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Abstract
Binary lifting and recompilation allow a wide range of install-
time program transformations, such as security hardening,
deobfuscation, and reoptimization. Existing binary lifting
tools are based on static disassembly and thus have to rely
on heuristics to disassemble binaries.
In this paper, we present BinRec, a new approach to

heuristic-free binary recompilation which lifts dynamic
traces of a binary to a compiler-level intermediate represen-
tation (IR) and lowers the IR back to a “recovered” binary.
This enables BinRec to apply rich program transformations,
such as compiler-based optimization passes, on top of
the recovered representation. We identify and address a
number of challenges in binary lifting, including unique
challenges posed by our dynamic approach. In contrast to
existing frameworks, our dynamic frontend can accurately
disassemble and lift binaries without heuristics, and we can
successfully recover obfuscated code and all SPEC INT 2006
benchmarks including C++ applications. We evaluate BinRec
in three application domains: i) binary reoptimization, ii)
deobfuscation (by recovering partial program semantics
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from virtualization-obfuscated code), and iii) binary hard-
ening (by applying existing compiler-level passes such as
AddressSanitizer and SafeStack on binary code).
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1 Introduction
Binary rewriting [27, 61, 62] has many applications such as
post-installation program hardening [14, 40, 45, 58, 59, 68],
(de)obfuscation [20, 64, 65], and reoptimization [22]. How-
ever, its effectiveness is limited in practice by the complexity
of analysis and transformation in the absence of source code.

To overcome the limited expressiveness of assembly code,
researchers introduced “binary lifting” which raises machine
instructions to higher-level intermediate representations (IR)
such as LLVM bitcode [4, 25, 26]. Binary lifting has the po-
tential to capitalize on powerful compiler-level analysis and
transformations already available in production compilers
such as binary reoptimization. Despite its benefits, binary
lifting has not seen widespread adoption in practice because
existing approaches rely on static disassembly, which is fun-
damentally unable to accurately model indirect control-flow
targets, differentiate between code pointers and data con-
stants, or identify the boundary between data and instruction
bytes [6, 33].
While heuristics have been used to successfully circum-

vent these limitations for certain binaries that adhere to
specific assumptions [4, 62], binaries that are the target of
analysis are typically release builds, stripped of symbols
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and debug information, and sometimes even intentionally
obfuscated by vendors or malware authors. Code patterns
found in such binaries easily violate these assumptions, e.g.,
handwritten assembly, highly optimized code, code produced
by non-standard compilers, obfuscated or packed code, and
even position-independent code, which is commonly used
in shared libraries [7].

In contrast to static translation methods, dynamic binary
translation (DBT) tools such as Pin [39], DynamoRIO [2]
and Valgrind [43] analyze concrete executions of a target
program, and thus can seamlessly handle all statically un-
known components such as mixed code and data, and in-
direct control-flow targets. Unfortunately, the usability of
existing DBT tools is limited for two reasons: first, they
operate on the level of machine code, limiting the availability
of complex analysis tools. Second, the rewritten code in their
output is tailored to the tool’s runtime environment, and
can not be reused for subsequent executions. In other words,
any transformation on the binary has to be done again each
time the program runs. This introduces performance and
portability problems for instrumented applications.
We present BinRec—a framework that employs dynamic

analysis to lift binary code to LLVM IR in order to apply
complex transformations, and subsequently lowers it back
to machine code, producing a standalone executable binary
which we call the recovered binary. To the best of our knowl-
edge, BinRec is the first binary lifting framework based on
dynamic disassembly, enabling lifting of statically unknown
code for the first time. Additionally, BinRec is the first dy-
namic binary rewriting tool that persists its transformations
in a standalone output binary.
Our main goal is to recover code that is opaque to static

analysis. While our use of dynamic analysis solves this issue,
it brings with it the problem of covering code that is not
exercised during lifting: when dynamically lifting a program
from a single trace, one only observes one out of many pos-
sible code paths. Hence, the recovered binary only supports
code paths for which all control flow edges are present in the
code path observed during lifting. A control flow miss occurs
when the recovered binary reacahes a code path that was not
covered during lifting. Much like page faults are handled by a
page fault handler in modern operating systems [21], BinRec
handles control flow misses by means of customizable han-
dlers that may disallow the unknown control flow transfer
by stopping execution. Alternatively, the handler may be
configured to apply incremental lifting, allowing unknown
edges and retrofitting the binary with the newly found code
path. For optimization scenarios, the handler may even be
left empty to allow for aggressive branch pruning, special-
izing the binary for a specific input format. Applications
of our framework may select a handler that best suits their
needs, for instance depending on whether unknown control
flow is assumed to be malicious or not. The use of dynamic
tracing enables us to produce recovered binaries with precise

control-flow integrity (CFI). The allowable targets for any
indirect control-flow are hence limited to the ones observed
during (optionally incremental) lifting. We show that Bin-
Rec produces recovered binaries hardened with control flow
integrity (CFI) with slowdowns of 0.98x – 1.29x, depending
on the optimization level of the binary.
Crucially, BinRec allows us to harness the power of

existing IR-level compiler analyses and transformations
on binaries where static lifting fails. Our evaluation on
SPEC CPU2006 shows that BinRec successfully lifts code
patterns in optimized input binaries that state-of-the-art
static lifters such as McSema [26] and Rev.ng [25] cannot. To
demonstrate the immediate benefits of lifting binary code to
compiler IR, we show that BinRec improves performance of
some of our non-optimized input binaries and successfully
applies two security transformations available in LLVM—
SafeStack [36] and AddressSanitizer [51]—to our lifted IR. In
contrast to previous binary rewriting approaches, BinRec
naturally enables these compiler transformations without
any additional engineering effort. We also show that trace-
based lifting enables us to recover partial program semantics
of virtualization-obfuscated binaries, by combining IR-level
analysis with readily available compiler optimizations.

In summary, our contributions are the following:
• We present BinRec, the first dynamic binary lifting
framework. BinRec uses dynamic program analysis,
trace merging, and incremental recovery to lift pro-
grams to a compiler-level intermediate representa-
tion. Our prototype successfully handles stripped, real-
world release binaries. It is available at
https://github.com/securesystemslab/BinRec.
• We show that BinRec robustly recovers all SPEC INT
2006 benchmarks without heuristics, the first lifting
framework to do so. We also show that these recovered
binaries outperform those that are successfully lifted
by state-of-the-art lifting tools.
• We evaluate BinRec in three application domains: i) Bi-
nary reoptimization, leveraging alias analysis tailored
to the lifted IR resulting in improved performance in
non-optimized binaries. ii) Binary hardening through
CFI and compiler-level transformations such as Ad-
dressSanitizer and SafeStack. iii) Binary deobfuscation
through successful recovery of partial program seman-
tics in virtualization-obfuscated binaries.

2 Current Limitations in Binary Lifting
Analyzing binary code – or translating it to an accurate
high-level representation that is better for analysis, trans-
formation, and recompilation – is a challenging problem.
The problem is compounded in cases where the binary code
is encrypted or obfuscated. While many general problems
of (static) disassembly have been well documented in the
literature [6, 33], in this section we reiterate in detail some

https://github.com/securesystemslab/BinRec
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of the current unsolved challenges in the context of binary
lifting and program transformation through static methods.
We describe these challenges below and motivate our new
dynamic approach by explaining why static, heuristic-driven
approaches are inherently insufficient for lifting arbitrary
binaries.

