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Abstract
Web browsers are becoming an increasingly important part
of our everyday life. Many users spend most of their time
surfing the web, and browser-only operating systems are
gaining growing attention. To enhance the user experience,
many new browser extensions (or add-ons) are continuously
released to the public. Unfortunately, with their constant
access to a large pool of private information, extensions
are also an increasingly important attack vector. Existing
approaches that detect privacy-breaching browser extensions
fail to provide a generic cross-browser mechanism that can
effectively keep up with the ever-growing number of browser
implementations and versions available nowadays.

In this paper, we present a novel cross-browser detec-
tion model solely based on supervised learning of browser
memory profiles. We show how to carefully select rele-
vant features for the model, which are derived directly from
the memory activity of the browser in response to privacy-
sensitive events. Next, we use support vector machines to
automatically detect privacy-breaching extensions that react
to these events. To verify the effectiveness of our model, we
consider its application to extensions exhibiting keylogging
behavior and discuss an end-to-end implementation of our
detection technique. Finally, we evaluate our prototype with
the 3 most popular web browsers (Firefox, Chrome, and IE)
and against real-world browser extensions. Our experiments
confirm that our approach achieves good accuracy and can
seamlessly support a variety of browsers with little effort.

Categories and Subject Descriptors D.4.6 [Operating Sys-
tems]: Security and Protection—Invasive software (e.g.,
viruses, worms, Trojan horses), Information flow controls
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1. Introduction
Web browsers are undoubtedly one of the most popular user
applications. This is even more evident in recent times, with
Google introducing a platform (Chromebook [13]) where the
browser is the only application provided to the user. With
their modular and extensible architecture, modern browsers
are also an appealing platforms for third-party software de-
velopers, who can easily publish new extensions to extend
any standard web browser functionality.

Extendability is a crucial feature that makes web browsers
a very attractive service platform. From a security perspec-
tive, however, extensions opened up new opportunities for
attacks. Most extensions do not require any special privi-
lege to be installed, despite their ability to access all the user
private data. Delegating the decision about extension’s secu-
rity to trusted parties is not a conclusive solution, given that
privacy-breaching behavior has been found even in store-
approved extensions [6]. Furthermore, extensions are be-
coming the perfect drop for trojans that deploy a malicious
extension as part of their infecting procedure [3].

Recent solutions specifically designed to detect privacy-
breaching extensions [9, 31] require significant changes to
the browser and are typically specific to a particular browser
implementation and release. Besides requiring access to
the source-code, porting these solutions to all the major
browsers requires a significant effort. In addition, main-
taining such infrastructures over time is likely to be ill-
affordable, given the increasing number of new browser
versions released every year, as Figure 1 demonstrates.
To deal with these challenges effectively, we advocate the
need for more general, cross-browser (i.e., version- and
implementation-independent) approaches to detect different
classes of privacy-breaching extensions.

In this paper, we present a novel cross-browser detec-
tion model for extensions that eavesdrop privacy-sensitive
events, and consider, without loss of generality, its appli-
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Figure 1. Rate of stable (major and minor) releases [12, 23,
26].

cation to extensions with keylogging behavior. Extensions
in this category intercept all the user-issued keystrokes and
leak them to third parties. Keylogging extensions are partic-
ularly dangerous because they can be easily used in large-
scale attacks (i.e., they do not depend on the DOM of the
visited page), with the ability to capture all the user sensi-
tive data, including passwords and credit card numbers. For
their ease of implementation, they are generally hard to de-
tect and no countermeasure exists for all the browser imple-
mentations available. Their simplicity also makes them the
ideal privacy-breaching candidate for code injection attacks
in vulnerable legitimate extensions. Figure 2 shows how to
use a simple and compact payload to inject a full-fledged
keylogger in Feed Sidebar version< 3.2 for Firefox affected
by a typical privileged code injection vulnerability [27].

<title>Apparently Legitimate Website </title>
<link>http ://www.legitimate.com</link>
<description >

Legitimate encoded image follows: &lt;iframe src=&q
uot;data:text/html;base64 ,PHNjcmlwdD5kb2N1bWVudC5hZ
GRFdmVudExpc3RlbmVyKCJrZXlwcmVzcyIsZnVuY3Rpb24oZSl7
dmFyIHg9bmV3IFhNTEh0dHBSZXF1ZXN0KCk7eC5vcGVuKCJHRVQ
iLCJodHRwOi8vbm90LmxlZ2l0aW1hdGUuY29tLz9rPSIrZS53aG
ljaCxmYWxzZSk7eC5zZW5kKG51bGwpO30sZmFsc2UpOzwvc2Nya
XB0Pg ==& quot;&gt;&lt;/ iframe&gt;

</description >

RSS item with a malicious Base64 encoded payload.

<script >
document.addEventListener("keypress", function(e) {

var x = new XMLHttpRequest ();
x.open("GET","http :// not.legitimate.com/?k=" +

e.which , false);
x.send(null); }, false);

</script >

Decoded payload.

Figure 2. Deploying a keylogger via Feed Sidebar exploit.

