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Abstract
Modern C/C++ bug detection efforts heavily rely on

fuzzing with software sanitizers. However, the most popular
sanitizers have limited interoperability. As a result, developers
often enable each sanitizer in isolation, if at all, requiring mul-
tiple runs. This sequential execution undermines performance
and tests code in a non-uniform manner.

In this paper, we present COMBISAN, a fuzzing-optimized
sanitizer that simultaneously detects all the addressability,
uninitialized memory, and other undefined behavior issues
covered by the three most popular sanitizers: ASan, MSan,
and UBSan. COMBISAN features a unified shadow memory
design that efficiently tracks both the addressability and the
initialization state of every byte of program memory. In ad-
dition, COMBISAN’s instrumentation seamlessly integrates
with state-of-the-art detection of other undefined behavior
classes. As bugs found by different sanitizers may mask each
other by terminating execution early, COMBISAN defers its
analysis of all aggregated issues to test case completion.

In our evaluation, COMBISAN detected 81 new bugs in
10 programs tested daily by OSS-Fuzz. On average, fuzzing
with COMBISAN is 1.7x faster than sequentially testing with
ASan+UBSan and MSan. Moreover, our results demonstrate
that COMBISAN has the same bug detection accuracy as these
sanitizers, despite running for significantly fewer CPU hours.

1 Introduction

Memory safety violations remain a major threat to systems
security. Nonetheless, developers favor unsafe languages like
C and C++ for their performance, legacy integration, and
low-level control. Unfortunately, these low-level features also
make it easier to introduce bugs, which in turn may lead
to vulnerabilities. In response, both academia and indus-
try invest great effort into detecting such bugs, resulting in
the development of software sanitizers [10, 25, 27, 61, 65]
and fuzz testing frameworks [21, 23, 50], which have re-
shaped the modern software testing landscape. The OSS-
Fuzz [21] continuous fuzzing framework is a case in point,

having detected over 50,000 bugs while fuzzing thousands of
projects with the three de facto most popular sanitizers: Ad-
dressSanitizer (ASan) [61]—to detect addressability issues—
MemorySanitizer (MSan) [65]—to identify uses of unini-
tialized memory (UUM)—and UndefinedBehaviorSanitizer
(UBSan) [10]—to capture other undefined behavior.

However, current sanitizers offer limited interoperability.
Some sanitizers are incompatible by construction; for in-
stance, MSan’s designers explicitly decided not to integrate
with ASan, based on the assumption that applying both instru-
mentations simultaneously would incur greater overhead than
executing the tools individually [44, 65]. Additionally, both
rely on shadow-memory-based metadata, with incompatible
layouts. Others (e.g., MSan and UBSan) adopt compatible
metadata structures, but their instrumentation conflicts, de-
grading detection guarantees. Lastly, even when sanitizers
combine smoothly (e.g., ASan and UBSan), one sanitizer can
still mask bugs from the others, even preventing fuzzing in
extreme cases (Section 6). The missing interoperability of
sanitizers drastically reduces overall fuzzing efficacy, because
testing targets for multiple classes of bugs requires performing
separate fuzzing runs for different sanitizers.

In this paper, we propose COMBISAN, a new fuzzing-
oriented approach to detect all the issues covered by the
three most popular sanitizers in a single solution. Funda-
mentally, COMBISAN uses a unified metadata layout that
enables simultaneous detection of both use-of-uninitialized-
memory (UUM) errors and addressability issues. More specif-
ically, COMBISAN features a 1-byte-to-2-bit shadow memory
which encodes both addressability (i.e., redzone or not) and
the initialization state for every byte of program memory.
COMBISAN opportunistically detects all uninitialized loads,
a superset of UUM errors, and filters out uninteresting vio-
lations using a binary-based accurate detector. Additionally,
COMBISAN’s ASan-like instrumentation granularity (only
memory accesses and allocations) ensures smooth integration
with out-of-the-box UBSan instrumentation.

Sanitizers commonly halt the execution upon detecting
a bug. When using multiple sanitizers, this may result in
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later (unrelated) errors going undetected. To prevent this,
COMBISAN suppresses termination (similar to recovery mode
in existing sanitizers) and defers error analysis. With this
method, COMBISAN aggregates all the bugs triggered by a
single test case and then acts upon them. This strategy en-
sures that bugs do not interfere with each other, transparently
enabling simultaneous detection of multiple bug classes.

Other than unifying the bug detection capabilities of lead-
ing sanitizers, COMBISAN also improves upon MSan’s com-
patibility. Specifically, MSan requires instrumenting not only
the target application but also all of its dependencies, includ-
ing system libraries. This makes it difficult to detect UUM
errors at scale. Not surprisingly, OSS-Fuzz does not use MSan
by default “due to the likelihood of false positives from un-
instrumented system dependencies” [20]. As a result, at the
time of writing, only 40% of projects decided to test their
code for UUM errors, compared to 77% and 57% for ASan
and UBSan, respectively [21]. COMBISAN overcomes this
limitation with a recently proposed multi-layered design to
effectively filter out false positives [47]. Unlike MSan, this
approach does not require compile-time instrumentation of
library code, promoting high compatibility.

We evaluated COMBISAN’s bug finding capabilities on a
dataset of 10 OSS-Fuzz targets lacking MSan support, detect-
ing 81 previously unknown bugs: 38 UUMs, 17 addressability
issues, 13 from other types of undefined behavior, and 13 spon-
taneous crashes. All the bugs have been responsibly disclosed
according to each project’s security policy. Further, we tested
COMBISAN’s performance on 8 common fuzzing targets, de-
tecting a final slowdown of 4.7x, which is 1.7x times faster
than the compounded slowdown of running ASan+UBSan
and MSan sequentially (7.9x). On the same subjects, we also
evaluated COMBISAN’s bug-finding capabilities, showing that
it can detect the same bugs as the three mentioned sanitizers.
Finally, COMBISAN’s logic for UUM and addressability er-
rors incurs an average slowdown of approximately 150% on
SPEC CPU2006 and 2017, which is significantly lower than
the sum of the overheads of ASan and MSan.

Contributions. Summarizing, our contributions are:

• A new software sanitizer design that detects addressabil-
ity issues, UUM errors, and other standard undefined
behavior in a single solution, catered to fuzz testing.

• COMBISAN: an open-source implementation of our de-
sign in the LLVM compiler infrastructure, with a mini-
mal patch to the AFL++ fuzzer for optimal integration.

• A comprehensive evaluation of COMBISAN that shows
its performance in terms of both slowdown and memory
overhead, its bug finding capabilities compared to state-
of-the-art sanitizers, and a fuzzing campaign on 10 real-
world targets, where COMBISAN detected 81 new bugs.

Source. https://github.com/vusec/combisan

2 Background

2.1 Undefined Behavior

Programming languages do not define outcomes for all op-
erations. This lets compilers assume that certain operations
never happen, enabling optimizations. Unfortunately, such
Undefined Behavior (UB) often harbors bugs. These bugs, in
turn, may cause vulnerabilities. In the following, we discuss
the most common classes of UB in C/C++.

Spatial errors. Memory objects should only be accessed
within their bounds, failing to do so is UB and results in
spatial memory errors. These errors (e.g., buffer overflows)
enable reading from or writing to unrelated memory objects.

Temporal errors. Pointers should not be dereferenced after
being invalidated. Such accesses (e.g., via dangling pointers)
are UB known as temporal errors. Bugs like use-after-free and
double free often cause critical memory corruption. Together
with spatial errors, these are called addressability issues.

Use of Uninitialized Memory (UUM). Memory used for
sensitive operations (e.g., evaluating conditional branches)
has to be fully initialized, otherwise they result in UB. In
contrast, loading uninitialized values is defined, and is used
for optimizations, like load widening, by compilers [17, 47].

Other undefined behavior. The memory-related UB cases
described above are generally the most critical as they often
have security implications. On the other hand, there is much
more behavior that is undefined, like signed integer overflows,
that may still be security-relevant. From now on, we will use
undefined behavior (or UB) to refer to this last category.

2.2 Sanitizers

Software sanitization is among the most used techniques to
expose bugs in software [64]. It works by injecting instrumen-
tation alongside the application code; this instrumentation
then checks specific properties at runtime, raising an alert in
the case of violations. The instrumentation can be inserted
either at compile time or at run time (i.e., binary-only) [64].

Sanitizers are effective at detecting bugs, but they suffer
from the coverage problem, meaning they can only detect
bugs when triggered. This issue makes them most useful when
used in combination with testing techniques, like fuzz testing,
which provides many inputs to exercise the code differently.
The combination of fuzzing and sanitizers is the de facto
standard to detect software bugs and vulnerabilities [58]. In
the following, we briefly introduce three prominent sanitizers.

https://github.com/vusec/combisan


1 int uninit;
2 if(uninit + 1)
3 return 1;

Listing 1: Example conflict between MSan and UBSan,
causing MSan to not report an error [33].

Addressability issues. The most common solution to de-
tect addressability issues is AddressSanitizer (ASan) [61].
ASan discovers spatial errors by padding memory objects
with redzones. It uses a shadow memory to keep track of
redzones, and, by instrumenting loads and stores, detects ac-
cesses to them. ASan detects temporal errors by delaying
reuse of freed memory with a quarantine, invalidating the
shadow memory accordingly. Since its first release, many en-
hancements have been proposed to ASan, most notably by
pruning [41, 69, 70, 72, 74] or accelerating [25, 46] its checks.