2.1 C1 Code vs Data, and Reference Ambiguity

By default, stock compilers do not attach labels to the data
and references they embed into a program. To distinguish
code from data and references from constants, the appropri-
ate labels must be inferred through program analysis. This
problem is undecidable in the general case [33], so state-of-
the-art analysis tools employ heuristics to approximate the
correct label set [61, 62, 68]. A data value, for example, can
be considered a code reference if it is aligned correctly, and
if it represents a valid code address in the binary. However,
value collisions occur frequently [61] and alignment is not
mandatory on many platforms. A dynamic tool can accu-
rately assign labels by observing how the CPU interprets the
values it reads from memory.

2.2 C2 Indirect Control Flow

Indirect Control Flow transfers (iCFTs) may transfer control
to one or more target locations depending on their execution
context. Indirect calls are used to implement calls to function
pointers in C code, which are even more prevalent in C++
code in the form of virtual functions. Indirect branches often
implement switch statements and position-independent code
(PIC). In PIC, all direct branches are replaced with indirect
branches that add the offset at which the binary/library is
mapped in memory, to the branch target.

Statically identifying all potential targets of iCFTs is, again,
undecidable in the general case [33]. Static approaches do
achieve high accuracy when identifying the potential targets
of iCFT instructions that load their destination address from
jump tables [24, 68]. Resolving indirect function calls and
returns, on the other hand, remains a challenge. Wang et
al. [62] argue handling iCFTs can be supported through their
approach, but their prototype Uroboros does not handle
iCFTs. The underlying analyses [24] used in Rev.Ng [25]
claim 90-95% jump target recovery depending on architec-
ture.

Meanwhile, Qian et al. [47] as well as Zhang and Sekar [68]
use a lookup-table that translates original target addresses
to the new addresses at run time, effectively resulting in a
hybrid approach between static and dynamic rewriting. The
table contains potential targets collected based on heuristics.

Dynamic tracing can reliably identify control flow targets
as it follows the CPU to any jump target regardless of how
the target address is computed.

2.3 C3 External Entry Points
Dynamic linking is prevalent in real world software, and it
presents additional hurdles to binary analysis and rewriting.
Analyzing and rewriting external libraries at a binary level
is generally infeasible; this requires static linking for all the
library code [25] and incurs significant overhead [7].Without
visibility of all the code, however, the control and data flow
between program modules is only partially observable to
binary analysis through the interface of external modules.
Such partial visibility can be a problem when a code

pointer of the main module is passed as an argument to an
external module and is used to re-enter the main module,
e.g., callbacks. After binary rewriting, this code pointer
will become invalid because the code layout changes. Some
existing binary rewriters attempt to support such callbacks
by implementing special case handlers for the interface
of known libraries [4, 63]. However, they cannot correctly
handle external callbacks through unknown interfaces.
Multiverse instead implements run-time lookup tables to
handle callbacks [7] as a generic but heavyweight solution
to support unknown external entry points.
Dynamic tracing can easily capture such entry points by

recording control flow transfers going in and out of the tar-
geted code space, which enables performant, surgical control
and data modification at these points.

2.4 C4 Ill-formed code
Manually written assembly code is not only used for op-
timization, but as an anti-debugging and anti-disassembly
technique as well. While generated code is somewhat pre-
dictable, aggressive compiler optimizations can lead to simi-
lar ill-formed instruction constructs [6].
Overlapping instructions are a classic anti-disassembly

technique [38] but occasionally appear in highly-optimized
libraries too [6]. Selection control structures (e.g. switch/-
case) are lowered as Inline data and jump tables by some
compilers. Overlapping basic blocks, multi-entry functions,
and tail calls obscure the detection of function boundaries.
Dynamic tracing bypasses handling of ill-formed code

during disassembly by observing the actual instructions exe-
cuted by the CPU instead.

2.5 C5 Obfuscation
In addition to naturally occurring technical challenges, bi-
nary lifting approaches may have to deal with binaries that
have explicitly been modified with the intent to obstruct
analysis. While these obfuscation techniques are well doc-
umented [1, 3, 18], they still pose significant challenges in
practice.
For instance, virtualizing obfuscators transform exe-

cutable code stored in code sections into bytecode stored
in data sections, and embed a virtual machine into the
program to interpret the bytecode [1, 5]. In a program
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protected by such an obfuscator, the static code sections
reveal little to no information about the behavior of the
program. Other problematic obfuscation techniques include
opaque predicates [19], control-flow flattening [18], and
aliasing [60]. All these transformations can be used to
artificially inflate the size and complexity of the program’s
control-flow graph to a point where static disassembly
becomes intractable.
Dynamic lifting can revert all of these obfuscating trans-

formations to some extent. In the case of virtualizing ob-
fuscation, a dynamic lifting tool can capture the run-time
semantics of the program in the form of executable code,
which can then be transformed into an equivalent deobfus-
cated trace [20, 49, 52, 65]. In the other cases, a dynamic tool
can remove dead code and spurious aliases.

3 Design
Our design for BinRec overcomes the fundamental limita-
tions identified in Section 2. We achieve this by leveraging
dynamic program analysis to recover accurate disassembly
of binaries which is then translated into a transformable,
high-level intermediate representation (IR).
Figure 1 shows a high-level overview of our approach,

consisting of three logical components: an extensible dy-
namic lifting engine and data collector, a transformation
component that rewrites the IR code in a canonical way,
and a back-end that compiles the transformed IR back to
machine code and produces an executable binary. The lifting
engine is extensible to support different execution driving
paradigms. After running the canonicalization component,
the full range of existing LLVM-based transformations can
be applied to the client program.

3.1 Key Considerations for Dynamic Lifting
While our dynamic approach naturally sidesteps the limi-
tations of static disassembly, it comes with its own set of
challenges that need to be carefully addressed.

Coverage A fundamental challenge for any dynamic analy-
sis is to drive execution through all desirable code paths [41].
Which code paths are desirable, however, depends on the
type and goal of the analysis. To optimize binaries, for exam-
ple, it is sufficient to explore the most frequently executed
paths. For security hardening, it might be acceptable to ex-
plore only those paths reachable through trusted inputs and
to prune all unexplored paths. For testing, the execution may
need to cover all the code paths in the binary.

The paths BinRec covers depend on the set of inputs that
drive execution, as is the case for any other dynamic analysis.
We designed BinRec with configurable execution driving
paradigms to accommodate a wide spectrum of applications
(Section 3.2). BinRec can also merge multiple traces into a
single transformable IR module, thereby recovering multiple
sets of code paths (Section 3.3).

However, evenwith an ideal execution driver, the desirable
control flow paths may not be fully exercised. This can lead
the execution of the recovered binary to flow to code that was
not covered during lifting, an event we refer to as a control
flow miss. Lack of coverage can occur because the control
flow of the program depends on implicit program inputs such
as timing information, random numbers, and literal memory
addresses. The coverage may also be incomplete because the
concrete or symbolic inputs that achieve full coverage cannot
be feasibly calculated. BinRec therefore handles control flow
misses by means of customizable miss handlers, again, based
on the application scenarios: The handler may be configured
to disallow or ignore an unknown control flow transfer, or
to incrementally recover the binary with the newly found
code path (Section 3.5).