The contributions of this paper are threefold. First, to the
best of our knowledge, we are the first to introduce a cross-
browser detection model for privacy-breaching extensions

designed to completely ignore the browser internals. To ful-
fill this requirement, our model analyzes only the memory
activity of the browser to discriminate between legitimate
and privacy-breaching extension behavior. An SVM (sup-
port vector machine) classifier is used to learn the proper-
ties of a number of available memory profiles and automati-
cally identify new privacy-breaching profiles obtained from
unclassified extensions. Second, we discuss a fine-grained
memory profiling infrastructure able to faithfully monitor
the behavior of modern browsers and derive accurate mem-
ory profiles for our model. Our infrastructure can be en-
abled and disabled on demand, thus allowing convenient
user- or policy-initiated detection runs. Finally, we have im-
plemented our detection technique in a production-ready
solution and evaluated it with the latest versions of the 3
most popular web browsers: Firefox, Chrome, and IE (as of
September 2011 [36]). To test the effectiveness of our so-
lution, we have selected all the extensions with keylogging
behavior from a dataset of 30 malicious samples, and con-
sidered the most common legitimate extensions for all the
browsers analyzed. Our experimental analysis reported no
false negatives and a very limited number of false positives.

2. Our Approach
Browsers are becoming increasingly complicated objects
that accomplish several different tasks. Despite their imple-
mentation complexity, the basic model adopted is still fairly
simple, given their event-driven nature. Browser events are
typically triggered by user or network input. In response to
a particular event, the browser performs well-defined activ-
ities that distinctly characterize its reaction. If we consider
all the possible components that define the browser behavior
(e.g., processes, libraries, functions), we expect independent
components to react very differently to the given event.

Browser extensions follow the same event-driven model
of the browser. When an extension registers an handler for
a particular event, the browser will still react to the event as
usual, but will, in addition, give control to the extension to
perform additional activities. Since the presence of the ex-
tension triggers a different end-to-end reaction to the event,
we expect new behavioral patterns to emerge in the activities
performed by all the possible components of the browser.

Our approach builds on the intuition that the differences
in the reaction to a particular event can reveal fundamen-
tal properties of the extension behavior, even with no prior
knowledge (e.g., variables used or API functions called) of
the exact operations performed in response to the event.
More importantly, if we can model the behavior of how
particular extensions react to certain events, we can then
also identify different classes of extensions automatically.
Our detection strategy leverages this idea to discriminate be-
tween legitimate and privacy-breaching extension behavior.

Similarly to prior approaches [16, 28], we artificially in-
ject bogus events into the system to trigger the reaction of the



browser to a particular event of interest. Concurrent to the in-
jection phase, the monitoring phase records all the activities
performed by the different components of the browser in re-
sponse to the events injected. The reaction of the browser is
measured in terms of the memory activities performed when
processing each individual event. Our analysis is completely
quantitative, resulting in a black-box model: we only con-
sider the memory access distribution, not the individual data
being processed in memory. The reason for using a mon-
itoring infrastructure at this level of abstraction is to ignore
browser and extension internals allowing for a cross-browser
detection strategy. At the same time, memory profiling al-
lows us to build a very fine-grained behavioral model and
achieve better detection accuracy. Furthermore, we can turn
on the detection process only when needed, thus limiting the
performance impact to short and predictable periods of time.

To model and detect privacy-breaching behavior, our in-
jection phase simulates a number of user-generated events.
This is possible by using common automated testing frame-
works that simulate the user input. Unlike prior approaches
that artificially injected bogus events in the background [16,
28, 29], we need to simulate foreground user activity to trig-
ger the reaction of the browser. In addition, we cannot as-
sume every browser reaction correlated with the input to be
a strong indication of privacy-breaching behavior. Browsers
normally react to foreground events even if no extension is
installed. To address this challenge, our detection model is
based on supervised learning.

The idea is to allow for an initial training phase and learn
the memory behavior of the browser and of a set of repre-
sentative extensions in response to the injected events. The
training set contains both legitimate and privacy-breaching
extensions. The memory profiles gathered in the training
phase serve as a basis for our detection technique, which
aims to automatically identify previously unseen privacy-
breaching extensions. The next sections introduce our mem-
ory profiling infrastructure and our detection model, high-
lighting the role of memory profiles in our detection strategy.

3. Browser Memory Profiling
To gather memory profiles that describe the browser behav-
ior, we need the ability to monitor any memory activity as
we artificially inject events into the browser. Naturally, we
favor a non-intrusive monitoring infrastructure with minimal
impact on the user experience. If slowdowns may be accept-
able for a short period of time, it is undesirable to lower the
quality of the entire browsing experience. For this reason,
we advocate the need for an online solution, with no run-
time overhead during normal use and the ability to initiate
and terminate memory profiling on demand, without chang-
ing the browser or requiring the user to restart it.

To overcome these challenges, our solution comprises an
in-kernel driver able to profile all the memory accesses by
forcefully protecting the address space of the profiled appli-

cation. This strategy generates memory access violations—
i.e., page faults (PFs)—for each memory operation, allowing
a custom PF handler in a kernel driver to intercept and record
the event. The driver uses shadow page tables to temporar-
ily grant access to the target memory regions and allow the
program to resume execution. When the memory operation
completes, the driver restores the protection for the target
regions to intercept subsequent accesses.

Our profiling strategy is explicitly tuned to address pro-
grams as sophisticated as modern browsers, which are well
known for their intense memory activity. Instead of inter-
cepting every memory access, we use write protection to
intercept and record only memory write operations, while
avoiding unnecessary PFs in the other cases. In addition, we
introduce a number of optimizations to eliminate other irrel-
evant PFs (for example on transient stack regions). Filtering
out unnecessary PFs is crucial to eliminate potential sources
of noise from our browser analysis. Note that intercepting
memory writes is sufficient for our purposes, since we are
only interested in privacy-breaching extensions that actually
harvest (and potentially leak at a later time) sensitive data.

