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Abstract—Code diversification is an effective strategy to pre-
vent modern code-reuse exploits. Unfortunately, diversification
techniques are inherently vulnerable to information disclosure.
Recent diversification-aware ROP exploits have demonstrated
that code disclosure attacks are a realistic threat, with an
attacker able to read or execute arbitrary code memory and
gather enough gadgets to bypass state-of-the-art code diversi-
fication defenses.

In this paper, we present CodeArmor, a binary-level system
to harden code diversification against all the existing read-
based and execution-based code disclosure attacks. To counter
such attacks, CodeArmor virtualizes the code space to com-
pletely decouple code pointer values from the concrete location
of their targets in the memory address space. Using a com-
bination of run-time randomization and pervasively deployed
honey gadgets, code space virtualization probabilistically en-
sures that only code references that can legitimately be issued
by the program are effectively translated to the concrete code
space. This strategy significantly reduces the attack surface,
limiting the attacker to only code pointer gadgets that can be
leaked from data memory. In addition, unlike existing leakage-
resistant code diversification techniques that provide similar
security guarantees, CodeArmor requires no access to source
code, hypervisors, or special hardware support.

Our experimental results show that CodeArmor signif-
icantly raises the bar against existing and future attacks,
at the cost of relatively low average performance overhead
(6.9% on SPEC and 14.5% on popular server programs, and
even lower—roughly halving such average overheads—when
operating aggressive inlining optimizations at the binary level).

1. Introduction

Today’s code-reuse attacks (CRAs) are critically de-
pendent on discovering the memory that contains useful
snippets of code—or gadgets. Armed with such knowledge,
attackers divert a program’s control flow to such snippets and
chain them together to construct their payloads. For instance,
memory disclosures that leak code pointers enable attackers
to bypass defense mechanisms like ASLR and exploit binaries
using a variety of code-reuse attacks such as ROP [79] and
JOP [23]. Even in the presence of (fine-grained) code diver-
sification [31], a single code pointer suffices if an attacker is

able to probe the memory contents of the target process dy-
namically using, for example, a JIT-ROP strategy [82], [34].

In detail, traditional memory disclosures are based on
explicit reads, where the contents of code pages/code pointers
are leaked directly from memory. More recent attacks read
memory pages indirectly, using time-based side channels [78],
[57], [39]. However, attackers may also probe the target
program by blindly executing code at some address until they
encounter behavior that corresponds to a known gadget [15].
Whatever the method used, memory disclosure is a conditio
sine qua non for modern code-reuse attacks. Phrased simply,
all code-reuse attacks need to know where to transfer control
to stitch together a payload. In the ideal case where no
memory disclosures are possible, code diversification offers
perfect protection against code reuse—potentially stronger
than active defenses such as CFI [7], which have been
recently targeted by a variety of attacks [21], [49], [35], [22].

In this paper, we present CodeArmor, a new binary-
level solution which counters diversification-aware code-
reuse attacks by virtualizing a program’s diversified code
space to prevent any code pointer stored in memory from
revealing the location of the corresponding concrete code
space, and continuously randomizing the mapping to the
concrete code space to ensure strong information hiding
guarantees against brute-force attacks (as opposed to the
weak guarantees provided by plain ASLR [39]). The intuition
is that code executes at constantly changing addresses, and
all code pointers in memory require linear translation prior to
use in program-issued control transfers and do not even point
to concrete code pages until then. Thus, an attacker leaking
data pages will only disclose (nontranslated) code pointers
that do not allow the attacker to (directly or indirectly) find
additional gadgets from the corresponding code pages.

With CodeArmor deployed, read-based attacks like JIT-
ROP [82], [34] are no longer effective, since code pages
themselves can never leak by design. Even if attackers leak a
nontranslated code pointer from data pages, execution-based
attacks can only run the corresponding code if the program
first translates the pointer. The only way to do so is by
means of the program’s legitimate control transfers (and not
those blindly derived from misaligned instructions), already
slowing down brute-force attacks. Moreover, attackers cannot
easily modify the code pointer and probe the rest of the code
space using a BROP-like attack, because the code itself is
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Figure 1. Comparison of different code space organizations.

highly diversified and many of the potential targets for control
transfers in reality point to pervasive honey gadgets that
raise an alert when targeted. CodeArmor’s design efficiently
ensures that an attack will on average hit such honey gadgets
a number of times before disclosing the first real gadget,
providing a strong probabilistic defense against arbitrary
execution-based attacks.

In other words, CodeArmor’s design probabilistically
ensures that only “live” code pointers that can be leaked
from data memory can be used (as-is) as individual gadgets
by attackers, significantly reducing the attack surface. Unlike
existing leakage-resistant code diversification techniques that
provide similar security guarantees [43], [42], [27], [30], [83],
[91], [64], [10], [9], [18], CodeArmor works entirely at the
binary level without any need for source, special hardware
support, or modifications to the underlying software stack
(i.e., OS or hypervisor).

While our techniques are more general, CodeArmor
specifically focuses on protecting C binaries for the x86 64
platform. Such binaries are representative of widely deployed
security-sensitive server programs, which have repeatedly
proven vulnerable to modern and sophisticated disclosure
attacks [15], [78], [39]. In addition, CodeArmor can be used
to enhance state-of-the-art binary-level CFI techniques [85]
designed to counter function reuse attacks [77] (which
only rely on data disclosure). This is to reduce traditional
CFI’s target sets to only the code pointers that can be
effectively leaked from data memory (rather than all the
dynamically computed code pointers indiscriminately,
similar to source-level per-input CFI [68]).

Contributions. We make the following contributions:
• We present a new code space organization to support

virtualized code pointers and periodically re-randomize
the corresponding concrete code space mappings. We

demonstrate that such techniques are ideally suited to
countering code disclosure attacks.

• We demonstrate the effectiveness of our techniques
in CodeArmor, a new defense solution against
diversification-aware code-reuse attacks. CodeArmor op-
erates entirely at the binary level and requires no cooper-
ation from the underlying hardware and software stack.

• We evaluate CodeArmor on both standard benchmarks
and popular server programs, showing that it provides
a strong probabilistic defense—ensuring that even
sophisticated execution-based code disclosure attacks
will hit an average of at least 3 honey gadgets before
disclosing the first real gadget—with low average
performance overhead—6.9% on SPEC and 14.5%
on popular server programs, and only 3.2% and 8.2%
(respectively) when operating aggressive inlining
optimizations at the binary level. Our performance is
comparable to or faster than other binary-level security
solutions [80], [38], [95], [94] and significantly faster
than traditional run-time randomization systems at low
(µs) re-randomization latencies.

2. Threat Model

We assume a strong threat model where an attacker
can interact with the target program repeatedly, exploiting
vulnerabilities that allow arbitrary reads, writes, and control-
flow diversions. We also assume the most permissive class of
programs that keep restarting forked worker processes after a
crash (e.g., real-world server programs). To understand how
CodeArmor stops attacks, we first review state-of-the-art code
disclosure techniques available to our advanced attacker.
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Figure 2. CodeArmor’s high-level overview

2.1. Read-based disclosure attacks

These attacks start by leaking a code pointer from the
data space (known-pointer attack) or guessing a valid code
space address (blind attack). Either way, the attacker locates a
code page in memory and reads its content using an arbitrary
read vulnerability. Recent attacks have exploited either direct
memory disclosure [82], [34] or indirect reads using timing
attacks [78]. By reading the code page, the attacker obtains
all gadgets in it, but also control-transfer targets to locate even
more code pages. Upon finding enough gadgets, the attacker
can link them together and launch a traditional code-reuse
attack. Key requirements for such a diversification-aware
code-reuse attack are that gadgets found in the code space
must be readable and remain stable throughout the attack.

2.2. Execution-based disclosure attacks

These attacks blindly execute code at a memory address
and observe the execution behavior to disclose diversified
gadgets in the code space [15], [78]. Attackers rely on a
control-flow diversion vulnerability to redirect execution
to a given code pointer (leaked or guessed in a known-
pointer or blind attack, respectively), measure observable
side effects to disclose the executed gadget (e.g., crashes),
and repeatedly expand the search to surrounding addresses
until enough gadgets are found. Key requirements for such
a diversification-aware code-reuse attack are that gadgets
found in the code space must be stable across failures and
yield nonanomalous side effects (lest an IDS or a sysadmin
detects the attack).

3. Concrete Layout Independent Code

One of the key ingredients to the protection offered by
CodeArmor is its organization of the code space. Figure 1
compares different code space organizations, detailing their
properties in relation with code disclosure attacks. Position-
Dependent Code (PDC) and Position-Independent Code

(PIC) are the standard code organizations used in real-world
programs. In PDC-based binaries (Figure 1a), the code space
is loaded at a fixed address. This enables an attacker to indis-
criminately launch read-based and execution-based known-
pointer disclosure attacks. In PIC-based binaries (Figure 1b),
the code space can be loaded at any address in memory. This
forces the attacker to leak pointers from data memory before
reliably launching any known-pointer attacks, but it does not
prevent disclosure attacks from succeeding in general.