Scalability To dynamically disassemble or lift binary pro-
grams, they must be executed with concrete or symbolic
inputs according to coverage considerations. Generating in-
puts to achieve maximum coverage is not only difficult, but
may lead to path explosion for complex programs. To address
this, we designed BinRec such that it can record multiple,
independent, traces of the binary (resulting from multiple
executions of the binary with different inputs). BinRec can
merge the resulting traces at a later stage to increase global
coverage. This design splits the analysis of complex, large
binaries into smaller manageable chunks which can be lifted
in a distributed and/or parallel infrastructure (Section 4.1).

3.2 Dynamic Lifting Engine
Execution Driver BinRec takes a multi-pronged approach,
using several complementary methods, to drive dynamic
execution. These methods use different types and sources
of inputs. The first source of input to drive a program for
dynamic lifting should be a test corpus exercising desired
features. The more closely this corpus matches the real
workload on the rewritten binary, the better. However, user-
specified tests alone are unlikely to fully exercise all the code
paths that should be lifted. Besides the obvious sources of
explicit input to a program (command line, stdin), there can
be implicit inputs that are much less obvious to users but
still need to be accounted for. These can include address
layout, timers, random number generators, interrupts and
network packets. Even if users can specify the explicit inputs
for every conceivable desired behavior of their specialized
program, it is highly unlikely they would be aware of all the
implicit inputs. We therefore turn to alternative techniques
to produce specialized programs that are robust enough to
function correctly in the presence of implicit input.

One potential solution to this problem is to drive execution
through all or most of the program paths that depend on
implicit input. Towards this solution, we drive some of the im-
plicit inputs that cannot be triggered merely through explicit
inputs. For example, we found an interesting case in the Perl
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Figure 1. The steps of binary recovery: lifting to compiler IR, transformation on the IR, and lowering back to machine code.

interpreter where the control-flow depends on the virtual
address space layout (specifically on the alignment of argv
strings). We exercise this implicit input source by controlling
the lengths of environment strings in a way that results in
different argv alignments. Similarly, we enable address space
randomization (ASLR) during tracing, to exercise more code
paths dependent on the address space layout.
While achieving complete code coverage is not our ob-

jective, the users may still require nearly complete code
coverage depending on the application. For this use case,
BinRec supports concolic execution [16] to explore more
code paths.

Alternatively, BinRec can take fuzzer-generated, concrete
inputs to drive the binary lifting frontend. Concolic execu-
tion and fuzzing have complementary strengths and weak-
nesses [29, 67]. Fuzzing scales well to large programs, but
has difficulty exploring all branches of complex conditional
statements. Concolic execution is useful to drive execution
through such conditionals. We found concolic execution
to become untenable on programs with cryptography or
hashing, such as SHA2. In those programs, the SMT solver
becomes a bottleneck. The input generation interface is flex-
ible and extensible, which allows the dynamic driver to be
customized for a particular client application, and so explore
program paths using the best methodology for the target.

Dynamic Data Recording We record dynamic data about
the execution of each program path specified by the driver.
This data is key to overcome the fundamental limitations
of static binary lifting as explained in Section 2. We cur-
rently record which instructions were executed, where the
function boundaries are, and the observed targets of each
branch instruction. We use this information to accurately
disassemble binaries and produce canonical IR, as explained
in Section 3.3.1. Our framework is extensible, so other data
can be recorded to fill the needs of downstream transforma-
tions. The recorded data is fully accurate on paths which
are exercised by the dynamic lifting engine, but we cannot
reason about data that is not covered by the dynamic traces.

The BinRec front-end decodes and records each instruc-
tion executed by the client binary using the program counter.
This procedure is agnostic to the static representation of the
executable code and is therefore not affected by any inten-
tional or unintentional differences between the static and
dynamic (actual) instruction trace. Such differences would
arise in the presence of unaligned, packed, or encrypted code.
We therefore address C4 and some aspects of obfuscation
C5 . A tradeoff incurred by this design choice is a potentially
slower lifting front-end. A scheme that dynamically records
control flow, but that lifts disassembled basic blocks statically
would occupy another point in the design space, and would
sacrifice compatibility with non-standard binaries for faster
lifting.

3.3 Canonicalization

Merging Traces BinRec can compose program traces gen-
erated over different runs using different execution driving
paradigms. We implemented a technique to merge distinct
traces into one specialized program which will behave cor-
rectly on all covered paths. In concrete terms, merging pro-
ceeds by lifting N instances of the target program in paral-
lel. The different execution paths can be driven by fuzzing,
concolic execution, or a chosen corpus of inputs. Then, we
create one LLVM IR module from N LLVM IR modules using
metadata we collected during lifting.

Merging depends on the ability to correlate the code and
data addresses of one dynamic trace with another. In the
case of position independent code, the addresses change
from trace to trace, but are correlated by the section base
addresses. Traces from programs using fine grained code
and/or data layout randomization (at load or run-time) could
be merged using a specific mapping function taking the
randomization seed as input. We leave the implementation
of such correlation techniques as future work.

The code of the combined program is the union of all basic
blocks observed in the merged traces. The allowed targets
of each control flow statement in the combined program are
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the union of the observed targets for each observation of
that branch in the merged traces.
It may be observed that this is a path-insensitive proce-

dure. The resulting control-flow graph, before optimization,
resembles the original program’s CFG but lacks the nodes
that were not executed while lifting. One could imagine
an alternative, path-sensitive, reassembly technique, where
only control flow paths exactly following one of the recorded
traces are allowed. However, it is likely unprofitable to con-
struct such a recovered program, as in effect this would be a
tree traversal of the original program’s control flow graph,
and the resulting program would have a code size explosion.

Deinstrumentation BinRec uses an emulation-based dy-
namic lifting engine, which allows us to lift programs com-
piled for a different instruction set architecture than the host
system. IR generated from such an emulation-based engine,
however, is heavily instrumented to facilitate execution in a
virtualized environment. This code cannot be used as a stan-
dalone program, unless we remove the instrumentation code.
Our framework contains a deinstrumentation component
that eliminates dependencies on the run-time environment
from lifted code, and merges all captured code together into
a single LLVM module that is suitable for use in subsequent
transformation passes and compilation into a standalone
binary.

Whereas a program binary can explicitly use physical CPU
registers and memory references, the lifted IR of a recovered
program has an abstract representation of thememorymodel
in the original binary. To handle this abstraction gap, we
represent physical registers, stack and memory locations
as objects in the high-level IR. This enables us to generate
programs which contain two stacks and register sets. The
native stack contains data such as register spills and return
addresses, as well as any data we add while transforming the
lifted program. The emulated stack and register set contain
the data of the original binary. Generated code interacts
with this emulated environment to reproduce the function-
ality of the original program. The emulated state cannot be
fully optimized into native state due to the lack of semantic
information about the size and lifetime of stack allocations.

3.3.1 Control-Flow Canonicalization
Indirect Control Flow Resolution Our lifting front-end
produces a collection of executed basic blocks, and a list of
control-flow graph edges. We use this data to emit control-
flow transfers with sound and precise lists of allowed targets.
Direct control flow transfers have a one-to-one correspon-
dence between nodes and edges in the observed control-
flow graph of the client binary, and the recovered binary.
We therefore represent them in a straightforward way in
recovered code, using the original semantics.
Even the most precise static analysis allows more con-

trol flow targets than necessary due to analysis imprecision

Recovered Binary

Recovered Code Region

Original Code Region

Library Code Region

qsort(..., void *compare) :

function main_recovered():

(2)

compare(a, b);

return value;

...

qsort(..., &compare);

function compare_recovered():

compare: jmp compare_recovered ...

...

return value;

...
...

(3)

(4)

(1)

(5)

...

call/jmp
return

...
...