In addition, our kernel driver collects fine-grained statis-
tics on each memory write performed. We record details on
the execution context (i.e., the process) that performed the
memory write, the program instruction executed, and the
memory region accessed. Rather than keeping a journal de-
tailing every single memory operation, we introduce a num-
ber of memory performance counters (MPCs from now on)
to gather global statistics suitable for our quantitative analy-
sis. Each MPC reflects the total number of bytes written by
a particular process’ component in a particular memory re-
gion in the monitoring window. This is intended to quantify
the intensity of the memory activity of a particular process
executing a specific code path to write data to a particular
memory region. Our driver maintains a single MPC for each
available combination of process, code region, code range,
and data region. To characterize the memory activity in a
fine-grained manner and identify individual code paths more
accurately, we break down every code region into a number
of independent code ranges of predefined size.

While other approaches have focused on memory profil-
ing at the granularity of individual code regions [29], our ex-
periments revealed this was insufficient to accurately model
the behavior of modern browsers. To achieve greater dis-
crimination power, our strategy is to identify key code paths
at the level of individual functions being executed. While it
is not possible to automatically identify functions in the gen-
eral case (symbols may not be available), we approximate
this strategy by maintaining r different code ranges for each
code region.

4. The Model
In this section, we introduce our model and discuss the de-
sign choices we made to maximize the detection accuracy.



Our analysis starts by formalizing the injection and monitor-
ing phase of our detection technique.

Definition 1. An injection vector is a vector e = [e1, . . . , en]
where each element ei represents the number of events in-
jected at the time instant ti, 1 ≤ i ≤ n, and n is the number
of time intervals considered.

The injection phase is responsible to feed the target pro-
gram with the event distribution given by the vector e for a
total of n×t seconds, t being the duration of the time interval
considered. In response to every event injected, we expect a
well-defined reaction from the browser in terms of memory
activity. To quantify this reaction, the monitoring phase sam-
ples all the predefined MPCs at the end of each time interval.
All the data collected is then stored in a memory snapshot for
further analysis.

Definition 2. A memory snapshot is a vector c = [c1, . . . , cm]
where each element cj represents the j-th MPC, 1 ≤ j ≤ m,
and m is the total number of MPCs considered.

At the end of the monitoring phase, the resulting n mem-
ory snapshots are then combined together to form a memory
write distribution.

Definition 3. A memory write distribution is a n×m matrix
C = [c1, . . . , cn]

T
= [ci,j ]n×m whose rows represent the

n memory snapshots and the columns represent the m MPC
distributions considered.

In our model, the memory write distribution is a com-
prehensive analytical representation of the behavior of the
target browser in response to a predetermined injection vec-
tor e. Once the injection vector has been fixed, this property
allows us to repeat the experiment under different conditions
and compare the resulting memory write distributions to an-
alyze and model any behavioral differences. In particular, we
are interested in capturing the properties of the baseline be-
havior of the browser and compare it against the behavior
of the browser when a given legitimate or privacy-breaching
extension is installed.

Our ultimate goal is to analyze and model the properties
of a set of memory write distributions obtained by monitor-
ing legitimate browser behavior and a corresponding set of
memory write distributions that represent privacy-breaching
browser behavior. Given a sufficient number of known mem-
ory write distributions, a new previously unseen distribu-
tion can then be automatically classified by our detection
technique. This strategy reflects a two-class classification
problem, where positive and negative examples are given
by memory write distributions that reflect privacy-breaching
and legitimate browser behavior, respectively.

4.1 Support Vector Machine
To address the two-class classification problem and au-
tomatically discriminate between legitimate and privacy-
breaching browser behavior, we select support vector ma-

chine (SVM) [8] as our binary classification method. SVMs
have been largely used to address the two-class classifica-
tion problem and offer state-of-the-art accuracy in many
different application scenarios [22]. An SVM-based binary
classifier maps each training example as a data point into
a high-dimensional feature space and constructs the hyper-
plane that maximally separates positive from negative ex-
amples. The resulting maximum-margin hyperplane is used
to minimize the error when automatically classifying future
unknown examples. Each example is represented by a fea-
ture vector xi ∈ Rd and mapped into the feature space using
a kernel function K (xi,xh), which defines an inner prod-
uct in the target space. To ensure the effectiveness of SVM,
one must first carefully select the features that make up the
feature vector, and then adopt an appropriate kernel func-
tion, kernel’s parameters, and soft margin parameter [5]. In
our particular setting, the feature vectors must be directly
derived from the corresponding memory write distributions.
This process applies to any positive, negative, or unclassi-
fied example. The next subsections detail the extraction of
the relevant features from the memory write distributions
considered and discuss how to translate them into feature
vectors suitable for our SVM classifier. To select the most
effective SVM parameters in our setting, we conducted re-
peated experiments and performed cross-validation on the
training data. All the experiments were conducted using
LIBSVM [4], a very popular and versatile SVM implemen-
tation. Our experiments showed that the linear kernel with
C-SVC = 10 and γ = 10 give the best results in terms of
accuracy in the setting considered.

4.2 Feature Selection
The features that constitute the feature vector should each
ideally detail how a particular component of the browser
reacts to the injection. To achieve this goal, we need to
identify a single feature for each of themMPC distributions.
The memory activity associated to a particular MPC is a
relevant feature since it documents both how often particular
code paths are executed and the volume of memory writes
performed in particular memory regions. The next question
we need to address is how to represent every single feature
associated to a particular MPC. In other words, starting from
a MPC distribution, we need to determine a single numeric
feature value that is suitable for SVM-based classification.