Isomeron [34] (Figure 1c) and Oxymoron [10] (Figure 1d)
are two recent software-only research solutions that propose
new code organizations to mitigate disclosure attacks. Iso-
meron clones the original code space into a diversified code
space, allowing a run-time diversifier to randomly switch the
execution between the two spaces at every control transfer.
Since the control flow randomly selects targets from the
two code spaces, gadgets leaked from one (or the other)
code space can no longer be reliably chained together to
launch CRAs. With a code space switching probability of
0.5 at every control transfer, however, a repeated code-
reuse attack based on, say, 5 chained gadgets—typically
sufficient to mount a generic ret2libc attack on x86 64 [15]—
requires only 32 attempts on average. Oxymoron’s PALACE
organization, in contrast, segments the code space into a
number of randomly allocated code pages and forces control
transfers to go through a RaTTle table that stores the real
location of the targets. This strategy only eliminates control-
transfer target information from code pages, limiting the
expansion step of read-based disclosure attacks. This is,
however, insufficient to prevent an attacker leaking multiple
code pointers from gathering a sufficient number of gadgets
from the corresponding code pages [34].

CodeArmor’s CLIC (Concrete Layout Independent Code)
in Figure 1e, finally, splits the original (diversified) code
space into a virtual and concrete code space, completely
decoupling code pointers stored in data memory from the
concrete location of their targets in the address space and
translating the former into the latter only at each valid
control transfer. In addition, to ensure the concrete code
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space remains “hidden” and its contained concrete gadgets
unstable, the translation layer continuously switches to a new
concrete code space version allocated at a random memory
location. This design prevents attackers from effectively
exploiting data memory leaks to start off code disclosure
attacks and hinders all the illegal code references functional
to mount read-based and execution-based disclosure attacks.
This leaves only individual live code pointer-based gadgets
directly disclosed via data leaks to attackers.

4. Overview

Figure 2 presents CodeArmor’s high-level overview.
Binaries (and all their shared libraries) are instrumented by
CodeArmor’s Rewriter and Libarmor run-time library and the
address space reorganized according to a new layout known
as CLIC (Concrete Layout Independent Code). A CLIC
organization splits the original (diversified) code space into
a virtual and concrete code space and completely decouples
code pointers in data memory from the concrete location of
their targets in the address space, requiring a translation of
the former into the latter only at each valid control transfer.
In other words, even the disclosure of code pointers in
memory will not reveal the actual location of the target code.
Moreover, to ensure the concrete code space remains “hidden”
and its contained concrete gadgets unstable, the translation
layer continuously switches to a new concrete code space
version allocated at a random location.

The rewriter, in turn, internally relies on four
sequential binary instrumentation passes: DePIC, CLIC and
Diversification. The DePIC pass preprocesses the code (and
data) to replace references using PC-relative addressing
with corresponding references using absolute addressing.
This is necessary to virtualize code pointers and ensure the
concrete code space can be safely relocated at runtime.

The CLIC pass instruments all the legitimate control
transfer instructions (except relative ones) to ensure their
targets are linearly translated from the virtual to the concrete
code space right before jumping to the destination during
the execution1. In addition, the CLIC pass ensures Libarmor
can transparently interpose on system calls (Syscall handler)
and signal handling (Signal handler) at runtime to “hide”
the CLIC organization to the underlying operating system.
Finally, the Diversification pass performs fine-grained code
diversification to ensure the virtual/concrete code layout
remains unpredictable to the attackers even in the case of
known-pointer attacks.

To run an instrumented program binary, users need to
load the binary in CodeArmor’s Custom loader. The loader
first relies on the pregenerated Prelink script to relocate
code from the binary and all the libraries in a memory-
contiguous virtual code space. This step is essential to
enforce a CLIC memory layout and crucial for CodeArmor’s
run-time performance. Next, the loader yields control to
Libarmor, which allows the CLIC manager to finalize the

1. This software-based translation can be best described as a level of
indirection on top of the MMU’s virtual-to-physical translation.
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Figure 3. Runtime memory layout: baseline vs. CodeArmor

CLIC memory layout and start the program execution. The
manager first relies on the Relocation index to dynamically
patch all the absolute addresses introduced by the DePIC pass
and fully retain PIC’s random relocation semantics. Once
the virtual code space has been set up, the manager creates a
(randomly allocated) clone to initialize the first concrete code
space version at an initial offset from the virtual code space.
Next, the manager intersperses the original code pages (still
mapped at the virtual code space address) with pervasive
honey gadgets—dummy gadgets that disclose no code layout
information when read and raise alerts when executed by
an attacker—effectively creating an identity mapping of the
entire virtual code space into a honey code space.

Figure 3 demonstrates a runtime memory layout
comparison between normal execution and execution
protected by CodeArmor. During normal execution
(Figure 3A), a function pointer ptrfoo directly stores the
concrete address of the function foo(). Once such address is
leaked, the attacker can further read the content of function
foo() and mount a JIT-ROP attack. However, when the
execution is protected by CodeArmor (Figure 3B), such
attacks are no longer possible. First, the function pointer
ptrfoo no longer holds the concrete address of function foo().
Instead, it contains a virtual code space address pointing to a
clone of a diversified version of function foo() (foohoney()),
which is full of honey gadgets. Attempts to read or execute
such gadgets will raise alerts caught by CodeArmor. In
legitimate execution paths, in contrast, CLIC instruments all
indirect control-flow transfer instructions by adding an offset
(offset(V)) to their virtual code space target and locating the
corresponding concrete code space address. In addition, to
prevent an attacker from reusing any callsite or function
entry gadgets, the diversification pass inserts dedicated
random-sized gaps. These gaps are filled with TRAPS which
redirect the control flow to the honey code space.

Since the CLIC instrumentation normally translates all the
legitimate program-issued control transfers from the virtual
to the concrete code space, we do not encounter the (honey)
identity mappings except for attacker-initiated misaligned
control transfers (i.e., originating in misaligned instructions
and thus not instrumented to perform virtual-to-concrete
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translations)). In particular, an attacker attempting a read-
based known-pointer attack and using a pointer to the virtual
code space to seed wild data reads will ultimately read
useless data (instead of concrete code) from the honey code
space. Alternatively, an attacker attempting an execution-
based known-pointer attack and using a pointer to the virtual
code space to seed wild code execution will ultimately cause
misaligned control transfers, redirect execution to the honey
code space, and trigger alerts. Furthermore, since all the
code pointers stored in memory point to the virtual code
space, no known-pointer attack can disclose the location of
the concrete code space by design.

To further “hide” the concrete code space location to
blind attacks, the CLIC manager deploys the Randomizer,
a background thread which continuously creates new
(randomly allocated) concrete code space versions and
instructs the CLIC instrumentation to efficiently switch
the execution accordingly. Once run-time randomization
is enabled, the manager can finally yield control to the
program and start off the execution.

5. Rewriter

5.1. DePIC pass

The goal of the DePIC pass is to eliminate all the PC-
relative references from program and library code. This is
crucial since PC-relative references are detrimental to the
CLIC organization. PC-relative data references require code
memory at a fixed offset from data memory. This would,
however, allow arbitrary data pointer leaks to immediately
reveal the location of the concrete code space. In addition,
this would prevent CodeArmor from relocating the concrete
code space during the execution, hindering run-time ran-
domization. Similarly, PC-relative code references require
an identity mapping between code memory and computed
code pointer values. This would, however, allow arbitrary
code pointer leaks to immediately reveal the location of the
corresponding concrete code target. In addition, this would
prevent code pointers from pointing into anything other
than the concrete code space, hindering the fundamental
assumption behind CLIC. By replacing all the PC-relative
references with absolute ones, the DePIC pass can instead
guarantee that (i) both code and data references are concrete-
code-location-agnostic and (ii) code references stably point
to the virtual code space.

To locate all the PC-relative references, the DePIC pass
scans all the instructions in program and library code and
checks the addressing mode in the ModR/M byte. On x86
memory-accessing instructions, the ModR/M byte specifies
the operands and the addressing mode, while the SIB
byte indicates the scale, index, and base register. Without
even having to fully decode the individual instructions,
the DePIC pass simply modifies the existing ModR/M and
SIB bytes to specify absolute addressing and replaces the
original displacement with a corresponding absolute address.
The individual absolute addresses are computed relatively

Figure 4. CLIC instrumentation’s overview

to a reference base address and their location stored in
a Relocation index embedded in the binary. This allows
the CLIC manager to quickly locate and patch all the
precomputed absolute references at load time (i.e., for the
binary and dynamically linked libraries) and runtime (i.e.,
for dynamically loaded binaries/libraries, using a just-in-
time rewriting strategy). This step is necessary to load the
virtual code space at a random address on a per-program
basis—similar to regular PIC code. Note that the DePIC pass
operates exclusively on PIC code—used in the libraries and
increasingly common in program code on x86 64 platforms.
PDC code—already using absolute addressing—if present, is
simply left untouched, effectively resulting in a split virtual
code space organization with a nonrelocatable PDC-derived
region and a fully relocatable PIC-derived region at runtime.

