
IEEE SECURITY AND PRIVACY MAGAZINE 1

Benchmarking Flaws Undermine Security
Research

Erik van der Kouwe∗, Gernot Heiser†, Dennis Andriesse∗, Herbert Bos∗ and Cristiano Giuffrida∗ ∗Vrije
Universiteit Amsterdam, The Netherlands—{e.vander.kouwe,d.a.andriesse,h.j.bos,c.giuffrida}@vu.nl

†UNSW Sydney and CSIRO’s Data61—gernot@unsw.edu.au

Abstract—Benchmarking systems is difficult, and mistakes can compromise guarantees, and threaten reproducibility and comparability.
We conduct a study to show benchmarking flaws are widespread in systems security defense papers even at tier-1 venues. We hope to
raise awareness and provide recommendations to safeguard the scientific process in our community.

Index Terms—benchmarking, computer systems, performance evaluation, reproducibility of results, security, standardization guidelines

F

1 INTRODUCTION

Benchmarking is essential in systems security—to com-
pare different solutions and reproduce prior results. At every
program committee meeting for every top venue in our field,
heated discussions revolve around the question whether the
performance numbers reported in papers X and Y are reliable
and how they relate to each other. Making the wrong call is
bad, as nobody wants to accept or reject papers for the wrong
reasons. And after we accept a paper, we want to be able
to reproduce and compare the results in a meaningful way.
In this article, we examine publications from top security
conferences to determine whether they contain benchmarking
flaws that threaten the validity of their results. As we do
not allege intent we avoid the term “benchmarking crimes”,
which was used (tongue in cheek) earlier in the literature,
including Heiser’s web page [1] on which our list of flaws is
based.

Bluntly speaking, benchmarking flaws threaten the va-
lidity of the research results in publications. The obvious
question then is: how safe are we as a community from this
threat? And if we are not safe, how serious is this threat,
and how can we mitigate it? Phrased differently, we want
to know how well the systems security research community
detects anomalies in benchmarking in evaluation sections of
papers published in tier-1 venues, what the consequences
are of false negatives, and how to fix these “vulnerabilities”.

In the community there is wide agreement that perfor-
mance benchmarks are important to advance the field [2].
In systems, almost all security mechanisms incur some
performance overhead [3]. The aim is to keep the overhead
as low as possible, while raising the bar for attackers as
high as possible. Given an unlimited performance budget,
techniques to build secure systems under common threat
models are already well-established—memory safety being
a typical example [4]. As a result, much modern systems
security research focuses on practical defenses (such as
control-flow integrity [5] or randomization [6]), that trade off
some security to achieve realistic performance guarantees.

In this article we take a closer look at benchmarking
flaws in systems security. While it would be good to also
benchmark the security of a solution, doing so in an unbiased

way is much harder [7] and this paper primarily focuses
on performance benchmarking of defenses (expanding on
other dimensions when appropriate). After discussing the
objectives of performance benchmarking in general, we
carefully explore all the pitfalls that authors may encounter
when assessing the performance of their research artefact. For
each of these benchmarking flaws, we explain the negative
impact they may have on the validity or usefulness of the
evaluation.

Finally, we assess the state of benchmarking in systems
security. We selected systems defense papers from the tier-1
computer security venues where systems security defenses
are routinely published (Security & Privacy, USENIX Security,
CCS, and NDSS). We sifted through some 50 papers and
analyzed them for benchmarking flaws. For this purpose,
we selected all defense papers with benchmarking results
published in 2010 and 2015. As nearly all papers in our
data set have at least some benchmarking issue (and many
have several) and we found no clear difference between the
more recent and the older papers, we conclude that improper
benchmarking is a serious threat with little improvement in
recent years.

This article summarizes the key results of our study, our
earlier conference paper contains the complete results [8].
Here we discussion the implications of these results in more
detail, and propose an approach to solve the problem of
benchmarking flaws in our community.

