
Speculative Probing: Hacking Blind in the Spectre Era
Enes Göktaş

egoktas@stevens.edu

Stevens Institute of Technology

Kaveh Razavi

kaveh@ethz.ch

ETH Zürich

Georgios Portokalidis

gportoka@stevens.edu

Stevens Institute of Technology

Herbert Bos

herbertb@cs.vu.nl

Vrije Universiteit Amsterdam

Cristiano Giuffrida

giuffrida@cs.vu.nl

Vrije Universiteit Amsterdam

ABSTRACT

To defeat ASLR ormore advanced fine-grained and leakage-resistant

code randomization schemes, modern software exploits rely on in-

formation disclosure to locate gadgets inside the victim’s code. In

the absence of such info-leak vulnerabilities, attackers can still hack
blind and derandomize the address space by repeatedly probing the

victim’s memory while observing crash side effects, but doing so

is only feasible for crash-resistant programs. However, high-value

targets such as the Linux kernel are not crash-resistant. Moreover,

the anomalously large number of crashes is often easily detectable.

In this paper, we show that the Spectre era enables an attacker

armed with a single memory corruption vulnerability to hack blind

without triggering any crashes. Using speculative execution for

crash suppression allows the elevation of basic memory write vul-

nerabilities into powerful speculative probing primitives that leak

through microarchitectural side effects. Such primitives can repeat-

edly probe victimmemory and break strong randomization schemes

without crashes and bypass all deployedmitigations against Spectre-

like attacks. The key idea behind speculative probing is to break

Spectre mitigations usingmemory corruption and resurrect Spectre-

style disclosure primitives to mount practical blind software ex-

ploits. To showcase speculative probing, we target the Linux kernel,

a crash-sensitive victim that has so far been out of reach of blind

attacks, mount end-to-end exploits that compromise the system

with just-in-time code reuse and data-only attacks from a single

memory write vulnerability, and bypass strong Spectre and strong

randomization defenses. Our results show that it is crucial to con-

sider synergies between different (Spectre vs. code reuse) threat

models to fully comprehend the attack surface of modern systems.

CCS CONCEPTS

• Security and privacy→ Operating systems security.

KEYWORDS

Speculative execution; Code-reuse attacks

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00

https://doi.org/10.1145/3372297.3417289

ACM Reference Format:

Enes Göktaş, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and Cris-

tiano Giuffrida. 2020. Speculative Probing: Hacking Blind in the Spectre Era.

In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’20), November 9–13, 2020, Virtual Event, USA. ACM,

New York, NY, USA, 15 pages. https://doi.org/10.1145/3372297.3417289

1 INTRODUCTION

Modern systems have a large and complex attack surface deter-

mined by vulnerabilities in software (e.g., buffer overflows) and

hardware (e.g., Spectre). To handle such non-trivial complexity,

security researchers often partition the problem space in a number

of disjoint threat models and devise mitigations to reduce the at-

tack surface accordingly. In this paper, we show that this strategy

ignores important synergies between the threat models, overes-

timating the effectiveness of mitigations and the resulting attack

surface reduction. In particular, we focus on synergies between

code-reuse [11, 74, 78, 80, 87, 91] and Spectre [43, 53, 65] threat

models and present speculative probing primitives as part of the

joint attack surface. For code reuse, our primitives show speculative

execution can reduce the requirements for exploitation (to as little

as a single buffer overflow) even in the face of strong randomization

schemes. For Spectre, our primitives show memory corruption pro-

vides new opportunities to craft Spectre gadgets even in the face of

state-of-the-art mitigations. Combined, these insights enable end-

to-end exploitation using a single memory corruption vulnerability

despite all advanced mitigations in both threat models.

Hacking blind.Memory corruption vulnerabilities are the corner-

stone of modern software exploitation. Nevertheless, a single mem-

ory corruption vulnerability alone is insufficient to mount practical

attacks against today’s systems hardenedwith widespread ASLR im-

plementations [77], let alone against stronger leakage-resistant vari-

ants based on fine-grained code diversity and execute-only mem-

ory [13, 22, 23, 71]. Absent additional info-leak vulnerabilities that

grant attackers arbitrary memory read primitives, attackers need

to resort to probing primitives to hack blind. Traditionally, such

primitives are used in BROP [10] or similar attacks [7, 30, 54, 79]

to repeatedly probe the victim with controlled memory accesses.

A major limitation of such attacks is that they trigger repeated,

detection-prone crashes. They are also limited to crash-resistant

victims, ruling out high-value targets like the kernel.

Side channels and Spectre. In the Spectre era, speculative execu-

tion vulnerabilities provide the attacker additional options to craft

information disclosure primitives using side channels even in the

absence of additional software vulnerabilities. Nonetheless, while

Spectre [43, 53, 65] and other issues [15, 16, 61, 75, 94] are difficult

https://doi.org/10.1145/3372297.3417289
https://doi.org/10.1145/3372297.3417289

to mitigate completely in hardware, the industry has rolled out ef-

fective remedies for most practical attacks, rendering the remaining

attack surface exceedingly hard to exploit. In this paper, we show it

is possible to resurrect Spectre-style speculative control-flow hijack-

ing primitives in a classic software exploitation scenario even on

modern hardened systems. Nevertheless, directly exploiting such

primitives to craft fully fledged Spectre disclosure primitives faces

exactly the same challenges of regular control-flow hijacking in

the presence of arbitrary randomization schemes making the target

gadget location in memory unpredictable.

BlindSide. We present BlindSide, a new exploitation technique at

the convergence point of software and Spectre exploitation. Blind-
Side uses speculative execution to turn a single memory corruption

vulnerability into powerful speculative probing primitives. These

primitives leak information by observing microarchitectural side

effects rather than architectural side effects such as crashes, by-

passing strong leakage-resistant randomization defenses. The key

idea of using a software vulnerability instead of indirect branch

poisoning [53] or injection [90] also allows attackers to bypass all

the deployed mitigations against speculative execution attacks.

Moreover, since crashes and the probe execution in general are

suppressed on speculative paths, speculative probing cannot be

detected by existing BROP-style defenses such as anomalous crash

detection [35] and booby trapping [18, 23]. This allows blind attack-

ers to stealthily probe for gadgets by speculatively executing them.

For instance, we show attackers can use this strategy to blindly

locate speculative arbitrary memory read gadgets. Such gadgets are

already sufficient for code-oblivious code-reuse exploits [73, 91]

and data-only exploits [44]. We further show the speculative nature

of such arbitrary memory read gadgets allows them to directly read

code even in presence of common software-based leakage-resistant

randomization schemes [71], simplifying exploitation.

We demonstrate BlindSide attacks by means of a real-world

buffer overflow vulnerability in the Linux kernel, a high-value,

crash-sensitive target that so far remained well out of reach of

BROP-style attacks. We use our single memory corruption vulnera-

bility in a number of end-to-end kernel exploits, which implement

speculative probing, collectively bypass a variety of randomization

solutions (including the recent FGKASLR [4]) as well as version

entropy (e.g., the Spectre gadget we blindly probe for is present in

all the kernel versions in the past ≈ 5 years), and ultimately obtain

full-system compromise. One of these exploits is the first data-only

software exploit running entirely in speculative execution, leaking

the root password hash from memory. We also consider possible

defenses. As we have not been able to eliminate memory errors de-

spite more than thirty years of research and speculative execution

is essential to the performance of today’s general-purpose CPUs,

we argue that the mitigation of BlindSide attacks is difficult.

The convergence of software exploitation and speculative execu-

tion attacks generalizes both. In particular, while current speculative

execution defenses focus on attacks poisoning microarchitectural

components such as the Branch Target Buffer (BTB) [53], the Return

Stack Buffer (RSB) [65], or data buffers [90] to steer the control flow

speculatively, BlindSide generalizes such control-flowmanipulation

to include traditional memory corruption. Similarly, it generalizes

BROP-style exploitation to include microarchitectural side effects

to leak information about memory contents.

Contributions. The contributions of this paper are as follows:

• We investigate how speculative execution amplifies the severity

of common software vulnerabilities such as memory corruption

errors by introducing speculative probing primitives.

• We showcase our primitives inBlindSide attacks, with end-to-end
exploits that start from a simple buffer overflow, speculatively

leak data to derandomize the kernel address space, and ultimately

achieve leakage of sensitive data or arbitrary code execution. The

source code for the exploits and demo videos are available at

https://vusec.net/projects/blindside.

• As an optimization of our attacks, we present the first cross-

domain Spectre attack based on the efficient flush+reload

covert channel through the kernel’s physmap.

• We evaluate BlindSide against a variety of randomization solu-

tions and Spectre mitigations and show that they are not effective.

2 BACKGROUND

2.1 Code-Reuse Attacks

Code-reuse attacks (CRAs) exploit memory corruption vulnerabili-

ties, e.g., out-of-bound (OOB) writes, to control critical data such

as a code pointer later used by the program. At that point, control

flow is hijacked and redirected to a chain of gadgets (i.e., existing
code fragments) that implement malicious payloads [11, 78]. In a

privilege escalation scenario, attackers typically control (or exploit)

an unprivileged application running on the victim machine and

then use CRAs (or variations [44]) against the OS kernel.

To disrupt CRAs, KASLR in modern kernels randomizes the base

address where code, data, and other memory areas are loaded at

boot time. With KASLR, traditional exploitation attempts (usually)

lead to kernel crashes. Successful kernel exploits now require an

additional info-leak vulnerability to leak the base address of code,

data, and even of certain objects storing the code-reuse payload [77].

However, even a limited (e.g., single function pointer) leak can

reveal the location of all the other gadgets in the code.

To mitigate info leaks, efficient fine-grained randomization (FGR)

schemes [4, 34, 57] randomize the code layout by re-ordering func-

tions, basic blocks, or even the assignment of general-purpose reg-

isters [22, 23]. In response, researchers have devised so-called JIT-

ROP attacks [80], which exploit info-leak vulnerabilities, to leak

code, learn its layout, and craft a code-reuse payload just-in-time.

More recent leakage-resistant schemes implement execute-only

memory (XoM) for the code region, using software instrumenta-

tion such as selective paging [6], pointer masking [13], and range

checking [71] or a variety of hardware-based isolation features on

commodity architectures [55], such as Intel MPX [71], MPK [40, 70],

EPT [14, 22, 23, 32], split TLB [33], or ARM’s MMU/MPU built-

ins [19, 59]. While these schemes prevent all reads from code mem-

ory pages, they are still vulnerable to advanced code-reuse attacks

that only rely on code pointers leaked from data memory [73, 91]

and data-only attacks that do not even require code pointer corrup-

tion or control-flow hijacking at all [44].

2.2 “Blind” Code-Reuse Attacks

“Blind” CRAs do not rely on info-leak bugs to divulge the location

of gadgets. Instead, they exploit the target application’s crash resis-

tance to probe its address space. For example, Shacham et al. [79]

https://vusec.net/projects/blindside

use a return-to-libc probing attack against the Apache web server

to disclose the location of libc. Essentially, they repeatedly corrupt

the return address of a vulnerable function, forcing the program to

return to every possible address in search of a libc target, while the

server recovers from crashes by spawning a new process.