5.2. CLIC pass

The DePIC pass guarantees that all the code pointers
stored in data memory contain absolute addresses that
ultimately refer to the virtual code space at runtime. Since
the concrete code space is identical to the virtual code
space (an offset away), the goal of the CLIC pass is simply
to ensure that all such virtual code pointers are linearly
translated to a target in the concrete code space only when
referenced in legitimate control transfers. Figure 4 illustrates
the instrumentation operated by the CLIC pass for this
purpose. In the figure, VERSION_OFFSET(V) refers to the
global offset—maintained in Libarmor data memory and
hidden to the attacker—between the virtual code space and
the currently executing concrete code space version V.

The call instrumentation (Figure 4a) first translates the
concrete return address into its virtual counterpart (necessary
for all the code pointers stored in memory) and pushes the
resulting address onto the stack. Next, it translates the virtual
target address into its concrete counterpart (necessary for all
the control transfer targets) and jumps to the resulting address.
This second translation step is only actually required for in-
direct calls. Direct calls and jumps simply transfer control to
a concrete target relative to the current (concrete) instruction
pointer and thus require no virtual-to-concrete translation.

The ret instrumentation (Figure 4b) pops the virtual
return address off the stack, translates it into its concrete
counterpart, and jumps to the resulting address. The indirect
jmp instrumentation (Figure 4c) is similar, but the target is ex-
plicit in the code. The syscall instrumentation (Figure 4d),
finally, pushes the (translated) post-syscall return address and
jumps to a dedicated Syscall handler. The Syscall handler,

5



along with a Signal handler, are the only code snippets
allocated by CodeArmor in a separate (special) concrete
code space, unaffected by run-time randomization and with
no virtual code space mapping. This is necessary to support
concrete kernel-to-user control transfers without requiring
kernel modifications.

The syscall instrumentation also enables CodeArmor
to interpose on selected syscalls. In detail, CodeArmor in-
terposes on the clone syscall to allocate/initialize Libarmor
data, the Syscall handler, and the Signal handler in a random
location of the address space on per-process basis, start off the
Randomizer on per-process basis, and initialize CodeArmor’s
thread-local state on per-thread basis. In addition, CodeArmor
interposes on the signal and sigaction syscalls to ensure
all the signal handler invocations are proxied through the Sig-
nal handler. Finally, CodeArmor interposes on execve to per-
form just-in-time rewriting (and caching) of external binaries
not known statically. A similar strategy is adopted by the Cus-
tom loader when loading external libraries at dlopen time.

Finally, the CLIC pass instructs the rewriter to generate
a Prelink script at the very end of the binary instrumen-
tation process. CodeArmor’s Prelink script specifies the
load address for each instrumented library in the program.
This facilitates the task of the run-time components to
generate a memory-contiguous virtual and concrete (PIC)
code space, significantly increasing the efficiency of run-
time randomization—only one (PIC) region to remap at each
randomization cycle—and, as by product, of the program
itself—improved code locality and the ability to leverage
huge code pages to reduce iTLB misses.

5.3. Diversification pass

The goal of the diversification pass is to implement
effective code diversification techniques to make the location
of the individual gadgets in the virtual code space (and,
isomorphically, in the concrete code space) unpredictable.
We note that, by preventing concrete code pointers from being
actively stored in data memory, CLIC alone already provides
some protection against read-based known-pointer attacks—
a leaked virtual code pointer does not directly disclose
information on the location of the concrete code space.
Leaked virtual code pointers, however, can still indirectly
disclose the location of other gadgets in the virtual code
space, which the attacker can chain together by piggybacking
on legitimate control transfers.

To counter indirect disclosure attacks, the diversification
pass implements a cost-effective diversification strategy,
which ensures randomly sized gaps are added before and
after each possible code pointer stored in data memory.
While arbitrary diversification passes can, in principle, be
supported in CodeArmor, more sophisticated diversification
strategies do not necessarily yield much higher entropy and
can also thwart compiler optimizations hurting run-time
performance [56].

Three classes of (virtual) code pointers can be stored
in data memory: function pointers, return addresses, and
(indirect) jump targets. To counter known-function-pointer

attacks, the diversification pass permutes the functions in
the binary, adds randomly sized gaps between functions
and at individual function entry points, similar to prior
source-level fine-grained ASLR strategies [31]. To counter
known-return-address attacks, the diversification pass adds
randomly sized gaps before and after each possible callsite.
known-jump-target attacks, finally, can be handled similarly
by adding randomly sized gaps before and after each
possible indirect jump target. Finally, to mitigate the impact
of CRAs that rely only on data disclosure, CodeArmor
also reduces the number of live code pointers by hiding
well-known read-only code pointer tables (i.e., jump tables
and the GOT) inside the code space, similar to [30].

Randomly sized gaps are designed to satisfy a number of
requirements. First, they should not directly affect existing
code or compiler optimizations. This is ensured by starting
each gap with a relative jmp causing existing code to simply
jump over the gap during the execution. Second, they should
not generate new gadgets that can be used by the attacker.
This is simply ensured by using a nop sled to size the gap.
Third, they should actively discourage the attacker from
launching execution-based brute-force attacks to disclose the
size of the gap. This is ensured by ending each gap with
a misaligned (and thus nontranslated) ret control transfer
instruction. This design guarantees that each brute-force
attempt that lands on the gap will redirect execution to the
honey code space and immediately raise alerts. Fourth, they
must guarantee that all the pointers to the original code still
work correctly after shifting the instructions. For PIC pointers
(already identified and virtualized by the dePIC pass), this
simply requires updating their value to reflect layout changes
in the virtual code space. PDC pointers, however, cannot be
accurately identified and updated in the same way—due to
the imprecision of conservative pointer scanning, which can
result in false positives even on 64-bit architectures [54]. To
address this concern, the diversification pass conservatively
scans (and overapproximates) the set of code pointers, ex-
tends gaps in the diversified code as necessary to ensure their
values always target instructions inside gaps, and replaces
the targeted instructions with jumps to the shifted target.

To control the gap randomization entropy, CodeArmor
can be configured with a predetermined maximum gap
size (Gmax). To select the default Gmax, the diversification
pass adopts another cost-effective strategy, which simply
guarantees that a gap-disclosing brute-force attack driven
by a known pointer raises, on average, more alerts than a
generic blind attack—effectively discouraging known-pointer
execution-based attacks. While arbitrary Gmax values could
be supported, increasing the gap randomization entropy can
also negatively affect code locality and memory usage [31].

To select a suitable Gmax for our purposes, the diversi-
fication pass needs to first estimate the expected number
of alerts triggered by a blind attack. Although multiple
valid gadgets are generally necessary to launch a code-reuse
attack on x86 64, we conservatively consider only the alerts
triggered before the attacker can find the first potential legal
gadget. This is equivalent to computing the expected number
of misaligned (and thus nontranslated) control transfers
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encountered by a blind attack before executing a legitimate
(aligned and thus translated) one. Hence, assuming an
attacker attempting to divert control flow using randomly
selected virtual code pointers (execution-based blind attack
assumption), the number of alerts before finding a first poten-
tial legal gadgets Hblind follows a stop-at-first-failure negative
hypergeometric distribution, with N=Tleg + Tmis elements
(using leg and mis to indicate legitimate and misaligned
control transfers, respectively) and Tmis successes. This
translates to the following expected number of alerts Hblind:

Hblind =
Tmis

N − Tmis + 1
=

Tmis

Tleg + 1
(1)

Thus, after scanning the binary for legitimate (Tleg) and
misaligned (Tmis) control transfers, the diversification pass
can simply compute Hblind. To discourage known-pointer
gap-disclosing attacks, the diversification pass conservatively
selects the default Gmax such that Hknown=2Hblind. Similar
to Hblind, Hknown follows a stop-at-first-failure negative
hypergeometric distribution, but with N =Gmax elements
and Gmax−1 successes. This, again, translates to the following
expected number of alerts Hknown:

Hknown =
Gmax−1

N − (Gmax−1) + 1
=
Gmax−1

2
(2)

Thus, the diversification pass can simply compute the
desired default maximum gap size Gmax as follows:

Gmax = 2Hknown + 1 = 4Hblind + 1 =
4Tmis

Tleg + 1
+ 1 (3)

6. Runtime System

6.1. Custom loader

CodeArmor’s custom loader is a modified version of
the default loader which sets up a consistent execution
state and initializes the other run-time components. The
loader needs to first allocate the Syscall handler, the Signal
handler, and Libarmor data in a random location of the
memory address space—similar to CodeArmor’s clone
instrumentation at process-creation time. Libarmor data
is initialized with data that remain hidden to the attacker,
including the current VERSION_OFFSET(V), the address of
the Syscall handler, the address of the Signal handler, and
CodeArmor’s own TLS. To guarantee that the location of
Libarmor data itself remains hidden, the loader (and later
CodeArmor’s thread-creation time instrumentation) pins
one register for Libarmor data’s base address. On Linux
x86 64, the register of choice is %gs, which is available for
extensions using the arch_prctl syscall. After the inital
setup, the loader—with the help of the Prelink script—loads
the binary and libraries into memory, and yields control to
the CLIC manager to initialize the code space.