2 BENCHMARKING FLAWS

Almost every paper in computer systems requires an evalu-
ation that determines whether and how well the presented
system achieves its goals. One important purpose of the
evaluation is to compare against other work: it should show
that the system improves the state of the art in some way
and allow possible later papers to show that they improve
this system. To allow for comparison, an evaluation must
meet a number of requirements. First of all, it should be
complete in the sense that it verifies all claimed contributions
of the system and shows the extent of any negative impact



IEEE SECURITY AND PRIVACY MAGAZINE 2

the system may have. All the presented results must be
relevant in the sense that they actually tell the reader
something meaningful about the system. Another important
characteristic is soundness, the requirement that all numbers
measure what is intended with reasonable accuracy and
repeatability. Finally, a general principle of science, requires
papers to be reproducible. That is, the information provided
in the paper should be sufficient to allow others to build the
system and perform its evaluation in the same way as the
original. A good paper should meet all these requirements,
but unfortunately experience shows that this is often hard
to come by in practice. Indeed, we found that most papers
contain a number of benchmarking flaws that violate these
properties.

In this section, we describe the benchmarking flaws we
identified and explain their importance. Our list is based
in large part on a web page by Heiser [1] (who uses
the term benchmarking crimes), aimed at operating systems
researchers. We adapt the list to the context of security
research, and also perform a systematic and large-scale study
of systems defense papers at top conferences (see Section 3) to
determine whether these benchmarking flaws are common in
published systems security papers. We find that these flaws
apply not only to the operating systems community, but
extend to other subfields of computer systems, in particular
systems security. This is particularly important because, as
we shall see, Heiser’s original web page [1] published in 2010
had insufficient impact in the systems security community.
Benchmarking flaws are still widespread and their relevance
has, in fact, grown over time.

We placed the 22 benchmarking flaws we identified in
groups and assigned codes (a letter for the group plus a num-
ber for the specific flaw) to simplify later references to them.
We describe the groups and the individual benchmarking
flaws in the following subsections and later elaborate on their
impact in Section 3. A more detailed description including
examples can be found in the conference paper [8].

2.1 Selective benchmarking
There is no single number that can fully express how well a
system performs. Performance overhead is multidimensional
as different operations are affected in different ways. For
example, a system that performs CFI [5] instruments indirect
branches but leaves other operations alone. Therefore, it
is likely to incur substantial overhead for programs and
workloads that perform many function calls, especially if they
are indirect (e.g., common C++ programs), but it will incur
minimal overhead if the program spends most of its time in
a loop that calls no functions. This has several implications
for benchmarking, and when a paper does not consider these
implications it might result in a performance evaluation
becoming anywhere from slightly inaccurate to completely
meaningless:

• A1: not evaluating potential performance degradation oc-
curs whenever a paper does not include benchmarks
that evaluate all operations whose performance one
might reasonably expect to be impacted.

• A2: benchmark subsetting without proper justification
applies to papers which arbitrarily select a subset
of benchmark suites and presents it as a single

overall performance overhead number as if it was
still representative.

• A3: selective data sets that hide deficiencies arises when
papers fail to test performance over an appropriate
range of settings (for example, core count) that uncov-
ers all important performance characteristics.

2.2 Improper handling of benchmark results
Our second group is about correctly interpreting benchmark-
ing results. Even when running the right benchmarks, the
presentation of their results can be misleading if they are
processed in incorrect ways. This group contains five flaws
related to incorrect handling of benchmark results:

• B1: microbenchmarks representing overall performance re-
sults in misleading results that provide no indication
how fast a system would run in practice.

• B2: throughput degraded by x% ⇒ overhead is x% refers
to cases where measurements are conducted in such
a way that performance overhead is hidden by idle
time (the CPU is not fully loaded).

• B3: bad math refers to incorrect computations with
overhead numbers, for example with the use of
percentage points to present a difference in overhead.

• B4: no indication of significance of data is an issue when-
ever averaged measurement results are presented
without some indication of the amount of variation.

• B5: incorrect averaging across benchmark scores often
occurs when authors use the arithmetic mean to
average overhead ratios, while only the geometric
mean is correct in this case [9].

2.3 Using the wrong benchmarks
The next group of benchmarking flaws is about using the
wrong benchmarks. It consists of three benchmarking flaws:

• C1: benchmarking of simplified simulated system refers
to cases where the benchmarks are not run on a real
system but rather an emulated version.

• C2: inappropriate and misleading benchmarks refers to the
use of benchmarks that are not suitable for measuring
the expected overheads.

• C3: same dataset for calibration and validation applies to
papers that test a trained system where the data set
used for testing overlaps with the training data set.

