
Safe and Automatic Live Update for Operating Systems

Cristiano Giuffrida Anton Kuijsten Andrew S. Tanenbaum
Vrije Universiteit, Amsterdam

{giuffrida, akuijst, ast}@cs.vu.nl

Abstract
Increasingly many systems have to run all the time with no down-
time allowed. Consider, for example, systems controlling electric
power plants and e-banking servers. Nevertheless, security patches
and a constant stream of new operating system versions need to
be deployed without stopping running programs. These factors nat-
urally lead to a pressing demand for live update—upgrading all
or parts of the operating system without rebooting. Unfortunately,
existing solutions require significant manual intervention and thus
work reliably only for small operating system patches.

In this paper, we describe an automated system for live update
that can safely and automatically handle major upgrades without
rebooting. We have implemented our ideas in PROTEOS, a new
research OS designed with live update in mind. PROTEOS relies
on system support and nonintrusive instrumentation to handle even
very complex updates with minimal manual effort. The key novelty
is the idea of state quiescence, which allows updates to happen
only in safe and predictable system states. A second novelty is the
ability to automatically perform transactional live updates at the
process level, ensuring a safe and stable update process. Unlike
prior solutions, PROTEOS supports automated state transfer, state
checking, and hot rollback. We have evaluated PROTEOS on 50 real
updates and on novel live update scenarios. The results show that
our techniques can effectively support both simple and complex
updates, while outperforming prior solutions in terms of flexibility,
security, reliability, and stability of the update process.

Categories and Subject Descriptors D.4.7 [Operating Systems]:
Organization and Design

General Terms Design, Experimentation, Reliability

Keywords Live update, Automatic updates, State transfer, State
checking, Update safety, Operating systems

1. Introduction
Modern operating systems evolve rapidly. Studies on the Linux
kernel have shown that its size has more than doubled in the last
10 years, with a growth of more than 6 MLOC and over 300 offi-
cial versions released [64]. This trend leads to many frequently
released updates that implement new features, improve perfor-
mance, or fix important bugs and security vulnerabilities. With
today’s pervasive demand for 24/7 operation, however, the tradi-
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tional patch-install-reboot cycle introduces unacceptable downtime
for the operating system (OS) and all the running applications. To
mitigate this problem, enterprise users often rely on “rolling up-
grades” [27]—upgrading one node at a time in a highly replicated
software system—which, however, require redundant hardware (or
virtualized environments), cannot normally preserve program state
across system versions, and may introduce a very large update win-
dow with high exposure to mixed version races [29].

Live update (sometimes also called hot or dynamic update)
is a potential solution to this problem, due to its ability to up-
grade a running system on the fly with no service interruption.
To reach widespread adoption, however, a live update solution
should be practical and trustworthy. We found that existing solu-
tions for operating systems [12–14, 20, 56] and generic C pro-
grams [10, 21, 55, 55, 59, 60] meet these requirements only for
simple updates. Not surprisingly, many live update solutions explic-
itly target small security patches [10, 12]. While security patches
are a critical application for live update—as also demonstrated by
the commercial success of solutions like Ksplice [12]—we believe
there is a need for solutions that can effectively handle more com-
plex updates, such as upgrading between operating system versions
with hundreds or thousands of changes.

We note two key limiting factors in existing solutions. First,
they scale poorly with the size and complexity of the update. This
limitation stems from the limited system support to ensure update
safety and transfer the run-time state from one system version to
another. Existing solutions largely delegate these challenging tasks
to the programmer. When applied to updates that install a new OS
version with major code and data structure changes, this strategy
requires an unbearable effort and is inevitably error prone.

Second, they scale poorly with the number of live updates ap-
plied to the system. This limitation stems from the update mecha-
nisms employed in existing solutions, which assume a rigid address
space layout, and glue code and data changes directly into the run-
ning version. This strategy typically leads to an unstable live update
process, with memory leakage and performance overhead growing
linearly over time (§2.3). We found that both limiting factors in-
troduce important reliability and security issues, which inevitably
discourage acceptance of live update.

This paper presents PROTEOS, a new research operating sys-
tem designed to safely and automatically support many classes of
live updates. To meet this challenge, PROTEOS introduces several
novel techniques. First, it replaces the long-used notion of func-
tion [12] and object [14] quiescence with the more general idea
of state quiescence, allowing programmer-provided state filters to
specify constraints on the update state. The key intuition is that op-
erating systems quickly transition through many states with differ-
ent properties. Restricting the update to be installed only in specific
states dramatically simplifies reasoning on update safety.

Further, PROTEOS employs transactional process-level live up-
dates, which reliably replace entire processes instead of individ-
ual objects or functions. To increase the update surface and sup-



port complex updates, we explore this idea in a design with all
the core OS subsystems running as independent event-driven pro-
cesses on top of a minimal message-passing substrate running in
kernel mode. Using processes as updatable units ensures a stable
update process and eliminates the need for complex patch anal-
ysis and preparation tools. In addition, PROTEOS uses hardware-
isolated processes to sandbox the state transfer execution in the new
process version and support hot rollback in case of run-time errors.

Finally, PROTEOS relies on compiler-generated instrumentation
to automate state transfer (migrating the state between processes),
state checking (checking the state for consistency), and tainted state
management (recovering from a corrupted state), with minimal run-
time overhead. Our state transfer framework is designed to auto-
matically handle common structural state changes (e.g., adding a
new field to a struct) and recover from particular tainted states
(i.e., memory leakage), while supporting a convenient program-
ming model for extensions. As an example, programmers can reg-
ister their own callbacks to handle corrupted pointers or override
the default transfer strategy for state objects of a particular type.

Our current PROTEOS implementation runs on the x86 platform
and supports a complete POSIX interface. Our state management
framework supports C and assembly code. Its instrumentation com-
ponent is implemented as a link-time pass using the LLVM com-
piler framework [50].

We evaluated PROTEOS on 50 real updates (randomly sampled
in the course of over 2 years of development) and novel live update
scenarios: online diversification, memory leakage reclaiming, and
update failures (§6.3). Our results show that: (i) PROTEOS provides
an effective and easy-to-use update model for both small and very
complex updates. Most live updates required minimal effort to be
deployed, compared to the “tedious engineering effort” reported
in prior work [20]; (ii) PROTEOS is reliable and secure. Our state
transfer framework reduces manual effort to the bare minimum and
can safely rollback the update when detecting unsafe conditions or
run-time errors (e.g., crashes, timeouts, assertion failures). Despite
the complexity of some of the 50 updates analyzed, live update re-
quired only 265 lines of custom state transfer code in total. (iii) The
update techniques used in PROTEOS are stable and efficient. The
run-time overhead is well isolated in allocator operations and only
visible in microbenchmarks (6-130% overhead on allocator opera-
tions). The service disruption at update time is minimal (less than
5% macrobenchmark overhead while replacing an OS component
every 20s) and the update time modest (3.55s to replace all the OS
components). (iv) The update mechanisms used in PROTEOS sig-
nificantly increase the update surface and enable novel live update
scenarios. In our experiments, we were able to update all the OS
components in a single fault-tolerant transaction and completely
automate live update of as many as 4,873,735 type transformations
throughout the entire operating system (§6.3).