To address this concern, we immediately observe that dif-
ferent MPC distributions may reflect a completely different
behavior of the browser for a particular MPC. If there is no
browser activity for a particular MPC, we will observe a cor-
responding zero MPC distribution. If there is some browser
activity but unrelated to the event distribution being injected,
we will observe a corresponding MPC distribution that is
very dissimilar from the original injection vector. Finally, if
the browser activity associated to a particular MPC repre-
sents indeed a reaction of the browser to the injection, we
will observe a corresponding MPC distribution that closely



resembles the original injection vector. To identify every sin-
gle scenario correctly, we need a correlation measure that
can reliably ascertain whether two distributions are corre-
lated and causality can be inferred with good approximation.
For our purposes, we adopt the Pearson Correlation Coeffi-
cient (PCC) [28] to measure the correlation between the in-
jection vector and every single MPC distribution.

The PCC is suitable for our purposes since it is both scale
and location invariant, properties that make the measure re-
silient to linear transformations of the distributions under
analysis. This translates to the ability to compare the orig-
inal injection vector with any given MPC distribution, even
in face of several memory writes performed for each bogus
event injected (scale invariance property) and uniformly dis-
tributed browser activity performed in the background (loca-
tion invariance property). Given two generic distributions P
and Q, the PCC is defined as follows:

PCC (P,Q) =

∑N
i=1

(
Pi − P̄

) (
Qi − Q̄

)√∑N
i=1

(
Pi − P̄

)2√∑N
i=1

(
Qi − Q̄

)2
In our model, the PCC is used to ascertain whether a partic-
ular MPC distribution reflects a reaction of the browser to
the injected events. High correlation values indicate browser
activity directly triggered by the injection. This is important
for two reasons. First, the PCC is used as a feature selection
mechanism in our model. If a particular MPC distribution
is not correlated to the injection vector for a given browser
configuration, the MPC is assumed not to be a relevant fea-
ture for the to-be-generated feature vector. All the features
deemed irrelevant for all the examples in the training set are
automatically excluded from the analysis. Second, the PCC
is used to determine whether a particular feature is relevant
for the browser in a pristine state (i.e., the baseline behavior
of the browser with no extension enabled). This is important
when comparing the memory write distribution of a particu-
lar extension with the memory write distribution of the base-
line to filter out background browser activity and improve
the accuracy of the analysis, as explained later.

Once all the relevant features have been identified, we
quantify the numerical value of a single feature associated
to a particular MPC distribution as the amplification factor
computed with respect to the original injection vector. Given
that these two distributions exhibit high correlation, we ide-
ally expect an approximately constant amplification factor
in terms of number of bytes written for each event injected
over all the time intervals considered. This is representative
of the intensity of the memory activity associated to a partic-
ular MPC and triggered by our injection. Moreover, in order
to model the behavior of a particular extension more accu-
rately, the intensity of the memory activity is always mea-
sured incrementally, in terms of the number of additional
memory writes performed by the extension for each event in-
jected with respect to the baseline. In other words, for each
extension, the feature vector can be directly derived from

the memory write distribution obtained for the extension, the
memory write distribution obtained for the baseline, and the
predetermined injection vector used in the experiments. The
next subsections present the feature vector used in our model
more formally.

4.3 Feature Vector: Ideal Case
Let us consider the ideal case first. In the ideal case, we as-
sume no background memory activity for the browser. This
translates to all the MPC distributions reflecting only mem-
ory activity triggered by the artificially injected events. As
a consequence, a given MPC distribution is either fully cor-
related with the injection vector (i.e., PCC = 1), or is con-
stantly zero over all the time intervals if no event-processing
activity is found. The latter assumptions are valid for all the
possible memory write distributions (i.e., baseline or exten-
sion(s) enabled). Under these assumptions, the number of
bytes written for each event is constant (assuming determin-
istic execution) and so is the amplification factor over all the
time intervals.

Let CB be the baseline memory write distribution and
CE the memory write distribution when a given extension
E is instead enabled, both generated from the same injec-
tion vector e. The element xj of the feature vector x =
[x1, . . . , xm] in the ideal case represents the constant ampli-
fication factor for the MPC distribution of the j-th memory
performance counter, 1 ≤ j ≤ m. Each element xj for any
given time interval i can be defined as follows.

xj =

{
CE

i,j−CB
i,j

ki
+ ε if PCC

(
e, CE

∗,j
)
≥ T

0 otherwise

where T is a generic threshold, and ε is the baseline ampli-
fication factor.

The rationale behind the feature vector proposed is to
have positive amplification factors for each feature that rep-
resents a reaction of the browser to our injection. The am-
plification factor grows as the number of bytes written for
each event increases and departs from the baseline value.
The correction factor ε is necessary to ensure positive am-
plification factors even for extensions that behave similarly
to the baseline for some feature xj (i.e., CE

∗,j ≈ CB
∗,j). In

addition, this guarantees that the feature vector used to rep-
resent the baseline during the training phase is always repre-
sented by xj = ε, 1 ≤ j ≤ m. Feature values that are not
representative of the browser reacting to our injection (i.e.,
their corresponding MPC distribution is not correlated to the
injection vector) are always assumed to be 0. This mapping
strategy is crucial to achieve good separability in the feature
space.

Note that the constructed feature vector contains only
relative amplification measures and is independent of the
particular injection vector used, as long as both the base-
line and the extension memory write distributions have been
generated by the same injection vector. This allows us to
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Figure 3. Memory activity of different idle browsers.

use different injection vectors in the training phase and the
testing phase with no restriction. More importantly, this al-
lows us to compare correctly amplification factors obtained
for different extensions, as long as the baseline is main-
tained stable. In our model, the baseline characterizes the
default behavior of the browser. When switching to a new
browser version or implementation, the memory write dis-
tribution of the baseline may change and the classifier needs
to be retrained. Finally, note the impact of the assumptions
in the ideal case. First, the amplification factor is constant
over any given time interval. Second, features that are nor-
mally irrelevant for the baseline but become relevant for a
particular extension are always automatically assumed to
be (1/n)

∑n
i=1

(
CE

i,j/ki + ε
)
, given that the corresponding

baseline MPC distribution is assumed to be constantly 0.