2.4 Improper comparison of benchmarking results
Raw measurements like runtime or throughput numbers
are rarely meaningful in isolation. Instead, they need to be
interpreted by comparing them to a baseline to determine
how much overhead the system incurs and/or to competing
systems to determine whether the system can improve their
performance. We separated this issue into three different
benchmarking flaws:

• D1: no proper baseline refers to computing overhead
compared to an unsuitable baseline.

• D2: evaluating only against oneself refers to cases where
authors compare their new system to their own earlier
work rather than the state of the art.

• D3: unfair benchmarking of competitors refers to papers
that do compare against competitors but do so in an
unfair way.



IEEE SECURITY AND PRIVACY MAGAZINE 3

2.5 Benchmarking omissions
This group covers necessary measurements for evaluations
that are not yet covered by the other benchmarking flaws:

• E1: not all contributions evaluated refers to cases where
a paper claims to achieve a certain goal, but does
not empirically determine whether this goal has been
reached. It is critical that papers verify claims.

• E2: measuring only run-time overhead occurs whenever
a system should be expected to impact performance
characteristics that are not measured, such as memory
usage.

• E3: false positives/negatives not tested is an issue for
papers that involve classification but do not verify its
accuracy.

• E4: elements of solution not tested incrementally refers to
papers that test the combined impact of the proposed
approach, but fail to isolate whether all proposed
elements of the solution provide a useful contribution
to the overall result.

2.6 Missing information
The final group contains benchmarking flaws where impor-
tant information has been left out of a paper:

• F1: missing platform specification applies to papers that
lack a description of the hardware setup used to
perform the experiments.

• F2: missing software versions is similar but refers to the
software.

• F3: subbenchmarks not listed applies to papers that run
a benchmarking suite but do not present the results
of the individual subbenchmarks, just the overall
number.

• F4: relative numbers only involves presenting only
ratios of overheads without presenting the actually
measured numbers.

3 STUDY RESULTS

To determine the prevalence of the benchmarking flaws dis-
cussed in Section 2 and get a better idea of what these flaws
look like in practice, we investigated 50 papers published
at top security venues. We focused our analysis on the
traditional “top 4” venues in security: USENIX Security,
Security & Privacy, CCS, and NDSS, selecting all systems
defense papers papers from these venues in 2010 and 2015.
The conference paper [8] lists all papers selected for our
analysis.

For each of the 50 selected papers and each benchmarking
flaw described in Section 2, we determined whether the paper
contains the particular flaw. Two persons independently
categorized each paper for each flaw as correct, flawed,
underspecified, or not applicable. In most cases, both readers
came to the same conclusions, suggesting that our method-
ology is reproducible. For papers where there were some
disagreements, the readers discussed their assessments to
converge on a final classification. This was the case for 8 out
of 50 papers (16%). In only two cases did the discussion lead
to the addition of a benchmarking flaw initially missed by
one of the readers. The remaining disagreements concerned
the precise extent of flaws identified by both readers.

Figure 1 shows the number of papers containing each
flaw, counting as a single occurrence a paper which contains
the same flaw multiple times. In some cases, we were
unable to determine whether the methodology in the paper
is sound because important elements of the experiments
or their analysis were not specified with a sufficient level
of detail. We have classified these paper/flaw pairs as
underspecified. Note that underspecification is problematic
even if the underlying methodology is sound as it hampers
reproducibility and makes it harder for later competitors to
perform a fair comparison with prior work.

Our results show that benchmarking flaws are a major
problem. Over all pairs of paper and applicable flaw, the flaw
either applies or the paper is underspecified with regard
to the flaw in 256 out of the 851 cases (30%). However,
not all flaws are equally common. The lack of indication
of significance of data and benchmark subsetting without
proper justification are by far the most widespread, respec-
tively affecting 80% and 69% of the applicable papers we
investigated. None of the other flaws affect a majority of the
papers, but four additional ones affect 40% or more of the
papers to which they apply. This shows that several types of
benchmarking flaws are widespread even in peer-reviewed
papers at top venues.

Figure 2 shows a histogram of the number of benchmark-
ing flaws (including underspecification) per paper. High-
impact flaws are explained in the next section. It is notable
that from our sample of 50 papers, we found only a single
paper without any benchmarking flaws. Flaws are fairly
evenly spread between papers, with many papers being
very close to the average number of benchmarking flaws
per paper (5.0 for all flaws, 1.7 for high-impact flaws). As
such, the results would seem to suggest that the problem
of benchmarking flaws is not an issue of a few authors
and reviewers being particularly careless (or malicious), but
rather a community-wide lack of awareness of or attention
to these problems. This is further corroborated by the fact
that many prevalent benchmarking flaws require very little
effort to fix, as detailed later.