6.2. CLIC manager

The goal of the CLIC manager is to translate the previ-
ously loaded code space into a proper CLIC organization
and start a CLIC-enabled program execution. As a first step,
the manager relocates the (former) PIC portion of the code
space to a random location of the memory address space
and relies on the Relocation index the identify and patch
all the absolute addresses introduced by the DePIC pass
accordingly. At the end of the process, the reserved code
region (or regions, if a PDC portion is present) of the address
space marks the virtual code space. To create the first version
of the concrete code space, the manager simply clones the
reserved code region into a new region mapped at a random
location and updates the VERSION_OFFSET(V) accordingly.

To ensure that physical memory assigned to the concrete
code space is reused across versions—important to reduce
memory usage and eliminate unnecessary code cache misses
during run-time randomization—the manager creates a
private shared memory segment for the concrete code space
and stores its key in Libarmor data. The same segment can
be concurrently mapped into the memory address space at
multiple locations referring to the same underlying physical
pages. To implement its run-time randomization strategy,
for instance, the Randomizer needs to maintain a double
mapping for two consecutive concrete code space versions.

To create the honey code space, finally, the manager over-
writes the reserved code region—the identity mapping for the
virtual code space, reachable only by nontranslated control
transfers—with honey gadgets. Our honey gadgets are perva-
sively deployed in the honey code space (and nontranslated
control trasfers reaching them scattered throughout the con-
crete code space), in contrast to prior software booby-trapping
efforts that argued for a performance-security tradeoff [29].
Honey gadgets are designed to satisfy a number of require-
ments. First, they should never disclose information whenever
read-based attacks attempt to read from virtual code pointers
(automatically landing on the honey code space). Second,
they should always raise alerts whenever execution-based
attacks attempt to execute a nontranslated control transfer
(automatically landing on the honey code space). Third, they
should not interfere with legitimate program code. Finally,
they should not cause significant memory usage increase.

To satisfy the first two requirements, the manager simply
selects illegal instructions as honey gadgets and pervasively
deploys them over the honey code space. CodeArmor’s Signal
handler, which already proxies all the application-specified
signal handlers is instructed to special-case the SIGILL
signal (i.e., illegal instruction) to determine whether the
originating instruction was part of the honey code space. If
so, the handler immediately raises an alert. If the originating
instruction did not match a honey gadget, in turn, the signal is
simply forwarded to the application-specified signal handler
(if any). Note that this is necessary to preserve application
transparency, given that it is not uncommon for real-world
applications (e.g., Apache httpd) to register a SIGILL handler.
When an alert is raised, a policy decides when to notify an
external IDS/sysadmin and another policy decides when to
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Figure 5. A sample run-time randomization run

shut down the application entirely. By default, CodeArmor
sends notifications after 1 alert and shuts down the entire
application after Hblind (the expected minimum number of
alerts before finding a potential gadget).

To satisfy the third requirement, the honey code space
needs to preserve the integrity of legitimate program-
issued reads from mixed code/data memory (a common
idiom generated by modern compilers). For this purpose,
CodeArmor relies on its underlying binary analysis
framework to identify mixed code/data memory and mark
data-dedicated areas in the code space as immutable.
Immutable areas (only) are prevented from being overwritten
by honey gadgets, allowing program-issued reads to these
areas to succeed and be served from the honey code space.
Since an attacker can possibly fingerprint these areas by
reading from honey code space, the Diversification pass
ensures they are also surrounded by random gaps.

To satisfy the fourth requirement finally, the illegal
instructions that implement honey gadgets are simply
encoded using \0xE bytes, which guarantee the vast
majority of the honey code space to be filled with \0xE
pages (honey pages)—except for those few mixed code/data
pages. To avoid unnecessarily wasting physical memory, the
manager actually implements such honey pages by simply
overmapping existing memory mappings with inaccessible
(i.e., PROT_NONE) pages and instructs CodeArmor’s Signal
handler to special-case the SIGSEGV (segfault) signal as
done for the SIGILL signal above.

After setting up the honey code space, the manager
initializes the Randomizer in a background thread and allows
the program to start off the execution.

6.3. Randomizer

The goal of the Randomizer is to continuously re-
randomize the location of the concrete code space, effectively
“hiding” its location to the attacker. Even a blind read-based
attack that happens to guess the location of the current
concrete code space version correctly, should be quickly
exposed to a new re-randomized concrete code space version
when either attempting to launch a code-reuse attack or, more
realistically, expand its search probing for multiple gadgets.

CodeArmor’s run-time randomization strategy is designed
to satisfy three key requirements. First, it should safely
and transparently support arbitrary multithreaded program
binaries. Second, it should minimally perturb program ex-
ecution, with marginal performance/memory overhead and
scalability impact. Third, it should provide low-latency re-
randomization cycles, resulting in a frequently re-randomized
concrete code space. To satisfy the first requirement, a
naive strategy would simply maintain one local copy of
the concrete code space for each thread and allow threads
to periodically and independently re-randomize their own
code space. Unfortunately, this strategy is detrimental to our
second requirement, with per-thread concrete code space
versions increasingly polluting the virtual memory address
space (and degrading TLB performance) for higher thread
counts (poor scalability) and also yielding a larger number
of gadgets at the attacker’s disposal (poor entropy).

To overcome problems with the naive strategy, the
Randomizer opts for a different design, with a shared concrete
code space version V, a global offset VERSION_OFFSET(V),
and a background re-randomization thread redirecting the
execution from one version to the next. To satisfy the first
requirement (thread-safety), however, concurrent accesses
to VERSION_OFFSET(V) (and the corresponding concrete
code space version) have to be properly guarded to ensure
program/background thread synchronization. To address this
challenge, our randomization strategy protects accesses to
VERSION_OFFSET(V) using (user-level) Read-Copy-Update
(RCU) [37]. RCU provides a scalable synchronization
mechanism between a single writer (i.e., the background
thread) and multiple readers (i.e., program threads),
guaranteeing nearly-zero read-size performance overhead
and low-latency write-side updates. These characteristics
satisfy all our requirements.

For our purposes, we selected the QSBR flavour of
liburcu (linked against libarmor.so), which implements
the most efficient known user-level RCU strategy. This
strategy requires each reader to periodically announce a
quiescent state (e.g., using rcu_thread_offline and
rcu_thread_online primitives), notifying the writer of the
end of their read-side section. The writer, in turn, can wait
for a quiescent period (i.e., using the synchronize_rcu
primitive), that is blocking until all the active read-side
sections terminate.

This mechanism can be efficiently used by the back-
ground thread to update the VERSION_OFFSET(V) to a new
concrete code space version, wait for all the program threads
to transition to the new version, and clean up the old one.
Program threads, in turn, can be instrumented to announce a
quiescent state when they start or receive a sig signal and
to announce an extended quiescence state when they end or a
syscall is in progress. System calls, in particular, are ideal
extended quiescent points, given that the program threads
can, in principle, suspend their execution in the kernel for an
arbitrarily long period of time. This strategy is exemplified in
Figure 5, with all the program threads switching to the new
version by the end of the quiescent period with the exception
of Thread 2. The latter, in an extended quiescent state induced
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1: procedure SYSCALLHANDLER
2: STORE RET ADDR()
3: RCU THREAD OFFLINE()
4: SYSCALL
5: RCU THREAD ONLINE()
6: off ← VERSION OFFSET(V )
7: addr ← LOAD RET ADDR()
8: RET(addr + off )

1: procedure SIGNALHANDLER
2: online ←

RCU READ ONGOING()
3: RCU THREAD ONLINE()
4: off ← VERSION OFFSET(V )
5: INVOKE(sig handler + off )
6: if online = 0 then
7: RCU THREAD OFFLINE()
8: SIGRET

1: procedure RANDOMIZER
2: while True do
3: REMAP(V − 1, V + 1)
4: V ← V + 1
5: off ← VERSION OFFSET(V )
6: JUMP(x+off )
7: x: SYNCHRONIZE RCU()
8: SLEEP(latency)

Figure 6. CodeArmor’s run-time randomization protocol

by a syscall, however, automatically switches to the new
version when execution later returns to user mode (sysret).