Contribution. This paper makes several contributions. First, we
identify the key limitations in existing live update solutions and
present practical examples of reliability and security problems.
Second, we introduce a new update model based on state quies-
cence, which generalizes existing models but allows updates to be
deployed only in predictable system states. Third, we introduce
transactional process-level updates, which allow safe hot rollback
in case of update failures, and present their application to operat-
ing systems. Fourth, we introduce a new reliable and secure state
transfer framework that automates state transfer, state checking,
and tainted state management. Finally, we have implemented and
evaluated these ideas in PROTEOS, a new research operating sys-
tem designed with live update in mind. We believe our work raises
several important issues on existing techniques and provides effec-
tive solutions that can drive future research in the field.

static struct task_struct *copy_process(...) {
  ... (1)
  p = dup_task_struct(current);
  if (!p)
    goto fork_out;
  ... (2) //unsafe update point
  retval = copy_creds(p, clone_flags);
  if (retval < 0)
    goto bad_fork_free;
  ... (3)
}
static struct task_struct
  *dup_task_struct(...) {
  ...
  prepare_creds();
  ...
}
int copy_creds(...) { 
  ...
  
  ...
}

static struct task_struct
  *dup_task_struct(...) { 
  ...
  
  ...
}
int copy_creds(...) {
  ...
  prepare_creds();
  ...
}Old version New version

Figure 1. An unsafe live update using function quiescence.

2. Background
Gupta has determined that the validity of a live update applied in an
arbitrary state S and using a state transfer function T is undecidable
in the general case [37]. Hence, system support and manual inter-
vention are needed. Unfortunately, existing solutions offer both
limited control over the update state S and poor support to build
the state transfer function T .

2.1 Safe Update State
Prior work has generally focused on an update-agnostic definition
of a safe update state. A number of solutions permit both the old and
the new version to coexist [20, 21, 56], many others disallow up-
dates to active code [10, 12, 14, 31, 36]. The first approach yields an
highly unpredictable update process, making it hard to give strong
safety guarantees. The second approach relies on the general no-
tion of function (or object) quiescence, which only allows updates
to functions that are not on the call stack of some active thread.

Figure 1 demonstrates that quiescence is a weak requirement
for a safe update state. The example proposed (inspired by real
code from the Linux fork implementation) simply moves the call
prepare creds() from the function dup task struct to the
function copy creds. Since copy process is unchanged, func-
tion quiescence would allow the update to happen at any of the
update points (1, 2, 3). It is easy to show, however, that the update
point (2) is unsafe, since it may allow a single invocation of the
function copy process() to call (i) the old version of the func-
tion dup task struct() and (ii) the new version of the function
copy creds(). Due to the nature of the update, the resulting ex-
ecution would incorrectly call prepare creds() twice—and not
once, as expected during normal update-free execution.

To address this problem, prior live update solutions have pro-
posed pre-annotated transactions [61], update points [60], or static
analysis [59]. These strategies do not easily scale to complex op-
erating system updates and always expose the programmer to the
significant effort of manually verifying update correctness in all
the possible system states. PROTEOS addresses this problem using
our new notion of state quiescence, which generalizes prior update
safety mechanisms and allows the programmer to dynamically ex-
press update constraints on a per-update basis. In the example, the
programmer can simply specify a state filter (§4.3) requesting no
fork to be in progress at update time.
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void *base_p = (void*)&c;
size_t size_p = sizeof(c);

base_p
0xf000 &c

Object Replacement

void *base_p = (void*)&c;
void *interior_p = (void*)&c.uid;

base_p
0xf000 &c

interior_p
0xf014 &c.uid

Type Wrapping

memset(base_p, 0, size_p);
bits = SHADOW(c', securebits);

id = ((struct cred*)base_p)->uid;
id = *((int*)interior_p);

*((int*)interior_p) = 0;

void *interior_p = (void*)&c.magic;

c'.securebits
0xdeadbeef

bits
0xdeadbeef

base_p
0xf000 &c

interior_p
0xf014 &c.uid

id
c.uid

id
c.magic

interior_p
0xf010 &c.magic

c'.uid
0

(c) Reading uninitialized securebits(b) Reading stale magic and uid(a) Overriding uid instead of magic

interior_p
0xf010 &c.magic

struct cred {
  atomic_t  usage;
  atomic_t  subscribers;
  void      *put_addr;
  int       flags;

  unsigned  magic;      
  uid_t     uid;
  ...
} c;

0xf000
0xf004
0xf008
0xf00c
0xf010
0xf014
0xf018

struct cred {
  atomic_t  usage;
  atomic_t  subscribers;
  void      *put_addr;
  unsigned  magic;
  uid_t     uid;
  ...
  unsigned  securebits;

} c';

0xf000
0xf004
0xf008
0xf00c
0xf010
0xf014
0xf024

Figure 2. Examples of live update vulnerabilities introduced by unhandled pointers into updated data structures: (a) Type-unsafe memory
writes; (b) Misplaced reads of stale object data; (c) Uninitialized reads.

2.2 State Transfer
Prior work has generally focused on supporting data type transfor-
mations in a rigid address space organization. Three approaches are
dominant: type wrapping [59, 60], object replacement [14, 20, 21,
55], and shadow data structures [12, 56]. Type wrapping instru-
ments data objects with extra padding and performs in-place type
transformations. Object replacement dynamically loads the new ob-
jects into the address space and transfers the state from the old
objects to the new ones. Shadow data structures are similar, but
preserve the old objects and only load the new fields of the new ob-
jects. While some have automated the generation of type transform-
ers [59, 60], none of the existing live update solutions for C pro-
vides automated support for transforming pointers and reallocat-
ing dynamic objects. Figure 2 demonstrates that failure to properly
handle pointers into updated objects can introduce several prob-
lems, ranging from subtle logical errors to security vulnerabilities.
Type wrapping may introduce type-unsafe memory reads/writes for
stale interior pointers into updated objects. This is similar to a typi-
cal dangling pointer vulnerability [8], which, in the example, causes
the pointer interior p to erroneously write into the field uid in-
stead of the field magic. Object replacement may introduce similar
vulnerabilities for stale base pointers to updated objects. In the ex-
ample, this causes the pointer base p to erroneously read from the
field magic in the old object instead of the field uid in the new one.
It may also introduce misplaced reads/writes for stale interior point-
ers into updated objects. In the example, this causes the pointer
interior p to read the field uid from the old object instead of the
new one. Finally, shadow data structures may introduce missing
read/write errors for nonupdated code accessing updated objects as
raw data. This may, for example, lead to uninitialized read vulner-
abilities, as shown in the example for the field securebits.

Prior solutions have proposed static analysis to identify all these
cases correctly [60]. This strategy, however, requires sophisticated
program analysis that scales poorly with the size of the program,
limits the use of some legal C idioms (e.g., void* pointers), and
only provides the ability to disallow updates as long as there are
some live pointers into updated objects. Thus, extensive manual ef-
fort is still required to locate and transfer all the pointers correctly
in the common case of long-lived pointers into updated data struc-
tures. In our experience, this effort is unrealistic for nontrivial state
changes. PROTEOS addresses this problem by migrating the entire
state from one process version to another, automating pointer trans-
fer and dynamic object reallocation with none of the limitations
above. This is possible using our run-time state introspection strat-
egy implemented on top of LLVM-based instrumentation (§5.2).

2.3 Stability of the update process
We say that a live update process is stable if version τ of the sys-
tem with no live update applied behaves no differently than version
τ − k of the same system after k live updates. This property is
crucial for realistic long-term deployment of live update. Unfortu-
nately, the update mechanisms used in existing live update solu-
tions for C repeatedly violate the stability assumption. This is pri-
marily due to the rigid address space organization used, with every
update loading new code and data directly into the running ver-
sion. This in-place strategy typically introduces memory leakage
(due to the difficulties to reclaim dead code and data) and poorer
spatial locality (due to address space fragmentation). For example,
prior work on server applications reported 40% memory footprint
increase and 29% performance overhead after 10 updates [60]. Fur-
ther, solutions that redirect execution to the new code via binary
rewriting [10, 12, 21, 56] introduce a number of trampolines (and
thus overhead) that grows linearly with the number and the size of
the updates. Finally, shadow data structures change the code rep-
resentation and force future updates to track all the changes pre-
viously applied to the system, complicating version management
over time. PROTEOS’ process-level updates eliminate all these is-
sues and ensure a stable live update process (§5).