UUM errors. The state-of-the-art solution to detect UUM
errors is MemorySanitizer (MSan) [65]. MSan uses shadow
memory to track initialization of memory objects. Since load-
ing uninitialized memory is allowed, MSan tracks the flow
of uninitialized memory and defers error detection to uses of
uninitialized data. This mechanism, known as shadow propa-
gation, makes the instrumentation more complex. Addition-
ally, to avoid false positives, MSan needs to track initialization
of objects in library code, thus requiring recompilation of all
dependencies, including standard and system libraries.

To solve MSan’s compatibility issues, QMSan [47] pro-
poses a new design based on run-time instrumentation,
side-stepping the recompilation problem. Unfortunately, this
comes at a significant cost, as binary-based solutions incur a
high slowdown. To retain high performance, QMSan uses
a multi-layered architecture: a fast opportunistic detector
detects all loads of uninitialized memory, and a slow-path
accurate detector filters out the loads that never end up being
used. It then remembers known loads of uninitialized memory
while fuzzing, thus limiting invocations of the slow path.

Undefined behavior. The state-of-the-art sanitizer for UB
is UndefinedBehaviorSanitizer (UBSan) [10]. It performs run-
time checks on operations susceptible to undefined behav-
ior and raises an error when triggered. For example, UBSan
checks arithmetic operations for integer overflow.

3 Motivation

While the ASan, MSan, and UBSan sanitizers are greatly
effective in enhancing fuzzing campaigns, their level of inter-
operability limits their deployment. Notoriously, MSan and
ASan instrumentation cannot be enabled at the same time [65],
with conflicting instrumentation and memory state shadowing.
Similarly, MSan and UBSan integration, while allowed by

the compiler, results in accuracy loss due to the interaction
between the instrumentations. For instance, Listing 1 shows
a snippet of code triggering a trivial UUM error that MSan
detects when run in isolation, but misses when run in combi-
nation with UBSan. Currently, the only supported sanitizer
combination for fuzzing is the one between ASan and UBSan.

Motivation 1
Popular sanitizers have limited interoperability, espe-
cially due to complex UUM detection instrumentation.

Further, even when sanitizers can be combined, i.e., ASan
and UBSan, their integration is not free from pitfalls, as sani-
tizers typically terminate the application upon triggering the
first bug by the input at hand. This design choice comes with a
clear drawback. With multiple sanitizers deployed at the same
time, an early bug detected by one of the sanitizers prevents
the others from detecting (potentially more severe) bugs later
in the same execution [67]. This problem is worsened by bug
reports caused by false positives or technically safe opera-
tions [12, 42, 66], or long-term unresolved bugs. For instance,
in Section 6 we evaluate targets where UBSan reports bugs
for every test case, normally prohibiting proper fuzzing.

In practice, we noted that only 57% of the projects on OSS-
Fuzz enable UBSan, and that OSS-Fuzz runs ASan and UB-
San in isolation [21]. As highlighted by previous research [49],
some developers disregard the specifications of the standard,
“using” UB under the assumption that it is, in practice, de-
fined. As an example, while analyzing the code of a project
we tested during our evaluation, we found that the developers
are purposely ignoring some integer overflows, allowing them
just because similar software does [19]. As a result, software
harbors UB bugs and this interference further complicates
testing, justifying efforts that test with UBSan separately.

Motivation 2
Fuzzing with multiple sanitizers causes interference,
where one prevents another from finding bugs.

Given the many interoperability issues, the status quo to
fuzz with multiple sanitizers is thus to make multiple runs,
each with different sanitizers enabled. As a result, thoroughly
testing a project requires significant CPU time to support the
different runs. Additionally, due to the stochastic nature of
fuzzing, each run exercises the software differently, i.e., they
produce different inputs and potentially trigger different bugs.
Consequently, the wrong sanitizer may be enabled upon trig-
gering a bug, causing it to go undetected. Instead, we argue
that a more effective and performant solution is to have a
single setup with the needed sanitizers. With this methodol-
ogy, the fuzzer tests all exercised code with all the sanitizers,
resulting in a more uniform and comprehensive fuzzing.

Motivation 3
Deploying sanitizers sequentially, instead of simulta-
neously, results in slower and heterogeneous fuzzing.



In addition to inter-sanitizer compatibility issues, some
sanitizers face compatibility issues of their own. ASan and
UBSan have high compatibility with existing software and can
generally be enabled out of the box on most targets. In con-
trast, MSan faces key compatibility issues that significantly
limit its applicability [20, 38, 47]. Since its inner workings
require instrumented libraries, recompiling them with MSan
often presents additional challenges. This is especially the
case with system and standard libraries as well as their depen-
dencies. Other difficulties include altering the build system
and using complex constructs (e.g., assembly code) that do
not integrate well with MSan. These problems are so critical
that MSan was recently disabled from all OSS-Fuzz projects
when upgrading to Ubuntu 20.04. The latter does not come
with pre-built MSan libraries, unlike the previous Ubuntu ver-
sion (16.04) [20]. At the time of writing, MSan has only been
re-enabled for 218 out of 547 C/C++ projects in OSS-Fuzz.

Motivation 4
The state-of-the-art compiler-based UUM detector
faces compatibility issues hindering deployment.

The four issues above motivate our efforts to effectively
combine sanitizers for comprehensive fuzzing. We note that
combined sanitizers have long existed in the binary realm,
most prominently Valgrind [63] and DrMemory [5], yet with
slowdowns in the range of 10-20x [5] that make them imprac-
tical for fuzzing [7]. While the recent QMSan [47] alleviates
both the slowdown of binary instrumentation and the com-
patibility issues of MSan, QMSan solely focuses on UUM
detection and does not easily combine with other sanitizers.
Moreover, working at the binary level can limit the accuracy
of the sanitizer, notoriously confining addressability issue de-
tection mostly to heap errors only [17,63], and with UB errors
considered nearly impossible to detect [59]. Therefore, pursu-
ing sanitizer combinations inevitably hints at using compiler
instrumentation, for both accuracy and speed.

The developers of MSan originally argued that combining it
with ASan would compound their overheads, making it more
efficient to run the two sequentially instead [44, 65]. Years
later, maintainers of LLVM’s sanitizers stated that integration
between ASan and MSan was not planned due to the potential
complexity and overhead of such a solution [44].

In this paper, we challenge both the assumptions above. In
Section 4 we show that we can unify ASan and MSan-class
bug detection into a single coherent solution in the context
of fuzzing, and in Section 6 we prove that this design incurs
overheads far lower than the sum of the current solutions.

4 Design

This section presents COMBISAN’s design by first providing
a general overview, and then detailing its components.

fuzzer
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compile-time

instrumentation
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Figure 1: Architecture and workflow of COMBISAN.

4.1 Overview
Conceptually, COMBISAN aims to unify the bug detection
capabilities of ASan, MSan, and UBSan into a single solution
catered to fuzzing. Figure 1 displays a high-level overview of
COMBISAN’s components and their interaction.

COMBISAN uses compile-time instrumentation to trans-
form C/C++ source code into sanitizer-enabled programs.
These transformations pad stack and global objects to account
for redzones, and insert code to interact with COMBISAN’s
runtime metadata: allocations are marked uninitialized by
default, store operations update this state to initialized, and
all memory accesses are accompanied by sanitizer checks for
validity. At this point, COMBISAN can also apply existing
UBSan instrumentation. After compiling, COMBISAN links
the program with a runtime library, which contains multi-
ple features: shadow memory management, e.g., creation, a
custom heap allocator (to insert redzones, mark objects as
uninitialized, and quarantine them upon deallocation), and
function hooks for interposition (e.g., to intercept malloc).
As a result, this overarching sanitizer component provides
COMBISAN with the ability to detect addressability issues,
uninitialized loads (a superset of UUMs), and UB bugs.

Next, the fuzzer component repeatedly executes the pro-
gram with different inputs, and monitors if any bugs were
aggregated during each execution. If so, it takes the action
that we deem as more profitable for the bug type at hand.
COMBISAN treats addressability issues as fatal, resetting the
(otherwise likely unstable) program state. UB bugs undergo
analogous treatment when first encountered, while future
occurrences (which can be frequent) are ignored to enable
deeper fuzzing in the face of enduring UB allowed within
codebases (Section 3). For uninitialized loads, COMBISAN
invokes an accurate UUM detector to determine if this load



Program Memory Shadow memory

 memset(buf, 0, 48);

 free(buf);

 char *buf = malloc(64); bufpad pad

bufpad pad

quarantine

uninitializedrz rz

unrz rzinit

redzone

 printf("%c", buf[32]);

 printf("%c", buf[56]);

 printf("%c", buf[72]);

Figure 2: High-level example instrumentation of COMBISAN.

has a subsequent use [65] (i.e., branch, address computation,
or system call argument). Afterwards, the fuzzer updates its vi-
olation map to remember if the instance was not a UUM error,
to avoid invoking the accurate detector for future occurrences.

Example. Figure 2 shows a simplified overview of how
COMBISAN detects errors while executing a test case. Upon
allocation, COMBISAN pads the example 64-byte heap al-
location with unaddressable redzones, and sets the usable
(non-redzone) data to uninitialized. The data only becomes
initialized when the program writes to it (through memset).