Figure 6 presents an overview of our run-time randomiza-
tion protocol, with the instrumentation required in CodeAr-
mor’s Syscall handler, Signal handler, and Randomizer. The
Randomizer’s background thread runs in an endless loop,
each iteration implementing one randomization cycle and
introducing extra delay to control the latency—currently
defaulting to 0, given that we have observed no performance
benefits for larger values.

Each loop iteration starts off with remapping the previous
concrete code version V-1—which the background thread
defers cleaning up to the next cycle—into the next version
V+1 at a random address space location. Since the concrete
code space is memory-continuous (only split if PDC code is
present), remapping can efficiently be implemented with
a few system calls in the worst case—reducing latency
and mode-switching costs. Next, the background thread
redirects all the program threads to the new version (updating
VERSION_OFFSET(V)) and immediately switches to the new
concrete code space itself. By now, some program threads
may be already running the new version, others may be still
on the old one (both still mapped in memory). To ensure the
old version can be safely cleaned up at the next iteration, the
background thread relies on synchronize_rcu to wait until
all the threads have switched to the new concrete code space.

The Syscall handler, in turn, saves the virtual return
address previously pushed by the syscall instrumentation
in CodeArmor’s own TLS, enters an extended quiescent state
(rcu_thread_offline) and issues the actual syscall trap to
enter kernel mode. When returning to user mode, it terminates
its extended quiescent state (rcu_thread_online), acquires
a new version offset, and jumps to the current concrete return
address counterpart. The Signal handler, finally, saves the
quiescent status of the current thread, enters a new read-side
section, and invokes the application-specified signal handler
using its virtual reference. Before invoking the application-
specified signal handler, the instrumentation temporarily
switches to a RCU-free copy of the Syscall handler, ensuring
the quiescent status of the current thread is unchanged if
the application happens to issue a short-lived system call
in its own signal handler. When done, the Signal handler
restores the original quiescent status of the current thread
and sigreturns.

RCU semantics guarantees that the current version (and
the underlying concrete code space) is stable as long as a

program thread is online. During offline execution periods,
however, the current version can be concurrently switched
by the background thread at any instant. The implementation
addresses this concern by ensuring that only offline periods
of the Syscall handler (lines 3-5, and its RCU-free clone)
and of the Signal handler (lines 2-4,7—the implementation
ensures sigreturn is actually called during an online
period by deferring the rcu_thread_offline call at line
7) are not affected by the Randomizer. This design leaves
exactly 4 concrete landing pads stable across randomization
cycles. To ensure these landing pads do not yield a usable
gadget set, we remove all the unintended gadgets by using
alignment instructions similar to [71]. This leaves only
2 intended gadgets: a syscall and a jump *r11 gadget.
Both gadgets are relevant, but effectively unusable without
the attacker discovering other gadgets to control the data
flow. When probing for other gadgets in unrelated locations,
in turn, CodeArmor’s design ensures the target program will
crash with extremely high probability. Even with forking
applications that automatically recover from crashes, the
CLIC manager will automatically allocate these gadgets and
the small (typically one page) Libarmor data in entirely new
random locations when setting up the new process context.

7. Implementation

We implemented CodeArmor on the Linux (x86 64)
platform. The static rewriter is implemented as a Dyninst [11]
(v8.2.1) extension in 2,403 lines of code. The run-time
components (Libarmor and the Custom loader) are imple-
mented in C (and some inline assembly) in 815 lines of
code. Our current prototype can support generic 64-bit ELF
binaries, with three main limitations. The first limitation is
the inability to support C++ exceptions, directly inherited
by Dyninst. The second limitation is the inability to support
dynamically generated and self-modifying code. This is not
an inherent limitation, as Dyninst’s run-time writer can, in
principle, be used to address these concerns, but not without
explicit knowledge of the program under analysis. Both
limitations are not fundamental and can be addressed with
more engineering effort. A more fundamental limitation is
the inability to support PIC code sharing across processes,
which has a generally negative memory usage impact in
system-wide deployment scenarios [10]. If memory usage is
of concern, a simple solution to this problem is to eliminate
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Figure 7. P(concrete code space) in a blind attack
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Figure 8. Average server re-randomization latency (#syscalls)

the Relocation Index, but this would also reduce all the
execution-based attacks to known-pointer attacks.

8. Evaluation

We evaluated CodeArmor on an Intel i7-3632QM clocked
at 2.20 GHz with 256 KB per-core cache, 8 MB shared cache,
and 8 GB of DDR3-1600 RAM.

For our evaluation, we selected nine popular
servers programs on Linux: Apache httpd (v2.2.23,
mpm worker module), nginx (v0.8.54), lighttpd (v1.4.28),
mysqld (v5.1.65), Open sshd (v3.5), proftpd (v1.3.3), mem-
cached (v1.4.20), exim (v4.69), and BIND named (v9.9.3).

To benchmark our web servers (httpd, nginx, lighttpd),
we relied on the Apache benchmark [1] configured to issue
25,000 requests with 100 concurrent connections and 10
requests/connection. To benchmark mysqld, we relied on the
Sysbench OLTP benchmark [6] configured to issue 10,000
transactions using a read-write workload with 100 concurrent
connections. To benchmark sshd, we relied on the OpenSSH
test suite. To benchmark proftpd, we relied on the pyftpbench
benchmark [4] configured to open 100 connections and re-
quest 100 1 KB files per connection. To evaluate memcached,
we relied on the memslap benchmark [3] configured to
issue 1,000,000 operations with a 100 concurrency level. To
benchmark exim, we relied on a script repeatedly launching
the sendemail program [5]. To benchmark named, we relied
on queryperf [2] configured to issue 500,000 local requests
using 100 concurrent threads. To measure CodeArmor’s
performance on standard benchmarks, we also considered
all the C programs in the SPEC CPU2006 benchmarks.

We compiled all our programs with gcc at -O3,
producing PIE x86 64 binaries. We ran all our experiments
11 times—with the CPUs fully saturated throughout our
tests—and reported the median.

Our evaluation answers 3 key questions: (i) Security:
Is CodeArmor effective in mitigating both read-based and
execution-based disclosure attacks and also countering
CRAs that only rely on data disclosure? (ii) Performance:
Does CodeArmor yield acceptable run-time overhead? (iii)
Memory usage: How much memory does CodeArmor use?

8.1. Security against read-based attacks

To measure how well CodeArmor defends against read-
based disclosure attacks, we look at the attackers’ ability to
find potential gadgets by reading the code space.

Given an arbitrary read vulnerability, attackers typically
use code pointer(s) leaked from the heap or stack to probe
as many code pages as possible. However, since CodeArmor
can leak only code pointers that point to virtual code space
and hides the version offset between virtual code space and
concrete code space, known-pointer attacks cannot use such
pointers to find the concrete code page. This forces the
attacker to switch to a blind read-based attack and probe the
memory space by brute forcing. With a randomly located
concrete code space, the probability of guessing any of its
two mapped versions (e.g., V and V-1) in a 48-bit address
space on x86 64 is 2−47·sizeof(concrete code space).

We evaluated this probability for both SPEC and our
server programs. Results from Figure 7 report an average
probability of less than 1.5 · 10−7 on SPEC and 2.2 · 10−7

on server programs (geometric mean). Observe that even
in the worst case (named), the probability of finding a
concrete code space version is less than 6.3 · 10−7.

Figure 7 shows that the probability of finding a single gad-
get, while low, depends on the size of a program’s memory
footprint. Even if the attacker could find a gadget, however, it
does not stay valid for long, as CodeArmor uses frequent run-
time randomization of the concrete code space to invalidate
all gadgets found so far. Figure 8 shows that for most
server programs (all in a single-threaded configuration), the
concrete code space will be typically re-randomized within
2 syscalls. Figure 9, in turn, shows that a server program
usually needs around 100 syscalls (and never fewer than 10)
to serve a single request. In other words, CodeArmor ensures
that, during even a single interaction with the server (e.g.,
a client request), the code space is always re-randomized
several times (around 60 times on average, geometric mean).
The extremely low re-randomization latency causes all the
read-based attacks that require multiple interactions with
the server to fail, as all (known and unknown) gadgets will
always have moved across requests. Even an attacker who
happens to leak the VERSION_OFFSET(V) from Libarmor
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Figure 9. Average number of syscalls to serve a client request
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Figure 10. Average server re-randomization latency (µs)
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Figure 12. Average number of honey gadgets in a blind attack

data (e.g., using allocation oracles [70] or other side
channels [17], [51], [52]), in fact, can gather only obsolete
information, given that the offset to the current concrete
code space version will always have changed (multiple
times) at the next interaction with the server.