3. Overview
Our design adheres to 3 key principles: (i) security and reliability:
updates are only installed in predictable system states and the up-
date process is safeguarded against errors and unsafe conditions;
(ii) large update surface: no constraints on the size, complexity,
and number of updates applied to the system; (iii) minimal manual
effort: state filters minimize code inspection effort to ensure safety;
automated state transfer minimizes programming effort for the up-
date; process-level updates make deploying live updates as natural
as installing a new release, with no need for specialized toolchains
or complex patch analysis tools.

3.1 Architecture
Figure 3 shows the overall architecture of PROTEOS. Our de-
sign uses a minimalistic approach with a thin kernel only man-
aging the hardware and providing basic IPC functionalities. All
the core operating system subsystems are confined into hardware-
isolated processes, including drivers, scheduling, process manage-
ment, memory management, storage, and network stack. The OS
processes communicate through message passing and adhere to a
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Figure 3. The architecture of PROTEOS.

well-defined event-driven model. This design is advantageous for
a number of reasons. First, it introduces clear module boundaries
and interfaces to simplify updatability and reasoning on update
safety. Second, live updates are installed by replacing entire pro-
cesses, with a new code and data representation that is no different
from a freshly installed version of the system. This strategy fulfills
the stability requirement and simplifies deployment of live updates.
Third, the MMU-based isolation sandboxes the execution of the
entire state transfer code in the new version, simplifying detection
and isolation of run-time errors and allowing for safe hot rollback
and no memory leakage. Finally, our event-driven update model
facilitates state management and allows the system to actively co-
operate at update time, a strategy which translates to a much more
predictable and controllable live update process [33].

The update process is orchestrated by the update manager
(UM), which provides the interface to deploy live updates for all
the OS processes (including itself). When an update is available,
the update manager loads the new process instances in memory
and requests all the processes involved in the update to converge to
the required update state. When done, every process reports back
to UM and blocks. At the end of the preparation phase, the update
manager atomically replaces all the processes with their new coun-
terparts. The new processes perform state transfer and report back
to the update manager when done. At the end of the state transfer
phase, the old processes are cleaned up and the new processes are
allowed to resume execution. Synchronization between the update
manager and the OS processes is entirely based on message pass-
ing. Live updates use atomic transactions: the update manager can
safely abort and rollback the update during any stage of the update
process, since no changes are made to the original process. Figure 3
depicts the steps of the update process for single-component live
updates (multicomponent updates are discussed in §4.5).

3.2 Update example
In PROTEOS, building a live update is as simple as recompiling
all the updated components using our LLVM compiler plugin. To
apply the update, programmers use prctl, a simple command-line
utility that interfaces directly with the update manager. For exam-
ple, the following command instructs the update manager to install
a new version of the memory manager in the default live update
state (no event in progress):

% prctl update mm /bin/mm.new

In our evaluation, we used this update to apply important changes
to page fault handling code. An example of a multicomponent up-
date is the following:

% prctl mupdate net /bin/net.new \

-state ’num pending writes == 0’
% prctl mupdate e1000 /bin/e1000.new
% prctl mupdate-start

In our evaluation, we used this update to change the interface be-
tween the network stack and the network drivers. The state filter
for the variable num pending writes is used to ensure that no
affected interface interactions are in progress at update time. In
our experiments, this change was applied automatically, with no
manual effort required. Without the filter, the change would have
required several lines of manual and error-prone state transfer code.
Since interface changes between versions are common in modern
operating systems [62, 63], we consider this an important improve-
ment over the state of the art. While it should be clear that not all
the updates can be so smoothly expressed with a simple state fil-
ter, this example does show that, when the state is well-captured
in the form of global data structures, programmers can much more
easily reason on update safety in terms of state quiescence, which
frees them from the heroic effort of validating the update in many
transient (and potentially unsafe) system states. In our model, iden-
tifying a single and well-defined safe update state is sufficient to
guarantee a predictable and reliable update process.

3.3 Limitations
The OS design adopted in PROTEOS is not applicable as-is to com-
modity operating systems. Nonetheless, our end-to-end design can
be easily applied to: (i) microkernel architectures used in com-
mon embedded OSes, such as L4 [49], Green Hills Integrity [3],
and QNX [45]; (ii) research OSes using process-like abstractions,
such as Singularity [47]; (iii) commodity OS subsystems running in
user space, such as filesystems [2] and user-mode drivers in Win-
dows [57] or Linux [19]; (iv) long-running user-space C programs.
We make no claim that our OS design is the only possible design
for a live update system. PROTEOS merely illustrates one way to
implement several novel techniques that enable truly safe and auto-
matic live updates. For instance, our single-component live update
strategy could be also applied to monolithic OS architectures, us-
ing shadow kernel techniques [24] to enable state transfer between
versions. The reduced modularity, however, would complicate rea-
soning on update safety for nontrivial updates. Failure to provide
proper process-like isolation for the state transfer code, in turn,
would lower the dependability of our hot rollback strategy.

We stress that the individual techniques described in the paper
(e.g., state quiescence, automated state transfer, and automated
state checking) have general applicability, and we expect existing
live update solutions for commodity OSes or user-space programs
to directly benefit from their integration. To encourage adoption
and retrofit existing OSes and widely deployed applications, we
explicitly tailored our techniques to the C programming language.

A practical limitation of our approach is the need for annota-
tions to handle ambiguous pointer transfer scenarios (§5.3). Our
experience, however, shows that the impact of these cases is min-
imal in practice (§6.1). Moreover, we see this as a feature rather
than a limitation. Annotations compensate for the effort to manu-
ally perform state transfer and readjust all the pointers. Failing to do
so leads to the reliability and security problems pointed out earlier.

Finally, a limitation of our current implementation is the inabil-
ity to live update the message-passing substrate running in kernel
mode. Given its small size and relatively stable code base, we felt
this was not a feature to particularly prioritize. The techniques pre-
sented here, however, are equally applicable to the kernel code it-
self. We expect extending our current implementation to pose no
more challenges than enabling live update for the update manager,
which PROTEOS already supports in its current form (§4.5).



static int my_init() {
  ... //initialization code
  return 0;
}
int main() {
  event_eh_t my_ehs = {init : my_init};
  sys_startup(&my_ehs);
  while(1) { // event loop
    msg_t m;
    sys_receive(&m);
    process_msg(&m);
  }
  return 0;
}

Figure 4. The event-driven programming model.

4. Live Update Support
This section describes the fundamental mechanisms used to imple-
ment safe and automatic live update in PROTEOS.

4.1 Programming model
Figure 4 exemplifies the event-driven model used in our OS pro-
cesses. The structure is similar to a long-running server program,
but with special system events managed by the run-time system—
implemented as a library transparently linked against every OS pro-
cess as part of our instrumentation strategy. At startup, each process
registers any custom event handlers and gives control to the runtime
(i.e., sys startup()).

At boot time, the runtime transparently invokes the init handler
(my init in the example) to run regular initialization code. In case
of live update, in contrast, the runtime invokes the state transfer
handler, responsible for initializing the new process from the old
state. The default state transfer handler (also used in the example)
automatically transfers all the old state to the new process, follow-
ing a default state transfer strategy (§5.4). This is done by applying
LLVM-based state instrumentation at compile time and automati-
cally migrating data between processes at runtime.