4.4 Feature Vector: Real Case
The construction of the feature vector we presented in the
previous section did not address the case of background
memory activities interfering with our analysis. Sporadic,
but intensive memory writes could hinder the correlation or
the amplification factors. Unfortunately, this scenario is the
norm, rather than the exception in today’s browsers. For ex-
ample, Firefox is known to continuously garbage collect un-
used heap regions [15]. Chrome periodically checks for cer-
tificates revocation and platform updates. In addition, back-
ground activities are often performed by increasingly com-
mon AJAX-based web applications that periodically send or
retrieve data from the web servers.

To investigate this issue, we recorded the aggregated
memory write distribution of all the recent browsers in case
of no foreground activity. Figure 3 depicts our findings: with
the exception of Internet Explorer (IE), all the browsers per-
form memory-intensive background tasks. We also observe
that the distribution of the background memory activities
can considerably vary from one browser version to another.

To make our model resilient to spurious memory activ-
ities, we extend our original feature vector in two ways.
First, we filter out spurious memory writes monitored for

the baseline. This is done by conservatively replacing any
MPC distribution with a zero distribution when no signifi-
cant correlation is found with the injection vector. This oper-
ation removes all the background noise associated to features
that are not correlated to the event-processing activity in the
baseline. This alone is insufficient, however, to eliminate any
interference in the computation of the amplification factors
when correlated MPC distributions present spurious patterns
of background memory activity. To address this problem, we
can first increase the granularity of our code ranges in the
memory snapshots. This strategy can further isolate differ-
ent code paths and greatly reduce the probability of two dif-
ferent browser tasks revealing significant memory activity in
the same underlying MPC distribution.

In addition, we consider the distribution of the ampli-
fication factors over all the time intervals and perform an
outlier removal step before averaging the factors and com-
puting the final feature value. To remove outliers from each
distribution of amplification factors, we use Peirce’s crite-
rion [32], a widely employed statistical procedure for outlier
elimination. Peirce’s criterion is suitable for our purposes as
it allows an arbitrary number of outliers, greatly reducing
the standard deviation of the original distribution when nec-
essary. This is crucial for our model, given that we expect
a low-variance amplification factor distribution once all the
spurious elements have been eliminated. In our experiments,
for any reasonable choice of the number of time intervals n,
we hardly observed any distribution value distant from the
mean after the outlier removal step. We now give the formal
definition of the final feature vector used in our model.

Definition 4. Let the feature vector x = [x1, . . . , xm]. The
single element xj of the feature vector measures the average
amplification factor for the MPC distribution of the j-th
memory performance counter, 1 ≤ j ≤ m. Each element
xj is defined as follows.

xj =



1
n

∑n
i=1 ωi

CE
i,j−CB

i,j

ki
+ ε if PCC

(
e, CE

∗,j
)
≥ T ,

PCC
(
e, CB

∗,j
)
≥ T

1
n

∑n
i=1 ωi

CE
i,j

ki
+ ε if PCC

(
e, CE

∗,j
)
≥ T ,

PCC
(
e, CB

∗,j
)
< T

0 otherwise

where T is a generic threshold, ε is the baseline amplifica-
tion factor, and ωi ∈ {0, 1} is an outlier removal factor.

5. Case of Study: Keylogging Extensions
This section exemplifies the application of our model to
extensions with keylogging behavior and details the steps of
the resulting detection process. To instantiate our detection
model to a particular class of privacy-breaching extensions,
we need to (i) carefully select the injection events to trigger
the reaction of interest; (ii) define an appropriate training set
that achieves sufficient representativeness and separability
between the samples. To satisfy the former, we simply need



to simulate user-issued keystrokes in the injection phase.
While we could easily collect several legitimate and privacy-
breaching browser extensions to construct the training set to
satisfy the latter, in practice we found a minimal synthetic
training set to be more convenient for our purposes. Our
default training set comprises only 3 examples: the baseline
(negative example), a synthetic shortcut manager (negative
example), and a synthetic keylogger (positive example).

We implemented all the synthetic examples for each
browser examined and found them to be highly represen-
tative for our analysis. The baseline accurately models all
the extensions that do not intercept keystroke events. Our
synthetic shortcut manager, in turn, models all the legiti-
mate extensions that do intercept keystroke events but with-
out logging sensitive data. Our synthetic keylogger, finally,
models the privacy-breaching behavior of all the extensions
that eavesdrop and log the intercepted keystroke events.

The proposed training set is advantageous for two rea-
sons. First, it can be easily reproduced for any given browser
with very little effort. Second, given the simplicity of the
synthetic extensions described, the same training set can be
easily maintained across different browsers. The only limi-
tation of such a small training set is the inability to train our
SVM classifier with all the possible privacy-breaching be-
haviors. Note that, in contrast, legitimate behaviors are well
represented by the baseline and the synthetic shortcut man-
ager. While one can make no assumption on the way privacy-
breaching extensions leak sensitive data, our detection strat-
egy is carefully engineered to deal with potential unwanted
behaviors that escaped our training phase, as discussed later.