Similarly, BROP [10] demonstrated blind return-oriented pro-

gramming (ROP) attacks, i.e., a just-in-time CRA utilizing gadgets

ending in function returns. BROP blindly probes for certain types

of (ROP) gadgets instead of whole functions, by observing signals

like crashes, hangs and other behavior. CROP [30, 54] demonstrates

similar attacks on crash-resistant client programs, using arbitrary

memory read/write probes. However, where such attacks only apply

to crash-resistant code, we target the crash sensitive kernel.

2.3 Cache Attacks

Cache attacks exploit timing side channels over shared CPU caches

to detect victim memory accesses and leak information. Common

variants are flush+reload [98] (f+r) and prime+probe [69] (p+p).

f+r flushes a target shared cache line, waits for the victim to access

it, reloads the cache line, and measures the latency. If the reload

is fast (i.e., a cache hit), then the victim must have accessed the

shared cache line. p+p can operate even without shared memory

between attacker and victim since it detects accesses to a (shared)

cache set. In p+p, attackers first build eviction sets [82, 95] (i.e.,

sets of memory addresses that map to the same cache set and with

at least as many elements as the cache’s associativity). Accessing

an eviction set replaces all the cache lines in the corresponding

cache set. Briefly, in modern architectures all the cache lines in an

eviction set correspond to data at the same offset of their respective

memory pages.We say that these cache lines, and the corresponding

eviction set (and hence their pages), have the same color. Under
p+p, attackers access an eviction set to prime the target cache set.

After a potential victim operation, the target cache set is probed

using the eviction set to measure the access latency. A slow probe

(i.e., a cache miss) signals the victim’s activity.

2.4 Speculative Execution Attacks

Modern CPUs execute instructions ahead-of-schedule to increase

performance, e.g., to hide memory-access delays. This is done by

predicting the outcome of control-flow decisions, which cannot

be determined yet, and speculatively executing instructions based

on these predictions. CPUs contain multiple predictors, both for

conditional and indirect (i.e., pointer-based) branch instructions.

Results produced during this speculation window are “parked” until

the branch instruction completes, i.e., the instruction is retired. If

the prediction fails, the CPU discards the parked results, leaving no

trace in architectural state (e.g., registers and memory). However,

speculative execution does leave observable results, or side effects,

in the microarchitectural state of the processor (e.g., the cache),

even if the instructions operated on privileged data [61].

This observation has led to numerous attacks [53, 61, 94], coined

speculative (or transient) execution attacks, where a local attacker

exfiltrates data from the kernel. The attacks massage the microarchi-

tectural state (e.g., bymanipulating the state of branch predictors) to

force controlled speculative execution and run specific gadgets that

access sensitive data. By carefully picking the gadgets, traces of that

data are left in the microarchitectural state and can be exfiltrated

using a cache attack such as p+p.

For instance, in a Spectre-BCB (v1) attack, attackers may pick

kernel gadgets that perform speculative out-of-bounds accesses

determined by a syscall-controlled value x:

if (x < array1_size)
y = array2[array1[x] * 4096];

Attackers first force the if-protected statement to be speculatively

executed (e.g., by training the branch predictor with a sequence

of small values for x). They then provide an out-of-bound x to

speculatively read an arbitrary value in the conditional branch and

use it as an index into array2. Finally, they use a cache attack to

infer the array index and leak the value of array1[x].
Similarly, in a Spectre-BTB (v2) attack, attackers poison the

Branch Target Buffer (BTB) to speculatively hijack indirect calls

to a controlled target (e.g., by repeatedly issuing indirect branches

to a colliding user address). By carefully picking a target gadget,

attackers can again use a cache attack to exfiltrate the data.

Kernel mitigations against these attacks perform ad-hoc array in-

dex masking to thwart user-controllable speculative out-of-bounds

accesses [21] and either prevent user-level indirect branch poison-

ing with hardware support [46] or stall indirect branch speculation

using Retpolines [88]. None of these (and other) mitigations affects

BlindSide, which (i) exploits conditional branch mispredictions (a la

Spectre-BCB) but does not rely on (masked) user-controlled array

gadgets; (ii) exploits speculative control-flow hijacking (a la Spectre-

BTB) but does not rely on indirect branch mispredictions—based

on poisoning the BTB or other buffers [90].

3 THREAT MODEL

We assume a realistic threat model with an attacker who is able

to execute code on the target machine. We further assume that

the attacker has access to a software vulnerability in the higher-

privileged code that allows her to overwrite code pointers. The

attacker’s goal is to exploit the vulnerability to escalate privileges.

While this scenario is common in browsers, OS kernels, or hyper-

visors, in this paper we mostly focus on a modern Linux kernel

with all the mitigations enabled. To defend against software vul-

nerabilities, the Linux kernel enforces common mitigations against

control-flow hijacking attacks such as DEP, stack canaries, and

(possibly fine-grained and leakage-resistant) randomization. It also

enforces SMEP, SMAP, and NX-physmap to prevent ret2usr [50]

and ret2dir [49] attacks. To defend against fault-based speculative

execution attacks, the Linux kernel enforces Kernel Page Table Isola-

tion (KPTI) to mitigate Meltdown [61], encodes swapped page table

entries to mitigate Foreshadow [89], and flushes microarchitectural

buffers to mitigate MDS [94]. To defend against Spectre, the Linux

kernel restricts indirect branch speculation or instead uses retpo-

lines to mitigate speculative hijacking of code pointers [88]. It also

utilizes array-index masking to mitigate unauthorized out-of-bound

memory accesses [21].

4 SPECULATIVE PROBING

Starting from the ability to corrupt a code pointer, speculative

probing relies on the ability to speculatively hijack the control flow

to a controlled target in the victim (e.g., the kernel). On the surface,

a victim code snippet that can be exploited for this purpose looks

like a hybrid Spectre-BCB/BTB snippet:

if (expression) {
/* ... */
f_ptr(...);
/* ... */

}

The if conditional branch allows the attacker to control spec-

ulative execution, while the indirect call via the f_ptr function

pointer enables speculative control-flow hijacking. In contrast to

Spectre-BTB’s speculative hijacks (caused by indirect branch mis-

prediction), we hijack the control flow by corrupting f_ptr with a

software vulnerability similar to plain code reuse. However, unlike

real code reuse, we control speculative execution via the conditional

branch to ensure the corrupted pointer is only dereferenced on a

speculative (later-aborted) path, never in “real” execution.

Note that, since modern microarchitectures support multiple

levels of speculation [66], the indirect call will also speculate on its

own, but that is irrelevant for the purpose of speculative probing.

When the if-induced speculative execution reaches the indirect

call, the CPU starts a second-level speculative execution window

due to indirect branch target prediction. But, at the end of that

window, the execution goes back to first-level speculation where

the “real" (but corrupted) function pointer gets executed. Defenses

like Retpoline [88] can only cripple the second-level speculation

here, which only makes our speculative control-flow hijack more

robust by removing unnecessary speculative instructions.

In essence, to implement speculative probing, an attacker needs

to deviate only slightly from a typical code-reuse workflow. After

exploiting a memory corruption vulnerability to corrupt one or

more function pointers, the attacker needs to pick one that is called

within the speculative execution window of a conditional branch

that controls its execution. Since modern processors support spec-

ulative execution windows of hundreds of instructions [53], this

is often straightforward. For instance, as detailed later, over 90%

of kernel indirect branches are 10 or less instructions away from

a conditional branch that controls their execution. To control the

prediction at a conditional branch, attackers have many different

options. They can either prime the PHT part of the BTB [27] shared

between user and kernel [26], tweak the input leading up to the

function pointer dereference to train the dynamic branch predic-

tor [53], or directly corrupt the data conditional using the software

vulnerability to cause the CPU to take (or skip) the branch. The

latter option was the simplest to use in our exploits.

In practice, the extra effort required by speculative probing com-

pared to plain code reuse is relatively low. For instance, after lo-

cating the function pointers that we could corrupt with a given

vulnerability and potential candidates for indirect call sites (as done

for code reuse), it only took us a few hours to select the ideal call

site for our speculative probing exploits discussed in Section 6.

5 SPECULATIVE PROBING PRIMITIVES

Starting from a speculative control-flow hijacking snippet, attackers

can repeatedly hijack speculative execution to controlled targets

and craft a variety of speculative probing primitives tailored to

each specific exploitation scenario. For instance, in a classic KASLR

code-reuse scenario we need specialized probing primitives to lo-

cate the base address of code, heap/physmap (i.e., the memory area

where modern kernels map practically all physical memory in a

direct mapping), and the heap object storing the code-reuse pay-

load [49]. On the other hand, in face of fine-grained randomization,

we need more general, albeit less efficient, arbitrary memory read

primitives [73, 91], which in our case we implement speculatively.

We distinguish between Stage 1 and Stage 2 primitives, where

Stage 1 denotes fundamental probing primitives that can be blindly

used without any a priori knowledge of the code location/layout,
while Stage 2 primitives use Stage 1 primitives to find gadgets tar-

geting specific exploitation scenarios. Primitives to find executable

pages (code region probing) and gadgets (gadget probing) are in
the former category, while example primitives we use to find the

region containing heap/physmap (data region probing), target ob-
jects inside the heap (object probing), or arbitrary memory content

using a Spectre gadget (Spectre probing), are all in the latter.

All these primitives use the same underlying mechanism: they

probe the address space by corrupting the chosen function pointer

subsequently dereferenced during speculative execution. After-

wards, we mount a last-level cache (LLC) p+p attack (or, as detailed

later, f+r when possible, as an optimization) to detect cache traces

of our targets (e.g., code fragments and/or data regions) left by

speculative execution of the corrupted function pointer. In the fol-

lowing, we discuss the Stage 1 and Stage 2 primitives using Figure 1.

5.1 Code Region Probing

In any code-reuse attack, the first step is to identify the location of

code regions in memory. In the presence of coarse-grained KASLR,

finding the base of the kernel code is already sufficient to disclose

the predictable location of all the necessary gadgets.

As we see in Figure 1a, probing for code consists of several steps.

First, the attacker uses the software vulnerability to overwrite a

victim code pointer. The next step is to train the CPU’s predictor

to dereference the corrupted code pointer speculatively next time

the kernel code executes. Then the attacker primes (fills) part of

the cache with an eviction set. After these preparatory steps, the

attacker issues a syscall to speculatively hijack the control flow

to a desired location. Even if the location is invalid or not exe-

cutable, there will be no crashes, since the speculative execution

will mask all exceptions. However, if the target location contains

(arbitrary, even invalid) code on an executable page, the executed

code speculatively fills the corresponding cache lines. By subse-

quently probing the matching cache sets with p+p, the attacker

determines if the address is in the cache (and thus if the chosen

target page is executable).