After startup, each process enters an endless event loop to pro-
cess IPC messages. The call sys receive() dispatches regular
messages to the loop, while transparently intercepting the special
system events part of the update protocol and handling all the in-
teractions with the update manager. The event loop is designed to
be short lived, thanks to the extensive use of asynchronous IPC.
This ensures scalability and fast convergence to the update state.
Fast state quiescence is important to replace many OS processes in
a single atomic transaction, eliminating the need for unsafe cross-
version execution in complex updates. Note that this property does
not equally apply to function quiescence, given that many OS sub-
systems never quiesce [56]. In PROTEOS, all the nonquiescent sub-
systems are isolated in event loops with well-defined mappings
across versions. This makes it possible to update any nonquiescent
part of the OS with no restriction. The top of the loop is the only
possible update point, with an update logically transferring control
flow from an invocation of sys receive() in the old process to
its counterpart in the new process (and back in case of hot rollback).

4.2 Virtual IPC endpoints
Two properties make it possible to support transactional process-
level updates for the entire OS. First, updates are transparent to
any nonupdated OS process or user program. Second, updates are
atomic: only one version at the time is logically visible to the rest
of the system. To meet these goals, PROTEOS uses virtual end-
points in its IPC implementation. A virtual endpoint is a unique

version-agnostic IPC identifier assigned to the only active instance
of an OS process. At update time, the kernel atomically rebinds all
the virtual endpoints to the new instances. The switchover, which
occurs at the end of the preparation phase, transparently redirects
all the IPC invocations to the new version.

4.3 State filters
Unlike prior solutions, PROTEOS relies on state quiescence to de-
tect a safe update state. This property allows updates to be installed
only when particular constraints are met by the global state of the
system. State filters make it possible to specify these constraints
on a per-update basis. A state filter is a generic boolean expression
written in a C-like language and evaluated at runtime. Our state
filter evaluator supports the arithmetic, comparison, and logical op-
erators allowed by C. It can also handle pointers to dynamically
allocated objects, compute the value of any global/static variable
(and subelements), and invoke read-only functions with a predeter-
mined naming scheme. State filters reflect our belief that specifying
a safe update state should be as easy as writing an assertion to check
the state for consistency. Our evaluator is implemented as a simple
extension to our state management framework (§5), which already
provides the ability to perform run-time state introspection.

At the beginning of the preparation phase, every to-be-updated
OS process receives a string containing a state filter, which is in-
stalled and transparently evaluated at the end of every following
event loop iteration. When the process transitions to the required
state, the expression evaluates to true, causing the process to re-
port back to the update manager and block at the top of the event
loop. The default state filter forces the process to block immedi-
ately. To support complex state filters that cannot be easily speci-
fied in a simple expression, PROTEOS can automatically compile
generic state filter functions (written in C) into binary form. This
is simply accomplished by generating intermediate process ver-
sions that only differ from the old ones by a new filter function
sf custom. Since the change is semantics-preserving, the interme-
diate versions can be automatically installed in the default update
state before the actual update process takes place. State filter func-
tions give the programmer the flexibility to express complex state
constraints using any valid C code. On the other hand, regular state
filters, are a simpler and smoother solution for online development
and fast prototyping. They are also safer, since the state expression
is checked for correctness by our state transfer framework.

4.4 Interface filters
Our short-lived event loop design is not alone sufficient to guaran-
tee convergence to the update state in the general case, especially
when the system is under heavy load. To give stronger convergence
guarantees in particular scenarios, PROTEOS supports (optional)
interface filters for every to-be-updated OS process. Each filter is
transparently installed into the kernel at the beginning of the prepa-
ration phase. Its goal is to monitor the incoming IPC traffic and
temporarily block delivery of messages that would otherwise delay
state quiescence. Programmers can specify filtering rules similar to
those used in packet filters [40], to selectively blacklist or whitelist
delivery of particular IPC messages by source or type.

4.5 Multicomponent updates
Changes that affect IPC interactions require the system to atomi-
cally update multiple processes in a single update transaction. To
support multicomponent updates, the update manager orderly runs
the preparation protocol with every to-be-updated OS process. The
overall preparation phase is strictly sequential, namely the process
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i in the update transaction is only requested to start the preparation
phase after the process i − 1 has already reached state quiescence
and blocked. The state transfer phase is, in contrast, completely
parallel. Parallelism is allowed to avoid placing any restrictions
on state transfer extensions that require updated processes to ini-
tialize some mutual state. Our sequential preparation strategy, in
turn, ensures a predictable live update process and gives the pro-
grammer full control over the update transaction, while preserving
the ability to safely and automatically rollback the update in case
of programming errors (i.e., deadlocks or other synchronization is-
sues). Our design introduces a new structured definition of the live
update problem: a live update is feasible if it is possible to iden-
tify a sequence of state and interface filters able to drive the system
into a state with a valid mapping—and state transfer function—in
the new version. Our experience shows that this approach is ef-
fective and scales to complex updates. For instance, following a
top-down update strategy, we were successfully able to implement
a fault-tolerant update transaction that atomically replaces all the
OS processes, including the update manager itself.

To update the update manager, PROTEOS uses two simple ideas.
First, the update manager is constrained to be the last process in the
update transaction to obey the semantics of the update process. At
the end of the preparation phase, kernel support allows the update
manager to block and atomically yield control to its new process
version. Second, the new version completes the update process as
part of its own state transfer phase. Once the automated state trans-
fer process completes (§5.1), the new manager updates its state to
account for its own update and normally waits for the other OS
processes to synchronize. This simple strategy added less than 200
lines of code to our original update manager implementation.

4.6 Hot rollback
In case of unexpected errors, hot rollback enables the update man-
ager to abort the update process and safely allow the old version
to resume execution. Our manager can detect and automatically
recover from the following errors: (i) timeouts in the preparation
phase (e.g., due to broken dependencies in the update transaction
or poorly designed state/interface filters which lead to deadlocks
or other synchronization errors); (ii) timeouts in the state transfer
phase (e.g., due to synchronization errors or infinite loops); (iii) fa-
tal errors in the state transfer phase (e.g., due to crashes, panics,
or error conditions automatically detected by our state checking
framework). The MMU-based protection prevents any run-time er-
rors from propagating back to the old version. Fatal errors are ulti-
mately intercepted by the kernel, which simply notifies the update
manager—or its old instance, which is automatically revived by
the kernel when the update manager itself is updating—to perform
rollback. To atomically rollback the update during the state trans-
fer phase, the update manager simply requests the kernel to freeze
all the new instances, rebind all the virtual endpoints to the old in-
stances, and unblock them. The new instances are cleaned up next
in cooperation with the old version of the system.

5. State Management
To automate process-level updates, PROTEOS needs to automati-
cally migrate the state between the old and the new process. Our
migration strategy makes no assumptions about compiler optimiza-
tions or number of code or data structures changed between ver-
sions. In other words, the two processes are allowed to have ar-
bitrarily different memory layouts. This allows us to support ar-
bitrarily complex state changes with no impact on the stability of
the update process. To address this challenge, PROTEOS imple-
ments precise run-time state introspection, which makes it possible
to automate pointer transfer and dynamic object reallocation even
in face of type changes. Our goal is to require help from the pro-
grammers only in the undecidable cases, for example, ambiguous
pointer scenarios (§5.3), semantic changes that cannot be automat-
ically settled by our state mapping and migration strategy (e.g., an
update renumbering the error codes stored in global variables), and
changes that also require updating external state (e.g., an update
modifying the representation of some on-disk data structures).

5.1 State transfer
To support run-time state introspection, every OS process is instru-
mented using an LLVM link-time pass, which embeds state meta-
data in a predefined section of the final ELF binary. The metadata
contains the relocation and type information required to introspect
all the state objects in the process at runtime. The metadata struc-
tures use a fixed layout and are located in a randomized location
only known to the process and the kernel.