4 IMPACT

We examine the impact of frequent flaws, i.e. those found in
at least 10 papers (the conference version [8] has the complete
analysis).

4.1 Selective benchmarking

A1 - Not evaluating potential performance degradation We found
two major groups of papers that contain this flaw: those
where overhead figures are missing entirely and those that
do not reflect all potential slowdown. In both cases, this
flaw makes it difficult (if not impossible) to assess the
practicality of the presented solution and improvements
over the state of the art. Moreover, papers that present
inappropriate performance measurements may even hamper
scientific progress because they prevent competing systems
that perform poorly on these inappropriate measures or not
as efficiently on appropriate measures from being published.
Even worse, they may encourage more benchmarking flaws



IEEE SECURITY AND PRIVACY MAGAZINE 4

0 5 10 15 20 25 30 35 40 45 50

F4 - Relative numbers only

F2 - Missing software versions

F1 - Missing platform specification

E4 - Elements of solution not tested incrementally

E3 - False positives/negatives not tested

E2 - Measuring only run-time overhead

D2 - Evaluating only against oneself

C3 - Same dataset for calibration and validation

B5 - Incorrect averaging across benchmark scores

B4 - No indication of significance of data

B3 - Bad math

B1 - Microbenchmarks representing overall perf.

A3 - Selective data sets that hide deficiencies

A2 - Benchmark subsetting w/o proper justification

OTHER FLAWS

F3 - Subbenchmarks not listed

E1 - Not all contributions evaluated

D3 - Unfair benchmarking of competitors

D1 - No proper baseline

C2 - Inappropriate and misleading benchmarks

C1 - Benchmarking of simplified simulated system

B2 - Throughput degr. by x% → overhead is x%

A1 - Not evaluating potential perf. degradation

HIGH-IMPACT FLAWS

Classification of papers per flaw

correct underspecified flawed not applicable

Fig. 1. Benchmarking flaws study overview.

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10

N
u

m
b

er
 o

f 
p

ap
er

s

Number of flaws (including underspecified)

all flaws high-impact flaws

Fig. 2. Histogram of number of flaws per paper

in future systems, as authors struggle to beat overly opti-
mistic performance figures. As such, we consider this flaw
high-impact.

A2 - Benchmark subsetting without proper justification We
found that many papers that use standardized benchmarking
suites leave out some subbenchmarks. Based on the partic-

ular benchmarks that are often left out, it is very likely that
this will result in an underestimate of performance overhead
in practice [8]. We conclude that leaving out subbenchmarks
can have a major impact on the soundness of measurements
as well as the comparability between competing systems
and therefore requires a proper and explicit justification.
Moreover, if different papers use different subsets, the overall
slowdown is no longer suitable for comparing performance.

4.2 Improper handling of benchmark results
B2 - Throughput degraded by x% ⇒ overhead is x% Based on
our study, we believe that all instances of this benchmarking
flaw are likely to result in an underestimate of performance
overhead, although without the necessary data it is impos-
sible to determine by how much. Because this flaw is likely
to affect the soundness of performance measurements in all
cases, we consider it to be a high-impact benchmarking flaw.

B4 - No indication of significance of data Some indication
of variation is important because it is an indication of how
reliable the numbers are and whether, given the measurement
inaccuracy, the measured differences are actually meaningful.
However, we expect the overall impact of this flaw to be
relatively mild for papers where researchers set up their
experiments correctly.



IEEE SECURITY AND PRIVACY MAGAZINE 5

B5 - Incorrect averaging across benchmark scores To deter-
mine the impact of incorrect averaging, we compared the
geometric mean with the presented average. For four out
of the eight papers where we could compute this mean, the
difference the arithmetic mean is at least 1% higher than
the geometric mean, overestimating overall overhead. In
the worst case we found, the arithmetic mean is more than
twice the geometric mean, while the remainder overestimates
overhead by 2% to 16%.

4.3 Improper comparison of benchmarking results
D1 - No proper baseline We found that some papers have
an incorrect baseline, while others do not present one at
all. The former are always likely to either underestimate
overhead or overestimate effectiveness. This threatens both
the soundness and comparability of the results. Absolute
performance numbers without baseline cannot be compared
between systems and therefore provide little meaningful
information. Since we found that the lack of a proper baseline
was a serious problem in all cases, we consider this flaw
high-impact.