5.2 Gadget Probing

In the presence of fine-grained and possibly leakage-resistant ran-

domization, code region probing alone is insufficient to find all

the necessary gadgets. Instead, we need to blindly locate specific

gadgets in the randomized code region. Gadgets of interest include

traditional code-reuse fragments as well as speculative execution

(e.g., Spectre) gadgets. As before, we use a speculative probing prim-

itive, but this time we look for specific signals in the cache. While

Stage 1 primitives

page with corruptible
function pointer

unmapped
page

G
a
d
g
e
t

M
e
m

o
ry

unmapped
page

code page

ptXX No gadget needed or involvedfp

K
e
rn

e
l

(a) Unlike other elements, leaking a code page requires no gadget. The corrupted function pointer contains the probe target (pt). In a successful

probe attempt, this function pointer points to a code page and the probe induces a signal in the cache by speculatively executing the target.

e
x
a
m

p
le

:
G

a
d

g
e
t

S
p
e
ct

re

data page
with known data

X

Load known value (*V) from address (V).

data page page with corruptible
function pointer and data

data page

purposeinstruction
1.mov regX,[A]
2.mov regY,[regX]
3.mov regZ,[B]

Load address with known value (V) from A in corrupted page.

Access probe target (pt=*B+*V) to induce the signal in cache.

M
e
m

o
ry

*B+*V

fp

K
e
rn

e
l

4.mov regQ,[regZ+regY]
Load array base (*B) from B in corrupted page.

ptV

 A
 B

(b) Probing for gadgets looks for activity in an attacker-controlled cache set. The Spectre gadget targeted by the corrupted function pointer

in this example activates the cache set if the probe target (pt) formed by the value read at V plus ∗B (corrupted by the attacker) points to it.

Note: no gadgets are needed a priori for this primitive.

Stage 2 primitives

Access probe target (pt) to induce the signal in cache.

page with corruptible
function pointer and data

unmapped
page

purpose

G
a
d
g
e
t instruction

1.mov regX,[p1]
2.mov regY,[regX]

Load probe target (pt) from corrupted page.

M
e
m

o
ry

fp

unmapped
page

data page

ptXX

p1

K
e
rn

e
l

(c) Leaking a data page requires speculative execution of a gadget with 2 chained dereferences. The function pointer targets a gadget that uses

corrupted inputs. In successful probes, p1 points to a data page so the gadget induces a signal in the cache by reading the probe target.

Load probe target (pt) from data-controlled page.

page with corruptible
function pointer and data

data page

purpose

G
a
d

g
e
t instruction

1.mov regX,[p1]
2.mov regY,[regX]
3.mov regZ,[regY]

Load pointer to data-controlled page (p2) from corrupted page.

Access probe target (pt) to induce the signal in cache.M
e
m

o
ry

fp

readable
page

data-controlled
page

pt
XX p2

p1

K
e
rn

e
l

(d) Leaking a data-controlled page requires speculative execution of a gadget with 3 chained dereferences. The function pointer targets a gadget

which gets input from the corrupted page. In a successful probe attempt, the probing input points to the data-controlled page which contains

the probe target. The probe induces a signal in the cache by reading the probe target after retrieving it from the data-controlled page.

Load value to test (*T) from test target (T).

data page page with corruptible
function pointer and data

data page data page

purpose

G
a
d

g
e
t instruction

1.mov regX,[A]
2.mov regY,[regX]
3.mov regZ,[B]

Load test target (T) from A in corrupted page.

Access probe target (pt=*B+*T) to induce the signal in cache.

M
e
m

o
ry

*T

fp

K
e
rn

e
l

4.mov regQ,[regZ+regY]

 B

Load array base (*B) from B in corrupted page.

ptT

 A

Array B

(e) Probing with Spectre is similar to the previous case except we use Spectre in two different ways: to leak an actual value (regular Spectre)

and to verify quickly if the value at an address contains 4 specific bytes. For brevity, the figure shows only the latter. It configures memory

such that it can check for a value by ensuring that the dereference in Line 4 only hits the target cache set if the memory contains this value.

The Spectre gadget requires 4 chained dereferences originating from the corrupted page, i.e. 2 to load ∗T, 1 to load ∗B and 1 to load pt.

Figure 1: Probing primitives—green arrows represent successful probe attempts and gray dotted ones the unsuccessful ones.

the cache behavior of code fragments may be quite diverse, we can

optimize the search by limiting ourselves to gadgets (or their neigh-

bors [81]) that announce their presence using an easily detectable

signal. For instance, we may target a gadget dereferencing a pointer

that the attacker controls and check if the corresponding cache set

gets activated. Gadget probing is illustrated in Figure 1b.

In principle, the attacker can observe arbitrary microarchitec-

tural side effects due to accesses to code pages, data pages, and com-

binations thereof, but the current BlindSide attack targets cache

behavior that attackers can observe both efficiently and reliably. In

particular, we focus on gadgets for which successful execution acti-

vates one particular cache set that is under control of the attacker
(and as noise free as possible).

As an example, suppose we want to probe for a Spectre gadget as

shown in Figure 1b. In this case, the buffer overflow overwrites an

object that also contains a function pointer. The values overwritten

by the overflow are controlled by the attacker. Since we control the

values that the target Spectre gadget consumes, we can configure

those values in a way that they leave a signal in an expected cache

set. We now start probing different code locations until we observe

a signal that indicates a successful detection of a Spectre gadget.

Note that the only vulnerability-specific aspects here are the

registers that point to the overwritten memory and the size of the

buffer overflow, but BlindSide is agnostic to both: as long as it

sees activity in the target cache set, it knows that it has found an

appropriate gadget. For this reason, our current gadget probing
implementation focuses on gadgets for which the correct behavior

culminates in (and can be verified by) the activation of a single cache

set selected by the attacker. However, this is not a strict requirement

and more elaborate fingerprinting is possible (but unnecessary for

practical exploitation, as shown by our end-to-end exploits).

For different gadgets, the detection of such behavior may take

slightly different forms. For instance, suppose we are looking for a

traditional (B)ROP gadget such as pop reg; ret; for some register.

In that case, there is no direct reference to the target cache set by

the gadget. To detect such gadgets, the attacker can look at the

callsite for the use of the register upon successful completion of

the gadget. After all, when code dereferences the register after the

return, the appropriate cache set gets activated. In other words, it

does not matter how the code activates the selected cache set, as

long as one can infer the behavior of the target gadget from it.

Finally, it is helpful to discuss the usefulness of gadget probing in
general even if it can leak a Spectre gadget already. Given a Spectre

gadget, the attacker can probe the address space more directly.

However, while the Spectre gadget is convenient for exploitation,

as we discuss in Section 6.5, it is unable to bypass certain leakage-

resistant randomization schemes. Gadget probing is not subject to

these limitations, but the analysis of cache traces for each necessary

gadget requires additional effort on behalf of the attacker.

5.3 Data Region Probing

While the Stage 1 primitives give attackers all that is needed to

launch an exploit, solely relying on Stage 1 may not be efficient.

For instance, probing the entire address space with the Spectre

gadget is slow as each value that the gadget reads requires probing

many cache sets (some of which may be quite noisy), even when

the attackers do not care about the actual value. As an example, it

is common for exploits to require the base address of a data region

like heap/physmap, regardless of its content (see the exploits in §6).

For this scenario, Figure 1c shows how data region probing
allows an attacker to find the kernel heap efficiently. In this case,

we use a gadget that accesses memory via two chained dereferences.

The gadget uses an attacker-controlled value on the corrupted page

as a pointer to load another value from a target page. To verify that

the target page is indeed mapped as a data page, we only need to

check the cache sets at the attacker-controlled page offset. If one of

these cache sets gets activated, then we know that the probe has

succeeded in finding a mapped kernel data page.

5.4 Object Probing

Merely locating the base address of a data region is not always

sufficient. For instance, some attacks [49] require the location of

specific user objects in the physmap. Moreover, as later detailed in

Section 5.6, locating user objects in the physmap is useful to build

a f+r [98] covert channel as a better alternative to p+p [69].

To conveniently accommodate such exploitation techniques, ob-
ject probing allows attackers to scan memory for pointer signatures:

pointers to a probe target of which the attacker knows the cache

set. The procedure is shown in Figure 1d. The corrupted function

pointer targets a gadget that uses an attacker-controlled value as

a pointer to another pointer p2 that it subsequently dereferences.

By checking the cache set corresponding to pt, attackers can tell if

they found the address of the right object containing p2.

5.5 Spectre Probing

The most convenient primitive is given by a Spectre gadget that

we can use to scan the content of memory directly. The Spectre

gadget serves as a universal read primitive, as we can use it to

dump the content of any memory region. For instance, we could

use it to dump the full contents of the kernel code and data regions.

Spectre probing could act as an alternative to object probing for

locating data in physmap by leaking memory contents byte by byte

(leaking mode). However, doing so is slow as each value needs

explicit testing which requires probing a range of cache sets to see

which one was activated. Moreover, some of the cache sets may be

used a lot, leading to increased noise that slows down the attack.

For this reason, we can also efficiently use our Spectre probing
in value testing mode, as illustrated in Figure 1e. In this case, the

corrupted function pointer targets a Spectre gadget and the attacker

configures memory such that the dereference in Line 4 hits a partic-

ular cache set if and only if the value that the Spectre gadget reads

has the value that the attacker is looking for. By doing so, BlindSide
greatly reduces the number of cache sets to probe during a scan.

Note that the technique applies to both data and code pages. As we

discuss in Section 6.5, certain mitigations, however, are immune

against Spectre probing when leaking code pages. The attacker can

instead use gadget probing in those circumstances.

5.6 Optimizations

Reducing Noise. During our p+p measurements for examining

the state of the LLC, some cache sets always get accessed due to

the code executed and data accessed by the measurement itself.

These cache sets may conflict with the eviction sets that we use for

checking the probe’s signal. The eviction sets associated with the

accessed cache sets will always result in a slow probe which would

falsely imply that it has the signal (i.e., a false positive). To learn

the cache sets that are accessed by default, we collect a footprint of

the cache by performing one round, using a void probe target (i.e.,
memory address 0x0) before the actual probing starts. We avoid

these cache sets when probing our target address.

Cache attacks are noisy by nature, so once we find a signal, we

need to verify it is a true positive. For verification, we adjust the

offset in the probe target to another cache set. If that cache set also

appears to show a signal, it means the signal was a true positive

and that the probe target points to the sought element in memory.

Leveraging flush+reload. As p+p is known to be slow and sen-

sitive to noise, replacing it with the faster and more noise-resistant

flush+reload [98] attack is beneficial for the probes. f+r achieves

its speed up mainly by allowing a lower number of measurement

repetitions per probe and having a high signal confidence on a sin-

gle hit, unlike p+p which requires more hits to validate the signal.

Appendix A presents a detailed comparison between p+p and f+r

used with our primitives.

However, unlike p+p, f+r requires the attacker and victim to

share memory. Observe that the kernel heap (or physmap) is im-

plicitly “shared” between the user process and the kernel and can

be used to build an efficient f+r covert channel. Specifically, the

attacker can map a f+r buffer in user memory backed by 2MB

huge pages and put a signature in the beginning. To locate kernel

mapping of such buffer, the attacker relies on Spectre probing to

scan the physmap for the signature at 2MB intervals. After this step,

the attacker can use Spectre probing again to access the buffer via

its kernel mapping, but now perform f+r (instead of p+p) using the

user mapping to leak information. If huge pages are not available,

the attacker can rely on side channels to detect a 2MB user memory

alignment [28, 47] or resort to spraying 4KB pages with a unique

page id attached to the signature to reduce the search space.