Next, COMBISAN checks the validity of the memory ac-
cesses: when the program reads from memory, COMBISAN
checks if the target is poisoned, meaning either unaddressable
or uninitialized, raising an error if so; meanwhile store opera-
tions first check for addressability, and only afterwards update
the target to initialized. The example program writes to mem-
ory using the memset operation, which in this case accesses
addressable memory, and causes the memory to be marked as
initialized. Next, the program performs three memory reads
through the printf calls: the first one reads valid data (i.e.,
addressable and initialized); the second one reads addressable
but uninitialized data, resulting in an error being saved; the
last read operation accesses a redzone, also aggregating an
error. Finally, upon deallocation, heap memory objects are
set to unaddressable and added to the heap quarantine, such
that future accesses raise use-after-free errors. In a fuzzing
context, after the program finishes, the reported uninitialized
load causes COMBISAN to invoke its accurate detector to
determine if this concerns a UUM (it does, in this case).

4.2 Sanitizing with COMBISAN

In this section, we detail the sanitizer part of COMBISAN,
more specifically how we create a unified shadow memory
mapping to detect multiple classes of bugs simultaneously.

4.2.1 Shadow Memory Layout

COMBISAN’s key intuition lies in its unified shadow memory
model, which tracks both the initialization and addressability
statuses of each byte of program memory. More precisely,
each byte of memory maps to two bits of shadow memory,

b'00101000 b'01011010b'01010101
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16b 9b 2b 12b
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shadow:
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program:
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Figure 3: COMBISAN’s 4-to-1 byte shadow memory map-
ping where each program byte corresponds to two metadata
bits. The figure displays a partially initialized 30-byte object
surrounded by inaccessible redzones.

1 u16* shadow_ptr = (ptr >> 2) + BASE;
2 u16 shadow = *shadow_ptr;
3 if(shadow & 0x5555 != 0) // mask init bits
4 error!
5 *shadow_ptr = 0; // set init

Listing 2: COMBISAN’s instrumentation for an 8-byte
memory store to ptr. For memory loads, the mask operation
on line 3 and the shadow update on line 5 are omitted.

as visualized in Figure 3. The first bit represents addressabil-
ity: zero means valid, one (set) means invalid (i.e., redzone
or quarantined). The second bit indicates if the correspond-
ing program byte is initialized or not. By embedding both
statuses in the same shadow memory, COMBISAN can effi-
ciently check for validity by evaluating whether the joint 2-bit
shadow value is zero (valid) or non-zero (invalid), with just
one metadata lookup and comparison. Another benefit is that,
as in ASan, large regions of valid (or unused) memory remain
zero-initialized, promoting zero-page deduplication.

Since COMBISAN maps 8 bits of memory to 2 bits of
shadow memory, a 4-to-1 byte relation, it incurs 25% memory
overhead by default. This is double of ASan’s shadow memory
(1 byte of shadow per 8 program bytes, so 8-to-1), but less
than MSan’s which requires a bit-to-bit mapping (i.e., 1-to-1,
100% overhead) to support shadow propagation. Considering
that COMBISAN combines ASan’s and MSan’s bug finding
capabilities, the shadow overhead is modest. Furthermore,
just like ASan and other tools that detect use-after-free errors,
COMBISAN’s final memory overhead is ultimately dominated
by the heap quarantine [25, 27], making shadow memory less
pronounced in the final memory overhead.

4.2.2 Memory Allocations and Accesses

COMBISAN interacts with its shadow memory by instru-
menting memory allocations and accesses. Upon allocation,
COMBISAN pads objects to accommodate for inaccessible
redzones, and then updates the shadow memory to reflect this
by marking them as unaddressable. Additionally, COMBISAN



1 u8 shadow = *((ptr >> 2) + BASE);
2 if(shadow != 0) {
3 bit_offset = (ptr & 0x3) << 1;
4 four_bits = (shadow >> bit_offset) & 0xF;
5 if(four_bits != 0)
6 error!
7 }

Listing 3: COMBISAN’s instrumentation for a 2-byte memory
load to ptr. The slow-path check is only required for one and
two byte accesses. For {1,2}-byte stores we initially mask
the shadow value to exclude initialization bits from the check,
and then set the sub-byte shadow value to zero at the end.

sets the shadow memory corresponding to the object itself
to uninitialized. When objects are deallocated, the shadow
memory for the entire object becomes unaddressable.

Next, COMBISAN accompanies memory accesses with
checks that inspect their validity. For memory load operations,
COMBISAN evaluates whether the corresponding shadow
memory is completely zero, because any set bit indicates
either unaddressable or uninitialized memory. In contrast, for
store operations, COMBISAN first checks if the memory is
addressable by loading the corresponding shadow memory,
masking off the initialization bits, and then comparing the
masked shadow value to zero. If the memory is unaddress-
able, COMBISAN registers an error. Afterwards, COMBISAN
updates the shadow memory to zero, because it is now initial-
ized, and guaranteed to be addressable (unless a bug occurred).
The store instrumentation highlights the necessity of two dis-
tinct metadata bits to capture validity; sharing a single bit
would create an undecidable choice between resetting the bit
(initialization) and triggering a fault (redzone hit).

Thanks to the (joint) binary encoding of validity in its
shadow memory, COMBISAN can conveniently fetch and up-
date metadata. In particular, COMBISAN performs highly ef-
ficient checks for 4-byte aligned loads/stores that access four
or more bytes, where it operates on complete bytes of shadow
memory. For example, Listing 2 shows how COMBISAN first
checks for addressability and then updates the initialization
state for an 8-byte store, both by operating directly on 2 bytes
of shadow memory. COMBISAN’s shadow address computa-
tion is nearly identical to ASan’s: divide the pointer by the
shadow granularity (divide by four, so shift by two), and add
this on top of the static shadow base address (line 1).

For memory accesses that span only one or two bytes,
COMBISAN needs to interact with its shadow memory at
sub-byte granularity. Listing 3 shows how we achieve this for
an example 2-byte load. COMBISAN first employs a fast check
that optimistically compares the shadow byte to zero (line 2),
and if it is non-zero, enters a slow-path check that extracts and
compares the appropriate bits. The bit offset (line 3) denotes
the number of bits to skip over depending on the alignment of
the pointer. After shifting the shadow value by the bit offset,

we either extract two or four bits using an AND 0x3 or AND
0xF mask for 1 or 2 byte accesses (line 4), respectively. Since
access sizes are known at compile time, COMBISAN does not
emit slow-path checks for accesses larger than two bytes.

We point out that ASan always needs to insert a twofold
check. More specifically, as in COMBISAN, ASan first opti-
mistically checks for a non-zero shadow value, but then al-
ways requires a fallback slow-path check to support partially
accessible shadow memory granules [61]. Furthermore, for ac-
cesses that cross the shadow granule alignment, COMBISAN
follows a similar approach as ASan. For loads, we check the
first and last byte for validity (like ASan). For stores, we check
all accessed bytes individually, and initialize them as we go.

With this overall instrumentation scheme, COMBISAN acts
as an opportunistic detector [47] of loads of uninitialized
memory. This allows COMBISAN to detect an overapproxi-
mation of UUM errors: while not all loads of uninitialized
memory are followed by a use of uninitialized memory, the
opposite holds, i.e., UUM errors are always preceded by a
load of uninitialized memory. Thus, COMBISAN’s instrumen-
tation detects all UUM errors without loss of sensitivity, but it
may produce false positives. We overcome this loss of preci-
sion by consulting an accurate UUM detector during fuzzing
(Section 4.3). We remark that opportunistic detection only
requires COMBISAN to match the byte granularity of mem-
ory accesses, rather than the bit-precise metadata required by
MSan’s shadow propagation [47]. This conveniently matches
the precision needed to detect addressability issues, ultimately
enabling a compact and unified metadata layout.

4.2.3 Optimizations

We introduce multiple compile-time optimizations that reduce
false-positive reports of uninitialized loads by proving they
do not result in UUM errors. We achieve this in two ways:
(i) by marking memory as initialized whenever possible, e.g.,
for constructor methods, and (ii) by omitting checks for unini-
tialized loads if we statically know the loaded value does not
propagate to a use sink.

Constructors. We identify two cases where stack struc-
tures are initialized through (external) constructor calls, and
therefore do not have to be marked as uninitialized. In par-
ticular, we scan for va_start intrinsics, which initialize
the corresponding va_list variable for variadic functions.
COMBISAN considers these corresponding stack allocations
as initialized. Additionally, we find C++ constructor calls
for which we then identify the corresponding implicit object
(this). After the external constructor initializes the object,
we mark the corresponding shadow memory as initialized.

External allocations. Like ASan and MSan, COMBISAN
interposes on dynamic allocation functions like malloc for
pervasive instrumentation. However, since COMBISAN does



not require external code to be instrumented, initialization of
external heap allocations may not be visible. To avoid loads
from such memory to cause false-positive reports, we distin-
guish between visible (i.e., in the target module) and external
heap allocations. We instrument visible allocations at compile-
time, while external allocations go through interposition. Both
types receive redzones, however only visible allocations are
marked as uninitialized. We also support visible indirect calls
by prepending a runtime handler that compares the call target
to known heap allocator functions.

This approach can, in principle, lead to false negatives if
libraries fail to fully initialize an object. However, we consider
this trade-off favorable, as reducing false positives decreases
the number of invocations of the slow path, thereby improving
throughput. Moreover, we argue that sensitive dependencies
should undergo independent testing campaigns. We observed
no false negatives in our extensive evaluation (Section 6).