Syscall-based re-randomization latency is the most rel-
evant run-time randomization metric for disclosure attacks
against servers programs, which inherently need to rely on
system calls. For comparison purposes, however, Figure 10
also reports our re-randomization latencies in microseconds.
As the figure shows, our design can effectively re-randomize
popular server programs at the microsecond granularity (55µs
on average, geometric mean). Existing run-time randomiza-
tion systems only re-randomize at the second [31], [24]
or millisecond [32], [92] granularity while often incurring
nontrivial performance overhead, making CodeArmor the
fastest run-time randomization system to date.

To evaluate the effectiveness of run-time randomization
on multithreaded applications, we repeated the experiment in
Figure 8 using httpd, memcached and mysqld and increasing
the number of worker threads up to 100. Figure 11 reports our
findings. As shown in the figure, the results reveal very stable
behavior across different programs and thread counts. When
using 100 worker threads, for example, we observed our three
multithreaded programs issuing between 1.2 (mysqld) and
1.54 (memcached) syscalls for each randomization cycle. The

low and stable latency reported confirms the excellent scala-
bility properties of our RCU-based synchronization strategy.

8.2. Security against execution-based attacks

Even without read-based disclosures, attackers may at-
tempt execution-based attacks to infer gadgets by means of
crashes, hangs, and other externally observable behavior [15],
[78]. Execution-based attacks trying to directly probe the
concrete code space, however, will face the same challenges
as those mentioned for read-based attacks.

Execution-based attacks on the virtual code space are
more interesting, given that they operate similarly to the
original program. With CodeArmor, however, such attacks
are also challenging for two reasons. First, execution-based
attacks are limited to legitimate control transfers (thus
incurring a slowdown), with all the other transfers seamlessly
redirected to honey gadgets. Furthermore, since there is
no run-time virtual code space randomization, any valid
gadget address in the virtual code space remains stable.
Constructing a code-reuse chain, however, is still hard,
given the second reason: CodeArmor’s virtualization and
code diversification prevent attackers from easily expanding
a set of gadgets from a known pointer, forcing them to
resort to blindly probing the virtual code space. Doing so
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TABLE 1. NUMBER OF GADGETS AVAILABLE TO ATTACKERS AFTER MEMORY DISCLOSURE: CodeArmor (CA) VS. CONTROL-FLOW INTEGRITY (CFI).

Forward-edge Gadgets Backward-edge Gadgets Total Gadgets

Binary Libc Libraries Binary Libc Libraries
CA CFI CA CFI CA CFI CA CFI CA CFI CA CFI CA CFI

exim 73 2,289 61 2,713 19 6,895 255 9,444 96 8,301 382 14,316 896 43,958
nginx 371 1,770 44 2,713 25 11,255 41 4,890 42 8,301 72 12,625 595 41,554
named 705 6,892 73 2,713 276 20,973 131 44,072 29 8,301 59 34,708 1,273 117,658
proftpd 352 1,704 74 2,713 24 4,475 36 11,528 58 8,301 121 1,135 665 29,856
lighttpd 68 776 52 2,713 24 5,630 34 2,449 35 8,301 67 563 280 2,043
sshd 31 1,227 44 2,713 53 8,212 28 6,448 60 8,301 79 12,593 295 39,494
mysqld 375 11,842 63 2,713 74 7,981 429 42,145 76 8,301 65 8,434 1,082 81,416
httpd 1,378 3,749 57 2,713 37 4,644 74 10,886 64 8,301 87 1,887 1,697 32,180
memcached 9 531 52 2,713 67 3,446 59 1,866 71 8,301 66 3,063 304 19,920

geomean 159 2,170 57 2,713 43 7,050 76 8,802 55 8,301 90 5,130 480 34,166

probabilistically triggers multiple honey gadgets before even
a single additional gadget is found.

To estimate the slowdown on a (blind) execution-based
attack, we measured the number of control transfers available
in the program with and without CodeArmor. The results
revealed an average reduction for our server programs and
SPEC of 71.5% and 76.3% respectively (geometric mean).
With CodeArmor, all the misaligned control transfers are
eliminated. Assuming aligned/misaligned control transfers
are uniformly distributed across relevant gadgets, our results
suggest a slowdown of up to 4 times on brute-force attacks.

More importantly, given the large number of misaligned
control transfers, blind probing of the virtual code space
will end up in CodeArmor’s honey code space with high
probability. Figure 12 shows that (even before adding random
gaps with our diversification pass) a blind attack triggers
roughly around 3 alerts on average before finding a legitimate
control transfer. Moreover, these are pessimistic numbers,
because in reality the random gaps added by CodeArmor
all point to honey code space, making it even more likely
to trigger alerts. If, instead of probing blindly, the attacker
attempts a known-pointer attack, the situation will be even
better, since the length of random gaps around any leak-
prone pointers guarantees a doubling of the probability of
triggering honey gadgets.

8.3. Security against data-only disclosure attacks

The previous sections demonstrated that CodeArmor
provides strong security guarantees against code disclosure
attacks. Armed with data-only disclosure attacks, however,
attackers may still leak live code pointers from data memory
and attempt to use them “as-is” as gadgets. To examine the
residual attack surface, we measured the number of live code
pointers found in data memory and directly compared the
resulting number of gadgets with those allowed by traditional
binary-level CFI solutions based on static analysis [75], [95].

To ensure a fair comparison, we assumed the worst
case scenario for our analysis, namely, an attacker able
to disclose all the code pointers from any data region in
memory. To simulate this attack scenario for CodeArmor
and every given server program, we dumped all the possible
data regions (i.e., stack, heap, etc.) after completing a full
benchmark run (and built-in test suite run, when available)
and conservatively scanned the memory dump to enumerate
an overapproximation of all the possible code pointers.

To simulate (and even optimistically overapproximate)
traditional binary-level CFI solutions [75], [95], in turn, we
gathered static analysis-based statistics while restricting (i)
forward edges targeting jump tables to the targets already re-
solved by Dyninst, (ii) forward edges targeting function entry
points to the set of functions with address taken (binary and
libraries), (iii) backward edges to the set of callsites (binary
and libraries). To compute the set of functions with address
taken, we implemented a static analysis conservatively
scanning code and data for function references, drawing
from similar analyses described in prior work [75], [95].

Table 1 presents our findings. The first group of columns
reports results for forward-edge (indirect jump/call) gadgets,
the second group of columns reports results for backward-
edge (return) gadgets, and the last group aggregates the re-
sults. We break down our results by target code region (i.e., bi-
nary, libc, other libraries). As shown in the table, CodeArmor
significantly reduces the total number of gadgets available
to attackers compared to binary-level CFI, resulting in two
orders of magnitude less gadgets on average (480 vs. 34,166).

On the forward edge, the significant reduction is due to
two factors. First, unlike CFI, CodeArmor’s code pointer
table hiding strategy prevents leaking gadgets from jump
tables and GOT, resulting in a drastic indirect jump target
reduction. Second, CFI’s static approach allows all the
possible (address-taken) function entry gadgets, which is a
vast overapproximation of CodeArmor’s live function pointer
set. Not surprisingly, the reduction is more impressive for
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Figure 13. CodeArmor’s run-time performance overhead
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Figure 14. CodeArmor’s run-time RSS increase

libc and other libraries—with CodeArmor reporting 57 and
43 gadgets (respectively) compared to several thousands for
CFI—given that programs tend to cover a small fraction of
library code during the execution, increasing the gap with
CFI’s static approach.

On the backward edge, the even more significant
reduction can be explained by the much smaller leakage
surface for CodeArmor. The program stack is typically
short and yields aggressive memory reuse during the
execution, limiting the number of return addresses that
can be effectively leaked from it by attackers. CFI’s static
approach, on the other hand, resorts to a vast number of
callsites computed by static analysis.

Deploying a shadow stack [33] would, in principle,
remove around 65% of the total gadgets for CFI and 46%
of the total gadgets for CodeArmor (on average), confirming
the effectiveness of a shadow stack in mitigating code-
reuse attacks [21]. Nevertheless, the security of traditional
shadow stack implementations relies on the integrity of
(large) ASLR-protected per-thread data regions, which are
still accessible to the powerful attacker considered in our
threat model using arbitrary memory reads/writes. Finally,
we note that, while our analysis focused on overall gadget
counts, unlike CodeArmor, CFI can enforce separate policies
based on the edge type (e.g., callsites cannot be targeted by
forward edges). Nevertheless, edge type-based (or even more
sophisticated [85]) CFI policies could be easily integrated
in CodeArmor to further restrict control transfer targets.

8.4. Performance

CodeArmor’s performance overhead is mainly due to the
cost of frequent control transfer translations. To reduce this
cost, CodeArmor relies on a binary-level inlining strategy to
reevaluate inlining decisions made by the compiler. Figure 13
shows the overhead with and without inlining. Inlining brings
down the geometric mean overhead of 6.9% for SPEC
and 14.5% for servers to 3.2% for SPEC and 8.2% for
servers, yielding a substantial speedup in both cases. This
demonstrates CodeArmor’s final performance overhead is
relatively low and comparable to some of the fastest binary
instrumentation solutions available.