Our results show that f+r improves the speed of the probes on

average more than 5x, which is in line with numbers reported in the

literature [93]. As we shall see next, we use f+r in two of our three

exploits after leaking the kernel heap and the user page within it.

6 EXPLOITATION

In this section, we present three proof-of-concept (PoC) exploits.

The first exploit uses our Stage 1 code region probing primitive to

bypass standard code KASLR, our Stage 2 data region probing to by-
pass heap KASLR, and finally our Stage 2 object probing primitive

to detect the location of our ROP payload. This allows us to mount

an end-to-end just-in-time code-reuse exploit and gain reliable code

execution in the kernel using a single heap buffer overflow vul-

nerability. The second exploit first uses our Stage 1 code region
probing and gadget probing to find a Stage 2 Spectre probing prim-

itive to leak arbitrary information from the victim kernel’s data

region. We use this primitive to mount an architectural end-to-end
data-only exploit using a microarchitectural speculative code-reuse
exploit, which, as an example, leaks the root password hash. The

exploit structurally bypasses fine-grained, leakage-resistant ran-

domization and other mitigations against (architectural) code reuse

such as CFI [3] which have been deployed in secure production

kernels [2]. Our last exploit shows how the Spectre probing primi-

tive can be more powerful than traditional arbitrary memory read

primitives, demonstrating how it can directly read code and enable

(architectural) just-in-time code reuse in the face of software-based

eXecute-only-Memory (XoM) for the kernel [71].

The ultimate goal of the exploits is elevating privileges by execut-

ing a ROP payload crafted with the disclosed gadgets to disable the

SMAP and SMEP protections and allow user-space code to change

the process’ credentials, or by compromising the root password.

First, we briefly discuss the vulnerability and shared initialization of

the exploits, then we go over how we used the probing primitives,

and finally we discuss how we achieve privilege escalation in the

final stage. We perform the attacks against Linux kernel version

4.8.0 compiled with gcc and all mitigations enabled on a machine

with Intel(R) Xeon(R) CPU E3-1270 v6 @ 3.80GHz and 16 GB of

RAM. We repeat all our experiments 5 times and report the median,

with marginal deviations across runs. In each experiment, we set

the number of probing repetitions and hits to the minimum number

necessary to achieve a 100% success rate (0% error rate) in our re-

peated attempts on an idle system. See Appendix A for more details

on the impact of repetitions on our probing primitives.

6.1 Vulnerability

For our exploits, we use a heap buffer overflow in the Linux kernel

(CVE-2017-7308). This bug applies to AF_PACKET sockets with a

TPACKET_V3 ring buffer. We used Konovalov’s detailed write up

on this vulnerability [56] to start off our exploits.

In the original exploit, once the vulnerable ring buffer is initial-

ized, only a fixed offset beyond the buffer can be overwritten. In

our exploits, we create two such vulnerable objects. The first object

serves to corrupt (adjust) the fixed write offset stored in the second.

This results in a non-linear out-of-bound write through the second

object with a range of up to 64 KB (due to the offset being of type
unsigned short). For details about how the out-of-bound write is

triggered, we point the interested readers to Konovalov’s write-up.

Note that BlindSide can work with any vulnerability that pro-

vides a write primitive similar to the one used here. Examples

include CVE-2017-1000112, CVE-2017-7294, and CVE-2018-5332.

6.2 Speculative Probing Initialization

For speculative probing, we exploit a conditional branch and an

indirect branch combination in the code related to sockets. We place

a socket object adjacent to the out-of-bound write primitive and

corrupt its function pointer consumed by the indirect branch for

probing. We trigger the execution of the conditional and indirect

branch combination using a sendto system call.

To ensure that the conditional branch is taken towards the indi-

rect branch by default, we prepare a non-corrupted socket object

for the purpose of training the execution of the conditional branch

towards the indirect branch. To trigger speculation, we flip the

direction of the conditional branch by simply corrupting the condi-

tional data using the out-of-bound write vulnerability. To ensure

that speculation succeeds in reaching our target indirect branch, we

spawn a thread on a separate core to constantly evict the conditional

data from the cache and maximize the speculation window.

6.3 Exploit 1: Breaking Coarse-grained KASLR

In our first exploit, we focus on applying BlindSide to the stock

Linux kernel with default mitigations including KASLR.

Locating kernel image. To discover the base of the kernel im-

age (i.e., code and adjacent data), we perform code region probing
on memory range 0xffffffff80000000 - 0xffffffffc0000000
(1 GB) with a step size of 8MB. The kernel image size is a little over

8MB. Once we get a hit, we lower the step size to 2MB and restart

probing from the last unmapped page. Note that the kernel image is

mapped with huge pages and thus aligned to 2MB. Once we know

the base of the kernel image, we know the location of all gadgets.

Results. While searching for an executable page, we measured

a probing speed of 95.4 pages per second with 14 repetitions per

cache set. On average, it takes around 0.7s to find the kernel image

base (i.e., on average located in the middle of the possible range).

Locating the kernel heap. To build the ROP payload, we need to

leak its location in memory in order to use payload pointers inside

the payload. We first use data region probing to locate the kernel

heap and then use object probing starting from the base of the heap.

We use the following gadget in both probes:

0x146a3: mov rax , qword ptr [rbx + 0x158]
0x146aa: mov rax , qword ptr [rax + 0x138]
0x146b1: mov rax , qword ptr [rax + 0x78]

Listing 1: Gadget in uncore_pmu_event_start and at kernel

image offset 0x146a3.

For data region probing, we use the first two instructions and, for

object probing, we use all three instructions. The rbx register points
to the socket object which we corrupt for speculative probing. We

probe for the heap base in memory range 0xffff880000000000 -
0xffffa40000000000 (i.e., a 28 TB memory range which we found

empirically). Ideally we would use a 16GB step size, but we noticed

an unmapped gap of 1GB in the heap. To avoid such gaps, we

instead use a step size of 8GB (and 1GB on the slow path).

Results.While searching for a data page, we measured a probing

speed of 36.4 pages per second with 36 repetitions per cache set. On

average, it takes around 49.2s to find the heap base (i.e., on average

located in the middle of the possible range).

Locating the ROP payload. Once we find the heap base, we use

object probing to find the ROP payload’s location. Essentially, we

search for the location where we have the out-of-bound write ca-

pabilities as we write the ROP payload at that location. We start

the probe at the discovered heap base and use a step size of 0x8000
bytes as the vulnerable buffer used for the out-of-bound write is

aligned to 0x8000. Once we observe a signal through our object
probing primitive, it means that we have disclosed the location of

the target ROP payload.

Results. While searching for the target location, we measured

a probing speed of 3,910.8 pages per second on average with 43

repetitions per cache set. On average, it takes around 67.0s to find

our target object if it is located in the middle of the heap.

6.4 Exploit 2: Speculative Data-only Attacks

In our second exploit, we assume state-of-the-artmitigations against

code reuse and speculative execution to be enabled. In this exploita-

tion scenario, starting after the code region probing step detailed

earlier, we use our gadget probing primitive to find a Stage 2 Spectre
probing primitive.

Locating a Spectre gadget. We pick the following out-of-band

Spectre gadget to be probed using our gadget probing:

0x4f8990: // function prologue
...

0x4f89a4: mov r13 , rdi
0x4f89a7: push r12
0x4f89a9: push rbx
0x4f89aa: mov r12 , qword ptr [rdi + 0x2f8]
0x4f89b1: mov rbx , qword ptr [r12]
0x4f89b5: cmp r12 , r14
0x4f89b8: je 0xffffffff88cf8a0f
0x4f89ba: cmp byte ptr [r13 + 0x3b0], 0
0x4f89c2: mov esi , dword ptr [r12 + 0x28]
0x4f89c7: je 0xffffffff88cf89f7
0x4f89c9: mov rdx , qword ptr [r13 + 0x380]
0x4f89d0: mov eax , esi
0x4f89d2: mov rax , qword ptr [rdx + rax*8]

Listing 2: Gadget in vp_del_vqs and at kernel image offset

0x4f89a4. The rdi register points to the packet socket object.

While probing for this gadget, we arrange the memory at the

corrupted function pointer such that, when our probe targets this

gadget, the instruction at 0x4f89d2 leaves a signal in an expected

cache set. Data to be leaked (i.e., rax) is added to an array pointer

(i.e., rdx) and then the resulting pointer is dereferenced. Note that

the data pointer (i.e., r12) and the array pointer are both loaded

from the non-linear out-of-bound write region using the rdi reg-
ister. This means we only need to provide the gadget with valid

pointers to dereference in order to get a signal in our target cache

set. Next we look at two important aspects of our Spectre gadget

before discussing two optimizations to speed up the execution of

the exploit using this gadget.

Bypassing mitigations. Note that our target gadget is resistant

to both Spectre (since it is out-of-band and not protected by ar-

ray index masking) and randomization mitigations. In particular,

since this gadget does not feature function calls or branching code,

it is resistant to function-level and basic block-level randomiza-

tion by construction. We also experimentally confirmed our gadget

is resilient to FGKASLR [4]—a recent fine-grained function-level

randomization scheme proposed by Intel and currently being con-

sidered for the mainline Linux kernel.

Moreover, all the gadget’s required inputs are derived from the

rdi register which cannot be randomized with register-level ran-

domization since it is an argument (not a general-purpose) regis-

ter [23]. Hence, our Spectre gadget has no internal entropy and we

can probe for it even with strong fine-grained and leakage-resistant

randomization. Furthermore, since this piece of code is not expected

to process user-provided input, it is not guarded against speculative

execution attacks using e.g., lfence or array index masking.

The gadget’s longevity. Notably, we found our target Spectre

gadget is available from Linux kernel v3.19 until v5.8 (i.e., the most

recent version at the the time of writing), surviving 31 major Linux

kernel releases across over 5 years. This shows an attacker armed

with a write vulnerability can perform BlindSide attacks on a wide

range of recent production Linux kernel versions even when blind

to the particular kernel version.

Optimization: single cache set. Since we have only leaked the

kernel image location so far, we can only provide pointers to the

kernel image and not the heap. We use pointers to enum constants

to be used as data pointers and a pointer to the kernel image as the

array pointer. By using a code page as the array pointer, we are able

to distinguish the color of the page through code region probing.
Discovering the color of the array allows us to check for a signal in

only one cache set out of the many that map to different colors.

Optimization: function alignment.Because the gadget still gives

a signal when executed from the function entry point, we used a

step size of 16 bytes (i.e., function entry point alignment).

Results. While searching for the Spectre gadget, we measured a

probing speed using p+p of 3,650.4 code locations per second with

44 repetitions per cache set. On average, it takes around 76.7s to

find the gadget (i.e., on average located in the middle of the code).

Enabling flush+reload.After leaking the kernel heap base sim-

ilar to Exploit 1, we probe for a mapped user page with a signature

in the physmap with a step size of 2MB to enable f+r. We measured

a probing speed of 3,658.0 pages per second with 44 repetitions per

cache set. On average, it takes around 1.1s to find the target user

page (i.e., on average located located in the middle of the physmap).