Static taint analysis. While MSan deploys full-scale dy-
namic shadow propagation (i.e., dynamic taint analysis) to
identify uses of uninitialized loads, we can statically ap-
proximate such analysis to filter out provably safe (unini-
tialized) loads. More specifically, for every load instruction,
COMBISAN transitively follows the use-def chains of the
loaded value, and determines if it can end up in MSan-class
uses (e.g., conditional branches), but conservatively bails out
if the loaded value escapes. Such escapes occur primarily if
the value is stored to memory, but also for example when
the value is returned. Currently, the analysis is not inter-
procedural, hence if the loaded value ends up as a function
call argument, the analysis also bails out. In all other cases,
we statically excluded the possibility that the loaded value
ends up being used, and hence the associated load does not
need to be checked for being uninitialized. While this analy-
sis leaves room for extensions, our preliminary performance
results showed that the current strategy suffices.

4.2.4 Runtime Management

While COMBISAN mostly instruments the target program
at compile-time, certain operations require runtime instru-
mentation. More specifically, COMBISAN interposes on heap
allocations to manage their redzones and validity, and certain
library calls to either check for validity or propagate metadata.

Heap. For heap allocations, COMBISAN pads the objects
with redzones and marks them as unaddressable. Unless
this concerns an external allocation (see Section 4.2.3),
COMBISAN marks the usable data of each object as uninitial-
ized. When the program deallocates an object, COMBISAN
updates the entire memory chunk to unaddressable, causing
future accesses (i.e., use-after-free) to register a fault. To pre-
vent the memory from quickly being reused, which could lead
to dangling pointer accesses going undetected, like ASan we

employ a heap quarantine, which delays the availability of
the memory for future allocations.

Library calls. Certain standard library calls are of partic-
ular interest not only for detecting addressability issues, but
also for ensuring accurate detection of uninitialized loads. A
prime example is memcpy, where COMBISAN verifies that
both the source and destination locations are addressable,
and additionally propagates the initialization state from the
source to the destination (like MSan), because the program
is implicitly copying the data. This combined operation of
checking for addressability and copying the initialization state
is implemented in a single iteration, where the copied shadow
values are inspected for the presence of set addressability bits.
Overall, COMBISAN includes such interceptors for the union
of both ASan’s and MSan’s interceptors.

4.2.5 Undefined Behavior

We designed COMBISAN to support seamless integration
with existing UBSan instrumentation. In contrast, combining
UBSan with MSan leads to conflicts [33], because both instru-
ment similar operations, such as loaded values and arithmetic
instructions. UBSan inserts checks, for example to detect
integer overflows, while MSan instruments the same opera-
tions to propagate shadow state from source to destination.
The conflicts appear to arise from UBSan marking its in-
strumentation as not requiring sanitization, thereby breaking
MSan’s shadow propagation. Unlike MSan, COMBISAN’s in-
strumentation granularity matches that of ASan: it targets only
memory accesses and allocations. As a result, COMBISAN
sidesteps the above conflicts, and integrates smoothly with
UBSan. All the provisions discussed in Section 4.2 enable
COMBISAN to unify the bug detection capabilities of ASan,
MSan, and UBSan into one solution (Motivation 1).

4.3 Fuzzing with COMBISAN

COMBISAN is designed to work in the context of fuzzing,
with compact metadata enabling the accurate detection of
addressability issues and opportunistic detection of UUM er-
rors. While fuzzing, COMBISAN tests every input for multiple
bugs, as opposed to performing multiple runs with different
sanitizers. This ensures efficient and uniform fuzzing as all
the tested code will be simultaneously exercised under the
same sanitizers (Motivation 2).

Still, combining the detection power of multiple sanitizers
comes with new challenges in the context of fuzzing, above
all the ability to retain high accuracy when detecting multiple
classes of bugs at the same time (Motivation 3). Figure 4
visualizes COMBISAN’s architecture while fuzzing.
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Figure 4: Fuzzing overview. When COMBISAN detects an
error, it communicates the error to the fuzzer through a shared
map. When the execution is over, the fuzzer acts on the bugs.

4.3.1 Bugs Detection and Management

Typically, sanitizers immediately crash the application when
triggering a bug; the crash is then detected and analyzed by
the fuzzer. While this allows for convenient integration be-
tween fuzzers and sanitizers, it is not ideal in a multi-sanitizer
scenario, as early exits induced by one sanitizer may mask
subsequent bugs triggered by other sanitizers. To address this
issue, COMBISAN handles errors by merely recording the
necessary details and continuing the execution. Only once the
test case terminates, COMBISAN informs the fuzzer, which
then analyzes all the aggregated errors.

The fuzzer can then act on bugs according to different
policies, depending on their class. By default, COMBISAN
consistently treats inputs triggering addressability and UUM
bugs (detailed later) as crashing inputs, but opts for a more
nuanced approach for UB bugs. Specifically, since software
may contain many UB bugs (Section 3), COMBISAN treats
a test case as a crashing input only if it triggers a previously
unseen UB error, while allowing those with already known
UB(s) to complete successfully. This allows the fuzzing back-
end to process new bugs (e.g., by applying deduplication),
but prevents further instances of the same bug from stopping
deeper exploration of the programs. As Section 6 will show,
we found targets triggering undefined behavior for every test
case, hindering progress when fuzzing with UBSan. Instead,
COMBISAN can overcome this issue by reporting the error
once, and then allowing for the fuzzer to continue.

4.3.2 UUM Errors

During each execution, COMBISAN detects all the loads of
uninitialized memory (violations from now on). As detailed
before (Section 4.2.2), all UUM errors follow a violation,
while the opposite does not hold. In practice, detecting viola-
tions allows for detecting a superset of UUM errors. Unfortu-
nately, the number of false positives (i.e., violations that do
not end in a UUM error) is non-negligible, so a mechanism
to filter them out is necessary not to lose accuracy [47].

To address this issue, COMBISAN draws from the multi-
layered approach proposed by QMSan [47]: during each ex-
ecution, it collects information about all the triggered viola-
tions, without raising any error, as in the case of addressability
issues. Then, when the execution is over, the violations are
analyzed alongside all the other errors, employing an accu-
rate detector to check if any violation results in a UUM error.
To avoid unnecessary invocations of the accurate detector,
COMBISAN maintains a violation map at runtime, and only
uses the accurate detector when it detects a new violation.

When adding violations to the map, COMBISAN follows
QMSan’s approach and identifies them with three proper-
ties. The first one is the address of the load instruction that
triggered it, indicating where in the code it is raised. Unfortu-
nately, identifying violations only by the offending address
may result in false negatives if an instruction may or may not
read uninitialized memory based on context, as could happen,
for instance, in a memory load from an auxiliary function that
can read arbitrary memory. So, to account for context, viola-
tion detection is augmented with spatial locality and temporal
locality. Spatial locality is defined by the calling context when
the violation is triggered, while temporal locality is detected
through the combination of the identifiers of the current and
last violations. Our evaluation (Section 6) shows that this
approach is effective in practice, as we found no evidence of
false negatives compared to MSan.

Compatibility. The major limitation of MSan is the require-
ment for instrumented dependencies (Motivation 4), which
severely limits compatibility. COMBISAN can overcome this
limitation, i.e., it can still perform UUM detection with unin-
strumented libraries. First, it considers heap allocations com-
ing from library code as safe, and treats them as initialized
(Section 4.2.3). Then, its design is robust to untracked initial-
izations of memory objects from library code (due to unin-
strumented store operations) since violations are checked by
the accurate detector, which discards false positives.

Just like ASan, COMBISAN can miss bugs (not only UUM
errors) in uninstrumented libraries. This is reasonable, as rele-
vant dependencies should undergo a separate testing process,
and incidentally finding bugs in them is not the focus of a
fuzzing campaign on the main target. Still, if a function is
known to potentially trigger specific errors, COMBISAN can
use an interceptor to model its behavior and check for errors
(Section 4.2.4), like many state-of-the-art sanitizers do.

Finally, COMBISAN is designed to use binary-based solu-
tions as its accurate detector, as these solutions are as accurate
as their compiler-based counterparts [47], but do not require
instrumenting dependencies at compile time. In practice, un-
like MSan, COMBISAN incurs no false positives in UUM
error detection, even in face of uninstrumented dependencies.



5 Implementation

We implemented COMBISAN in LLVM 20.1.0 and AFL++
4.32c. COMBISAN piggybacks on ASan’s instrumentation,
modifying it where necessary: the LLVM IR pass, shadow
memory model, runtime allocator, function hooks, etc. UBSan
can be enabled out of the box with its sanitizer flags. Further,
our patch to AFL++ is minimal and likely generic enough to
port to other general-purpose fuzzers with little effort.

To remember past (safe) violations, COMBISAN uses a
violation map, created during fuzzing startup and then main-
tained by the run-time module. When a violation is detected,
hashes of the offending address, as well as spatial and tempo-
ral localities, are computed, and the map is updated accord-
ingly. This mechanism is similar to how coverage collection
is implemented in modern fuzzers. Regarding spatial locality,
COMBISAN only considers the first 3 entries of the callstack,
which is enough to characterize an offending site [37]. Using
a higher value is possible, but in our early tests this only re-
sulted in more invocations of the accurate detector due to the
increased sensitivity, without detecting new bugs.

We opt for Valgrind as the accurate detector for UUM er-
rors, as it is well-established and actively maintained. Since
COMBISAN queries it in a black-box fashion, equivalent tools
like DrMemory could also be used. Since Valgrind also uses
shadow memory, it cannot easily analyze binaries that also
use one, including programs instrumented by COMBISAN.
Therefore, to replay executions, we provide it with a version
of the target compiled without sanitizer instrumentation.