Figure 5 depicts the state transfer process. The migration phase
starts with the state transfer framework transferring all the metadata
from the old version to the new version (local address space). This
is done using a capability-based design, with the kernel granting
(only) the new process read-only access to the address space of
the old process. At the end of the metadata migration phase, both
the old and the new metadata are available locally. This allows
the framework to introspect both the old and the new state and
remap all the state objects across versions. The mapping relies on a
version-agnostic naming scheme established at compile time. This
enables the framework to unambiguously pair functions, variables,
strings, and dynamic objects across versions.

At the end of the pairing phase, all the paired objects are sched-
uled for transfer by default. Programmers can register extensions to
change the pairing rules (e.g., in case of variable renaming) or in-
struct the framework to avoid transferring particular objects (§5.4).

In the data migration phase, the framework traverses all the old
state objects (and their inner pointers) scheduled for transfer and
ordinately migrates the data to their counterparts in the new ver-
sion. Our traversal strategy is similar, in spirit, to a precise garbage
collector that relocates objects [67]. There are, however, important
differences to point out. First, all the dynamic (and static) objects
are reallocated (loaded) in the new process. Second, our event loop
design allows no state objects on the stack at update time. This
eliminates the need to create dynamic metadata for all the local
variables, which would degrade performance. Note that, to encour-
age adoption of our state transfer framework in other update and
execution contexts (e.g., multithreaded server applications), how-
ever, our instrumentation can already support dynamic metadata
generation for local variables (disabled in PROTEOS), using stack
instrumentation strategies similar to those adopted by garbage col-
lectors [67]. Finally, objects are possibly reallocated (or loaded)
with a different run-time type. Unlike prior solutions, our frame-
work applies type transformations (for both objects and pointers)
on-the-fly, analyzing the type differences between paired objects at
runtime. This eliminates the need for complex patch analysis tools
and exposes a powerful programming model to state transfer exten-



struct s { //old version
   int flags;
   char string[3];
   short id;
   union IXFER(my_u) u;
   void *userdata;
   PXFER(int) addr;
} my_s;
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   int flags;
   int id;   
   char string[2];
   union IXFER(my_u) u;
   PXFER(int) addr;
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Figure 6. Automating type and pointer transformations.

sions. We clarify this claim with an example. To deploy a live up-
date that added a new field in the middle of the struct buf desc
(a core data structure of the buffer cache) in our evaluation, we only
had to write a simple type-based state transfer callback (§5.4) that
reinitialized the new field in every object in the new version. The
latter is a programmer-provided function automatically invoked by
the framework on every transferred object of the requested type
(e.g., struct buf desc). This allows the programmer to focus
on the data transformation logic while the framework automat-
ically performs dynamic object reallocation and updates all the
live pointers into the new objects. Since this struct was used in
complex data structures like hash tables and linked lists (chained
together by several base and inner pointers), this is a significant
improvement over existing techniques, which would have required
extensive and error-prone manual effort to implement state transfer.

5.2 Metadata instrumentation
Our LLVM transformation pass operates at the LLVM IR level and
generates metadata for global/static variables (and constants), func-
tions, and strings. Although functions and strings need not be nor-
mally transferred to the new version, their metadata is necessary to
transfer pointers correctly. For each object, the pass records infor-
mation on the address, the name, and the type. To create unique and
version-coherent identifiers to pair static state objects across ver-
sions, our pass uses both naming (e.g., global variable name) and
contextual (e.g., module name for static functions/variables) infor-
mation derived from debug symbols. Note that this strategy does
not prevent debug symbols from being completely stripped with
no restriction from the final binary. To create metadata for dynam-
ically allocated objects, in turn, the pass analyzes and instruments
each allocation site found in the original code. Our static analysis
can automatically identify malloc/free and mmap/munmap al-
locator abstractions, which PROTEOS natively supports for every
OS process. For each allocation site, the pass records the name
(derived from the caller and the allocation variable), the allocator
name, and the static type. The name and the allocator name are
used to pair (and reallocate) allocation sites across versions. The
static type is used to dynamically determine the run-time type of
every allocated object. For example, an allocation of the form ptr
= malloc(sizeof(msg t)*4) will be associated a static type
msg t and a run-time type [4 x msg t]. The pass replaces ev-
ery allocation/deallocation call with a call to a wrapper function
responsible to dynamically create/destroy metadata for every dy-
namic object. To minimize the performance impact, the wrappers
normally use in-band descriptors to store the metadata for the dy-

namic state objects. The allocators, however, support special flags
to let the programmer control the allocation behavior (e.g., use out-
of-band metadata for special I/O regions, or remap DMA buffers at
state transfer time instead of explicitly reallocating them).

5.3 Pointer transfer
Pointers pose a fundamental challenge to automating state transfer
for C programs. To transfer base and interior pointers correctly,
our framework implements dynamic points-to analysis on top of
the precise type information provided by our instrumentation. Our
analysis is cast-insensitive and does not forbid or limit the use of
any legal C programming idiom (e.g., void*), a problem in prior
work [59, 60]. Our pointer transfer strategy follows 5 steps (an
example is presented in Figure 6): (i) locate the target object (and
the inner element, for interior pointers); (ii) locate the target object
counterpart in the new version according to the output of the pair-
ing phase; (iii) remap the inner element counterpart in case of type
changes; (iv) reinitialize the pointer according to the target object
(and element) counterpart identified; (v) schedule the target object
for transfer. The last step is necessary to preserve the shape of ar-
bitrarily complex data structures. In addition, the traversal allows
our framework to structurally prevent any memory leakages (i.e.,
unreachable dynamic objects) in the old version from propagating
to the new version. Note that our pointer traversal strategy relies
only on the run-time type of the target object (and element), with no
assumptions on the original pointer type. This strategy can seam-
lessly support generic void* pointers and eliminates the need to
explicitly deal with pointer casting. Our framework can also auto-
matically handle pointers with special integer values (e.g., NULL or
MAP FAILED (-1)) and guard pointers that mark buffer boundaries.
Uninitialized pointers are structurally prevented in the allocators
and dangling pointers disallowed by design. While our pointer anal-
ysis can handle all these common scenarios automatically, we have
identified practical cases of pointer ambiguity that always require
(typically one-time) user intervention, pointers stored as integers
and unions with inner pointers, in particular. Manually handling
these cases via annotations or callbacks (§5.4) is necessary to en-
sure precise pointer analysis. More details on our points-to analysis
and our pointer transfer strategy are published elsewhere [32].

5.4 Transfer strategy
Our framework follows a well-defined default state transfer strat-
egy, while allowing programmer-provided extensions to arbitrarily
override the default behavior.

Figure 6 shows an example of the transfer strategy followed
by our framework for a simple update. All the objects and the
pointers are automatically transferred (and reallocated on demand)
to the new version in spite of type changes. Our default trans-
fer strategy automates state transfer for many common structural
changes, such as: (i) primitive type transformations, (ii) array trun-
cation/expansion, and (iii) addition/deletion/reordering of struct
fields. Extensions can be used to handle more complex state
changes (and cases of pointer ambiguity) with minimal effort. The
latter are supported in the form of type-based or object-based anno-
tations or callbacks, evaluated every time the framework traverses
or remaps the intended type (or object). Annotations are imple-
mented at the preprocessor level with no changes in the compiler.
Figure 6 shows an example, with the IXFER and PXFER type-based
annotations forcing the framework to memcpy the union u (without
introspecting it) and perform pointer transfer of the integer addr.