Leaking the root passwordhashwith Spectre probing. assum-

ing strong mitigations against architectural code-reuse attacks, we

show how one can still leak sensitive information using Spectre
probing. As an example, we aim to leak the root password hash in

a data-only attack.

We force the system to load the contents of the /etc/shadow file
into the page cache by performing an unsuccessful authentication

using sudo, similar in spirit to prior hardware-based attacks [72, 94].

The memory page that stores the contents of /etc/shadow file

starts with the root:$ prefix. We use Spectre probing to leak the

first 4 bytes of each 4 KB page and in case of match with ‘root’, we

verify the hit by also checking the 4 bytes ‘ot:$’ at page offset 2.

Upon a match, we continue and leak the root password hash.

Results. While searching for the root:\$ snippet, we measured

a probing speed using f+r with Spectre probing of 19,520.5 pages
per second with 8 repetitions per cache line, looking for 1 hit in

the target cache line. On average, it takes around 107.4s to find the

snippet assuming that it is located in the middle of the kernel heap.

Cracking the root password hash. Assuming a default SHA-512

root password hash on Linux, a 60 node GPU cluster can brute-

force an eight character alphanumeric password in roughly one

hour [31]. On Amazon EC2 [1], this would cost less than $ 32.

6.5 Exploit 3: Breaking Software-based XoM

Our gadget probing primitive can leak gadgets regardless of the de-

ployed randomization technique. The target gadgets, however, need

to leave an observable trace in the LLC. Furthermore, analyzing the

suitability of each gadget for gadget probing can be burdensome:

as an example, our ROP chain requires eight gadgets for successful

exploitation. In our last exploit, we show that our Spectre probing
primitive provides a powerful arbitrary memory read primitive that

can even speculatively read code and bypass mitigations.

We simply aim our Spectre probing to the kernel image lo-

cation to leak the code contents. To our surprise, this bypasses

software-based XoM techniques for the kernel [71] by simply read-

ing code blocks that are protected by code randomization. In par-

ticular, this simple strategy trivially bypasses the software-based

range checks (skipped in nested speculative execution) proposed

in [71] even when they are enhanced by hardware support (i.e.,

Intel MPX, whose bounds checks are also deferred in speculative

execution). Other software-based implementations such as pointer

masking [55] can also be bypassed with the right gadgets (i.e., by

skipping over the mask operation), but we decided against com-

plicating our exploit since pointer masking is anyway difficult to

support in the kernel’s non-linear address space [71].

Our investigation also shows that execute-only memory defenses

that rely on hardware-enforced permission checks such as EPT [14,

32] are protected against Spectre probing. This is due to the fact

that speculative execution does not load data from the cache lines

that are marked as execute-only by EPT.

Dealing with aliasing.While leaking the entire kernel code, we

encountered multiple issues at certain memory addresses due to

address aliasing handling in modern CPUs. An example was an

aliasing issue caused by a stack store instruction at the beginning of

the Spectre gadget. When the given load address to leak from hap-

pened to 4k-alias the address of the earlier stack store instruction,

a stall introduced by the store-to-load forwarding logic [67, 83]

disrupted the signal. To address this issue, an option is to chain to-

gether multiple speculative gadgets [8] and perform stack pivoting

before executing the Spectre gadget. We confirmed this strategy

eliminates the issue, but also requires blindly probing for another

gadget. To lift this requirement, we opted for a simpler approach,

namely having the PoC switch to the legacy int 0x80 syscall inter-
face to misalign the kernel stack (compared to the regular syscall
interface) when needed. Another example was an aliasing issue

caused by a lock-prefixed load instruction in the vulnerable code

path disrupting the signal when leaking from the same page off-

set. To address this issue, we relied on multiple vulnerable objects

with different addresses for the lock-prefixed load instruction. By

applying these and other aliasing remedies, we were able to leak

all but 4 of the 8,961,112 kernel code bytes (due to residual aliasing

issues). To recover the missing 4 bytes, rather than further compli-

cating the exploit, one can simply perform disassembly and mount

a straightforward code inference attack [81].

Results.After probing for amapped user page to enable f+r similar

to Exploit 2, we dumped the entire kernel code. We measured a

leakage speed using f+r with Spectre probing of 2,645.7 bytes per
second with 7 repetitions per cache line. This resulted in leaking

the entire kernel code in around 56 minutes.

6.6 Exploit Finalization

We finalize the exploits by escalating privileges to root. For Ex-

ploit 2, we can simply use the cracked root password. For Exploit 1

and Exploit 3, we trigger the control-flow hijack in regular (non-

speculative) execution, diverting to a ROP chain with 8 gadgets

disclosed from the code region. The ROP chain disables SMAP/S-

MEP and finally diverts execution to user memory a la ret2usr [50].

Executing directly in user space releases the attacker from the com-

plexities of a ROP attack. The user-space code essentially updates

the credentials of the controlled process to root as follows:

1 commit_creds (p r e p a r e _ k e r n e l _ c r e d (0)) ;

Listing 3: Code snippet updating process credentials to root.

To build the ROP chain, we use the disclosed ROP payload loca-

tion as a way to move a value from one register to another since we

miss a convenient gadget that does this specifically for the rax-rdi
transfer. Essentially, we need to move an updated control register

value from rax into rdi, which we then move to the CR4 control

register to disable SMAP/SMEP. We achieve the transfer by writ-

ing the value in rax back into the ROP payload and then popping

it again into rdi. During the just-in-time ROP payload prepara-

tion, we use the payload’s disclosed location to prepare a pointer

in the payload that points to the ROP payload location where a

`pop rdi; ret' gadget pops from.

After privilege escalation, the user-space code restores the kernel

stack pointer and returns to the hijacked indirect branch to continue

normal execution instead of instantly context switching to the user-

space using an iret instruction. Resuming normal execution from the

hijacked indirect branch ensures that locked resources are released.

7 DETAILED ANALYSIS

We have so far evaluated the throughput of our probing primitives

and the time to reliably complete the corresponding exploitation

steps. In this section, we present additional experiments to show

(i) we can effectively exploit kernel indirect branches to implement

our speculative control-flow hijacking building block for blind prob-

ing (Stage 1) and (ii) exploit disclosed kernel code to implement

1 i f (f l u s h _ f p) c l f l u s h (obj−>fp) ;

2 c l f l u s h (obj−>fp_enab l e d) ;

3 mfence () ;

4 i f (obj−>fp_enab l e d)

5 obj−>fp (obj , o f f s e t) ; / / => obj−>a r r ay [(o f f s e t +FID) ∗ 5 1 2]

Listing 4: Code snippet in our kernel module. The comment

illustrates the body of the targeted function. FID is a

hardcoded function id, distinct for each function.

usable gadgets for more informed probing (Stage 2). We refer the in-

terested reader to Appendix A for a detailed analysis on the impact

of the number of repetitions on the success rate of our speculative

probing primitives.

For our gadget analysis, we used the Capstone (v4.0.1) disassem-

bler and statically analyzed the vulnerable Linux kernel version

4.8.0 used for our proof-of-concept exploits. To find potentially

exploitable indirect branches on the same kernel version, we used

the IdaPro (v7.2) interactive disassembler. We preferred IdaPro over

Capstone for this analysis as we performed backward analysis from

the indirect branches which required the cross-reference informa-

tion added by IdaPro.

To verify that the identified indirect branches, and speculative

probing in general, are not hindered by state-of-the-art mitiga-

tions against speculative execution attacks, we tested a recent (non-

vulnerable) Linux kernel version 5.3.0-40-generic with all the miti-

gations (e.g., Retpoline) enabled on an Intel i7-8565U CPU with the

microcode update for the IBPB, IBRS and STIBP mitigations.

7.1 Mitigation Resistance

We evaluate speculative probing’s ability to bypass mitigations

that explicitly seek to prevent speculative control-flow hijacking:

Retpoline, IBPB, IBRS and STIBP. For this purpose, we create a

kernel module with an indirect branch guarded by a conditional

branch, both controlled by mock heap objects (see Listing 4).

For each test, we create two objects of the same type, each point-

ing to a different function through its fp pointer. When called, these

functions leave a unique and easily measurable fingerprint in the

cache. In the first object, fp_enabled is set to 1 to train the branch

predictor towards calling fp on line 5. In the second it is set to 0,

so that the indirect branch is only reached speculatively—which is

facilitated by the clflush and mfence operations. We use the first

(training) object five times, followed by one run with the second.

For the experiment, we perform 1,000 iterations per configu-

ration, where each iteration consists of 10,000 tests as described

above. After each test, we probe the cache for hits that reveal which

function, if any, was speculatively executed. In each configuration,

we apply mitigations individually, with and without flushing the ob-

ject’s function pointer—to verify that the mitigations work correctly

by nudging speculative execution towards the training function.

Finally, we include a test with two threads, where each thread con-

tinuously uses one of the objects. This aims to test whether IBRS

and STIBP prevent indirect branch-target poisoning across logical

CPU cores. Table 1 shows our results.

As expected, the results show that the mitigations prevent specu-

lative execution of the training function, with (close to) 0% success

rates for all mitigations. However, the CPU did speculatively ex-

ecute the indirect branch and its target function in many cases,

reaching (close to) 100% success rates across all mitigations.

Flush Target Function Training Function

Defense FP Success (Avg. Hits) Success (Avg. Hits)

Single Thread Executions:

None

No 100.0% (9999.93) 43.3% (0.88)

Yes 100.0% (208.37) 100.0% (9999.96)

Retpoline

No 100.0% (9990.92) 0.0% (0.00)

Yes 100.0% (164.71) 0.0% (0.00)

IBPB

No 100.0% (9999.62) 0.0% (0.00)

Yes 100.0% (292.32) 0.0% (0.00)

Two Co-located Thread Executions:

None

No 99.8% (21.91) 62.3% (0.76)

Yes 31.6% (0.88) 100.0% (21.06)

IBRS

No 99.3% (35.26) 0.2% (0.00)

Yes 18.9% (19.28) 0.1% (0.00)

STIBP

No 99.7% (38.09) 0.0% (0.00)

Yes 19.1% (13.03) 0.0% (0.00)

Table 1:BlindSide’s speculative probing vs. mitigations. Suc-
cess rate indicates the percentage of iterations in which the

function pointed to by FP executed speculatively. Avg. Hits
indicates the average of total hits in all iterations.

In addition to the Intel Whiskey Lake CPU in our evaluation,

we confirmed similar results on Intel Xeon E3-1505M v5, Xeon

E3-1270 v6 and Core i9-9900K CPUs, based on the Skylake, Kaby

Lake and Coffee Lake microarchitectures, respectively, as well as

on AMD Ryzen 7 2700X and Ryzen 7 3700X CPUs, which are based

on the Zen+ and Zen2 microarchitectures. Overall, our results con-

firm speculative probing is effective on a modern Linux system on

different microarchitectures, hardened with the latest mitigations.