4.4 Benchmarking omissions
E2 - Measuring only run-time overhead Papers which do not
measure important sources of overhead other than runtime
are incomplete. However, the impact of this incompleteness
differs from case to case. If, for example, memory overhead
can theoretically be assumed to be minor and similar to
prior work, the impact is limited. If, on the other hand, there
is reason to believe the paper incurs significant memory
overhead yet does not measure it, this could be a problem
for later papers that improve on this overhead.

4.5 Missing information
F1 - Missing platform specification This benchmarking flaw
makes reproducing the exact results based on the contents
of the paper impossible. It may make the results less
comparable, but does not affect the validity of the results.

F2 - Missing software versions This benchmarking flaw
hampers reproducibility, as the software about which infor-
mation is missing should be expected to have an impact on
performance.

5 RECOMMENDATIONS

Our analysis shows that benchmarking flaws are very
common and potentially have a major impact on the quality
of published research in systems security. Based on the
results, we suggest that being mindful of the most important
flaws will improve the quality of published research with
relatively little effort, and we have provided a list of such
suggestions [8].

However, we also feel that our results expose an un-
derlying problem: benchmarking practices do not receive
the attention and priority they deserve in our community.
Making a lasting impact requires more than just pointing au-
thors to a few specific problems, which has been done before
(though without examining published papers) by Heiser [1].
Instead we would like to provide authors, reviewers, and

program committee chairs with some guidance to the right
way of benchmarking in systems security. This will not be
the last word on benchmarking in security, but we hope that
our suggestions will get the discussion started.

We do not do research and write papers in isolation, as we
are part of a community that sets examples and expectations
of what a good paper is supposed to be like. Moreover,
there is a great pressure to publish, and putting a lot of
effort in evaluation is not always the most rewarding way
to spend one’s limited time. As such, incentive structures
matter for benchmarking practices and, as a community,
we need to think about how we can best reward good
research. To improve our benchmarking practices—as our
study has shown is urgently needed—bottom-up changes
from individual authors are not sufficient but rather a
coordinated effort is needed. In particular, we will consider
here what changes we believe are necessary steps to take
for the community as a whole, for the individual authors
writing papers, and for the program committees deciding
which papers get published and which do not.

5.1 Community
The community of security researchers must be the starting
point for any solution to the problem of benchmarking
flaws, as any approach without community support will
be unrewarding for researchers and therefore unlikely to
succeed. There are several tasks that we feel individual
community members should address, and others that should
be addressed by the community as a whole.

While our paper [8] identifies a number of benchmarking
flaws and examines their presence in top conferences, this
should not be the last word on the subject. We call the com-
munity to further investigate benchmarking flaws, because it
is impossible to come up with the best solution without first
knowing the full extent of the problem. There is a number of
specific directions that we feel need to be explored:

1) We only cover systems defenses, but we expect that
similar issues exist in other areas of systems security
that rely on experimental validation;

2) We focus primarily on performance, but measure-
ment of effectiveness (that is, the level of security)
is also very important and even harder to measure
properly than performance is;

3) While we include all four tier-one conferences in
our field, it would be valuable to also consider
lower-tier conferences where many in our field
also publish, and where the review process may be
simplified and/or the program committee members
less experienced;

4) While we take a bird’s-eye view and look for a large
number of flaws in a large number of papers in
a binary fashion, there is value in more in-depth
studies of why and how specific flaws are introduced,
and what their impact in practice is (for example, by
reproducing experiments using different setups);

5) In cooperation with conference organizers, it would
be possible to compare submitted, accepted, and
camera ready papers, and this would be valuable to
evaluate the effectiveness of the review process in
reducing the number of benchmarking flaws.



IEEE SECURITY AND PRIVACY MAGAZINE 6

Although conferences focus primarily on technical content,
we feel it is important to also use these venues to draw
attention to research practices within our community. A
practical solution might be to set up workshops co-hosted
with our top conferences that serve specifically as a place to
discuss this type of meta-research.

We call upon the community to establish consensus on
a set of best practices. Leading researchers in each subfield
could together establish a set of accepted benchmarks and
write a performance evaluation guide. In particular, it should
include a checklist that authors and program committees
can apply to determine whether a certain paper meets the
minimum requirements. Our list of benchmarking flaws can
serve as a basis, though we would recommend a positively
formulated checklist that indicates what we expect of a paper
rather than only focuses on specific ways to get it wrong. This
checklist needs to get broad endorsement in the community
before it can be effective.