Programmer-provided state transfer callbacks, in turn, provide
a more generic extension mechanism to override the default state
transfer behavior during any stage of the state transfer process and



Update LOC Changes Manual effort Time (ms)

Category # Multi Total Median 90thP Fun Var Ty Ann SF ST LOC Med Upd

Bug fixes 15 4 1593 18 1231 27 2 2 - 2 55 397
Maintenance 12 5 2206 62 872 16 7 8 - 1 16 230
New features 19 6 10122 195 2435 199 45 101 - 1 63 202
Performance 4 1 652 179 291 10 2 7 - 0 131 358

Total 50 16 14573 63 709 252 56 118 14 4 265 272

Table 1. Overview of all the updates analyzed in our evaluation.

at several possible levels of abstraction. For instance, programmers
can register object-level callbacks and element-level callbacks—
evaluated when the framework performs a particular action on a
given object or an element part of an object, respectively. To spec-
ify the trigger entity in the most flexible way, callbacks can be reg-
istered by object/element storage (e.g., data, heap), object/element
name (e.g., my var namespace *), and object/element type (e.g.,
struct my struct s), or using any combination thereof. To sup-
port many possible trigger events, programmers can register ob-
ject/element pairing callbacks (to override the default name-based
pairing strategy adopted by the framework), object/element trans-
fer callbacks (to override the default transfer strategy or selectively
schedule individual objects for transfer), and pointer transfer call-
backs (to override the default pointer transfer strategy). Note that
the callbacks are automatically and logically chained together by
the framework. For example, a user-defined element pairing call-
back that remaps a struct field in a nonstandard way in the new
version is automatically invoked by the framework when either
transferring the original field to the new version or remapping an
inner pointer to the field into an updated object. The callbacks all
run in the context of the new process version after completing the
metadata migration phase, allowing the programmer to seamlessly
access objects in the old and the new version (and their metadata in-
formation) with no restriction. The callbacks are written directly in
C, providing the ability to operate arbitrary transformations in the
state transfer code—even changing external state on the disk, for
example. In addition, this allows the programmer to remap com-
plex data structures that significantly change their representation
across versions (e.g., a hash table transformed into multiple bal-
anced BSTs) and cannot be automatically paired (nor transferred)
by our framework. Even in such complex state transformation sce-
narios, our programming model can provide a generic callback-
driven interface to locate and traverse all the objects (and pointers)
to transfer, allowing the programmer to select the best level of ab-
straction to operate and concentrate on data transformations rather
than on manual and error-prone state introspection.

5.5 State checking
Our state management framework supports automated state check-
ing using generic state invariants. The idea is to detect an invalid
state when conservatively defined invariants are violated. Target-
based invariants are naturally enforced by our points-to analysis
(i.e., a pointer not pointing to any valid object is invalid). Other in-
variants are determined by static analysis. We support value-based
invariants (derived from value set analysis of integer variables) and
type-based invariants, which verify that a pointer points to a tar-
get of a valid type at runtime. This is done by recording metadata
on all the valid implicit and explicit pointer casts (i.e., bitcast
and inttoptr LLVM instructions). State checking is performed
on the old version before the transfer and on the new version after
the transfer. In both cases, the transfer is atomically aborted when
invariants violations are found (unless extensions change the de-

fault behavior). Checking both the old and the new state allows the
framework to detect: (i) a tainted state in the old version (i.e., arbi-
trary memory corruption) and possibly let extensions recover from
it; (ii) corruption in the new state introduced by the state transfer
code itself; (iii) violating assumptions in the state transfer process.
An example in the latter category is the attempt to transfer a pointer
to an old object that no longer exists (or no longer has its address
taken) in the new version.

6. Evaluation
We have implemented PROTEOS on the x86 platform. The cur-
rent PROTEOS implementation is a major rewrite of the original
MINIX 3 microkernel-based operating system, which only pro-
vided process-based isolation for all the core OS components and
restartability support for stateless device drivers [43]. Our current
prototype includes 22 OS processes (8 drivers and 14 servers) and
supports a complete POSIX interface. The static instrumentation is
implemented as an LLVM pass in 6550 LOC 1. The state manage-
ment framework is implemented as a static library written in C in
8840 LOC. We evaluated PROTEOS on a workstation equipped with
a 12-core 1.3Ghz AMD Opteron processor and 4GB of RAM. For
evaluation purposes, we ported the C programs in the SPEC CPU
2006 benchmark suite to PROTEOS. We also put together an sd-
tools macrobenchmark, which emulates a typical syscall-intensive
workload with common development operations (compilation, text
processing, copy, delete) performed on the entire OS source tree.
We repeated all our experiments 21 times and reported the median.
Our evaluation focuses on 4 key aspects: (i) Experience: Can PRO-
TEOS effectively support both simple and complex updates with
minimal effort? (ii) Performance: Do our techniques yield low run-
time overhead and realistic update times? (iii) Service disruption:
Do live updates introduce low service disruption? (iv) Memory
footprint: How much memory do our techniques use?

6.1 Experience
To evaluate the effort in deploying live updates, we randomly sam-
pled 50 real updates produced by the team of core MINIX 3 devel-
opers in the course of over 2 years. The live update infrastructure,
in turn, was developed independently to ensure a fair and realistic
update evaluation. We carefully analyzed each update considered,
prepared it for live update, and finally deployed it online during
the execution of our SPEC and sdtools benchmarks. We success-
fully deployed all the live updates considered and checked that the
system was fully functional before and after each experiment. In
4 cases, our first update attempt failed due to bugs in the state
transfer code. The resulting (pointer) errors, however, were imme-
diately detected by our state transfer framework and the update
safely rolled back with no consequences for the system. We also

1 Source lines of code reported by David Wheeler’s SLOCCount.



PROTEOS Linux
malloc 2.30 1.41
free 1.19 1.09
mmap 1.41 1.77
munmap 1.06 1.42

Table 2. Execution time of instrumented allocator operations nor-
malized against the baseline.

verified that the update process was stable (no performance/space
overhead increase over time) and that our live update infrastructure
could withstand arbitrary compiler optimization changes between
versions (e.g., from -O1 to -O3). Table 1 presents our findings.

The first three grouped columns provide an overview of all
the updates analyzed, with the number of updates considered per
category and the number of updates that involved multiple OS
processes. The New features category has the highest number of
updates, given that MINIX 3 is under active development. Of the
50 updates considered, 16 involved multiple OS processes. This
confirmed the importance of supporting multicomponent live up-
dates. The second group of columns shows the number of lines
of code (total, median, 90th percentile) changed across all the
updates, with a total of nearly 15,000 LOC. The third group
shows the number of functions, variables, and types changed (i.e.,
added/deleted/modified). For example, New features updates intro-
duced 199 function changes, 45 variable changes, and 101 type
changes. The fourth group, in turn, shows the manual effort re-
quired in terms of annotations, state filters, and lines of code for
state transfer extensions. We only had to annotate 14 declarations
(using 3 object-based annotations, 10 type-based annotations, and 1
type-based callback) throughout the entire PROTEOS source code.
Encouragingly, this was a modest one-time effort that required less
than 1 man week. The annotations were only necessary for unions
with inner pointers and special nontransferrable state objects (e.g.,
allocator variables). Custom state filters, in turn, were only re-
quired for 4 updates. We found that, for most updates, our event
loop design gave sufficient predictability guarantees in the default
update state. In the remaining cases, however, we faced complex
interface changes that would have required extensive manual effort
without support for custom state filters. From empirical evidence,
we also believe that more than half of the updates would have been
extremely hard to reason about using only function quiescence. De-
spite the many variable and type changes, all the updates required
only 265 LOC of state transfer extensions. We found that our state
transfer framework was able to fully automate most data structure
changes (i.e., addition/removal). In addition, our type-based state
transfer callbacks minimized the effort to handle cross-cutting type
changes. Finally, the last column reports the median update time,
with a value of 272ms across all the updates. We also measured
a maximum update time of 3550ms for cross-cutting updates that
replaced all the OS processes (individually or in a single multicom-
ponent and fault-tolerant transaction).