7.2 Availability of Indirect Branches

For indirect branches to be exploitable by speculative probing, we

need them to be relatively close to the nearest conditional branch

that controls their execution. Furthermore, the closer the indirect

branch is to the conditional branch, the more cycles from the spec-

ulation window are available for the instructions executed specula-

tively at the target of the indirect branch.

To study the prevalence of exploitable branches, we employed

static analysis with a conservative definition of control-dependent

indirect branches. In particular, we say that an indirect branch

is control-dependent on a conditional branch if one conditional

branch target dominates the indirect branch while the other target

has no path to the indirect branch. For simplicity, our analysis caps

the maximum number of instructions to 50, and while our analysis

is interprocedural and may include multiple calls in a call stack

(e.g., the conditional branch may be in the caller of the function

that contains the indirect branch), we exclude additional call-return

pairs between the conditional branch and the indirect branch.

Figure 2 depicts the results of gathering the shortest distance,

in number of instructions, between each indirect branch in the

kernel and the closest preceding conditional branch on which it

depends. Even with our conservative analysis, we found that 7,929

(more than 50% of the total 15,762) indirect branches are control-

dependent on a nearby conditional branch. The vast majority of the

indirect branches are even very close to a conditional branch. For

instance, over 90% are 10 or fewer instructions away from the closest

preceding conditional branch on which they depend and around

75% are as close as 5 or fewer instructions away. These branches

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

Pe
rc

e
n
t

Number of instructions from IB to closest control-dependent CJ

Figure 2: Distance CDF. X-axis: #instructions between indi-

rect branch (IB) and closest preceding conditional jump (CJ)

on which it is dependent. Y-axis: % of indirect branches with

less than given distance.

account for over 45% and over 37% of the total number of indirect

branches, respectively. Since a speculationwindow has the potential

to execute hundreds of CPU cycles, this result confirms that a

large number of indirect branches can indeed be executed within

a speculation window while leaving ample room for speculative

gadget execution.

7.3 Gadgets with Dereferences

For our proof-of-concept exploits, we were only interested in mem-

ory dereferencing gadgets where the registers RBX and RDI are

dereferenced first for attacker-specified values. However, other

exploits may rely on different registers. By means of an interproce-

dural analysis (of paths without call-return pairs), we collected all

gadgets of up to 25 instructions that offered up to 4 chained memory

dereferences originating from any general-purpose register, using

the gadget templates described in earlier sections. Table 2 presents

our results.

Since we searched for gadgets at any offset in the kernel image,

gadgets starting at different offsets could end up at the same (last)

memory dereferencing instruction in the chain of dereferences. For

counting purposes, we considered such gadgets as a single gadget.

As shown in the table, there are numerous gadgets with memory

dereferences in the kernel codebase, with significantly (4.6 to 10.5

times) more gadgets with 2 chained dereference than with 3, as

expected. Furthermore, we observe that the distribution of gadget

frequency per general-purpose register is in line with the System V

AMD64 calling convention [62] used on Intel x86-64.

Gadgets with memory dereferences via callee-saved registers

(i.e., RBX, RBP, and R12-R15) are highly prevalent. As these registers
preserve their values while executing in the function, they are used

for persistent computations. For example, it is common to move

values from function argument registers (i.e., RDI, RSI, RDX, RCX,
R8, and R9) to callee-saved registers in the function’s prologue and

compute on such registers. The scratch register RAX is highly used

in computations, which explains the large number of available gad-

gets. Finally, the first memory dereference of many of the gadgets

with source register RBP happens on the local variable area of the

function’s stack frame. Although numbers for Spectre gadgets are

Source # Dereferences Source # Dereferences

Register 2 3 4 (Spectre) Register 2 3 4 (Spectre)

RAX 3086 540 1 R8 96 14 0

RBX 4385 640 8 R9 75 11 0

RCX 317 35 0 R10 85 8 0

RDX 682 114 1 R11 36 5 0

RSI 667 125 0 R12 2070 344 1

RDI 3842 844 15 R13 1278 182 1

RBP 3774 506 14 R14 1166 161 6

RSP 482 85 1 R15 1114 149 0

Table 2: Number of gadgets with up to 4 chained derefer-

ences, originating from general-purpose registers.

low, a single fitting gadget is sufficient. Also, if a vulnerability al-

ready pre-loads some of the necessary Spectre gadget input, we can

relax the template of the Spectre gadget so that many more will be

available. Overall, attackers can choose gadgets with a wide range

of register-originating memory accesses, across both registers and

memory areas.

8 MITIGATIONS

Preventing probes. BlindSide’s probes rely on the ability to con-

trol a memory error vulnerability and speculative execution. To

hinder the former, there are a variety of memory safety solutions

documented in literature, but they are expensive and have found

limited applicability in practice. Moreover, an attacker may also

opt for other vectors to corrupt code pointers in speculative execu-

tion, such as speculative memory corruption [52] or CPU bugs like

LVI [90]. To hinder the latter, one could build on existing Spectre

mitigations and treat indirect branches as potentially dangerous. For

instance, building on Spectre-BCB mitigations, we would add fence

instructions behind all the conditional branches that are shortly

followed by indirect branch instructions. Unfortunately, our anal-

ysis shows these gadgets are pervasive and this strategy would

severely limit the number of conditional branches that can benefit

from speculation (and its performance gains).

Detecting probes. Unlike BROP-style probes, there is no software-

supported mechanism to detect BlindSide’s probes; hardware sup-
port is needed. An option is for future Performance Monitoring

Units (PMUs) to interrupt software execution after detecting an

excessive number of “crashes” (i.e., exceptions) that occur during

speculative execution. However, compared to regular execution,

speculative execution is much more prone to accidental exceptions

and even control-flow hijacks (due to relatively frequent mispredic-

tions), hence a speculative anomaly detector may be more prone to

false positives. For the same reason, hardware-supported (specula-

tive) booby trapping [18, 23] seems difficult to come by.

Hindering probes. BlindSide’s probes rely on being able to ob-

serve microarchitectural side effects through a covert channel. As a

result, we could hinder the probes by drawing from solutions that

break covert channels. However, this is particularly challenging in

the case of speculative probing, since an attacker may use arbitrary

1-bit covert channels to detect specific (even unaligned) gadgets,

objects, etc. Moreover, the probes run in the context of the victim

program, so partitioning microarchitectural resources by security

domain is not helpful. Hardware-enforced side-effect-free specu-

lative execution would stop speculative execution attacks [51, 99],

but none of the proposals have yet found practical applicability.

9 RELATEDWORK

Here we complement the related work already discussed in §2,

focusing on probing attacks, other software-based derandomization

attacks, and microarchitectural attacks for software exploitation.

Probing attacks. Recent probing attacks focus on breaking infor-

mation hiding-based defenses that use randomization as a building

block. Missing the pointer [25] uses arbitrary memory read/write

probes to scan the address space for low-entropy hidden regions.

Thread spraying [35] shows similar probing attacks are possible

against even high-entropy thread-local hidden regions when at-

tackers can spawn many threads. Allocation oracles [68] exploit

memory overcommit behavior to craft huge allocation probes and

locate even max-entropy hidden regions with few or no crashes.

Defenses against prior probing attacks fall into two main classes.

A first class protects valuable targets (e.g., hidden regions) with

booby traps in code [18, 23] or data [68] regions to catch probing

attempts and immediately flag detection. A second class employs ex-

plicit detection of anomalous probe-like events (e.g., crashes, huge

allocations, etc.). An option is to simply raise an alert upon detec-

tion of a large number of anomalous events [35, 79]. More sophisti-

cated techniques instead trigger just-in-time re-randomization [63],

authentication [35], or hot patching [7]. In contrast to all exist-

ing attacks, BlindSide relies on speculative probing primitives to

stealthily leak through microarchitectural side effects from crash-

sensitive targets and bypass all such defenses.

Other derandomization attacks. We already discussed a class of

leakage-resistant schemes [13, 14, 19, 22, 23, 32, 33, 40, 55, 59, 70, 71]

based on execute-only memory for code in §2.1. These schemes are

still vulnerable to generative attacks in scripting environments such

as JavaScript [64] and data-driven disclosure attacks [73, 91] in the

presence of information disclosure primitives. However, without

such primitives, the attack surface for common systems software is

believed to be limited. PIROP [36] shows position-independent code-

reuse attacks are still possible with at least massaging primitives,

but only against basic ASLR. In contrast, BlindSide can operate in

absence of information disclosure primitives and blindly craft such

primitives despite fine-grained, leakage-resistant randomization.

Other schemes periodically re-randomize the address space to

invalidate any leaked information [9, 18, 34, 97], but an attacker

can still mount just-in-time attacks between randomization in-

tervals [80] and frequent intervals can be costly for commodity

kernels [71]. Other schemes suggest garbling code right after it is

read to immediately invalidate any leaked code knowledge [84, 96],

but an attacker can still indirectly infer the code layout [81].

Microarchitectural attacks. While early microarchitectural at-

tacks such as classic cache side-channel attacks [69, 98] or even

more recent attacks [5, 24, 37, 38, 67, 93] primarily focus on breaking

crypto implementations, there is a large body of work on microar-

chitectural attacks to support software exploitation. Such attacks

typically use side-channel disclosure to mimic limited memory read

primitives [12, 26, 39] and fault attacks like Rowhammer to mimic

limited memory write primitives [12, 20, 28, 29, 42, 72, 76, 85, 86, 92].

Most attacks use side channels to break basic ASLR, for instance

by leaking information from MMU-induced cache accesses [39],

branch predictors [26], and store-to-load forwarding [16]. Some

attacks focus specifically on kernel-level ASLR (or KASLR), deran-

domizing the kernel address space using TLBs [45, 58], way pre-

dictors [60], cache prefetchers [41], hardware transactional mem-

ory [48], or speculation [17, 66].

Nonetheless, all these attacks cannot break more fine-grained

randomization schemes. This was only believed possible by combin-

ing side-channel attacks with speculative execution vulnerabilities

able to leak arbitrary values [15, 16, 43, 53, 61, 65, 75, 94], but such

vulnerabilities are target of pervasive mitigation efforts on commod-

ity platforms. In contrast, BlindSide bypasses all the state-of-the-art
mitigations against speculative execution attacks, while bypassing

even fine-grained leakage-resistant randomization.

10 CONCLUSION

Code-reuse attacks and defenses have been extensively studied in

the past decade. As the community now devotes much attention

to new classes of attacks such as those concerned with specula-

tive execution vulnerabilities, the common assumption is that the

well-understood code-reuse attack surface is “stable”. In this paper,

we revisited this assumption and uncovered complex interactions

between traditional code-reuse and the emerging speculative exe-

cution threat models—allowing us to generalize both. We presented

BlindSide, a new exploitation technique that leverages an under-

explored property of speculative execution (i.e., crash/execution

suppression) to craft speculative probing primitives and lower the

bar for software exploitation. We showed our primitives can be used

to mount powerful, stealthy BROP-style attacks against the kernel

with a single memory corruption vulnerability, without crashes

and bypassing strong Spectre/randomization-based mitigations.

