,LIBFUZZER 99404.65
Binary EnFuzz CuPIDEXT p -value 26. FairFuzz, FAIRFUzZzZ, LIBF.I‘JVZZER, RADAMSA 96236.07
27. FairFuzz, L1IBFUzZER, QSYM, AFL 96176.07

Z;AEI;EZSLI 2??2 22§7 < (;.01 28. FairFuzz, LIBFUZZER, ?\FL, AFL 96064.53

JsoN 710 711 0.02 124, AFLFasT, QSYM, QSYM, QSYM 72796.42

LIBARCHIVE 2984 3576 < 0.01 125. QSYM, QSYM, QSYM, RADAMSA 71395.88

LIBPNG 651 659 < 0.01 126. QSYM, QSYM, QSYM, QSYM 66091.62

LIBSSH 300 846 <0.01

LIBXML2 2110 3265 <0.01

OPENSSL-1.0.2D 787 786 0.10

OPENSSL-1.1.0c 778 768 <0.01

OPENTHREAD 859 866 <0.01

PROJ4 2800 2896 < 0.01

SQLITE 913 907 < 0.01

WOFF2 1065 1157 < 0.01

Improvement (sum) - +11.82%

Improvement (geomean) - +6.4%
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