We now compare our results with prior solutions. Before ours,
Ksplice was the only OS-level live update solution evaluated with a
comprehensive list of updates over a time interval [12]. Compared
to ours, however, their evaluation is based on security patches of
much smaller size. Their median patch size is less than 5 LOC,
and the 90th percentile less than 30 LOC. As Table 1 demonstrates,
PROTEOS was evaluated with much more complex updates, while
only requiring 265 LOC for state transfer extensions (compared
to 132 LOC for Ksplice’s 64 small patches [1]). Many other live
update solutions for C present only case studies [13, 14, 20, 56]
or lack a proper quantitative analysis of the manual effort re-
quired [10, 21, 55]. Many researchers, however, have reported
“tedious implementation of the transfer code” [13], “tedious engi-
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Figure 7. Update time vs. run-time state size.

neering efforts” [20], “tedious work” [21], and “an arduous testing
process that spanned several weeks of concentrated work” [10]. In
contrast, we found our techniques to reduce the live update effort
to the bare minimum. In particular, our entire update evaluation re-
quired only 10 man days. Ginseng [60] and Stump [59] are the only
prior solutions for C that provide quantitative measurements for the
manual effort. Ginseng (Stump) required 140 (186) source changes
and 336 (173) state transfer LOC to apply 30 (13) server applica-
tion updates introducing 21919 (5817) new LOC in total. While it
is difficult to directly compare their results on server applications
with ours, we believe that our techniques applied to the same set
of updates would have significantly reduced the effort, avoiding
manual inspection or code restructuring to eliminate unsupported
C idioms, posing no restriction on the nature of the data structure
changes, and assisting the programmer in challenging tasks like
heap traversal, pointer transfer, and state checking.

6.2 Performance
We evaluated the run-time overhead imposed by the update mech-
anisms used in PROTEOS. Virtual endpoints introduce only update-
time costs and no extra run-time overhead on IPC. Transparent in-
terception of special system events introduces only 3 additional cy-
cles per event loop iteration. An important impact comes also from
the microkernel-based design itself. Much prior work has been ded-
icated to improving the performance of IPC [52] and microkernel-
based systems in general [39, 53]. Our focus here is on the update
techniques rather than on microkernel performance. For instance,
our current measurements show that the gettimeofday, open,
read, write, close system calls are 1.05-8.27x slower than on
Linux due to our microkernel design. These numbers are, however,
pessimistic, given that we have not yet operated many optimiza-
tions described in the literature [39, 52, 53].

Much more critical is to assess the cost of our state instrumen-
tation, which directly affects the applicability of our techniques to
other OS architectures or user-space applications. To this end, we
first ran our SPEC and sdtools macrobenchmarks to compare the
base PROTEOS implementation with its instrumented version. Our
repeated experiments reported no noticeable performance degra-
dation. This is expected since static metadata, used only at up-
date time, is isolated in a separate ELF section with no impact
on spatial locality. The use of in-band descriptors to generate dy-
namic metadata, in turn, minimizes the run-time overhead on al-
locator operations. To isolate this overhead, we measured the cost
of our instrumentation on 10,000 malloc/free and mmap/munmap
repeated allocator operations. We ran the experiments for multi-
ple allocation sizes (0-16MB) and reported the median overhead
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Figure 8. Run-time overhead vs. update frequency. Results are reported for our benchmarks in 3 different live update scenarios: (a) online
diversification; (b) memory leakage reclaiming; (c) update failures.

for malloc/free (the overhead does not generally depend on the
allocation size) and the maximum overhead for mmap/munmap (the
overhead generally decreases with the allocation size). For compar-
ison, we also ported our instrumentation to Linux user-space pro-
grams and ran the same microbenchmarks on Ubuntu 10.04 LTS
32-bit (libc allocators). Table 2 depicts our results, with a differ-
ent (but comparable) impact of our state instrumentation in the two
allocator implementations. The highest overheads in PROTEOS and
Linux are incurred by malloc (130%) and mmap (77%), respec-
tively. Note that these results are overly pessimistic, since common
allocation patterns typically yield poorer spatial locality, which will
likely mask the overhead on allocator operations further.

We now compare our results with prior live update techniques.
Live update solutions based on (more intrusive) instrumentation
strategies have reported macrobenchmark results with worst-case
overheads of 6% [60], 6.71%[59], and 96.4% [55]. Solutions based
on binary rewriting, in turn, have reported microbenchmark results
with 1%-8% invocation overhead [56] for updated functions. Un-
like all the existing techniques, our overhead is well-isolated in al-
locator operations and never increases with the number and the size
of the updates applied to the system (stability assumption).

To assess the impact of live updates on the system, we also an-
alyzed the distribution of the update time in more detail. Figure 7
depicts the update time (the time from the moment the update is
signaled to the moment the new version resumes execution) as a
function of the run-time state size (total size of all the static and
dynamic state objects). These (interpolated) results reflect average
measurements obtained during the execution of our macrobench-
marks for all the single-component updates used in our evaluation.
The figure shows that the update time grows approximately linearly
with the state size. This behavior stems from the fact that the up-
date time is heavily dominated by state transfer and state checking
(isolated in the figure). The time to load the new processes in mem-
ory and complete the preparation phase is normally marginal. We
experimented with many state filters to quiesce all the common OS
process interactions and found that the time to reach state quies-
cence was only a few milliseconds in the worst case. This property
makes any overhead associated to evaluating state and interface
filters in the preparation phase marginal. While our overall update
times are generally higher than prior solutions for simple updates
(since we replace entire processes instead of individual functions),
the resulting impact is still orders of magnitude shorter than any
reboot and bearable for most systems.

6.3 Service disruption
To substantiate our last claim, we evaluated the service disruption
caused by live update. Figure 8 shows the run-time overhead in-

curred by our macrobenchmarks when periodically updating OS
processes in a round-robin fashion. The overhead increases for
shorter update intervals, with more disruption incurred by sdtools.
The figures present three novel live update scenarios. Figure 8a
presents results for an online diversification scenario—an idea we
have also developed further in [34]. We implemented a source-to-
source transformation able to safely and automatically change 3872
type definitions (adding/reordering struct elements and expand-
ing arrays/primitive types) throughout the entire operating system.
The changes were randomized for each generated operating system
version, introducing a heavily diversified memory layout across
updates. This scenario stressed the capabilities of our state transfer
framework, introducing an average of 4,873,735 type transforma-
tions at each update cycle and approximating an upper bound for
the service disruption. Figure 8b presents a memory leakage re-
claiming scenario. Updates were performed between identical OS
versions (approximating a lower bound for the service disruption),
but we deliberately introduced a memory leak bug (similar to one
found during development) that caused the virtual filesystem not to
free the allocated memory at exec() time. Shorter update intervals
increase the overhead but allow our state transfer framework to au-
tomatically repair leaks more quickly. The tradeoff is evident for
sdtools, which exec()ed several programs during the experiment.
Figure 8c presents an update failures scenario. We deliberately
simulated state transfer crashes or 2-second timeouts (in equal mea-
sure) for each update, resulting in more severe service disruption
for the syscall-intensive benchmark sdtools, but with no system-
perceived impact. This scenario stressed the unique fault-tolerant
capabilities of our live update infrastructure, able to withstand sig-
nificant update failures and automatically rollback the entire update
transaction with no consequences for the operating system and all
the running programs. Overall, our experiments reported a neg-
ligible overhead for update intervals larger than 20s. Given that
updates are relatively rare events, we expect the update-induced
service disruption to be minimal in practice.