6 Evaluation

In this section we present a set of experiments we designed
to evaluate COMBISAN. To show its bug-finding capabilities,
we assembled a dataset of real-world latest-version software
to test. Next, we evaluated COMBISAN’s accuracy in find-
ing bugs using common sanitizer and fuzzing benchmarks,
in comparison with ASan, MSan, and UBSan. Finally, we
measured COMBISAN’s performance in terms of slowdown,
memory overhead, and fuzzing throughput. We again compare
these results with those of the three state-of-the-art sanitizers.

All the experiments were performed on a machine with
Ubuntu 24.04 LTS equipped with an AMD Ryzen Threadrip-
per PRO 7995WX CPU with 96 physical Cores and 500 GB
of RAM. Each experiment has been performed with minimal
background activity on the machine, and the fuzzing runs
have been executed in isolation using Docker 27.5.1, binding
each run to a physical core while keeping the relative logical
core on idle. Following AFL++’s documentation [1], we used
persistent mode fuzzing, which is preferred for compile-time
instrumentation over the more binary-oriented fork mode, and
is standard in production fuzzing frameworks like OSS-Fuzz.
Unless stated otherwise, we configured UBSan to detect the
same bug categories as in OSS-Fuzz [56].

Project Crash A UUM UB Total

libredwg 3 3 5 3 14
assimp 0 0 0 2 2
ghostscript 0 0 4 3 7
libdwarf 0 0 0 0 0
libucl 2 9 3 0 14
gpac 1 0 11 2 14
serenity 0 0 0 0 0
opensc 0 0 6 0 6
inchi 7 5 8 3 23
libheif 0 0 1 0 1

Total 13 17 38 13 81

Table 1: Dataset and results of the bug finding experiment. The
table divides the bugs we found in addressability issues (A),
UUM errors, undefined behavior (UB), and bugs that trigger a
crash but are not related to sanitizers, like segmentation faults
(Crash). Table 6 (in the Appendix) lists additional information
like software version and fuzzing harness used for our tests.

6.1 Finding New Bugs

To test COMBISAN’s bug-finding capabilities, we assembled
a dataset of software tested daily on OSS-Fuzz using the same
selection criterion as in QMSan [47]. We ranked all the OSS-
Fuzz projects by the number of security-related bugs found in
OSS-Fuzz from 2024 to the time of testing, and selected the
top 10 entries without MSan support. For projects with more
than one fuzzing harness, we ranked them according to how
many bugs were found using each, and selected the top one.
Ranking projects and harnesses according to the number of
security bugs found in OSS-Fuzz is a proxy to choose well-
tested software, while choosing targets without MSan support
is helpful in showcasing COMBISAN’s increased compatibil-
ity. Table 1 displays the targets of our final dataset.

For each subject, we performed 5 fuzzing runs of 72 hours
each. As starting seeds, we used the public fuzzing queues
OSS-Fuzz maintains for each subject, allowing COMBISAN
to efficiently start bug detection from saturated queues. At the
end of the runs, we collected the crashes, if any, and dedupli-
cated them based on the type of error (e.g., UUM error, buffer
overflow, etc.) and the location of the error. We confirmed
our findings through manual inspection, to further remove du-
plicates missed by automatic techniques, and to confirm the
bugs are true positives. All the bugs described in this section
have been confirmed by the developers.

Table 1 shows the results of this experiment. COMBISAN
exposed a total of 81 new bugs. Almost half (38) are UUM
errors: an expected result since we tested subjects that did
not enable MSan support in OSS-Fuzz. We then counted 17
addressability issues and 13 for undefined behavior bugs. If
provided with the test cases, ASan and UBSan detect these ad-
dressability and UB bugs, respectively, and also MSan would
detect the found UUM errors, assuming that enabling MSan
for the subject at hand is feasible in terms of compatibility.



COMBISAN incidentally exposed another 13 bugs unre-
lated to any sanitizers, like segmentation faults as a result of
dereferencing a wild pointer. We confirmed that these bugs
were not introduced by our instrumentation by re-executing
them with an uninstrumented version of the program. OSS-
Fuzz should be able to detect these bugs in any configuration,
and we speculate it would have eventually found them.

For peculiar cases, with ghostscript we noticed how ev-
ery input was triggering undefined behavior due to a minor
difference in the type of a function pointer compared to the
function’s signature. This issue was preventing fuzzing with
UBSan, as every input causes a crash. Instead, thanks to how
COMBISAN handles UB (Section 4.3.1), fuzzing could go on,
eventually detecting also other undefined behavior. In the end,
COMBISAN detected three new UB bugs for this project.

For OpenSC, a set of tools for managing smart card tools, we
initially discovered 6 UUM bugs. OSS-Fuzz currently tests it
with ASan and UBSan, and we detected no new bugs for these
classes. Due to its complexity, this project has 12 harnesses.
Insights from interacting with its maintainers on the semantics
of its components led us to test other 6 harnesses mentioned in
recent security advisories [55]: using the same fuzzing setup,
we uncovered another 15 UUM bugs. We believe this test
highlights how many bugs (especially UUMs) these projects
harbor, urging for an efficient solution to detect them.

6.2 Detection Accuracy

We conducted multiple experiments to evaluate whether com-
prehensive runs of COMBISAN can detect the same bugs as
the existing state-of-the-art sanitizers can individually.

Juliet. We evaluated COMBISAN’s accuracy in detecting
bugs using the NIST Juliet Test Suite [36], a collection of
buggy test cases. Each test comes with a bad version, which
contains the bug, and a good version, where the bug is fixed.
To test COMBISAN, we selected a total of 14 relevant CWE
categories. As in related work [17, 27, 47], we removed test
cases that do not (deterministically) contain a bug on 64-bit
systems. For each category, we compared the results with the
relevant sanitizer (ASan, MSan, or UBSan). The detailed re-
sults of this experiment are shown in Table 7 in the Appendix.

To summarize, COMBISAN successfully detected the same
bugs as ASan, MSan, and UBSan for the bad (i.e., buggy)
test cases. For CWE 758, COMBISAN reported more bugs
in bad tests than UBSan due to the presence of uninitial-
ized loads in these test cases. Similarly, for CWEs 122, 457,
and 476, COMBISAN raised errors for certain good tests,
which are supposed to be bug-free, suggesting a false posi-
tive: however, these tests contain (safe) uninitialized loads,
which COMBISAN’s accurate detector can discard. Finally,
COMBISAN raised an error for all good CWE 843 cases, since
they all contain stack use-after-scope errors (true positives).

ASan MSan UBSan COMBISAN
Subject A M UB

c-ares 1 0 0 1 0 0
guetzli 0 0 0 0 0 0
json 0 0 0 0 0 0
libxml2 4 3 1 3 2 1
openssl 1 3 0 1 3 0
pcre2 6 7 5 6 7 11
re2 1 2 1 1 2 1
woff2 1 0 0 1 0 0

Table 2: Number of bugs found while fuzzing Google’s FTS
subjects. The three rightmost columns show addressability
issues (A), UUM errors (M), and undefined behavior (UB).

Fuzzing. To further evaluate COMBISAN’s accuracy, we
assembled a dataset of 8 common fuzzing benchmarks from
Google’s Fuzzer Test Suite (FTS), as is common in related
fuzzing and sanitizer work [3, 17, 35, 47, 57]. We selected
the same subjects as evaluated for QASan [17] and QM-
San [47]. Then, we compiled each subject with multiple sani-
tizers: ASan, MSan, UBSan, ASan and UBSan in combina-
tion, and COMBISAN both with and without UB detection.

For each subject and configuration, we performed 11
fuzzing runs of 24 hours using the seeds provided by Google’s
FTS or an empty seed otherwise. For guetzli, two seeds are
available in the test suite but cause throughput issues (dis-
cussed in Section 6.3), hence we used an empty seed.

For two subjects, code that is executed in every run triggers
a UB bug (creation of a null pointer for openssl and indirect
call through a pointer of a different type for both openssl and
libxml2). To support fuzzing with UBSan, we had to disable
detection of these errors for these subjects. We highlight how
COMBISAN overcomes this issue by ignoring the UB after
the first time it is triggered, while UBSan triggers a crash
every time, preventing fuzzing. For fairness, we disabled those
checks for COMBISAN as well.

After the fuzzing runs, we aggregated all the crashes found
by each configuration, and clustered them by the crashing
callstack to remove obvious duplicates. Then, we performed
root cause analysis to identify the unique bugs found by each
configuration. Table 2 shows the result of this experiment.

In all but one subject, COMBISAN was able to find the
same bugs as ASan, MSan, and UBSan. We point out that
COMBISAN finds these bugs with significantly less CPU time,
as ASan, MSan, and UBSan use a combined total of 72 hours.

For the remaining subject, libxml2, COMBISAN failed to
find one addressability issue and one UUM error. Upon fur-
ther inspection, these two bugs are the manifestation of the
same issue: a heap object is deallocated and its content is
later accessed (and used). ASan detects this as a use-after-free
issue, while MSan detects it as UUM error. We manually con-
firmed that COMBISAN correctly detects the addressability
issue when the input is provided; further, we observed that
executing this input produces two new loads of uninitialized



memory that COMBISAN had not detected in any of the 11
runs. We thus conclude that COMBISAN can detect this bug,
but an input able to trigger it was not produced by the fuzzer.