Figure 2. The address space of a recovered program that
calls the qsort library function. Control flows as follows: (1)
Call to library with original function pointer; (2) Callback
via function pointer; (3) Original function was replaced with
jump to recovered code; (4)(5) Returns.

(see challenge C2 ). In contrast, we simply record the exact
dynamic targets of each indirect control flow transfer in
a client binary in the lifting engine. To execute the corre-
sponding control flow in the recovered binary, we determine
the address that original code would jump to, then use that
address as a key to look up the recovered code target. This
is represented as a switch table in LLVM IR. We emit the
minimal set of dynamic targets, which can enable further
optimization by limiting the lifetime of values. Static lifting
can only receive these benefits to the extent that indirect
branch targets can be statically determined. This has been
extensively explored in the program analysis [6] and CFI lit-
erature [11, 13], and previous work has found even the most
precise static analysis overapproximates the set of possible
targets.

Library Calls BinRec supports calls to external (i.e., non-
recovered) libraries. The principal step necessary to execute
such a library call is to marshall the emulated program state
into concrete state before the call. Marshalling is necessary
to match the ABI of linked libraries. Upon return from the
library, the concrete state is reloaded into the emulated state.
The maximum amount of state that may need to be trans-
ferred is the full register set, including the stack pointer.
When possible, we can use the function signatures of external
library calls to optimize the state marshalling.With signature
information, only caller saved registers which are actually
read or written need to be marshalled from emulated state
to concrete state. Our prototype implementation of BinRec
uses signature information to optimize calls to the C library.

External Callbacks Our approach to solving the external
callback challenge C3 is both sound and performant. Only a
dynamic lifting approach can achieve both these properties
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at once. In the lifting front-end, BinRec detects execution of
the binary under analysis, and records call targets where the
caller is outside the analysis region (i.e., callback functions).
There is no need to track callback pointers at any other
time because we detect when they are actually invoked. We
also record the instruction pointer values when the called-
back code exits to external library code via a call or ret
instruction. We insert entry stubs for the external code to
recovered code transitions, and exit stubs at recovered code
to external code transitions. These stubs also perform the
state marshalling mentioned in the previous paragraph. Dur-
ing the ELF stitching phase (Section 3.4), we insert code
trampolines at the original virtual addresses of the called-
back functions. Figure 2 visualizes the resulting control flow
for a call to qsort which includes a simple callback.
If a static binary lifter attempted to use trampolines to

handle callbacks as we have, they would lack the dynamic
information about which functions are actually executed via
callback. Without the dynamic information, the only sound
approach would be to mark every function as a potential
entry point. Creating many entry points to recovered code
is deleterious to performance, as it increases code size and
forces variables to be stored and reloaded.

3.3.2 Data Canonicalization

Accurately lifting data structures from binaries is a hard
problem and the focus of orthogonal research [56]. Some
architectures allow interleaving of code and data. This is true
for ARM, but also for x86 where compilers often embed jump
tables into code sections. In BinRec, we take a conservative
approach by including data from the client binary as global
variables in the IR, as well as copying any code sections in the
binary that may contain data. We preserve their base map-
ping addresses in order not to invalidate existing references
in the lifted code. We leave the task of applying existing anal-
ysis methods to split up the data into variables and creating
typed references in the lifted code to future research. Thanks
to our lifting engine, such analysis methods can benefit from
strong data flow analysis at the level of compiler IR.

3.4 Lowering

After the client program IR has been transformed as desired,
we produce a functional recovered binary. We use an un-
modified LLVM compiler (llc) to generate a temporary ELF
binary from the recovered IR. Then, our lowering toolchain
stitches together ELF sections from the temporary binary
and the original binary into one combined binary. We use
the majority of sections from the temporary binary, and
data sections from the original. Finally, we execute binary
patching to insert the trampolines to support external call-
backs (Section 3.3.1), and update dynamic linking structures
(Section 3.4).

Dynamic Linking We lift all dynamic data and code refer-
ences into canonical LLVM IR, and then lower this IR using
LLVM’s code generation infrastructure. This functionality re-
quires us to redirect references to external functions and data
used by the client binary. In addition to static references, we
collect the dynamic addresses of every indirect load, which
enables us to redirect those references to external symbols
as well. We then ensure the dynamic linker operates on only
lifted data structures, which is necessary given our atypical
ELF layout. We utilize the ELF dynamic symbols section to
determine the address of data symbols which will be filled by
the dynamic linker. Even stripped binaries must retain this
information. This approach could be extended to non-ELF
binaries with minimal effort by implementing the API of the
platform-specific dynamic linker. The real world benefit of
dynamic linking support is that BinRec can support any off-
the-shelf instrumentation scheme that acts via inserted calls
to an external library. We use this functionality to enable the
AddressSanitizer and SafeStack applications in Section 6.

3.5 Control Flow Miss Handling
Binaries recovered with BinRec may encounter unrecovered
paths during testing or after deployment due to the cover-
age limitation of dynamic analysis (see Section 3.1). BinRec
handles these control flow misses by forcing the recovered
binary to invoke a control flow miss handler whenever it
encounters an unrecovered path. Several control flow miss
handlers are available.
The log hander logs the instruction pointer value that is

missing from the recovered binary, and then aborts execution.
This mode is useful when divergence between the recovered
binary and the original is more dangerous than program
termination.
The fallback handler diverts execution from the recov-

ered code into the original code of the input binary. This
involves marshalling of the emulated CPU state in the re-
covered code into the physical state of the original binary
(see also Section 3.3.1), and then jumping to the original
binary at the intended address. This miss handler is only
available when the original binary and recovered binary tar-
get the same architecture. It is ideal for use cases that require
program instrumentation without unexpected termination.
Note that in a mitigation scenario, in which BinRec is used
to augment lifted code with security instrumentation, this
requires a binary-level mitigation for the remaining binary
code. The binary mitigation may be heavyweight and hence
inefficient. However, the fallback code is not expected to
be on the hot path since it is not exercised by the lifting
workload.

The incremental lifting handler feeds back the logged
missing instruction pointers into the dynamic lifting engine,
where we capture a trace covering the new control-flow edge,
and merge it with the existing traces. Using this incremental
lifting paradigm, the recovered binary can be continuously
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updated. Our current incremental lifting prototype lifts in-
structions until the next conditional control-flow transfer.

The recovered program can invoke the fallback miss han-
dler, or the log handler. Meanwhile, the dynamic lifting en-
gine can generate one or more new program traces via the
logged instruction pointers in an asynchronous background
process. We incorporate the new and existing traces to gen-
erate a new recovered binary.

An advantage of incremental lifting is it directly lifts new
code without the need to reproduce the (explicit or implicit)
input that triggers the miss during lifting. Consider a pro-
gram feature that is only exercised due to unconstrained
system randomness on the test system. There is no need to
isolate and constrain the source of randomness to replicate
it on the lifting system. Alternatively, there is no need to
wait for non-deterministic fuzzing or concolic execution
techniques to drive execution through the new paths.

Finally, when it is known that the tracing stage has already
covered all paths that implement the features of interest, the
miss handler can be optimized out completely. This is useful
for aggressive optimization scenarios in which the lifting
input is known to cover all necessary code, and eliminating
a branch leads to new optimization opportunities.