We now detail the steps of the proposed detection pro-
cess. First, we select suitable injection parameters to tune
the detector. We use a random high-variance distribution for
the injection vector. This is to achieve low input predictabil-
ity and stable PCC values. The number n and the duration t
of the time intervals, in turn, trade off monitoring time and
reliability of the measurements. The larger the duration of a
single time interval, the better the synchronization between
the injection and the monitoring phase. The larger the num-
ber of the time intervals, the lower the probability of spuri-
ous PCC values reporting high correlation when no causality
was possible.

Subsequently, we train our SVM classifier for the target
browser. For each training example we conduct an experi-
ment to inject the predetermined keystroke vector and mon-
itor the resulting memory write distribution produced by the
browser. The same is done for the browser with no exten-
sions enabled. The feature vectors are then derived from the
memory write distributions obtained, as described in Sec-
tion 4.4. The training vectors are finally used to train our
SVM classifier. The same procedure is used to obtain feature
vectors for unclassified extensions in the detection phase.

Before feeding the detection vector to our SVM classi-
fier, the detection algorithm performs a preprocessing step.

The vector is checked for any new relevant features that
we previously discarded in the feature selection step. If no
such a feature is found, the detection vector is normally pro-
cessed by our SVM-based detector, which raises an alert if
the vector is classified as a privacy-breaching extension. If
any new relevant feature emerges, in contrast, our detection
algorithm always raises an alert indiscriminately. This step is
necessary in the general case to eliminate the possibility of
privacy-breaching behavior not accounted for in the training
phase. This conservative strategy leverages the assumption
that legitimate behavior is well represented in the training
set, and previously unseen behavior correlated to the injec-
tion is likely to reflect unwanted behavior.

6. Evaluation
We tested our approach on a machine with Intel Core i7
2.13 GHz and 4 GB of RAM running Windows XP Pro-
fessional SP3. We chose the most widespread versions of
the browsers analyzed (as of September 2011 [36]): Firefox
6.0.2, Chrome 13.0.782.216, and Internet Explorer 8. In the
experiments, we used the injection vector described in Sec-
tion 5, with n = 10 and t = 500ms for an overall detection
time of 5s. These values were sufficient to provide very ac-
curate results.
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Figure 4. Memory write distributions obtained during a
training phase with a sinusoidal-shaped injection vector.

Figure 4 shows the aggregated memory write distribu-
tions obtained for the training examples of each browser.
As evident from the figure, the correlation alone was never
sufficient to discriminate between negative and positive ex-
amples. And neither were the aggregated amplification fac-
tors, which, for instance, set positive and negative examples
only a few bytes apart in Firefox and IE. Nevertheless, the
weights assigned to the features during the training phase
showed that even with negligible differences in the aggre-
gated amplification factors, individual features can still be
used to achieve sufficient discrimination power. For instance,
in Firefox and IE we found that the JavaScript (JS) engine
libraries (i.e., mozjs.dll and jscript.dll) played an im-
portant role in identifying high-quality features. Chrome, in



contrast, exhibited a limited number of features with very
similar weights. While the discrimination power is clearly
reduced in this case, Chrome’s amplification factors were
found far apart between positive and negative examples, thus
still revealing a degree of separability suitable for accurate
behavior classification.

6.1 False Negatives
To evaluate the effectiveness of our technique we gathered
30 different malicious extensions from public fora, online
repositories [14, 25], blocked extensions lists [24], and anti-
virus security bulletins [37]. We then manually inspected all
the samples via static and dynamic analysis and selected
only those performing keylogging activities. The resulting
dataset comprises 5 full-fledged extensions—also known as
Browser Helper Objects (BHOs) in the case of IE 8—, and
1 JS user script compatible with both Firefox and IE, hence
obtaining a set of 7 different detection experiments. JS user
scripts are stripped down extensions with no packaging in-
frastructure or ability to modify the existing user interface.
Chrome supports user scripts natively when limited privi-
leges are required, whereas Firefox and IE depend upon the
installation of the Greasemonkey [20] and Trixie [35] exten-
sions respectively, which also provide access to privileged
APIs. We point out that in all cases, regardless of the exten-
sion’s type, the installation procedure never required super-
user privileges.

Browser Extension Detected

Chrome 13
extensionkeylog.sourceforge.net X
chrome.google.com/webstore/detail

X
/afllmmeoaodlbocnfihkaihpkcakomco

Firefox 6
addons.mozilla.org/addon/220858 X
userscripts.org/scripts/show/72353 X

IE 8
flyninja.net/?p=1014 X
wischik.com/lu/programmer/bho.html X
userscripts.org/scripts/show/72353 X

Table 1. Detection of privacy-breaching extensions per-
forming keylogging activities.

Table 1 shows the results of our experiments. In all
the cases, the SVM classifier successfully ascertained the
privacy-breaching nature of the samples regardless of the ex-
tension type. The most interesting experiments were against
the 2 BHO extensions in IE, which are implemented directly
by a DLL. The ability of a DLL to independently manage
memory may at times produce new relevant features that
were nowhere found during the training phase, thus theoret-
ically hindering detection. Our detection strategy, however,
gracefully handles this situation in the preprocessing step,
which immediately raises an alert when new relevant fea-
tures are discovered in the detection vector. This ensured all
the BHOs could be detected correctly in our experiments.

6.2 False Positives
To test the robustness of our approach against false positives,
we put together a dataset of 13 extensions for each browser,
comprising the 10 most common extensions [7, 21, 34] and
the 3 most popular shortcut management extensions, care-
fully selected because prone to misclassification. Table 2
shows the results of our detector against all these extensions.

All the extensions for Chrome were correctly classified as
legitimate. The grey-colored rows highlight all the shortcut
management extensions selected. Despite the presence of
keystroke interception APIs, none of these extensions was
misclassified. This confirms the robustness of our technique.