ACKNOWLEDGMENTS

We would like to thank Andrea Bittau (1983-2017) for inspiring

us to work on “Speculative” BROP. We would also like to thank

the anonymous reviewers for their valuable feedback. This work

was supported by the European Union’s Horizon 2020 research

and innovation programme under grant agreements No. 786669

(ReAct), No. 825377 (UNICORE) and No. 690972 (PROTASIS), by

Intel Corporation through the Side Channel Vulnerability ISRA, by

the Netherlands Organisation for Scientific Research through grants

NWO 639.021.753 VENI "PantaRhei", and NWO 016.Veni.192.262,

and by the Office of Naval Research (ONR) under awards N00014-16-

1-2261 and N00014-17-1-2788. This paper reflects only the authors’

view. The funding agencies are not responsible for any use that

may be made of the information it contains.

REFERENCES

[1] 2020. Amazon EC2 G4 Instances. https://aws.amazon.com/ec2/instance-types/

g4/

[2] 2020. Frequently Asked Questions About RAP. https://grsecurity.net/rap_faq

[3] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-flow

integrity. In CCS.
[4] Kristen Carlson Accardi. 2020. Function Granular KASLR. https://lwn.net/

Articles/826539/

[5] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida

García, and Nicola Tuveri. 2019. Port contention for fun and profit. In IEEE S&P.
[6] Michael Backes, Thorsten Holz, Benjamin Kollenda, Philipp Koppe, Stefan Nürn-

berger, and Jannik Pewny. 2014. You can run but you can’t read: Preventing

disclosure exploits in executable code. In CCS.
[7] Koustubha Bhat, Erik van der Kouwe, Herbert Bos, and Cristiano Giuffrida. 2019.

ProbeGuard: Mitigating Probing Attacks Through Reactive Program Transfor-

mations. In ASPLOS.
[8] Atri Bhattacharyya, Andrés Sánchez, Esmaeil M Koruyeh, Nael Abu-Ghazaleh,

Chengyu Song, and Mathias Payer. 2020. SpecROP: Speculative Exploitation of

ROP Chains. (2020).

[9] David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed

Okhravi. 2015. Timely rerandomization for mitigating memory disclosures. In

CCS.
[10] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh.

2014. Hacking blind. In IEEE S&P.
[11] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. 2011. Jump-

oriented Programming: A New Class of Code-reuse Attack. In ASIACCS.
[12] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2016. Dedup

Est Machina: Memory Deduplication as an Advanced Exploitation Vector. In

S&P.
[13] Kjell Braden, Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Stephen

Crane, Michael Franz, and Per Larsen. 2016. Leakage-Resilient Layout Random-

ization for Mobile Devices. In NDSS.
[14] Scott Brookes, Robert Denz, Martin Osterloh, and Stephen Taylor. 2016. ExOShim:

Preventing Memory Disclosure Using Execute-Only Kernel Code. In ICCWS.
[15] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg,

Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2019. A

Systematic Evaluation of Transient Execution Attacks and Defenses. In USENIX
Security.

[16] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina

Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, et al.

2019. Fallout: Leaking data on meltdown-resistant cpus. In CCS.
[17] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin Schwarzl, and

Daniel Gruss. 2016. KASLR: Break It, Fix It, Repeat. In ASIACCS.
[18] Xi Chen, Herbert Bos, and Cristiano Giuffrida. 2017. CodeArmor: Virtualizing

the Code Space to Counter Disclosure Attacks. In EuroS&P.
[19] Yaohui Chen, Dongli Zhang, Ruowen Wang, Rui Qiao, Ahmed M Azab, Long Lu,

Hayawardh Vijayakumar, andWenbo Shen. 2017. NORAX: Enabling execute-only

memory for COTS binaries on AArch64. In IEEE S&P.
[20] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos. 2019. Exploit-

ing Correcting Codes: On the Effectiveness of ECCMemory Against Rowhammer

Attacks. In S&P.
[21] Jonathan Corbet. 2018. Meltdown and Spectre mitigations: a February update.

https://lwn.net/Articles/746551/

[22] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,

Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael Franz. 2015. Readactor:

Practical code randomization resilient to memory disclosure. In IEEE S&P.
[23] Stephen J Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen, Per Larsen,

Lucas Davi, Ahmad-Reza Sadeghi, Thorsten Holz, Bjorn De Sutter, and Michael

Franz. 2015. It’s a TRaP: Table randomization and protection against function-

reuse attacks. In CCS.
[24] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen. 2017.

Prime+Abort: A Timer-Free High-Precision L3 Cache Attack using Intel TSX. In

USENIX Security.
[25] Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar, Tiffany Tang,

Howard Shrobe, Stelios Sidiroglou-Douskos, Martin Rinard, and Hamed Okhravi.

2015. Missing the point(er): On the effectiveness of code pointer integrity. In

IEEE S&P.
[26] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Jump

over ASLR: Attacking branch predictors to bypass ASLR. In MICRO.
[27] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry Pono-

marev. [n.d.]. BranchScope: A New Side-Channel Attack on Directional Branch

Predictor. In ASPLOS’18.
[28] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2018. Grand

Pwning Unit: Accelerating Microarchitectural Attacks with the GPU. In S&P.
[29] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur

Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2020. TRRespass:

Exploiting the Many Sides of Target Row Refresh. In S&P.

[30] Robert Gawlik, Benjamin Kollenda, Philipp Koppe, Behrad Garmany, and

Thorsten Holz. 2016. Enabling Client-Side Crash-Resistance to Overcome Diver-

sification and Information Hiding. In NDSS.
[31] C. Ge, L. Xu, W. Qiu, Z. Huang, J. Guo, G. Liu, and Z. Gong. [n.d.]. Optimized

Password Recovery for SHA-512 on GPUs. In CSE’17.
[32] Jason Gionta, William Enck, and Per Larsen. 2016. Preventing kernel code-reuse

attacks through disclosure resistant code diversification. In CNS.
[33] Jason Gionta, William Enck, and Peng Ning. 2015. HideM: Protecting the contents

of userspace memory in the face of disclosure vulnerabilities. In CODASPY.
[34] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. 2012. Enhanced

Operating System Security Through Efficient and Fine-grained Address Space

Randomization. In USENIX Security.
[35] Enes Goktas, Robert Gawlik, Benjamin Kollenda, Elias Athanasopoulos, Georgios

Portokalidis, Cristiano Giuffrida, and Herbert Bos. 2016. Undermining Informa-

tion Hiding (And What to do About it). In USENIX Security.
[36] Enes Goktas, Benjamin Kollenda, Philipp Koppe, Erik Bosman, Georgios Por-

tokalidis, Thorsten Holz, Herbert Bos, and Cristiano Giuffrida. 2018. Position-

independent Code Reuse: On the Effectiveness of ASLR in the Absence of Infor-

mation Disclosure. In EuroS&P.
[37] Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert Bos, and Kaveh Razavi.

2020. ABSynthe: Automatic Blackbox Side-channel Synthesis on Commodity

Microarchitectures. In NDSS.
[38] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation

Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks.

In USENIX Security.
[39] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida. 2017.

ASLR on the Line: Practical Cache Attacks on the MMU. In NDSS.
[40] Spyridoula Gravani, Mohammad Hedayati, John Criswell, and Michael L Scott.

2019. IskiOS: Lightweight defense against kernel-level code-reuse attacks. arXiv
preprint arXiv:1903.04654 (2019).

[41] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Man-

gard. 2016. Prefetch side-channel attacks: Bypassing SMAP and kernel ASLR. In

CCS.
[42] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016. Rowhammer.js: A

remote software-induced fault attack in Javascript. In DIMVA.
[43] Jann Horn. 2018. Spectre Attacks: Exploiting Speculative Execution.

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-

with-side.html

[44] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,

and Zhenkai Liang. 2016. Data-oriented programming: On the expressiveness of

non-control data attacks. In IEEE S&P.
[45] Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical timing side

channel attacks against kernel space ASLR. In IEEE S&P.
[46] Intel. 2018. Speculative Execution Side Channel Mitigations. https://software.

intel.com/security-software-guidance/api-app/sites/default/files/336996-

Speculative-Execution-Side-Channel-Mitigations.pdf

[47] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk Gulmezoglu,

Thomas Eisenbarth, and Berk Sunar. 2019. {SPOILER}: Speculative Load Hazards

Boost Rowhammer and Cache Attacks. In USENIX Security.
[48] Yeongjin Jang, Sangho Lee, and Taesoo Kim. 2016. Breaking kernel address space

layout randomization with Intel TSX. In CCS.
[49] Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D Keromytis. 2014.

ret2dir: Rethinking kernel isolation. In USENIX Security.
[50] Vasileios P Kemerlis, Georgios Portokalidis, and Angelos D Keromytis. 2012.

kGuard: lightweight kernel protection against return-to-user attacks. In USENIX
Security.

[51] Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry

Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. [n.d.]. SafeSpec: Ban-

ishing the Spectre of a Meltdown with Leakage-Free Speculation (DAC’19).
[52] Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative buffer overflows:

Attacks and defenses. arXiv preprint arXiv:1807.03757 (2018).

[53] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,

Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,

and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In

IEEE S&P.
[54] Benjamin Kollenda, Enes Goktas, Tim Blazytko, Philipp Koppe, Robert Gawlik,

Radhesh Krishnan Konoth, Cristiano Giuffrida, Herbert Bos, and Thorsten Holz.

2017. Towards Automated Discovery of Crash-Resistant Primitives in Binaries.

In DSN.
[55] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias Athanasopou-

los. 2017. No Need to Hide: Protecting Safe Regions on Commodity Hardware.

In EuroSys.
[56] Andrey Konovalov. 2017. Exploiting the Linux kernel via packet sock-

ets. https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-

via-packet.html

[57] Hyungjoon Koo, Yaohui Chen, Long Lu, Vasileios P Kemerlis, and Michalis

Polychronakis. 2018. Compiler-assisted code randomization. In IEEE S&P.

https://aws.amazon.com/ec2/instance-types/g4/
https://aws.amazon.com/ec2/instance-types/g4/
https://grsecurity.net/rap_faq
https://lwn.net/Articles/826539/
https://lwn.net/Articles/826539/
https://lwn.net/Articles/746551/
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html

[58] Jakob Koschel, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2020. Tag-

Bleed: Breaking KASLR on the Isolated Kernel Address Space Using Tagged TLB.

In EuroS&P.
[59] Donghyun Kwon, Jangseop Shin, Giyeol Kim, Byoungyoung Lee, Yeongpil Cho,

and Yunheung Paek. 2019. uXOM: Efficient eXecute-Only Memory on {ARM}

Cortex-M. In USENIX Security.
[60] Moritz Lipp, Vedad Hadžić, Michael Schwarz, Arthur Perais, Clémentine Maurice,

and Daniel Gruss. 2019. Take A Way: Exploring the Security Implications of

AMD’s Cache Way Predictors. (2019).