4 Implementation
We implemented a prototype of BinRec, spanning 13,338
SLOC of which 9,709 are C++ code that implements lift-
ing and canonicalization. The implementation targets single
threaded 32-bit x86 binaries on Linux.
Our dynamic lifting engine is built on top of S2E [16], a

framework that facilitates symbolic execution of a single
process running in the QEMU virtual machine [8]. Code is
translated to LLVM IR in order to be symbolically executed by
the KLEE symbolic executor [12]. S2E automatically provides
multi-architecture support and sandboxing of input binaries,
since it is based on QEMU. This flexibility comes at the cost of
a relatively long lifting time, which we discuss in Section 5.4.

4.1 Parallel Tracing

To address the scalability challenge (see Section 3.1), we
architected BinRec with high parallelism. Dynamic tracing
is expensive in time (due to dynamic binary translation) and
disk usage (due to virtual machine images). We implemented
a flexible run configuration scheme that allows operators to
describe test cases to saturate a server’s CPU and memory
resources. Multiple traces through the same binary are lifted
in parallel, and we can also lift different binaries in parallel.

The dynamic traces do not all have to be conducted at one
time, so a lifted binary can be produced and used while more
paths are being explored for the next version of the lifted
binary. A dynamic trace is a stable artifact on disk that can
be copied, shared, and reused. This allows the coverage of

a binary to continuously be improved, and traces will not
have to be regenerated.

4.2 Optimization
S2E represents all instructions as modifications to a struct
which stores the complete state of the original binary. This
hinders existing LLVM passes from precisely analyzing and
optimizing code. To address this issue, we optimize lifted
code in several ways. First, our deinstrumentation described
in Section 3.3 brings the code into a state where LLVM can
perform existing optimizations including aggressive constant
propagation and dead code elimination. Next, we guide the
alias analysis with the fact that pointers to non-overlapping
registers in the emulated register state cannot alias [23].
Third, we aggressively promote global variables representing
the client binary state to equivalent local variables; even
inlining functions that use them if it is favorable. Figure 3
shows the performance benefit obtained by applying our
custom alias analysis and global variable promotion.

Stack unwinding optimization Client binaries often uti-
lize error handling mechanisms such as setjmp and longjmp
which save and restore the program state. BinRec programs
have two contexts, the physical context of the recovered
program, and the emulated context of the original program.
Setjmp and longjmp calls in the original program should be
translated to a save and restore of the emulated context in the
recovered program. It would be possible to copy the emulated
state to physical state, the same way we do for library calls,
and thereby use the native setjmp/longjmp handlers. Instead,
we implemented our own handlers to avoid the extra state
copy by directly operating on emulated state.

5 Evaluation
In this section, we first compare our prototype against state-
of-the-art static lifting approaches. We then assess the per-
formance of programs lifted by BinRec in terms of run time
and code coverage, as well as the lifting speed of our Bin-
Rec prototype. We use the SPEC CPU2006 benchmark suite,
which is standard in the binary lifting literature [4, 7, 25],
because it contains CPU-bound benchmarks, providing us
with a pessimistic view of run-time overheads (as opposed to
I/O-bound programs whose I/O performance is unaffected by
lifting).We conducted our lifted binary run-time experiments
on a system with 8GB RAM and an Intel i5-3210M running
at 2.5GHz, with frequency scaling turned off to ensure stable
performance. Lifting time experiments were conducted on
an Intel Xeon E7-4870 @ 2.40GHz with 188 GB RAM. We
used gcc 4.8.4 to compile all programs with optimization
levels O0 and O3 (see Table 1). Our prototype is based on
S2E, which emulates floating-point instructions using integer
instructions for portability. In this prototype implementation,
we do not aim to optimize floating-point performance, so we
limit our evaluation to the CINT subset of SPEC CPU2006.
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1 void c a l l b a c k _ f u n c ( j_common_ptr c i n f o ) {
2 p r i n t f ( " . " ) ;
3 }
4
5 in t main ( in t argc , char ∗ ∗ argv ) {
6 s t ruc t j p e g _d e c omp r e s s _ s t r u c t i n f o ; / / j p e g i n f o
7 s t ruc t j p eg_prog re s s_mgr p r og r e s s ;
8 . . .
9 / / A f t e r some i n i t i a l i z a t i o n c od e
10 p r og r e s s . p r og r e s s _mon i t o r = c a l l b a c k _ f u n c ;
11 p r o g r e s s . p a s s _ l i m i t = 0 x8048860 ;
12 p r o g r e s s . p a s s _ coun t e r = 0L ;
13
14 i n f o . p r o g r e s s = &p rog r e s s ;
15 j p e g _ s t a r t _ d e c omp r e s s ( &i n f o ) ;
16
17 char ∗ d a t a = ( char ∗ ) ma l l o c ( d a t a S i z e ) ;
18 readData ( in fo , d a t a ) ;
19 . . .
20 }

Listing 1. Excerpt of decompress.c: libjpeg example in C.

5.1 Comparison with static lifters
BinRec reliably lifts and recompiles a large number of real-
world binaries. In addition to the qualitative benefits of our
dynamic technique as discussed in Section 3, we investigated
quantitative advantages of our approach. We compared Bin-
Rec to McSema [26] and Rev.ng [25], popular state-of-the-art
binary lifting frameworks.1 We limit our comparative study
to active, open source binary lifters which, like BinRec, aim
to be compiler-agnostic.

We found McSema [26] could only recover a limited num-
ber of binaries correctly in our tests. While trying to lift bina-
ries compiled without optimization, we encountered errors
with McSema’s handling of double-precision floating point
operations in 32-bit applications, unsupported xmm instruc-
tions (xmm xorpd, xmm andpd) on 64-bit, and segmentation
faults in the C++ delete operator. In addition, some binaries
lifted from compiler-optimized code caused segmentation
faults upon launch or produced incorrect output.

We also identified cases where binaries generated by Mc-
Sema interpreted data as code pointers, illustrating C1 in
real-world code. McSema uses IDA Pro for control flow graph
recovery and analysis. Hence, it is limited by IDA’s inability
to correctly identify function pointers in real-world code.
This can lead to problems as illustrated by Listing 1: a struc-
ture type in libjpeg contains a member field that holds the
address of a callback function (line 10), while another holds
an integer that represents a loop bound (line 11) which hap-
pens to be in a similar value range. IDA is closed source,
but we suspect it uses heuristics to identify integers with
values in the executable segment as code pointers, which
fails in this case. The recovered binary McSema generates
from this program mistakenly changes the integer, thereby
changing program semantics. Similarly, failure to identify
code pointers correctly could cause mishandling of callbacks
in this program. Unfortunately, the authors do not provide

1Code snapshot on July 25th, 2019

Table 1.Measured execution time normalized to the original
binaries. Rev.ng results are reported from publication [31].

BinRec McSema Rev.ng
Benchmark O0 O3 O0 O3 reported
400.perlbench 1.25 1.48 – – 3.7
401.bzip2 0.76 1.05 2.84 – 2.2
403.gcc 1.26 1.37 – – 2.1
429.mcf 0.83 1.00 2.31 1.41 1.5
445.gobmk 1.04 1.56 – – 3.3
456.hmmer 0.77 0.74 – – 2.2
458.sjeng 0.77 1.08 3.43 – 2.6
462.libquantum 0.95 1.30 2.07 1.04 1.1
464.h264ref 0.80 1.24 – – 2.7
471.omnetpp 1.92 3.09 – – 2.8
473.astar 0.80 0.94 – – 1.5
483.xalancbmk 1.12 1.66 – – 2.8
geomean 0.98 1.29 – – 2.25

any performance numbers for correctly lifted binaries using
McSema.