8.5. Memory usage

CodeArmor introduces a constant run-time memory
usage increase owing to the rewriting of the binary and
libraries (and especially the inlining). To evaluate the
resulting impact, we measured the maximum memory usage
increase (i.e., Resident Set Size or RSS increase) induced
by CodeArmor during the execution of our benchmarks.
Figure 14 reports our findings.

As shown in the figure, CodeArmor results in relatively
low RSS impact, with an average increase of 13.4% on
server programs and 4.4% on SPEC (geometric mean). Even
the worst-case RSS impact is realistic, with gcc reporting a
35.2% increase. Our results demonstrate that both our aggres-
sive inlining and re-randomization strategy have very little
memory usage impact in practice. Inlining, in particular, has
little RSS impact due to demand paging and the good code
locality achieved by our cost-effective diversification strategy.
Re-randomization, in turn, has essentially no RSS impact,
due to our physical memory reuse strategy across concrete
code space versions. This demonstrates that CodeArmor’s
final memory usage increase is realistic, confirming that
CodeArmor offers a practical solution against diversification-
aware code-reuse attacks.

9. Related Work

9.1. Active code-reuse defenses

Active code-reuse defenses seek to actively detect and
stop code-reuse attacks. Control-Flow Integrity (CFI) [7],
[38], [89], [16], [95], [94], [73] enforces statically extracted
invariants to ensure that the execution stays within the
boundaries of the original control flow graph (CFG). Strong
CFI requires an accurate CFG, which is hard to obtain for bi-
naries. Further, to reduce the overhead, most practical binary-
level implementations use coarse-grained CFG invariants,
ultimately leaving room to the attackers to launch practical
code-reuse attacks [49], [35]. Similar attacks [50], [35], [22]
have been recently demonstrated against heuristic-based code-
reuse defenses such as KBouncer [73], which relies on the
branch history to detect anomalous control flows. More
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recent defenses enforce stronger context-sensitive control-
flow integrity properties [62], [84], but their effectiveness
is subject to the precision of static data-flow analysis. In
another direction, recent context-insensitive solutions rely on
type inference techniques to improve the precision of binary-
level CFI [85], [74]. Multi-variant execution systems [26],
[76], [60], [87], [41], [88], [86], [19], finally, can detect
any attempts mount a code-reuse attack or even disclose
randomized code addresses, at the cost of using additional
resources to replicate the execution across variants.

9.2. Code diversification

Code diversification is an instance of fine-grained
address space layout randomization (ASLR), a general
randomization technique also applied to stack, heap, and
static data memory [93], [69], [58], [31], [13], [12]. The
goal of code diversification is to keep from the attacker
any knowledge of the code and code locations using
function/basic-block/instruction permutations [90], [72],
[61], [55] or other randomization techniques [31], [28],
[25], [10], [34], [56]. Without such knowledge, ROP [79],
and other traditional code-reuse attacks [36], [20], [40],
[59], [23], become much more complicated. Unfortunately,
recent attacks have demonstrated that all these defenses
remain vulnerable to information disclosure attacks without
adequate protection [82], [15], [78].

9.3. Code disclosure defenses

State-of-the-art code disclosure defenses either focus on
designing disclosure-resistant diversification techniques [34],
[10] or emulating X⊕R semantics [9], [27], [42], [18], [30],
[83], [91], [43], [64] to ensure code is executable but not
readable. In either cases, such techniques mainly defend
against read-based attacks, while leaving generic binaries vul-
nerable to execution-based attacks. In addition, many of these
techniques assume a much weaker threat model than CodeAr-
mor’s—e.g., Isomeron [34] assumes no brute-force attacks,
Oxymoron [10] assumes limited code pointer leaks from
data memory [34], XnR [9] assumes an attacker unable to
leak code pages currently being executed, approaches based
on destructive code reads [83], [91] assume gadget reads
cannot be used to infer other gadgets [81]. Finally, unlike
CodeArmor, some of these techniques are not completely self-
contained, but instead rely on source code [27], [42], [30],
[64], [18], hardware features [27], [42], [43], [91], kernel
modules [9], [83], [91], or hypervisors [27], [42], [30], [91].

9.4. Run-time randomization

Similar to CodeArmor, run-time randomization solutions
draw from live update techniques [44], [46], [53], [48], [45],
[47], [67], [66], [65], [8] to periodically re-randomize the
memory layout of a running program. This is to either
obtain statically sound performance results [32] or counter
information leakage [31], [14], [63], [92], [24]. Unlike

CodeArmor, none of the existing solutions is targeted to
very low-latency run-time code space re-randomization. STA-
BILIZER [32] re-randomizes function addresses every 500ms.
The system proposed in [31] can periodically re-randomize
the entire memory space every few seconds, but incurring a
nontrivial overhead at low latencies (up to 50%). Remix [24]
provides better performance when randomizing at the second
granularity, but can only re-randomize basic blocks within
each function. TASR [14] re-randomizes source-level code
pointers at every I/O system call, but its synchronous
re-randomization strategy stalls I/O operations degrading
latency (and performance) for applications other than CPU-
intensive programs [92]. RUNTIMEASLR [63] re-randomizes
the address space for each forked worker process to de-
feat clone-probing attacks (e.g., BROP attacks). Although
RUNTIMEASLR introduces no overhead on forked worker
processes, the dynamic pointer tracking used in the parent
process introduces high runtime overhead and makes this ap-
proach only suitable for server applications with a known (i.e.,
annotated) process model. In addition, the worker process is
still vulnerable to memory disclosure attacks due to the lack
of periodic re-randomization. The recent Shuffler [92], finally,
can re-randomize binary programs in an egalitarian fashion
similar to CodeArmor, but requires source-level information
and can only re-randomize at the ms granularity. Unlike these
systems, CodeArmor efficiently re-randomizes the entire
concrete code space at very low latencies (µs granularity),
relies on a generic and scalable RCU-based synchronization
mechanism—STABILIZER [32] relies on traps, Shuffler [92]
and Remix [24] on signals, the systems proposed in [31], [63]
on system design, and TASR [14] on a kernel module—and
implements application-transparent re-randomization elimi-
nating the need for source-level information and annotations.
This also makes CodeArmor the first generic binary-only
run-time re-randomization system to date.

10. Conclusion

We presented CodeArmor, a new solution that relies on a
virtualized and dynamically randomized code space to thwart
modern diversification-aware code-reuse attacks. Specifically,
our solution stops all read-based disclosure attacks as code
pointers become meaningless to the attacker and the concrete
code space is kept out of reach. Execution-based disclosure
attacks become exceedingly hard. First, the attacker can use
only legitimate control transfers. Second, the virtualized code
space allows us to fill most of the memory space with honey
gadgets that trigger alerts when targeted, essentially for free.
As a result, all attempts to blindly probe memory using
executions is likely to trigger (many) alerts.

Our solution works entirely at the binary level with no
need for debug symbols, hypervisors, special hardware fea-
tures, or changes to the operating system. Combined with an
average overhead of 6.9% on SPEC (and even lower with ag-
gressive binary-level inlining optimizations), we believe this
makes CodeArmor practical for many deployment scenarios.

14



Acknowledgements

We would like to thank the anonymous reviewers for
their comments. This work was supported by the European
Commission through project H2020 ICT-32-2014 “SHARCS”
under Grant Agreement No. 644571.

References

[1] “Apache benchmark,” http://httpd.apache.org/docs/programs/ab.html.

[2] “BIND,” http://www.isc.org/downloads/bind.

[3] “memslap,” http://docs.libmemcached.org/bin/memslap.html.

[4] “pyftpdlib,” https://code.google.com/p/pyftpdlib.

[5] “SendEmail,” http://caspian.dotconf.net/menu/Software/SendEmail.

[6] “SysBench,” http://sysbench.sourceforge.net.

[7] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in CCS, 2005.

[8] G. Altekar, I. Bagrak, P. Burstein, and A. Schultz, “OPUS: Online
patches and updates for security,” in USENIX SEC, 2005.

[9] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and
J. Pewny, “You can run but you can’t read: Preventing disclosure
exploits in executable code,” in CCS, 2014.

[10] M. Backes and S. Nürnberger, “Oxymoron: Making fine-grained
memory randomization practical by allowing code sharing,” in USENIX
SEC, 2014.

[11] A. R. Bernat and B. P. Miller, “Anywhere, any-time binary instrumen-
tation,” in PASTE, 2011.

[12] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Efficient techniques for
comprehensive protection from memory error exploits,” in USENIX
SEC, 2005.

[13] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address obfuscation: An
efficient approach to combat a broad range of memory error exploits,”
in USENIX SEC, 2003.

[14] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi, “Timely
rerandomization for mitigating memory disclosures,” in CCS, 2015.

[15] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh,
“Hacking blind,” in S&P, 2014.

[16] T. Bletsch, X. Jiang, and V. Freeh, “Mitigating code-reuse attacks
with control-flow locking,” in ACSAC, 2011.