On a different note, we observe that for pcre2 COMBISAN
found 11 UB bugs, whereas UBSan only found 5. By looking
at the fuzzing metrics of each run, we noticed that, for this
subject, the runs with UBSan had a lower stability (∼93% on
average) than those with the other sanitizers (100% for most
of the runs, >99% for the others). Since this is the project
with the highest number of bugs in the experiment, we believe
that not sanitizing for memory safety errors made the fuzzing
unstable, resulting in suboptimal testing and fewer bugs found.
To test this hypothesis, we performed a run on this subject
with both ASan and UBSan enabled at the same time; in this
setup, UBSan detected 9 bugs—only 2 missing from those
detected by COMBISAN—with a stability on par with the
other configurations. Since UBSan reproduces the two miss-
ing bugs, we conclude that they were not found due to fuzzing
entropy (i.e., the fuzzer did not produce such test cases). We
reproduced this test with ASan and UBSan in combination
for every subject, finding the same bugs found by ASan and
UBSan in isolation, further confirming our hypothesis.

Replaying test cases. Since fuzzing is non-deterministic
by nature, we designed an experiment to compare the ac-
curacy of COMBISAN to that of the other sanitizers on the
same set of inputs. For each of the above subjects, we per-
formed a 24-hour fuzzing run using the same setup explained
above, without any sanitizers. Then, from the resulting satu-
rated queues, we started a new fuzzing run and stored the first
100,000 produced test cases. We replayed the executions of
these test cases with each sanitizer and counted the unique
crashes they detected, deduplicating based on the top three en-
tries of the callstack when the error occurs. Since COMBISAN
needs an accurate detector to confirm violations, we reused
AFL++’s startup phase to simulate a fuzzing run on these
inputs, enabling it to use the accurate detector when needed.

Table 8 (in the Appendix) presents the results of this exper-
iment. COMBISAN detected the same unique crashes as ASan
and UBSan for all subjects, without any false positives. For
UUM errors, COMBISAN detected 8 fewer than MSan: 1 in
openssl, and 7 in pcre2. After manual inspection, we iden-
tified them as addressability issues, which MSan incidentally
detects when the accessed values are also uninitialized and
later used. COMBISAN identifies and reports these bugs as
addressability issues from accessing unaddressable memory.

CVEs and issues. We further assessed COMBISAN’s accu-
racy by confirming it detects the spatial and temporal memory
errors of 15 reproducible CVEs evaluated in previous sani-
tizer work [25, 27, 72, 74]. For completeness, we added three
use-of-uninitialized-memory bugs by selecting the latest OSS-
Fuzz issues from ARVO [48] that we could reproduce on our
Ubuntu environment. COMBISAN successfully detected the
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Figure 5: SPEC CPU runtime overhead comparison.

15 spatial and temporal memory errors, as well as the unini-
tialized load corresponding to the three UUM errors. Table 9
displays the list of CVEs and issues along with their bug type.

6.3 Performance
Aside from the ability to detect bugs, COMBISAN’s perfor-
mance characteristics are a crucial factor to consider in soft-
ware testing usecases. In particular, we are interested in mea-
suring three properties: slowdown on a single execution, mem-
ory overhead, and the slowdown during fuzzing. In this sec-
tion, we compare these results with the state-of-the-art sanitiz-
ers. Additionally, we evaluate the benefit of our compile-time
optimizations for the number of reported uninitialized loads.

SPEC CPU. We measured COMBISAN’s overhead on the
SPEC CPU benchmarking suites by comparing its runtime
and memory usage to an uninstrumented baseline. We also
measured ASan’s and MSan’s overhead for direct compar-
isons. We excluded UBSan due to the large number of bug
reports it generates, and the fact that its instrumentation is
orthogonal to both ASan and COMBISAN.

While public patches exist for the addressability issues
in SPEC CPU (which we applied), the benchmarks contain
many unresolved UUM errors, hindering a comparison be-
tween MSan and COMBISAN. To overcome this issue, we
ran them in two modes. The zero mode, with MSAN0 and
COMBISAN0, treats all memory as always initialized by mak-
ing every shadow update write zero for the initialization
bits. In this way, neither tool reports UUM errors, thereby
establishing a convenient lower bound for the memory ac-
cess instrumentation overhead (and COMBISAN remaining
fully functional for addressability issues). The recovery mode,
with MSANR and COMBISANR, operates the shadow mem-
ory normally and continues execution upon errors, with their
reporting turned off to avoid inflating the overhead (e.g., for
stacktrace symbolization). This mode may incur higher over-
head in the face of frequent transitions to suppress errors, and
is also the closest configuration to COMBISAN while fuzzing.



ASAN MSAN0 MSANR COMBISAN

CPU’06 240% 107% 111% 292%
CPU’17 200% 107% 112% 247%

Table 3: SPEC CPU memory overhead comparison. For clar-
ity: 100% corresponds to a 2x increase over the baseline.

Figure 5 displays the median runtime slowdown for five
runs of SPEC CPU2006 and SPECrate2017 (with one parallel
copy). Per-program overheads can be found in Table 10. The
two modes of COMBISAN show a geometric mean (geomean)
runtime overhead of 124.3% and 149.0% on CPU2006, and
116.6% and 147.6% on SPECrate2017. Considering the more
realistic recovery mode, COMBISAN’s overall slowdown of
~150% is significantly less than the compounded ASan+MSan
overhead of 222% (CPU2006) and 197% (SPECrate2017).
As a result, using COMBISAN provides higher performance
than running the two existing sanitizers sequentially.

To put COMBISAN’s overhead into perspective against
ASan’s and MSan’s individual overheads: COMBISAN is
19.8%–36.9% slower compared to ASan, depending on the
configuration; comparing with MSan yields stable results
across the two configurations: COMBISAN is only 4% and
5% slower on CPU2006 for the zero and recovery modes,
respectively, and 14% and 15% slower on SPECrate2017.

Regarding memory consumption, Table 3 shows the ge-
omean memory overhead for the different sanitizers. We ob-
serve that the overhead is mostly dominated by the heap quar-
antine, rather than by the shadow memory. Indeed, MSan,
which does not have a quarantine, has the lowest memory
overhead (between 107% and 112% across all combinations)
despite having the worst memory-to-shadow ratio. On the
other hand, COMBISAN only uses approximately 15% more
memory than ASan, regardless of the evaluation mode, which
we mostly attribute to the extra 1/8th of shadow memory.

Fuzzing. COMBISAN is optimized to work with fuzzing:
to estimate the overhead it adds in this scenario, we used the
same Google FTS subjects as before. We compiled each sub-
ject in multiple configurations: one without sanitizers serving
as the baseline, one for each state-of-the-art sanitizer (ASan,
MSan, and UBSan), one with the combination of ASan and
UBSan, and two with COMBISAN (with and without UBSan).
For UBSan, we used the same configuration from Section 6.2.

We performed fuzzing runs using the seeds provided by
Google FTS, or an empty seed otherwise. For one subject
(guetzli), we noticed that, when using the provided seeds,
the two fastest configurations (i.e., baseline and UBSan) ex-
perienced low throughput as a result of diverging coverage,
as already discussed in the literature by previous work [18].
We instead used an empty seed for this subject, resulting in
the fastest configurations having the expected throughput and
coverage. In total, we performed 11 fuzzing runs for each

configuration, and report the median of the throughput.
Table 4 shows the results of this experiment. Overall, for

COMBISAN we measured a geomean slowdown of 3.72x and
4.68x compared to the baseline, without and with UBSan
enabled, respectively. Compared to ASan, COMBISAN has
added a slowdown of 14% without UB detection, and 43%
with UB detection. These results align with our findings on
the SPEC CPU benchmarks, where the slowdown relative to
ASan was between 19.8% and 36.9% depending on the con-
figurations. During fuzzing, the infrastructure of the fuzzer
itself adds a slowdown common to all the configurations (e.g.,
producing the test cases, analyzing the coverage, etc.), which
explains why the relative slowdown is slightly reduced com-
pared to that experiment. Compared to MSan, COMBISAN
is in fact faster when not enabling detection of undefined
behavior, and only 14% slower when included.

Since COMBISAN provides bug-finding capabilities that
match those of ASan, MSan, and UBSan combined, we reason
over the compounded overhead to contextualize COMBISAN’s
performance. We consider a scenario where we test a target
with N inputs for each sanitizer category, i.e., we require N in-
puts to be tested for ASan-class bugs, N for MSan-class bugs,
and N for UBSan-class bugs. This means that the total time
required to test the software with ASan+UBSan and MSan is
the sum of their execution times, because we have to run N
cases with ASan+UBSan, followed by another N cases with
MSan, totaling 2N. In contrast, COMBISAN achieves the same
by only executing a total of N cases. Now, we can quantify the
performance of the two setups by comparing the slowdown
ratios. ASan+UBSan and MSan incur a slowdown of 4.11x
and 3.78x over the baseline, respectively. Running them se-
quentially results in a total slowdown of 7.89x. In comparison,
COMBISAN (with UB detection) incurs a slowdown of only
4.68x. From this we conclude that COMBISAN is 1.7x faster
(7.89/4.68) than the existing sanitizers. Similarly, running
COMBISAN without UB detection is twice as fast as running
ASan and MSan sequentially ((3.27+4.11)/3.72).

Impact of optimizations. To understand the benefits of our
compile-time optimizations designed to reduce the number of
uninteresting uninitialized loads, we measured their impact
on the SPEC CPU2006 suite. More specifically, we measured
the total number of reported violations, as well as the number
of unique violation sites (distinguished by the instruction
address). Out of the 19 programs, five had zero violations
to begin with, five did not see significant improvements (at
most a 2% reduction of violation sites), and the remaining
nine are shown in Table 5. We cumulatively enabled each
optimization, and report both the absolute and relative changes
to contextualize the magnitude of the reductions.