We were unable to recover most of the dynamically linked
SPEC INT2006 binaries with Rev.ng [25]. While we man-
aged to get some of the binaries running by reducing the
optimization level to O0 (a classic example of C4 —due to
aggressive optimization), this still yielded mixed results. For
instance, the tool was able to produce a lifted version of
libquantum but its output differed from the output of the
original program. The only test that was correctly recov-
ered was mcf. Some tests failed completely (even at O0), e.g.,
gcc, gobmk, perlbench, and xalancbmk.2 Table 1 compares
the performance of BinRec to Rev.ng using the most recent
published results [31]. The authors note that these were all
statically linked. Although their client binaries’ optimization
level is not specified, BinRec’s performance (0.98x for O0,
1.29x for O3) exceeds Rev.ng’s (2.25x) in either case.

In summary, both state-of-the-art tools we looked at were
unable to reproducibly recover even standard binaries, de-
spite being actively developed and widely used open-source
frameworks for binary lifting. We would like to stress that
this does not reflect a lack of sophistication behind those
tools (or the developers), but instead highlights the tremen-
dous difficulty faced by static lifting approaches. Crucially,
we found our dynamic tracing technique to aid the lifting
process within BinRec significantly: we are able to recover all
of the test binaries in question while the recovered binaries
performed favorably by comparison and produced correct
output.

5.2 Performance
Table 1 presents the performance of binaries lifted with Bin-
Rec. For every input program we compiled both optimized
(O3) and unoptimized (O0) binaries which produce correct
2The error message indicated failed assertions in the IsolateFunctionsImpl
class upon replacement of indirect branch targets, strongly hinting towards
an instance of C2 . We contacted the developers but did not get any detailed
feedback in time for the submission.
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Figure 3. Execution time improvement from CPU state vari-
able de-aliasing and global variable promotion.

output in the test cases. Our results show that there is a
potential for performance improvement by using BinRec as
a post-release optimizer—particularly, if the original was not
optimized at the source level. With BinRec, six benchmarks
– bzip2, mcf, hmmer, sjeng, h264ref, and astar – run faster
than the unoptimized client binaries. In some cases, BinRec
can re-optimize release builds to be faster than even the
optimized binaries (e.g., hmmer and astar). Compared to
the optimized client binary, the hmmer "nph3.hmm swiss41"
workload finished in 0.62x the time. Interestingly, hmmer is
the only SPEC binary to be faster when re-optimized from
an optimized (0.62x) rather than an unoptimized client bi-
nary (0.85x).
There are factors that accelerate and factors that slow

down programs recovered by BinRec. We discussed several
of the accelerating factors in Section 4.2 and show their
benefit in Figure 3. Floating point instructions are emulated
in the lifted binaries, which incurs a performance penalty
(e.g., we found this to be one of the main factors for the
slowdown of omnetpp ). Further, the IR of recovered pro-
grams contains less accurate information about the size and
lifetime of stack allocations compared to source code, which
impedes optimization. The geometric mean run time factor
of BinRec binaries compared to unoptimized and optimized
input binaries is 0.98x and 1.29x, respectively.

5.3 Code Coverage
Figure 4 shows the instruction coverage of lifted binaries as
we increase the number of supported input workloads. The
rate of coverage change is substantially different between
binaries, and reflects both the number of unrelated features
in the binary and the similarity of the test cases. bzip2, for
instance, exercises nearly the same code path for each in-
put. In contrast, gobmk and gcc see a steady increase in
code coverage for each added input. The level of instruction
coverage should therefore be dependent on the application,
lifted feature set, and use case. Users of our framework may
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Figure 4. Coverage with respect to the original binaries. The
input set is the ref workload of SPEC CPU2006.
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Figure 5. Incremental lifting progression of bzip2.

aim to increase coverage or to keep it low, limiting the at-
tack surface for attackers. In both cases, BinRec’s ability
to report code coverage provides the user with a practical
metric to determine if incremental lifting is effective; either
in maintaining low coverage or in increasing coverage.

Incremental Lifting To show the effectiveness of incre-
mental lifting, we conducted an experiment with bzip2 as
illustrated in Figure 5. We first lifted the binary with SPEC
training inputs, which is the origin point of the graph.
Then, we ran the lifted binary with reference inputs and
incrementally lifted code to support each new input. The
callouts on Figure 5 indicate when each additional input
became functional in the recovered binary. Each triangle
represents one cycle through the lifting frontend, and each
cycle took approximately 140 seconds.

5.4 Lifting Time
BinRec’s ability to robustly lift binaries without relying on
heuristics comes at the cost of lifting time. As a dynamic
lifting tool, BinRec’s lifting time depends on the execution
time of its input programs. Table 2 shows BinRec’s lifting
times for each input binary. In order to show the worst case
lifting time, we used a SPEC reference input—which fully
excercises loop iterations—for lifting. The lifting could be
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Table 2. Time in seconds to capture LLVM IR from input
binaries with BinRec and McSema toolchains, alongside ex-
ecution time for S2E without BinRec instrumentation. For
BinRec and S2E we report the maximum time among the
reference workloads from SPEC CPU2006.

BinRec S2E McSema
Benchmark O0 O3 O0 O3 O0 O3
400.perlbench 425,619 321,078 62,482 49,221 3,375 3,385
401.bzip2 86,181 69,389 27,614 18,311 117 122
403.gcc 37,276 28,468 6,156 4,929 6,996 7,378
429.mcf 283,413 227,999 209,914 197,910 11 8
445.gobmk 84,214 72,307 15,496 8,721 1,332 1,063
456.hmmer 179,127 144,529 87,911 28,159 204 189
458.sjeng 727,675 548,432 95,936 86,153 294 368
462.libquantum 421,269 176,536 – 49,334 21 16
464.h264ref 86,433 65,202 31,012 15,233 336 586
471.omnetpp – 312,665 – 105,015 258 224
473.astar 211,782 119,436 80,613 66,201 22 18
483.xalancbmk – – – – 74,948 17,103
geomean 178,480 138,379 44,810 35,021 371 320

much faster with an optimized trace input which is designed
to reach more paths and minimize loop counts, but such an
optimization would not reflect real world workloads. Since
the current prototype of BinRec uses S2E [16] as its tracing
frontend, we also present the time to execute those work-
loads without instrumentation in S2E. The lifting time of
static lifting toolchains, such as McSema, does not depend on
the input, and is in general faster than our dynamic approach.
We present the lifting time which we collected with McSema
here for comparision.

Binary lifting is a one-time, offline process and thus it does
not affect performance of actual binary execution. If fast
lifting times were in fact desired, it could be accomplished
using a faster tracing frontend such as Pin, KVM-enabled
QEMU, or native execution with a hardware control-flow
tracing feature (e.g., Intel PT). In that case, however, we may
miss the flexibility of disassembly in S2E, and its ability to
explore multiple code paths through concolic execution.

6 Applications
One of BinRec’s main goals is to enable complex transfor-
mations on real-world program binaries. Since BinRec can
lift binaries to a compiler-level IR and supports dynamic
linking, this enables us to make use of a large ecosystem of
off-the-shelf compiler-based transformations and analysis
tools. In addition to compiler transformations, existing, black
box binary utilities such as readelf or LD_PRELOAD remain
usable on BinRec binaries. In this section, we showcase some
applications that demonstrate this ability: deobfuscation,
AddressSanitizer and SafeStack through compiler transfor-
mations, and control-flow hijacking mitigation. Developers
who are familiar with these transformations do not need
any knowledge of binary analysis to use them within our
framework. While we only provide a limited set of example
applications in this section, we note that BinRec reliably

enables—for the first time—a large number of interesting,
feature-rich program analyses and transformations through
extensive compiler-based tooling for binary programs.