[17] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup Est Machina:
Memory deduplication as an advanced exploitation vector,” in S&P,
2016.

[18] K. Braden, S. Crane, L. Davi, M. Franz, P. Larsen, C. Liebchen, and
A. R. Sadeghi, “Leakage-resilient layout randomization for mobile
devices,” in NDSS, 2016.

[19] D. Bruschi, L. Cavallaro, and A. Lanzi, “Diversified process replicae
for defeating memory error exploits,” in IPCCC, 2007.

[20] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When good
instructions go bad: Generalizing return-oriented programming to
RISC,” in CCS, 2008.

[21] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
flow bending: On the effectiveness of control-flow integrity,” in
USENIX SEC, 2015.

[22] N. Carlini and D. Wagner, “ROP is still dangerous: Breaking modern
defenses,” in USENIX SEC, 2014.

[23] S. Checkoway, L. Davi, A. Dmitrienko, A. R. Sadeghi, H. Shacham,
and M. Winandy, “Return-oriented programming without returns,” in
CCS, 2010.

[24] Y. Chen, Z. Wang, D. Whalley, and L. Lu, “Remix: On-demand live
randomization,” in CODASPY, 2016.

[25] M. Conti, S. Crane, T. Frassetto, A. Homescu, G. Koppen, P. Larsen,
C. Liebchen, M. Perry, and A.-R. Sadeghi, “Selfrando: Securing the
tor browser against de-anonymization exploits,” in PETS, 2016.

[26] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson,
J. Knight, A. Nguyen-Tuong, and J. Hiser, “N-variant systems: a
secretless framework for security through diversity,” in USENIX SEC,
2006.

[27] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A. R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical code randomization
resilient to memory disclosure,” in S&P, 2015.

[28] S. Crane, A. Homescu, and P. Larsen, “Code randomization: Haven’t
we solved this problem yet?” 2016.

[29] S. Crane, P. Larsen, S. Brunthaler, and M. Franz, “Booby trapping
software,” in NSPW, 2013.

[30] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi,
A.-R. Sadeghi, T. Holz, B. De Sutter, and M. Franz, “It’s a TRaP:
Table randomization and protection against function-reuse attacks,” in
CCS, 2015.

[31] A. K. Cristiano Giuffrida and A. S. Tanenbaum, “Enhanced operating
system security through efficient and fine-grained address space
randomization,” in USENIX SEC, 2012.

[32] C. Curtsinger and E. D. Berger, “STABILIZER: Statistically sound
performance evaluation,” in ASPLOS, 2013.

[33] T. H. Dang, P. Maniatis, and D. Wagner, “The performance cost of
shadow stacks and stack canaries,” in ASIACCS, 2015.

[34] L. Davi, C. Liebchen, A. R. Sadeghi, K. Z. Snow, and F. Monrose,
“Isomeron: Code randomization resilient to (just-in-time) return-
oriented programming,” in NDSS, 2015.

[35] L. Davi, A. R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection,” in USENIX SEC, 2014.

[36] S. Designer, “Return-to-libc attack,” BugTraq, August 1997.

[37] M. Desnoyers, P. E. McKenney, A. Stern, M. R. Dagenais, and
J. Walpole, “User-level implementations of read-copy update,” IEEE
Trans. on Parallel and Distributed Systems, vol. 23, 2012.

[38] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula,
“XFI: Software guards for system address spaces,” in OSDI, 2006.

[39] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang, H. Shrobe,
S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi, “Missing the
point(er): On the effectiveness of code pointer integrity,” in S&P,
2015.

[40] A. Francillon and C. Castelluccia, “Code injection attacks on Harvard-
architecture devices,” in CCS, 2008.

[41] R. Gawlik, P. Koppe, B. Kollenda, A. Pawlowski, B. Garmany, and
T. Holz, “Detile: Fine-grained information leak detection in script
engines,” in DIMVA, 2016.

[42] J. Gionta, W. Enck, and P. Larsen, “Preventing kernel code-reuse
attacks through disclosure resistant code diversification,” 2016.

[43] J. Gionta, W. Enck, and P. Ning, “HideM: Protecting the contents
of userspace memory in the face of disclosure vulnerabilities,” in
CODASPY, 2015.

[44] C. Giuffrida and A. Tanenbaum, “Safe and automated state transfer
for secure and reliable live update,” in HotSwUp, 2012.

[45] C. Giuffrida, C. Iorgulescu, A. Kuijsten, and A. S. Tanenbaum, “Back
to the future: Fault-tolerant live update with time-traveling state
transfer,” in LISA, 2013.

[46] C. Giuffrida, C. Iorgulescu, and A. S. Tanenbaum, “Mutable
checkpoint-restart: Automating live update for generic server pro-
grams,” in Middleware, 2014.

15



[47] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Safe and automatic
live update for operating systems,” in ASPLOS, 2013.

[48] C. Giuffrida and A. S. Tanenbaum, “A taxonomy of live updates,” in
ASCI, 2010.

[49] E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in S&P, 2014.

[50] E. Goktas, E. Athanasopoulos, M. Polychronakis, H. Bos, and
G. Portokalidis, “Size does matter: Why using gadget-chain length to
prevent code-reuse attacks is hard,” in USENIX SEC, 2014.

[51] E. Goktas, R. Gawlik, B. Kollenda, E. Athanasopoulos, G. Portokalidis,
C. Giuffrida, and H. Bos, “Undermining information hiding (and what
to do about it),” in USENIX SEC, 2016.

[52] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “ASLR on
the line: Practical cache attacks on the MMU,” in NDSS, 2017.

[53] C. M. Hayden, K. Saur, E. K. Smith, M. Hicks, and J. S. Foster,
“Kitsune: Efficient, general-purpose dynamic software updating for C,”
TOPLAS, 2014.

[54] M. Hirzel and A. Diwan, “On the type accuracy of garbage collection,”
in ISMM, 2000.

[55] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson,
“ILR: Where’d my gadgets go?” in S&P, 2012.

[56] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz,
“Profile-guided automated software diversity,” in CGO, 2013.

[57] R. Hund, C. Willems, and T. Holz, “Practical timing side channel
attacks against kernel space ASLR,” in S&P, 2013.

[58] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, “Address space
layout permutation (ASLP): Towards fine-grained randomization of
commodity software,” in ACSAC, 2006.

[59] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda, “Inspector gadget:
Automated extraction of proprietary gadgets from malware binaries,”
in S&P, 2010.

[60] K. Koning, H. Bos, and C. Giuffrida, “Secure and efficient multi-
variant execution using hardware-assisted process virtualization,” in
DSN, 2016.

[61] H. Koo and M. Polychronakis, “Juggling the gadgets: Binary-level
code randomization using instruction displacement,” in ASIACCS,
2016.

[62] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity,” in OSDI, 2014.

[63] K. Lu, S. Nrnberger, M. Backes, and W. Lee, “How to make ASLR
win the clone wars: Runtime re-randomization,” in NDSS, 2016.

[64] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee, “ASLR-
Guard: Stopping address space leakage for code reuse attacks,” in
CCS, 2015.

[65] K. Makris and R. A. Bazzi, “Immediate multi-threaded dynamic
software updates using stack reconstruction,” in USENIX ATC, 2009.

[66] I. Neamtiu and M. Hicks, “Safe and timely updates to multi-threaded
programs,” in PLDI, 2009.

[67] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol, “Practical dynamic
software updating for C,” in PLDI, 2006.

[68] B. Niu and G. Tan, “Per-input control-flow integrity,” in CCS, 2015.

[69] G. Novark and E. D. Berger, “DieHarder: securing the heap,” in CCS,
2010.

[70] A. Oikonomopoulos, E. Athanasopoulos, H. Bos, and C. Giuffrida,
“Poking holes in information hiding,” in USENIX SEC, 2016.

[71] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda, “G-Free:
Defeating return-oriented programming through gadget-less binaries,”
in ACSAC, 2010.

[72] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization,” in S&P, 2012.

[73] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Transparent ROP
exploit mitigation using indirect branch tracing,” in USENIX SEC,
2013.

[74] A. Pawlowski, M. Contag, V. van der Veen, C. Ouwehand, T. Holz,
H. Bos, E. Athanasopoulos, and C. Giuffrida, “MARX: Uncovering
class hierarchies in C++ programs,” in NDSS, 2017.

[75] M. Payer, A. Barresi, and T. R. Gross, “Fine-grained control-flow
integrity through binary hardening,” 2015.

[76] B. Salamat, T. Jackson, A. Gal, and M. Franz, “Orchestra: Intrusion
detection using parallel execution and monitoring of program variants
in user-space,” in EuroSys, 2009.

[77] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in C++ applications,” in S&P, 2015.

[78] J. Seibert, H. Okhravi, and E. Söderström, “Information leaks without
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