In the case of Firefox, 12 out of 13 extensions were clas-
sified correctly. The NoScript extension, which blocks any
script not explicitly whitelisted by the user, was the only mis-
classified sample. A quick analysis showed a memory write
distribution unexpectedly similar to those exhibited by key-
logging samples. A deeper inspection revealed a very com-
plicated implementation of always-on shortcut management
functionalities, with every keystroke processed and decoded
several times. Other extensions that explicitly provide short-
cut management functionalities (grey-colored rows) were in-
stead classified correctly. Similarly to Firefox, only 1 exten-
sion (i.e., LastPass, a popular password manager) was erro-
neously classified for IE. A careful code inspection revealed
that the implementation of the extension logs all the user-
issued keystrokes indiscriminately. This allows the user to
save any previously filled credentials after a successful login.
Since the keystrokes are effectively logged and can poten-
tially be leaked to third parties at a later time, our detection
strategy conservatively flags this behavior as suspicious.

6.3 Performance
The ability to attach and detach our profiling infrastructure
to the browser on demand (as arbitrated by the user) allows
us to confine the performance overhead to the detection win-
dow. The previous sections have demonstrated that a window
of 5 seconds (i.e., 10 samples with a 500ms time interval) is
sufficient for our purposes. This confines the overhead to a
very limited period of time, allowing the user to start a quick
detection run whenever convenient, for example, when vet-
ting unknown extensions upon installation.

Browser Baseline Normal use Detection time

Chrome 13 1345ms 1390ms 11254ms
Firefox 6 1472ms 1498ms 12362ms
IE 8 2123ms 2158ms 14177ms

Table 3. Performance hit while loading google.com.

Table 3 show the performance impact of our online in-
frastructure by comparing the time required to load http:
//www.google.com in three different scenarios: (i) prior
to the installation of our infrastructure (Baseline), (ii)
with our infrastructure installed but completely detached



Google Chrome 13.0.782.216 Firefox 6.0.2 Internet Explorer 8
Extension Identified Extension Identified Extension Identified

Shortcut 0.2 X GitHub Shortcuts 2.2 X Shortcut Manager 7.0003 X
Shortcut Manager 0.7.9 X ShortcutKey2Url 2.2.1 X ieSpell 2.6.4 X
SiteLauncher 1.0.5 X SiteLauncher 2.2.0 X IE7Pro 2.5.1 X
AdBlock 2.4.22 X AdBlock Plus 1.3.10 X YouTubeVideoDwnlder 1.3.1 X
ClipToEvernote 5.1.15.1534 X Down Them All 2.0.8 X LastPass (IEanywhere)
Download Master 1.1.4 X FireBug 1.8.4 X OpenLastClosedTab 4.1.0.0 X
Fastest Chrome 4.2.3 X FlashGot 1.3.5 X Star Downloader 1.45.0.0 X
FbPhoto Zoom 1.1108.9.1 X GreaseMonkey 0.9.13 X SuperAdBlocker 4.6.0.1000 X
Google Mail Checker 3.2 X NoScript 2.2.1 Teleport Pro 1.6.3 X
IETab 2.7.14.1 X Video Download Helper 4.9.7 X WOT 20110720 X
Google Reader Notifier 1.3.1 X Easy YouTube Video 5.7 X CloudBerry TweetIE 1.0.0.22 X
Rampage 3 X Download Statusbar 0.9.10 X Cooliris 1.12.0.33689 X
RSS Subscription 2.1 X Personas Plus 1.6.2 X ShareThis 1.0 X

Table 2. Classification of legitimate extensions.

(Normal use), and (iii) with our infrastructure attached to
the browser, hence during detection (Detection time).
All the experiments have been performed multiple times
and their results averaged—with negligible variance. The
last two experiments represent the performance overhead
perceived by the user during normal use and during detec-
tion, respectively. The infrastructure attached to the browser
at detection time introduces overhead, ranging from 6.67×
for IE to 8.39× for Firefox. When comparing our memory
profiler with other solutions that rely on dynamic instrumen-
tation [30], our infrastructure yields significantly lower over-
head, for our ability to ignore memory regions of no interest
a priori. Finally, the performance variations introduced by
our infrastructure when detached is always negligible. This
confirms that our technique does not interfere with the nor-
mal browsing experience.

7. Discussion
A number of interesting findings emerge from our evalu-
ation. Our model can be effectively used across different
browser versions and implementations. We presented results
for the most widespread versions of the 3 most popular
browsers. We have also experimented with other major re-
leases of Firefox and Chrome obtaining very similar results.

Even if we never found false negatives in our experi-
ments, it is worth considering the potential evasion tech-
niques that a malicious extension may adopt to escape de-
tection. We consider two scenarios. First, an extension could
attempt to leak sensitive data by using some browser func-
tionality that was already represented as a training feature.
By definition, however, the extension cannot avoid exhibit-
ing relevant memory activity for the particular feature used.
The resulting feature value will inevitably reveal a more in-
tensive memory activity with respect to the baseline and con-
tribute to classifying the extension correctly. Conversely, an
extension could attempt to rely on some browser functional-
ity that did not emerge as a training feature. In this case, the

suspicious behavior will still be detected from the correlation
found between the injection vector and the MPC distribution
of the emerged feature. The only chance to escape detection
is to lower the resulting correlation by performing disguise-
ment activities. While more research is needed to assess the
viability of this strategy in the context of browser extensions,
prior approaches using PCC-based detection have already
discussed the difficulty of such an evasion technique [28].
Finally, an attacker could instruct an extension to perform
privacy-breaching activities only in face of particular events,
e.g., when the user visits a particular website. To address this
scenario, our solution allows the user the start a detection run
on all the active extensions at any time, for example before
entering sensitive data into a particular website.