6.1 Control-flow Hijacking Mitigation
Even without additional compiler-based transformations,
BinRec has an endogenous ability to mitigate memory-
corruption vulnerabilities in the original program. A re-
covered program emulates the execution of the original
program. Because of the emulation, what was control
flow in the original program becomes data flow in the
recovered program. BinRec does not natively mitigate data-
only attacks [34], though they may be mitigated using
additional transformation on the IR.

A control-flow hijacking attack typically subverts control
flow by overwriting a code pointer. This pointer could be
used by an indirect jump, indirect call, or return instruction.
When tracing indirect control flow in the original program
within BinRec, we observe actual control flow targets. The
recovered program then contains switch statements where
cases are jumps to these observed targets. The value of the
instruction pointer (%rip) in the original program is emu-
lated by the recovered program, and it is used as the index
into the switch statement. The switch statements are low-
ered into assembly consisting of trees of compare and direct
jump instructions, so no new attack surface is introduced by
this dispatch mechanism. This is functionally equivalent to
what is commonly known as context-insensitive control-flow
integrity on forward and backward edges [11].

Consider an original binary with a vulnerable stack buffer
overflow using an unsanitized strcpy call, that can be used
to overwrite a return address. In the recovered program,
that buffer is located in a @memory array which emulates
the memory of the original program. The strcpy call will
proceed in the same way in the recovered program, allowing

Table 3. Number of allowed targets for indirect branches/-
calls in SPEC CPU2006 binaries lifted by BinRec, compared
to the number statically found by BinCFI [68].

O0 O3
BinRec CFI BinCFI BinRec CFI BinCFI

Benchmark Median IQR Max Median IQR Max
400.perlbench 5 7.5 176 2,101 4 7 176 1,916
401.bzip2 3 0 22 151 3 0 22 117
403.gcc 4 3 212 6,593 3 3 212 5,407
429.mcf 3 1 7 68 3 0 7 66
445.gobmk 3 0 492 2,780 3 0 492 2,590
456.hmmer 3 0 8 671 3 0 7 620
458.sjeng 4.5 3 12 223 5.5 3.3 12 215
462.libquantum 3 0 2 177 3 0 5 161
464.h264ref 3 0 10 686 3 0 10 617
471.omnetpp 3 4 168 3,167 3 1.3 168 2,482
473.astar 3 0 3 213 3 0 4 139
483.xalancbmk 3 4 38 35,106 4 3 38 15,950
IQR: inter-quartile range
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the attacker to overwrite the emulated return address of the
vulnerable function. The original return instruction is emu-
lated using a switch statement, loading an attacker-provided
value via the emulated register @RIP. If the target is not one
of the traced return sites of the vulnerable function, the error
case of the switch statement will abort execution. Otherwise,
execution will proceed in the style of a control-flow bend-
ing attack [13], since the target address represents a valid
execution under context-sensitive (but not path-sensitive)
analysis of the original program. If optimization is applied to
the recovered binary and the error case is deleted from this
switch statement, one of the observed return targets of the
vulnerable function will be chosen in a compiler-specified
manner. In this case, an attacker aware of BinRec could still
perform control-flow bending. However, any attempt to hi-
jack control flow via writing code pointers (vtable overwrite,
indirect code pointer write via heap overflow, etc.) is miti-
gated.
To evaluate the security properties of the resulting so-

lution, we measured the number of allowed targets across
all the recovered edges. Though our approach also protects
returns, we only present forward edges in Table 3 for easier
comparison with other approaches. Our results show that
BinRec can enforce a median number of around 3 indirect
callees on a nontrivial fraction of the target programs. The
table also shows these results for binCFI [68], a static binary-
level CFI solution. Because it can not statically predict valid
branch targets with precision, binCFI’s policy must allow
transfers to any address-taken function, increasing the num-
ber of allowed branch targets by orders of magnitude when
compared to BinRec.

6.2 Virtualization-deobfuscation
We used BinRec to lift programs obfuscated by virtualiza-
tion (cf., Section 2.5). Figure 6 illustrates our deobfuscation
approach. For this use case, we detect the Virtual Program
Counter (VPC) and virtual interpreter loop through known
techniques [52]. We instrument the recovered IR to log the
value of the VPC at the entry point of the interpreter loop,
then produce a binary. We exercise the instrumented binary
to obtain a graph of VPC nodes. We create a new program
from this graph by copying the body of the virtual interperter

Table 4. The number of LLVM instructions: after lifting,
after optimization without deobfuscation, and after deob-
fuscation and optimization. The baseline is the number of
LLVM instructions obtained by compiling the unobfuscated
program with clang.

Lifted Optimized Deobfuscated Baseline
eq 2,362 152 35 38
fib 3,163 210 63 43

loop into the VPC nodes. After applying standard compiler
optimizations (most notably constant propagation and dead
code elimination), only one virtual opcode handler remains
for each duplicated interpreter. The result is a program with
the semantics and static structure of the original program;
the virtualiztion obfuscation has been removed.

To evaluate our deobfuscation approach, we implemented
a virtualizer that supports a set of bytecode instructions. We
then created a source-to-source virtualization-obfuscated
version of two simple programs: eq checks if two arguments
match, and fib computes the n-th Fibonacci number. Table 4
shows how deobfuscation affects the size of the recovered
code. We attain a code size close to that of IR recovered from
the unobfuscated binary. Figure 7 depicts the fib program,
showing its control flow graph obfuscation and subsequent
deobfuscation.

(a) Original (b) Obfuscated (c)Deobfuscated

Figure 7. Deobfuscation of the fib program. The control
flow graph structure of the deobfuscated binary matches that
of the original bytecode, rather than that of the interpreter,
which indicates the control flow obfuscationwas successfully
removed by the analysis implemented in BinRec.
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Figure 6. Our deobfuscation approach. (1) We
lift the binary using symbolic execution or high-
coverage inputs. (2) We identify the lifted inter-
preter loop and instrument it to log the virtual
program counter (VPC) at the entry. (3) The in-
strumented binary is exercised for all uncovered
code paths, yielding a control-flow graph of VPC
nodes. (4) The interpreter loop is copied into each
VPC node. (5) Standard optimizations eliminate non-
taken paths in each VPC node.
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6.3 AddressSanitizer

AddressSanitizer (ASan) is a widely deployed bug finding
tool that detects spatial and temporal memory errors [51]. It
consists of an LLVM instrumentation pass and a run-time
monitor. The ASan instrumentation pass identifies and reg-
isters memory allocations, and inserts checks for memory
accesses. For binaries lifted by BinRec, all memory reads
and writes are identified and instrumented automatically
using the unmodified ASan instrumentation pass. Heap al-
locations (e.g., malloc or new) are recorded in the BinRec
lifting frontend and rewritten in the recovered IR, making
them visible to ASan. We leave the identification of stack
and global allocations for future work as the problem is cur-
rently unsolved for binaries. While ASan has been applied
to binaries recently [27], we note that this required a re-
implementation of both the analysis and instrumentation
passes—a substantial disadvantage in maintainability com-
pared to BinRec. Our recovered IR enables the use of ASan to
detect spatial and temporal heap access violations. We used
two test programs containing (1) a heap use-after-free error
and (2) an out-of-bounds write and lifted both test programs
in BinRec before applying ASan, successfully discovering
these errors.