[61] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval

Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User

Space. In USENIX Security.
[62] Hongjiu Lu, Michael Matz, Milind Girkar, Jan Hubiaka, Andreas Jaeger, and Mark

Mitchell. 2018. System V Application Binary Interface AMD64 Architecture

Processor Supplement (With LP64 and ILP32 Programming Models) Version 1.0.

https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf

[63] Kangjie Lu, Wenke Lee, Stefan Nürnberger, and Michael Backes. 2016. How to

Make ASLR Win the Clone Wars: Runtime Re-Randomization. In NDSS.
[64] Giorgi Maisuradze, Michael Backes, and Christian Rossow. 2016. What cannot

be read, cannot be leveraged? revisiting assumptions of JIT-ROP defenses. In

USENIX Security.
[65] Giorgi Maisuradze and Christian Rossow. 2018. Ret2Spec: Speculative Execution

Using Return Stack Buffers. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security.

[66] Giorgi Maisuradze and Christian Rossow. 2018. Speculose: Analyzing the security

implications of speculative execution in CPUs. arXiv preprint arXiv:1801.04084
(2018).

[67] Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. 2018. MemJam: A False

Dependency Attack Against Constant-Time Crypto Implementations in SGX. In

CT-RSA.
[68] Angelos Oikonomopoulos, Elias Athanasopoulos, Herbert Bos, and Cristiano

Giuffrida. 2016. Poking Holes in Information Hiding. In USENIX Security.
[69] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-

termeasures: The Case of AES. In CT-RSA.
[70] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. 2019.

libmpk: Software Abstraction for Intel Memory Protection Keys (Intel {MPK}).

In USENIX ATC.
[71] Marios Pomonis, Theofilos Petsios, Angelos D Keromytis, Michalis Polychronakis,

and Vasileios P Kemerlis. 2017. kRˆ X: Comprehensive kernel protection against

just-in-time code reuse. In EuroSys.
[72] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida, and

Herbert Bos. 2016. Flip Feng Shui: Hammering a Needle in the Software Stack.

In USENIX Security.
[73] Robert Rudd, Richard Skowyra, David Bigelow, Veer Dedhia, Thomas Hobson,

Stephen Crane, Christopher Liebchen, Per Larsen, Lucas Davi, Michael Franz,

et al. 2017. Address Oblivious Code Reuse: On the Effectiveness of Leakage

Resilient Diversity.. In NDSS.
[74] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza

Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-oriented Programming:

On the Difficulty of Preventing Code Reuse Attacks in C++ Applications. In IEEE
S&P.

[75] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina,

Thomas Prescher, andDaniel Gruss. 2019. ZombieLoad: Cross-privilege-boundary

data sampling. In CCS.
[76] Mark Seaborn and Thomas Dullien. 2015. Exploiting the DRAM rowhammer bug

to gain kernel privileges. Black Hat (2015).
[77] Fermin J Serna. 2012. The info leak era on software exploitation. Black Hat USA

(2012).

[78] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-

into-libc Without Function Calls (on the x86). In CCS.
[79] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and

Dan Boneh. 2004. On the effectiveness of address-space randomization. In CCS.
[80] Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher

Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-in-time code reuse: On the

effectiveness of fine-grained address space layout randomization. In IEEE S&P.
[81] Kevin Z Snow, Roman Rogowski, Jan Werner, Hyungjoon Koo, Fabian Monrose,

and Michalis Polychronakis. 2016. Return to the zombie gadgets: Undermining

destructive code reads via code inference attacks. In IEEE S&P.
[82] Wei Song and Peng Liu. 2019. Dynamically Finding Minimal Eviction Sets Can

Be Quicker Than You Think for Side-Channel Attacks against the LLC. In RAID.
[83] Dean Sullivan, OrlandoArias, TravisMeade, and Yier Jin. 2018. Microarchitectural

Minefields: 4K-Aliasing Covert Channel and Multi-Tenant Detection in IaaS

Clouds. In CCS.
[84] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. 2015. Heisenbyte:

Thwarting memory disclosure attacks using destructive code reads. In CCS.
[85] Andrei Tatar, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2018. Defeating

Software Mitigations against Rowhammer: A Surgical Precision Hammer. In

RAID.
[86] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athanasopoulos, Cristiano Giuf-

frida, Herbert Bos, and Kaveh Razavi. 2018. Throwhammer: Rowhammer Attacks

over the Network and Defenses. In USENIX ATC.
[87] Minh Tran, Mark Etheridge, Tyler Bletsch, Xuxian Jiang, Vincent Freeh, and Peng

Ning. 2011. On the Expressiveness of Return-into-libc Attacks. In Proceedings
of the 14th International Conference on Recent Advances in Intrusion Detection
(RAID).

[88] Paul Turner. 2018. Retpoline: a software construct for preventing branch-target-

injection. https://support.google.com/faqs/answer/7625886

[89] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.

[n.d.]. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient

Out-of-Order Execution. In SEC’18.
[90] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin,

Daniel Genkin, Yarom Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens.

2020. LVI: Hijacking Transient Execution through Microarchitectural Load Value

Injection. In S&P’20.
[91] Victor van der Veen, Dennis Andriesse, Manolis Stamatogiannakis, Xi Chen,

Herbert Bos, and Cristiano Giuffrida. 2017. The Dynamics of Innocent Flesh on

the Bone: Code Reuse Ten Years Later. In CCS.
[92] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clemen-

tine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida.

2016. Drammer: Deterministic Rowhammer Attacks on Mobile Platforms. In

CCS.
[93] Stephan van Schaik, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2018.

Malicious Management Unit: Why Stopping Cache Attacks in Software is Harder

Than You Think. In USENIX Security.
[94] Stephan van Schaik, Alyssa Milburn, Sebastian Osterlund, Pietro Frigo, Giorgi

Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:

Rogue In-flight Data Load. In S&P.
[95] Pepe Vila, Boris Köpf, and José Francisco Morales. 2019. Theory and Practice of

Finding Eviction Sets. In IEEE S&P.
[96] Jan Werner, George Baltas, Rob Dallara, Nathan Otterness, Kevin Z Snow, Fabian

Monrose, and Michalis Polychronakis. 2016. No-execute-after-read: Preventing

code disclosure in commodity software. In ASIACCS.
[97] David Williams-King, Graham Gobieski, Kent Williams-King, James P Blake,

Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P Kemerlis, Junfeng Yang,

and William Aiello. 2016. Shuffler: Fast and deployable continuous code re-

randomization. In OSDI.
[98] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,

Low Noise, L3 Cache Side-Channel Attack. In USENIX Security.
[99] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and

Christopher W. Fletcher. [n.d.]. Speculative Taint Tracking (STT): A Comprehen-

sive Protection for Speculatively Accessed Data. In MICRO’19.

https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf
https://support.google.com/faqs/answer/7625886

A APPENDIX A - IMPACT OF REPETITIONS

This appendix details the impact of repetitions on the success rate

of individual probes of the primitives used in our exploits. In our

experiments, we arrange memory such that the probes are expected

to give a signal. We report experimental results (Figures 3-7) on the

setup detailed earlier and measured over 20 runs.

Note that for the noise-sensitive prime+probe (p+p), we require

a certain number of hits on the target page to assert with a high cer-

tainty that we have a signal. We express this amount as a threshold
in percentage indicating the required minimum number of hits out

of the total number of measurement repetitions. We compute the

threshold for each primitive that uses p+p by taking the minimum

number of hits in 100 measurements over 20 runs and reduce this

number by 10% to cover potential outliers. We then use the calcu-

lated threshold to determine whether we obtain a signal over the

given number of measurement repetitions. For example, a success

rate of 90%means that for the given number of repetitions per run, the
number of hits exceeded the calculated threshold in 90% of the 20 runs.
For p+p-based probing, we picked the lowest number of repetitions

with a 100% success rate (highlighted with a dot in Figures 3-6).

For the more noise-resistant flush+reload (f+r), we found that

having a single hit at the expected cache line is sufficient to assert

that we have a signal (i.e., for gadget probing and Spectre probing
in testing mode). This is because the verification step is sufficient

to weed out false hits caused by the prefetcher—our Spectre gadget

loads consecutive cache lines for consecutive f+r buffer offsets.

As such, for calibration, we picked the maximum of repetitions (8)

required to produce the first hit across 20 runs (N = 1 in Figure 7).

However, when we do not know which cache line will produce

a signal (i.e., for Spectre probing in leaking mode), it is preferable

to aim for more hits. We found 2 hits to be sufficient to avoid

interference from the prefetcher in practice for our gadget. As such,

for calibration, we initially picked the maximum of repetitions (9)

required to produce the first 2 hits across 20 runs (N = 2 in Figure 7).

As an optimization, we lowered this value to 7 repetitions without

reducing the (100%) success rate, since the redundancy offered by

our gadget in leaking mode allowed us to efficiently detect and

recover from occasionally erroneous leaked byte values.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

S
u
cc

e
ss

 r
a
te

 (
%

)

Number of repetitions

Prime+Probe

Figure 3: Success rate vs. number of repetitions to sample

the target cache signal with p+p for our code region probing
primitive (calculated threshold: 78.3%).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

S
u
cc

e
ss

 r
a
te

 (
%

)

Number of repetitions

Prime+Probe
Flush+Reload

Figure 4: Success rate vs. number of repetitions to sample

the target cache signal with p+p and f+r for our data region
probing primitive (calculated thresholds: 52.2%).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

S
u
cc

e
ss

 r
a
te

 (
%

)
Number of repetitions

Prime+Probe
Flush+Reload

Figure 5: Success rate vs. number of repetitions to sample the

target cache signal with p+p and f+r for our object probing
primitive (calculated thresholds: ≈49%).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

S
u
cc

e
ss

 r
a
te

 (
%

)

Number of repetitions

Prime+Probe
Flush+Reload

Figure 6: Success rate vs. number of repetitions to sample the

target cache signal with p+p and f+r for our gadget probing
and Spectre probing (testing mode) primitives (calculated

thresholds: 45.0% and 27.9%, respectively).

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7 8 9 10

Fr
e
q

u
e
n
cy

Number of repetitions for first N hits

N=1
N=2

Figure 7: Frequency of the number of repetitions at which

the first or second hit was seen in the user page using the

Spectre gadgetwith f+r.Whenusing Spectre probing in test-

ing (leaking) mode we consult the histogram with N=1 (N=2).

	Abstract
	1 Introduction
	2 Background
	2.1 Code-Reuse Attacks
	2.2 ``Blind'' Code-Reuse Attacks
	2.3 Cache Attacks
	2.4 Speculative Execution Attacks

	3 Threat Model
	4 Speculative Probing
	5 Speculative Probing Primitives
	5.1 Code Region Probing
	5.2 Gadget Probing
	5.3 Data Region Probing
	5.4 Object Probing
	5.5 Spectre Probing
	5.6 Optimizations

	6 Exploitation
	6.1 Vulnerability
	6.2 Speculative Probing Initialization
	6.3 Exploit 1: Breaking Coarse-grained KASLR
	6.4 Exploit 2: Speculative Data-only Attacks
	6.5 Exploit 3: Breaking Software-based XoM
	6.6 Exploit Finalization

	7 Detailed Analysis
	7.1 Mitigation Resistance
	7.2 Availability of Indirect Branches
	7.3 Gadgets with Dereferences

	8 Mitigations
	9 Related Work
	10 Conclusion
	References
	A Appendix A - Impact of repetitions