More concretely, we should agree on which benchmarks
to use (as a minimum) for which types of systems, and how
they are to be configured. This can help new researchers
learn how to properly do benchmarking, set standards to
ensure systems are benchmarked properly, and ensure that
performance measurements of similar systems are compa-
rable. While some benchmarks are already in widespread
use in our community (for example SPEC CPU), it is
important to highlight their constraints (in this case, it
only exercises the CPU and mostly remains in usermode)
and provide additions and/or alternatives where they are
not suitable. Configuration is also of particular importance
because in many cases (for example sufficient concurrency
for ApacheBench, or a suitable optimization level for SPEC
CPU) it has a great impact on the soundness or the result.

In addition to guidelines that indicate what is expected of
authors, we feel that the community should also actively help
authors achieve these goals with reasonable effort. In partic-
ular, it would be helpful to build open-source frameworks
that save researchers time when setting up benchmarking
for their systems in accordance to the guidelines. As for the
investigations of existing benchmarking practices, we need
suitable venues to publish this work, not only to make it
more worthwhile for community members to make the effort
to build tools that benefit us all, but also to ensure visibility
and community involvement in these projects. Practically
speaking, these could be the same workshops that we also
proposed for publication of meta-research on benchmarking
practices in our field.

5.2 Authors

Improving benchmarking practices in systems security
critically depends on the authors who actually run those
benchmarks and present their results. We hope that the
community efforts described in the previous section will
make clear to authors what is expected of them and provide
them with the information and tools that they need to achieve
this with minimal effort. In this section we describe how we
expect authors to follow best practices, and how they should
be able to use resources to the fullest extent possible.

Our first recommendation is that authors start consider-
ing benchmarking requirements early in the project rather

than as a part of the final paper writing stage. Evaluation
is fundamentally a part of research and research prototypes
should be designed to facilitate easy (and, if possible, auto-
mated) verification of each individual contribution claimed in
the work. As such, listing contributions should be one of the
first steps and will serve as a basis to pick the most suitable
benchmarks based on the community consensus described
in the previous section. Additionally, almost all proposed
systems involve some kind of trade-off. For example, security
benefits will often result in slower performance and higher
memory usage. When listing contributions, authors should
be explicit about limitations and cost, and evaluate these
with suitable benchmarks, again based on the community
consensus.

As for the paper writing stage, our study shows that in
many cases critical information is missing which, if explicitly
added to the paper, could have prevented some of the
benchmarking flaws. Our advice is to be complete and
explicitly list limitations, explaining why these limitations
are there. In particular, in cases where standard solutions are
not viable, the author should clearly explain why this is the
case, and select the next best alternative. The author should
discuss explicitly what the impact of these differences is
expected to be. When presenting evaluation results, authors
need to ensure they present the most meaningful quantities
(avoiding flaws B3 and B5), and include relevant statistics to
indicate how statistically significant the measured impacts
are (avoiding flaw B4). With regard to completeness, au-
thors should take utmost care to describe all parts of their
experimental setup to allow independent verification of their
approach. Ideally, authors should open source their code
and the environment/scripts needed for reproduction. By
following these steps, many flaws can be prevented with
relatively little effort.

Finally, researchers should apply the community consen-
sus checklist to determine whether they meet the require-
ments and have avoided benchmarking flaws. Even when
carefully planning experiments and writing the paper, it is
easy to forget about some of the points. The checklist offers
an opportunity to match the benchmarking in the paper with
the reviewers’ expectations.

5.3 Program Committees

The goal of any researcher is to get their work published
and, within our community, conferences are the main venue
to achieve this. Program committees act as gatekeepers,
allowing only work that is of sufficient quality to be pub-
lished. While traditionally program committees could only
decide to accept or reject a paper, the IEEE Symposium on
Security&Privacy has switched to a rolling deadline system,
and the other top security conferences have recently followed
suit. This introduces the possibility to require revisions,
and allows the program committee to give a paper that
is interesting but not of sufficient quality an opportunity to
improve, followed by a second round of reviews, similar to
the model used by scientific journals.