Finally, we comment on how to apply our detection
model to other classes of privacy-breaching extensions. As
done for keylogging extensions, we can easily instantiate our
model to any class of extensions that react to certain sensi-
tive events, as long as it is feasible to (i) artificially inject
the events of interest into the browser and (ii) determine a
training set that achieves separability between positive and
negative examples. As an example, to detect form-sniffing
behavior, we would need to simulate form submission events
and train our model with both form sniffers and regular ex-
tensions that do not record form submission events.

8. Related Work
Many approaches [11, 18, 19] have been initially proposed to
detect privacy-breaching browser extensions, and in partic-
ular the class of malicious software known as spyware add-
ons. These approaches relied on whole-system flow track-
ing [11] and on monitoring the library calls between browser
and BHOs [18]. Besides being tailored to IE and hence not
meeting the requirement of a cross-browser detection model,
they are either dependent on the adopted window of obser-
vation for a successful detection, or unable to set apart ma-
licious add-ons from legitimate extensions using the same



library calls. In the case of [19], the interactions of a BHO
with the browser are regulated by a set of user-defined poli-
cies. However, this approach can not be applied to extensions
where the code run in the same context of the browser.

Recently new approaches focused on taint tracking the
execution of JS by either instrumenting the whole JS en-
gine [9, 33], or rewriting the JS scripts according to some
policies [17]. In both cases the underlying idea is that an ob-
ject containing sensitive information shall not be accessed in
an unsafe way. In our setting this translates to an extension
that shall never be allowed to disclose the user’s private data
to a third-party. All these approaches however, besides incur-
ring high overheads, can not be disabled unless the user re-
places the instrumented binary with its original version. Fur-
thermore they fail to meet our cross-browser requirements.
In particular, given the complexity of modern JS engines,
porting and maintaining them to multiple versions or im-
plementations is both not trivial and requires access to the
source code. Besides being feasible only for browsers which
source-code is freely available, e.g., Firefox and Chrome,
only the vendor’s core teams have all the knowledge required
for the job. In contrast, our approach merely requires to re-
train the model to retrofit different versions and implemen-
tations. This does not require any specific knowledge about
the browser, takes a limited amount of time, and can also be
carried out by unexperienced users.

Since browsers and their extensions were more and more
both target and vector of malicious activities, many stud-
ies recently addressed the more general problem of assuring
the security of the whole browser, extensions included. In
particular, Djeric et al. [10] tackled the problem of detect-
ing JS-script escalating to the same privileges of a JS-based
extension, hence nullifying the protection provided by the
browser’s sandbox. This may happen for two different rea-
sons: in case of bugs in the browser implementation or in
case of a poorly programmed extension, where the input is
not sufficiently sanitized. In the last scenario, [2] proposed
a framework to detect these bad practices and help vetting
extensions. In any case the mischief is always the ability to
load arbitrary code, possibly acquiring higher privileges. No
protection is provided against extensions intended to be ma-
licious that disclose private data on purpose.

The basic idea of relying on the correlation between the
activity of a program and its input has been initially intro-
duced in [1, 28], where the main focus was the class of
monitoring applications. These applications execute in the
background and intercept all the keystrokes regardless of
the application being used by the user. Besides being tai-
lored to a limited class of privacy-breaching behaviors, mon-
itoring a program in terms of network [1] and I/O activ-
ity [28] is a coarse-grained approach also bound to fail when
the gathered private data is not immediately leaked away.
The approach proposed in [29] raised the bar by adopting
a more fine-grained approach where individual memory ac-

cesses were monitored; since memory accesses can not be
delayed or postponed, they were able to overcome the limit
of the adopted window of observation. However, all these
approaches cannot be used to solve the problem of detect-
ing privacy-breaching browser extensions. First, the class of
events deemed sensitive is limited to user-issued keystrokes.
Second, a browser always reacts to its input, thus making
a correlation test prone to false positives. Third, they all
assume the malicious program to run in the background,
thus failing to identify a misbehaving browser because of
a privacy-breaching extension installed.

9. Conclusions and Future Work
With their growing availability and ease of distribution,
browser extensions pose a significant security threat. In par-
ticular, privacy-breaching extensions that intercept and log
sensitive events are becoming increasingly widespread. Ex-
isting solutions designed to detect privacy-breaching exten-
sions are typically tailored to a particular browser version or
require significant efforts to support and maintain multiple
browser implementations over time. Unfortunately, browsers
undergo continuous changes nowadays and the need for
cross-browser detection techniques is stronger than ever.

In this paper, we introduced a generic cross-browser de-
tection model to address this important concern. In addition,
we showed an application of the model to privacy-breaching
extensions with keylogging behavior, and we evaluated both
effectiveness and precision against a set of real-world ex-
tensions. We showed that the performance overhead intro-
duced by our detection infrastructure is confined to a very
limited time window, hence relieving the user from unnec-
essary overhead during the normal browsing experience.

In our future work, we plan to further validate our model
against several classes of privacy-breaching extensions. In
particular, due to the recent gain of momentum [6], our next
focus is validating our model with extensions surreptitiously
intercepting form submissions. In addition, we are planning
to investigate context-specific policies to automatically ini-
tiate a detection run in the background (e.g., in face of par-
ticular events or when the browser is idle), thus increasing
the dynamic coverage of our analysis to effectively address
trigger-based behavior.
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