6.4 Memory footprint
Our metadata instrumentation naturally leads to a larger mem-
ory footprint at runtime. Our current implementation required an
average of 65 bytes for each type, 27 extra bytes for each vari-
able/constant/string, 38 extra bytes for each function with address
taken, 10 extra bytes for each allocation, and 38 bytes for each
allocation site. During the execution of our macrobenchmarks, we
measured an average state overhead (i.e., metadata size vs. run-time
state size) of 18% and an overall memory footprint overhead of
35% across all the operating system processes. While comparable
to prior instrumentation-based live update techniques [56, 59, 60],



our memory footprint overhead never increases with the number
and the size of the updates applied to the system. This is ensured
by our stable live update strategy. For comparison, we also ported
the Linux ACPI driver to PROTEOS. Despite the very complex code
base, adding updatability only required 2 type-based callbacks for
2 unions. In this case, the state overhead and the overall memory
footprint overhead measured were 41% and 37%, respectively.

7. Related work
Several live update solutions are described in the literature, with
techniques targeting operating systems [12–14, 20, 56], C programs
[10, 21, 55, 59, 60], object-oriented programs [46, 74], program-
ming languages [11, 26, 73], database systems [18], and distributed
systems [6, 7, 9, 16, 17, 27, 28, 48, 76]. We focus here on live up-
date for operating systems and generic C programs, but we refer
the interested reader to [5, 35, 44, 68] for more complete surveys.

K42 [13, 14, 72] is a research OS that supports live update
functionalities using object-oriented design patterns. To update live
objects, K42 relies on system-enforced quiescence, transparently
blocking all the threads calling into updated objects. Unfortunately,
this strategy leads to a poorly predictable update process, with hid-
den thread dependencies potentially leading to unrecoverable dead-
locks. In contrast, PROTEOS gives programmers full control over
the update process and can automatically recover from synchro-
nization errors (e.g., deadlocks) introduced by poorly designed up-
date transactions using a predefined timeout. In addition, K42 pro-
vides no support for automated state transfer. Unlike existing live
update techniques for C, however, their object-oriented approach
offers a solution to the stability problem. The downside is that
their techniques are limited to object-oriented programs. In con-
trast, the techniques we propose have more general applicability.
For instance, state filters and our state management framework can
be used to improve existing live update solutions for the Linux ker-
nel [12, 20, 56] and generic C programs [10, 21, 55, 59, 60]. Our
framework could be, for example, integrated in existing solutions
to automatically track pointers to updated data structures or abort
the update in case of unsafe behavior. Our process-level updates, in
turn, are an elegant solution to the stability problem for user-level
live update solutions. Also note that, while explicitly conceived
to simplify state management—no need for explicit update points
and stack instrumentation—and minimize manual effort—simpler
to reason on update safety and control multicomponent live up-
date transactions—our event-loop design is not strictly required for
the applicability of our techniques. For instance, our event-driven
model can be easily extended to multithreaded execution using an-
notated per-thread update points, as previously suggested in [59].
When backward compatibility is not a primary concern, however,
we believe our event-driven strategy to offer a superior design for
safe and automatic live update. For this reason, we opted for a pure
event-driven model for our current PROTEOS implementation.

DynaMOS [56] and LUCOS [20] are two live update solutions
for the Linux kernel. They both apply code updates using binary
rewriting techniques. To handle data updates, DynaMOS relies
on shadow data structures, while LUCOS relies on virtualization
to synchronize old and new data structure versions at each write
access. Both solutions advocate running the old and the new version
in parallel. Unlike ours, their cross-version execution strategy leads
to a highly unpredictable update process. In addition, state transfer
is delegated entirely to the programmer.

Ksplice [12] is an important step forward over its predeces-
sors. Similar to DynaMOS [56], Ksplice uses binary rewriting and
shadow data structures to perform live updates. Unlike all the other
live update solutions for C, however, Ksplice prepares live updates
at the object code layer. This strategy simplifies patch analysis and

does not inhibit any compiler optimizations or language features.
Process-level updates used in PROTEOS take these important guar-
antees one step further. Not only are the two versions allowed to
have arbitrarily different code and data layout, but patch analysis
and preparation tools are no longer necessary. The new version is
compiled and deployed as-is, with changes between versions auto-
matically tracked by our state transfer framework at runtime. More-
over, Ksplice does not support update states other than function qui-
escence and provides no support for automated state transfer, state
checking, or hot rollback.

Related to OS-level live update solutions is also work on exten-
sible operating systems [15, 22, 69, 70] (which only allow prede-
termined OS extensions), dynamic kernel instrumentation [58, 75]
(which is primarily concerned with debugging and performance
monitoring), microkernel architectures [23, 42, 49, 71] (which can
replace OS subsystems but not without causing service loss [23]),
and online maintenance techniques [54, 66] (which require virtual-
ization and domain-specific migration tools).

Similar to OS-level solutions, existing live update techniques
for user-space C programs all assume an in-place update model,
with code and data changes loaded directly into the running ver-
sion. Redirection of execution is accomplished with compiler-
based techniques [59, 60], binary rewriting [10, 21], or stack re-
construction [55]. Some techniques assume quiescence [10], others
rely on predetermined update points [55, 59, 60] or allow unre-
stricted cross-version execution [21]. Unlike PROTEOS, these solu-
tions offer no support to specify safe update states on a per-update
basis, do not attempt to fully automate state transfer or state check-
ing, and fail to ensure a transactional and stable update process.

Recent efforts on user-space C programs by Hayden et al. [41],
developed independently from our work, also suggest using entire
programs as live updatable units. Unlike our process-level updates,
however, their update strategy encapsulates every program version
inside a shared library and allows the old and the new version to
share the same process address space with no restriction at live up-
date time. This strategy requires every program to be compiled with
only position-independent code—which may be particularly ineffi-
cient on some architectures—and also fails to properly isolate, de-
tect, and recover from errors in the state transfer code. In addition,
their state transfer strategy does not support interior pointers and
unrestricted use of void* pointers, nor does it attempt to automate
pointer transfer for heap-allocated objects with no user interven-
tion. Finally, their system includes xfgen, a tool to generate state
transformers using a domain-specific language. While a high-level
language may reduce the programming effort, we found much more
natural to express state transfer extensions for C programs directly
in C, using a convenient and well-defined callback interface.

The techniques used in PROTEOS draw inspiration from prior
work in different research areas. Our state filters are inspired by
DYMOS [51], an early dynamic modification system that allowed
programmers to specify procedures required to be inactive at up-
date time. State filters are more general and easier to use, allowing
programmers to specify safe update states in the most natural way.
The idea of state transfer between processes was first explored by
Gupta [36], but his work assumed a fixed memory layout and dele-
gated state transfer entirely to the programmer. Our state introspec-
tion strategy is inspired by garbage collector-style object tracking,
a technique also explored in live update solutions for managed lan-
guages like Java [74]. Similarly, our update-time memory leakage
reclaiming strategy is inspired by prior precise garbage collection
techniques for C programs [67]. Finally, state checking is inspired
by invariants-based techniques to detect anomalous program be-
havior [4, 25, 30, 38, 65, 77]. Unlike prior techniques, our state in-
variants are conservatively derived from static analysis, eliminating
false positives that arise from learning likely invariants at runtime.



8. Conclusion
In this paper, we presented PROTEOS, a new research OS designed
with live update in mind. Unlike existing solutions, the techniques
implemented in PROTEOS can efficiently and reliably support sev-
eral classes of updates with minimal manual effort. State and in-
terface filters allow updates to happen only in predictable system
states and give programmers full control over the update process.
Process-level updates completely eliminate the need for complex
toolchains, enable safe hot rollback, and ensure a stable update
process. Our state management framework reduces the state trans-
fer burden to the bare minimum, fully automating state transfer for
common structural state changes and exposing a convenient pro-
gramming model for extensions. Finally, our state checking frame-
work can automatically identify errors in a tainted state and detect
violating assumptions in the state transfer process itself.
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