We propose to use this opportunity to enforce the
guidelines to be formulated by the community. In partic-
ular, reviewers should consider the benchmarking practices
checklist to be formulated by the community and mark any



IEEE SECURITY AND PRIVACY MAGAZINE 7

benchmarking flaws found in their reviews. Benchmarking
flaws need not lead to immediate rejection, but should be
expected to be fixed in the revision stage. In many cases
it would likely suffice to require that any deviation from
community best practices be made explicit and justified
in the paper. In more severe cases, where it turns out high-
impact benchmarking flaws do in fact undermine the validity
of the results and a round of revisions is not sufficient to
address the problem, we should reject those papers. It is
important to have explicit discussions about how we weigh
correctness against expected impact. With benchmarking
issues exposed it becomes easier to make this trade-off and
reduce the number of papers that do not live up to the
community quality standards.

6 RELATED WORK

Benchmarking in systems security: While there have
been several studies to determine whether computer science
papers perform measurements in appropriate ways (amongst
others [10], [11], [12], [13]), to the best of our knowledge none
of them is specific to benchmarking in systems security. The
most closely related work is Heiser’s original web page
about benchmarking crimes [1], which serves as inspiration
for this paper. Compared to Heiser’s web page (which
has been updated since our publication), we propose an
extended classification and present a systematic analysis of
benchmarking flaws in peer-reviewed defense papers. We
also formulate concrete recommendations.

Studies considering evaluation quality: A number of
authors have examined to determine how well papers in
various fields evaluate their work. Kuz et al. [10] investigate
benchmarking for multi-core systems to propose a better
approach, but only consider six papers. Skadron et al. [11] in-
vestigate papers in computer architecture to determine their
topics and performance evaluation techniques. They provide
an overview and discussion of the various techniques, but
do not go in depth about incorrect benchmarking practices.
Mytkowicz [12] presents a study to determine whether
measurement error is considered correctly in computer
systems experiments and provides suggestions on how to
improve this. Rossow et al. [13] study the methodological
rigor and prudence in papers using malware execution.
While their approach to identifying flaws is similar to ours,
the pitfalls they identify are quite different because they
focus on malware analysis rather than on performance.

Benchmarking advice: Some other papers also pro-
vide benchmarking advice but do so without a systematic
study, instead using examples, and their own tests to
verify the identified pitfalls result in questionable results.
Schwarzkopf et al. [14] identify benchmarking problems
in cloud research and Seltzer et al. [15] discuss problems
with standardized benchmarks in file systems research.
While these studies demonstrate important benchmarking
problems, the lack of a systematic study means they cannot
determine the impact these potential problems have on the
research literature.

7 CONCLUSION

While the security community devotes much effort to
defending systems from increasingly dangerous threats, it

devotes much less attention to the correctness of research
results. Benchmarking flaws, in particular, have been largely
neglected. As the focus of systems research is increasingly
shifting to practical, low-overhead defenses, benchmarking
flaws are increasingly relevant and are now the elephant
in the room. We assessed the magnitude of the problem in
50 defense papers in top systems security venues, showing
that benchmarking flaws are widespread and show no sign
of improvement, hampering research comparability and re-
producibility. Encouragingly, many common benchmarking
flaws can be easily prevented by following our guidelines
for authors. We made available a checklist [16] to allow
interested readers to easily apply our findings to their own
work.

ACKNOWLEDGEMENTS

This project was supported by the European Union’s Hori-
zon 2020 research and innovation programme under grant
agreement No. 786669 (ReAct) and No. 825377 (UNICORE),
by the United States Office of Naval Research (ONR) under
contract N00014-17-1-2782, by Cisco Systems, Inc. through
grant #1138109, and by the Netherlands Organisation for
Scientific Research through grants NWO 639.023.309 VICI
“Dowsing” and NWO 639.021.753 VENI “PantaRhei”. This
paper reflects only the authors’ view. The funding agencies
are not responsible for any use that may be made of the
content.

REFERENCES

[1] G. Heiser, “Systems benchmarking crimes,” https://www.cse.unsw.
edu.au/∼gernot/benchmarking-crimes.html.

[2] S. E. Sim, S. Easterbrook, and R. C. Holt, “Using benchmarking to
advance research: A challenge to software engineering,” in ICSE,
2003.

[3] J. Wagner, V. Kuznetsov, G. Candea, and J. Kinder, “High system-
code security with low overhead,” in IEEE Security&Privacy, 2015.