Two programs (perlbench and omnetpp) highlight the dif-
ficulty of static reasoning over execution frequency: reducing
the number of unique violation sites by 13% and 24% only
impacted the total violation count by 1% or less. Clearly, these



AFL++ ASan MSan UBSan A+UB COMBISAN no UB COMBISAN with UB
Subject exec/sec vs. AFL vs. AFL vs. AFL vs. AFL vs. AFL vs. A vs. M vs. AFL vs. A vs. M

c-ares 37888 1.34x 1.07x 1.08x 1.46x 1.43x 1.07x 1.34x 1.50x 1.12x 1.41x
guetzli 18509 3.68x 2.87x 1.67x 3.76x 3.38x 0.92x 1.18x 6.23x 1.69x 2.17x
json 22984 2.81x 1.92x 1.11x 3.06x 3.24x 1.15x 1.69x 3.67x 1.30x 1.91x
libxml2 14123 8.67x 6.34x 1.26x 9.29x 9.69x 1.12x 1.53x 11.98x 1.38x 1.89x
openssl 18593 4.92x 21.36x 1.02x 5.20x 5.20x 1.06x 0.24x 5.23x 1.06x 0.24x
pcre2 18996 1.52x 4.57x 2.91x 1.67x 1.59x 1.05x 0.35x 1.89x 1.25x 0.41x
re2 18193 5.77x 1.70x 2.26x 11.69x 6.72x 1.16x 3.95x 8.13x 1.41x 4.78x
woff2 7990 2.49x 13.13x 1.06x 2.63x 4.29x 1.73x 0.33x 6.93x 2.78x 0.53x
geomean 3.27x 4.11x 1.44x 3.78x 3.72x 1.14x 0.90x 4.68x 1.43x 1.14x

Table 4: Dataset and results of fuzzing performance evaluation. The table presents the non-sanitized baseline throughput (AFL++
in the table) in terms of executions per second; then, it presents the relative slowdown of every tested configuration. For space
constraints, AFL++, ASan, MSan, and UBSan are indicated with AFL, A, M, and UB, respectively.

Program B +A +T +C rel% abs (%)

perlbench 1437 1437 1286 1244 13% 140M (1%)
gcc 5361 1190 1161 977 82% 759M (88%)
mcf 14 0 0 0 100% 55M (100%)
milc 13 0 0 0 100% 5M (100%)
gobmk 325 325 321 160 51% 14M (71%)
libquantum 1 0 0 0 100% 12M (100%)
h264ref 947 42 42 42 96% 700M (99%)
omnetpp 17 17 17 13 24% 18 (0%)
sphinx3 83 1 1 1 99% 351M (99%)

Table 5: Absolute and relative reduction of unique uninitial-
ized load violation sites per optimization (cumulatively). The
last column represents the total reduction count (non-unique).
Table headers indicate the optimizations: external [A]llocs,
use [T]aint analysis, [C]onstructors, and the [B]aseline.

violations occur in relatively cold parts of the code.
In contrast, the other programs showcase highly successful

reductions, for example for gcc, where we decreased the ab-
solute violations by 88% (759 million hits), spanning 82% of
the unique violation sites (more than 4000 sites removed).

The results also indicate that each optimization has its
own benefits. First, marking external allocations as initialized
works very well for e.g., gcc, h264ref, sphinx3, etc. Sec-
ond, marking constructor-operated memory as initialized after
invocation is beneficial for gcc and gobmk. Third, the static
taint analysis shows limited efficacy, but remains useful for
gcc and perlbench. Overall, we find that our optimizations
successfully reduce the violation count.

7 Limitations

Non-fuzzing context. COMBISAN’s metadata model is
optimized to synergize with fuzzing. Outside of fuzzing,
COMBISAN works as a standalone sanitizer for addressability
issues, uninitialized loads, and UBSan-class bugs. In gen-
eral, COMBISAN functions smoothly for programs that do
not contain any (or few) uninitialized loads, e.g., in SPEC
CPU2006 there are five programs without any uninitialized

loads by default, and three more after applying our optimiza-
tions. However, for programs that result in many (either true
or false positive) uninitialized loads, COMBISAN needs to
invoke its slow-path accurate detector to filter out the unin-
teresting uninitialized loads and thereby avoid generating an
impractical number of reports.

Thread safety. By using an 8-to-2 bits mapping for the
shadow memory, COMBISAN’s accesses to the shadow mem-
ory are currently not thread-safe. Since multiple bytes of
memory map to the same shadow byte, updating the initial-
ization status of multiple bytes that share a shadow byte may
result in race conditions. However, we believe this limitation
to be acceptable, considering that fuzzing harnesses are usu-
ally single-threaded, since fuzzing concurrent applications is
challenging [6]. Moreover, increasing the size of the shadow
memory to have a 1-to-1-bit mapping (like MSan) would
address this issue, at the cost of increased memory overhead.

Kernels. While COMBISAN’s instrumentation supports ker-
nel targets (e.g., Linux), our current implementation relies
on Valgrind, which cannot run on a kernel. However, since
kernels typically are self-contained, i.e., without external de-
pendencies, COMBISAN could use KMSan [9] as an accu-
rate UUM detector without introducing compatibility issues,
though with potentially higher costs for re-running executions.

8 Related Work

Bug detectors. There exists a large amount of prior work
on software bug detectors, covering various scopes of error
(sub)classes. Such sanitizers often detect spatial errors [2, 13,
15, 32, 40, 52, 54, 71], temporal errors [4, 11, 16, 28, 53, 68],
or both [25, 27, 31, 46, 51, 61]. Some tools have a narrow
scope, for example heap-only [24, 45], or only buffer over-
flows [26, 39]. Highly performant solutions are typically
hardware-assisted [8, 29, 43, 60, 73], limiting deployment.
Other bug classes also typically have their own sanitizers,



like type confusion [30,34], UUM errors [47,65], or race con-
ditions [59, 62]. With COMBISAN, we detect a union of bug
classes and scopes: we cover heap, stack, and global memory,
and detect spatial errors (bounded by redzone size), temporal
errors (bounded by quarantine size), UUM errors, and UB
errors, in a single solution.

Sanitizer optimization for fuzzing. FuZZan [35], ReZ-
Zan [3], and SAND [38] explore alternative sanitizer setups
to optimize the performance of fork-mode fuzzing. Through
optimizations in sanitizer metadata design and management,
these efforts manage to reduce the impact of the sanitizer
runtime on the (dominant) overhead of forking. Fork-mode
fuzzing differs in key architectural aspects from persistent-
mode fuzzing, which is much faster. We evaluated the latter
in the paper as it is the recommended approach when source
code is available (i.e., with compiler-based sanitizers) [1], and
also represents the default choice for OSS-Fuzz.

Combined sanitizers. Prior research has explored other
techniques to combine bug detectors. Some notable designs
are at the binary level, like Valgrind [63] and Dr.Memory [5],
however, they have limited performance and accuracy [59].
For example, bounds checking is mostly heap-only, and de-
tecting most UB is assumed infeasible [17, 59].

SoftBoundCETS [51] proposes a compiler-based combina-
tion of spatial and temporal bug detection, but does not unify
the metadata, and instead operates independently. COMBISAN
in contrast retrieves all metadata of an address in one lookup.
EffectiveSan [14] mainly detects type confusion bugs, but, as
a side effect of having type information, also detects some
spatial and temporal errors. In contrast, COMBISAN detects
multiple bug classes without sacrificing accuracy.

Bunshin [70] leverages multi-variant execution to com-
posite incompatible sanitizers: instead of unifying, it syn-
chronizes parallel executions with different sanitizers. This
side-steps the interoperability issues between sanitizers, but
inherits the compatibility limitations of MSan and those of
multi-variant execution itself. For example, multi-variant exe-
cution struggles with nondeterministic behavior, common in
persistent fuzzing [18]. Moreover, solutions that parallelize
inputs across N disjoint sanitizers fundamentally either in-
crease the total run time by a factor ~N or require ~N extra
cores—which both cause significant performance overhead
in modern core-saturated fuzzing campaigns.

QMSan. We conclude the discussion of related work with
QMSan [47], acknowledging the influence its multi-layered
design had on COMBISAN. Both systems address MSan’s
compatibility issues. To this end, QMSan trades performance
for compatibility by employing dynamic binary instrumenta-
tion. COMBISAN optimizes both aspects, while also achieving
unification with addressability and UB sanitization.

The authors of QMSan [47] mention that their design is
compatible with the addressability checks of QASan [17], and
they propose future work on optimized concurrent detection
of both classes of errors (i.e., UUM and addressability) in
binary-level fuzzing. In practice, it is possible to run QMSan
alongside the original QASan release [17], which uses a cus-
tom DSO. However, instrumentation and shadow memory are
added independently, resulting in significant performance and
memory overhead. Later, compatibility was lost in the QASan
integration in AFL++, which uses its unified DSO.