6.4 SafeStack

SafeStack is a compiler-based transformation pass that sepa-
rates sensitive data, such as return addresses, and potentially
insecure data, such as large application buffers, into sepa-
rate stacks [36]. If memory isolation features such as x86
segmentation or Intel Memory Protection Keys are available,
they are used to isolate the two stacks. If hardware features
are unavailable, SafeStack leverages ASLR to hide the safe
stack, requiring attackers to bypass ASLR in order to corrupt
sensitive data.

By default, BinRec generates programs which contain two
stacks with SafeStack-like security properties. The native
stack contains sensitive data such as register spills and return
addresses, as well as any new instrumentation and library
code frames. The emulated stack, which contains the stack
data of the original binary, resides at an ASLR-randomized
location.

We were additionally able to apply SafeStack’s transforma-
tions to recovered programs without requiring any modifica-
tions to its analysis or transformation passes, since BinRec
lifts programs to well-formed LLVM IR. After the SafeStack
transformation, recovered programs therefore contain three
stack-like memory regions. The native stack contains library
frames and newly added safe variables. The emulated stack,
at an ASLR-randomized offset, emulates the original binary
stack. A third stack in a separate x86 memory segment con-
tains new, potentially insecure buffers. We do not identify
stack variables within the original binary, which impedes

the transformation’s ability to move unsafe buffers from the
emulated stack to the third, segmented stack (see Section 7).

7 Limitations
Our prototype implementation of BinRec can only handle
single threaded x86 ELF binaries. There are no theoretical
limitations on threaded-ness or architecture; the constraint
comes from the engineering effort required to implement
inline assembly snippets, mostly for library code interfacing.
Supporting other binary formats such as PE is no fundamen-
tal problem, but requires reimplementing binary stitching
in the new format. Additionally, it would require a mod-
est amount of engineering effort to implement per-thread,
thread-safe (for multi-processing) data structures to collect
separate dynamic traces from each thread in our dynamic
lifting engine.
We did not implement handling of self-modifying code.

To support it, we would need to add ‘version labels’ to each
recovered code address. This would take some additional
lifting time (because code cannot be cached), and complexity
while merging traces into one CFG.

BinRec does not recover a mapping between stack slots
and variables. Such a mapping would improve optimization
and allow more fine grained instrumentation by transfor-
mations such as SafeStack and ASan. SecondWrite [4] de-
termined such a mapping for a limited set of input binaries
using heuristics, but we leave the determination of a general
procedure as future work.

8 Related Work
Low-level binary analysis and rewriting Many projects
target the problem of low-level binary analysis and rewrit-
ing. PEBIL [37], UQBT [17] and Uroboros [62] all statically
rewrite binary programs either at the machine code level or
using a custom low-level IR. Their main aim is to support the
insertion of simple instrumentation, where efficiency is more
important than the ability to perform complex code trans-
formations (such as altering the CFG). angr [55] supports
static and dynamic analysis techniques, including symbolic
execution, but does not target code rewriting (unlike BinRec).
Earlier work such as ATOM [28], PLTO [50], Diablo [46], and
Vulcan [57] are powerful tools, but to our knowledge they do
not work well without debug symbols. Also, they typically
do not support a generic compiler-level IR.

Bauman et al. [7] disassemble instructions from every off-
set of code sections, creating a superset of all possible disas-
semblies. They statically rewrite binaries without heuristics
by preserving the superset of disassemblies, such that only
the legal part of the rewritten binary will be executed at run
time. However, deferring correct disassembly until runtime
adversely affects rewritten binary performance. Yardimci
and Franz [66] use a mostly static approach to automati-
cally vectorize loops in stripped binaries. The approaches
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of both Yardimci and Bauman both use an indirect branch
table which maps original program addresses to rewritten
program addresses to support indirect control flow. BinRec
uses a similar indirect branch table for external callback
support, but it generates more optimal code because only
those callbacks which are actually invoked need branch table
entries and control flow graph entry points in rewritten code.

Code transformations using dynamic traces Dynamic
instrumentation tools such as PIN [39], Dyninst [10], Dy-
namoRIO [2] and Valgrind [43] are dynamic binary trans-
lation (DBT) tools, providing runtime APIs to analyze and
instrument code at run time. These tools do not support
saving the changes to an output binary with the intent of
replacing the original binary. They can have substantial
runtime overhead [44], and require specific assembly-level
transformation passes for each application, whereas BinRec
leverages existing techniques present in production compil-
ers.
Just-in-time (JIT) compilers such as V8 [30] and Spider-

Monkey [42] collect dynamic traces to determine which
code to optimize and to speculate dynamic data types. Su-
long [48] is a frontend for the Graal compiler that effectively
creates an LLVM bitcode execution engine. Similar to BinRec,
Sulong optimizes LLVM bitcode using dynamic traces and
applies instrumentation such as bounds checks to detect
safety violations. However, such source-level JIT compila-
tion approaches leverage language semantics and thus do
not address the problem of binary lifting or analysis. Instead,
they focus on solving a different set of problems such as how
to optimize dynamic type checks or when to trigger different
tiers of execution.

Binary code lifting LLBT [53, 54] statically retargets bi-
naries to different ISAs after lifting them to LLVM IR. Mc-
Sema [26], Dagger [9], Rev.ng [25] and RevNIC [15] (based on
S2E) and SecondWrite [4] lift machine code for the purpose
of high-level static binary translation on LLVM IR.
HQEMU [32] extends QEMU’s back-end to lift code to

LLVM IR similarly to S2E, for the purpose of optimization.
It does not decouple lifted code from the QEMU runtime to
produce a standalone executable binary, like BinRec.

This paper extends our own prior work, a short workshop
paper [35] that presents a high-level idea of dynamic binary
lifting. This prior work constructs a rewritten binary from a
single dynamic trace, which in turn fails to produce a binary
that covers a whole targeted input corpus. The extended
version of BinRec presented in this paper addresses this
issue i) by stitching multiple, parallel traces into a single
executable binary; ii) by incrementally recovering missing
basic blocks and control flow edges from the original binary.
Compared to our previous work, BinRec shows evaluation
results with the complete set of SPEC CINT2006 benchmarks,
with significant performance improvement due to our new
optimized alias analysis. Furthermore, the prior work was

solely targeted for attack surface reduction and it does not
present a mechanism to modify the dynamic linkage of their
input binaries, limiting code instrumentation. This extended
work, on the other hand, shows effectiveness with a rich
set of applications including virtualization-deobfuscation,
AddressSanitizer, SafeStack, and a control-flow hijacking
defense. Moreover, it outlines unsolved challenges of static
disassembly in the context of binary lifting.

9 Conclusion
We presented BinRec, a new solution for binary lifting based
on dynamic analysis. BinRec lifts a program to compiler-level
intermediate code for ease of analysis, while ensuring that it
can still compile the result to executable code. Compared to
existing static analysis-based techniques, BinRec can seam-
lessly handle indirect control flow transfers, handwritten
assembly and obfuscations. We designed BinRec to overcome
the coverage issue of dynamic analysis by using trace merg-
ing and incremental recovery.We demonstrated the powerful
applications made possible by BinRec: recovering program
semantics of virtualization-obfuscated binaries, and applying
compiler-level optimizations and hardening transformations
to stripped binaries.
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