[4] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Soft-
bound: Highly compatible and complete spatial memory safety for
C,” in PLDI, 2009.

[5] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in ACM CCS, 2005.

[6] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-
R. Sadeghi, S. Brunthaler, and M. Franz, “Readactor: Practical
code randomization resilient to memory disclosure,” in IEEE
Security&Privacy, 2015.

[7] S. M. Bellovin, “On the brittleness of software and the infeasibility
of security metrics,” IEEE Security&Privacy, 2006.

[8] E. van der Kouwe, G. Heiser, D. Andriesse, H. Bos, and C. Giuffrida,
“Sok: Benchmarking flaws in systems security,” Proc. 4th IEEE
Eurpean Sym. Security and Privacy (EuroS&P), 2019.

[9] P. J. Fleming and J. J. Wallace, “How not to lie with statistics: the
correct way to summarize benchmark results,” Communications of
the ACM, vol. 29, no. 3, pp. 218–221, 1986.

[10] I. Kuz, Z. R. Anderson, P. Shinde, and T. Roscoe, “Multicore OS
benchmarks: We can do better,” in HotOS, 2011.

[11] K. Skadron, M. Martonosi, D. August, M. Hill, D. Lilja, and V. S. Pai,
“Challenges in computer architecture evaluation,” IEEE Computer,
vol. 36, no. 8, pp. 30–36, 2003.

[12] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney,
“Producing wrong data without doing anything obviously wrong!”
ACM SIGPLAN Notices, vol. 44, no. 3, pp. 265–276, 2009.

[13] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson,
N. Pohlmann, H. Bos, and M. Van Steen, “Prudent practices for
designing malware experiments: Status quo and outlook,” in IEEE
Security&Privacy, 2012.

[14] M. Schwarzkopf, D. G. Murray, and S. Hand, “The seven deadly
sins of cloud computing research,” in HotCloud, 2012.



IEEE SECURITY AND PRIVACY MAGAZINE 8

[15] M. Seltzer, D. Krinsky, K. Smith, and X. Zhang, “The case for
application-specific benchmarking,” in HotOS, 1999.

[16] “Threats to validity and relevance in security research,” https:
//www.vusec.net/threats-to-validity-in-security-research/.

Erik van der Kouwe Erik van der Kouwe is an
assistant professor at the VUSec systems secu-
rity group at the Vrije Universiteit Amsterdam. He
received his PhD in software reliability from prof.
Andy Tanenbaum, and afterwards broadened hist
scope to include systems security. His recent
work is on practical compiler-assisted defenses
against zero-day vulnerabilities and on properly
benchmarking such defenses.

Gernot Heiser Gernot Heiser is Scientia Profes-
sor and John Lions Chair of Operating Systems
at UNSW Sydney, and Chief Research Scientist
at CSIRO’s Data61. His research is on high-
performance, highly dependable operating sys-
tems, especially microkernels, for security- and
safety-critical systems, with a strong track record
of transferring research outcomes to real-world
applications. He holds a PhD from ETH Zurich,
an MSc from Brock University and a BSc from
the University of Freiburg. He is a Fellow of the

IEEE, a Fellow of the ACM and a Fellow of the Australian Academy of
Technology and Engineering (ATSE).

Dennis Andriesse Dennis Andriesse is a secu-
rity researcher at Intel. He obtained his PhD in
System and Network Security from Vrije Univer-
siteit Amsterdam and has a broad interest in low-
level security.

Herbert Bos Herbert Bos is full professor of
Systems Security at Vrije Universiteit Amster-
dam where he co-leads the VUSec group with
Cristiano Giuffrida and Erik van der Kouwe. He
obtained his Ph.D. from Cambridge University
Computer Laboratory (UK). Coming from a sys-
tems background, he drifted into security a few
years ago and never left. He is doomed to wander
the earth and not find true happiness until he
has recruited an additional assistant professor
in systems security for VUSec. So if this is you,

please apply!

Cristiano Giuffrida Cristiano Giuffrida is an
Assistant Professor in the Computer Systems
Section at the Vrije Universiteit Amsterdam. His
research interests include systems security, reli-
ability, and availability. Giuffrida received a PhD
from the Vrije Universiteit Amsterdam in 2014. He
was awarded the Roger Needham Award and the
Dennis M. Ritchie Award for the best PhD thesis
in Computer Systems (Europe and worldwide) in
2015.