9 Conclusion

We presented COMBISAN, a fuzzing-oriented software san-
itizer that combines the bug detection capabilities of ASan,
MSan, and UBSan. COMBISAN uses a new unified shadow
memory model that enables simultaneous detection of ad-
dressability and initialization issues, while ensuring smooth
integration with UBSan. While fuzzing, COMBISAN prevents
interference in bug detection by deferring bug analysis to test
case completion, instead of the common approach of termi-
nating early. Finally, COMBISAN also addresses MSan’s com-
patibility issues, thereby unlocking easy-to-deploy fuzzing
for UUM bugs. We hope that COMBISAN will see adoption
in production fuzzing campaigns, where it can improve effi-
ciency both in terms of throughput and detected bugs.
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Ethical Considerations

While developing COMBISAN, we have carefully considered
the ethical implications of our research, which aims to make
software more secure by identifying software bugs before they
can be exploited. Still, finding bugs in software can represent
a security risk that must be handled properly. We thus put in
place safeguards to protect the relevant stakeholders.

Stakeholders and impact. The stakeholders involved in
our project are the developers and the users of the software
we tested for bugs with COMBISAN and other sanitizers, in-
cluding users of software that use our targets as dependencies.



Our research positively impacts the stakeholders, who benefit
from our findings by using more secure software.

As any other sanitizer, COMBISAN is designed to find bugs
in software with the goal of mitigating the risk of bugs being
exploited by malicious actors. Still, these solutions can also be
used by adversarial entities to find unpatched vulnerabilities.
We discourage any such use of COMBISAN. We highlight
how this dual-use scenario should not discourage the public
release of bug-detecting solutions: security by obscurity is
not, and should never be, an option. Instead, we stress even
more the importance of software testing in the development
cycle, which can only benefit from solutions like COMBISAN
to promptly detect and fix bugs before software is released.

Responsible disclosure. After finding a bug with any sani-
tizer, we first confirmed if the bug had already been reported.
In case it was not, we reported it to the project maintainers
according to their security policy, and by contacting them
privately if such a policy is missing. All reports were made
privately (e.g., private bug trackers or security advisories on
GitHub), except those for assimp and inchi, where the main-
tainers explicitly request bug reports to be done through public
GitHub issues. In our reports, we provided as many details
as possible about each bug, including a PoC, and we offered
our expertise to ease the bug-fixing process. For private re-
ports, we proposed a standard time window of 90 days before
reporting any of our findings to the public; in all cases, this
time window was sufficient for the developers to take all the
actions they deemed necessary.

Open Science

We comply with the open science policy by releasing the
COMBISAN prototype as open source and partaking in Arti-
fact Evaluation. The prototype consists of a modified LLVM
20.1.0 framework, a modified AFL++ 4.32c project, and an
infrastructure to test COMBISAN. The artifact can be found
at: https://zenodo.org/records/16949365
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A Appendix

Table 6 contains the details of the tested OSS-Fuzz targets.
Table 7 displays the bug detection results of ASan, MSan, UB-
San, and COMBISAN on the Juliet Test Suite. The detection
rate for the UBSan-class categories is relatively low, because
many test cases require a specific input to trigger the bug. We
ran the test cases with one equalized input for simplicity, and
looked for any deviations between standalone UBSan and
COMBISAN enabling UBSan. Table 8 presents the results
of the replaying experiment. Table 9 contains various ASan-
class CVEs evaluated in prior work, along with the type of
memory involved in the bug. Table 10 displays the individual
runtime overhead of the evaluated SPEC CPU programs.

Project Harness Commit San

libredwg llvmfuzz 4b6048d -
assimp assimp_fuzzer b3a47a6 AU
ghostscript device_psdcmyk_fuzzer 3f12145 A
libdwarf fuzz_srcfiles 91ab209 -
libucl ucl_add_string_fuzzer 3e7f023 -
gpac fuzz_probe_analyze 9d6c670 -
serenity FuzzICOLoader bbdbdab -
opensc fuzz_pkcs15init bd7de44 -
inchi inchi_input_fuzzer 1e9becb A
libheif file_fuzzer 6dcbad3 -

Table 6: Harnesses and versions (commit hashes) used in our
tests for OSS-Fuzz subjects. The last column indicates which
sanitizers each project explicitly requested from the frame-
work between ASan (A), and UBSan (U), or if they requested
none (-). Currently, OSS-Fuzz enables ASan and UBSan by
default for projects not requesting any sanitizer [22].



Sanitizer CWE #cases #good #bad

ASan CWE121 2634 2634 2634
CWE122 3178 3178 3178
CWE124 932 932 932
CWE126 612 612 612
CWE127 932 932 932
CWE415 765 765 765
CWE416 374 374 374

MSan CWE457 882 882 882

UBSan CWE190 2299 2262 627
CWE191 1714 1714 447
CWE194 540 540 540
CWE476 285 285 268
CWE758 494 494 204
CWE843 74 74 74

COMBISAN CWE121 2634 2634 2634
CWE122 3178 3177 3178
CWE124 932 932 932
CWE126 612 612 612
CWE127 932 932 932
CWE415 765 765 765
CWE416 374 374 374
CWE457 882 866 882
CWE190 2299 2262 627
CWE191 1714 1714 447
CWE194 540 540 540
CWE476 285 279 268
CWE758 494 494 422
CWE843 74 0 74

Table 7: Results of COMBISAN and other sanitizers on the
Juliet Test Suite. Diverging values are marked bold.

ASan MSan UBSan COMBISAN
Subject A M UB

c-ares 1 0 0 1 0 0
guetzli 0 0 0 0 0 0
json 0 0 0 0 0 0
libxml2 2 16 1 2 16 1
openssl 1 3 0 1 2 0
pcre2 44 14 2 44 7 2
re2 1 2 1 1 2 1
woff2 0 0 0 0 0 0

Table 8: Number of unique crashes found by each sanitizer
on the Google FTS subjects by replaying an equalized input.
The columns follow the same naming as Table 2.

ID Type *San COMBISAN

CVE-2009-1759 stack-buffer-overflow ASan ✓
CVE-2009-2285 heap-buffer-overflow ASan ✓
CVE-2013-4243 heap-buffer-overflow ASan ✓
CVE-2015-8668 heap-buffer-overflow ASan ✓
CVE-2015-9101 heap-buffer-overflow ASan ✓

CVE-2016-10095 stack-buffer-overflow ASan ✓
CVE-2016-10269 heap-buffer-overflow ASan ✓
CVE-2016-10270 heap-buffer-overflow ASan ✓
CVE-2017-12858 heap-use-after-free ASan ✓
CVE-2017-12937 heap-buffer-overflow ASan ✓
CVE-2017-14407 stack-buffer-overflow ASan ✓
CVE-2017-14408 stack-buffer-overflow ASan ✓
CVE-2017-14409 global-buffer-overflow ASan ✓
CVE-2017-5976 heap-buffer-overflow ASan ✓
CVE-2017-5977 heap-buffer-overflow ASan ✓
CVE-2017-7263 heap-buffer-overflow ASan ✓

OSS-Fuzz #67552 stack-UUM MSan ✓
OSS-Fuzz #66510 heap-UUM MSan ✓
OSS-Fuzz #65120 heap-UUM MSan ✓

Table 9: COMBISAN’s bug detection results on known CVEs
and issues along with the sanitizer used for ground truth.

Program A M0 MR C0 CR

400.perlbench 4.23 2.41 2.76 5.04 5.63
401.bzip2 1.55 1.88 2.17 1.71 1.81
403.gcc 2.73 2.78 2.93 3.33 3.47
429.mcf 1.22 1.99 2.06 1.41 1.45
433.milc 1.11 1.87 2.03 1.58 1.63
444.namd 1.51 1.90 2.15 1.51 1.96
445.gobmk 1.77 1.77 1.89 1.90 2.11
447.dealII 2.12 2.14 2.37 2.35 2.80
450.soplex 1.57 2.26 2.50 1.76 1.97
453.povray 2.84 2.48 2.62 3.69 4.44
456.hmmer 2.69 2.65 3.25 2.83 3.26
458.sjeng 2.10 2.61 2.78 2.22 2.58
462.libquantum 1.21 2.12 2.65 1.47 1.57
464.h264ref 1.90 2.58 2.77 3.60 3.83
470.lbm 1.18 1.85 1.89 1.93 1.97
471.omnetpp 2.14 2.16 2.33 2.44 2.62
473.astar 1.40 1.53 1.65 1.49 1.60
482.sphinx3 1.65 2.08 2.22 1.70 2.21
483.xalancbmk 2.65 2.39 2.53 4.17 4.34

geomean 1.853 2.156 2.365 2.243 2.490

500.perlbench_r 2.44 2.60 2.76 2.82 3.39
502.gcc_r 2.97 2.50 3.01 3.56 3.89
505.mcf_r 1.16 1.55 1.64 1.29 1.38
508.namd_r 1.93 2.24 2.92 2.12 2.52
510.parest_r 2.45 2.32 2.75 2.47 3.17
519.lbm_r 1.03 1.66 1.73 1.43 1.90
520.omnetpp_r 3.50 2.85 3.03 3.92 4.20
523.xalancbmk_r 1.82 1.77 1.83 2.76 2.89
525.x264_r 2.02 2.05 2.10 3.31 3.46
531.deepsjeng_r 1.72 1.94 2.02 1.85 2.19
538.imagick_r 1.50 1.60 1.99 2.27 2.53
541.leela_r 1.86 1.79 1.94 1.90 2.54
544.nab_r 1.17 0.87 1.36 1.19 1.27
557.xz_r 1.36 1.85 2.04 1.53 1.57

geomean 1.808 1.900 2.159 2.166 2.476

Table 10: Individual SPEC CPU runtime overhead results for
ASan (A), MSan (M), and COMBISAN (C).
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