A Taxonomy of Live Updates

Cristiano Giuffrida, Andrew S. Tanenbaum

Department of Computer Science
Vrije Universiteit
Amsterdam, The Netherlands
{giuffrida, ast}@cs.vu.nl

Keywords: Live Update, Dynamic Software Updating, Dependability.

Abstract

Many high-availability systems require regular soft-
ware updates but can hardly afford any downtime.
Existing general-purpose live update approaches pro-
posed as a solution to this problem have failed to
reach broad acceptance.

In this paper, we investigate the root causes of the
poor acceptance and argue that a new model is nec-
essary to offer adequate dependability guarantees. To
substantiate our claim, we propose a taxonomy of live
updates and analyze many practical examples from
operating systems. We show how the nature of the up-
date is crucial to determine the properties and limita-
tions of the resulting live update process and discuss
the emerging need for update-aware systems.

1 Introduction

The past decades have witnessed an increasing de-
mand for highly reliable computer systems. The need
for continuous operation is emerging in many areas of
application with different levels of impact. Mass mar-
ket software systems, not initially conceived with ex-
treme availability in mind, attract more and more con-
sumers who expect nonstop operation. Many unso-
phisticated users find it very annoying to reboot their
PC after an update or a crash. For workstation users
in companies, reduced availability directly translates
to productivity loss.

In industrial systems, the need for continuous opera-
tion is even more evident. In many cases, high avail-
ability is required by design. As an example, the tele-
phone network, a 99.999% availability system, can
tolerate at most 5 minutes of downtime per year [11].
In other applications, such as factories and power
plants, availability constraints are even more tight.
Unfortunately, software changes over time. Despite
decades of research and advances in technology and
software engineering, the majority of cost and effort

spent during software lifetime still goes to mainte-
nance [12]. End users have learned to live with the
many changes that programs undergo over time. The
introduction of new features, enhancements, bug fixes
and security patches are the norm rather then the ex-
ception in widely adopted software solutions.
Traditionally, an update requires a full system reboot
before the changes can take effect, which constitutes
a major problem for systems that must provide strong
availability guarantees.

1.1 Live Update

Live update—namely the ability to update software
without service interruption—is a promising direction
to support software evolution in high-availability en-
vironments. An infrastructure to apply online changes
to a running system would greatly aid in the main-
tenance of systems that cannot tolerate disruption of
service or loss of transient state.

Live updatable software systems have also other po-
tential benefits [25]. First off, live update offers a
higher degree of flexibility. Different update policies
can be employed to start the live update process at an
appropriate time. A low-priority update policy could
be labeled update when the system load is low in an at-
tempt to minimize system disruption, whereas a criti-
cal security update might be labeled update as soon as
possible. In addition, live updates can be used for fast
prototyping or to dynamically address the behavior of
a running system.

1.2 Contributions of this Paper

The contributions of this paper are threefold. First,
we discuss different models for live update and an-
alyze characteristics of state-of-the-art solutions de-
scribed in the literature. Our aim is to investigate the
root causes of why general-purpose live update tech-
nologies have failed to receive broad acceptance.



Second, we propose a taxonomy of live updates fo-
cusing on the nature of the update. The taxonomy
aims to provide criteria and scenarios to establish and
analyze the level of complexity and potential disrup-
tion of a given live update. We develop our analysis
through concrete examples and investigate the prop-
erties and limitations of live update.

Finally, we discuss a model for update-aware systems
that can support dependable live update by design.

2 Models for Live Update

Live update has received a great deal of attention
in the past two decades. We concentrate here on
software-based solutions, which aim to provide run-
time support to apply online changes to running soft-
ware. These approaches can be categorized basing on
the structural unit of change they support. Live up-
date frameworks described in the literature usually al-
low dynamic replacement of functions, objects or pro-
cesses. A number of techniques at each level of gran-
ularity have been proposed in several research com-
munities. More recently, system-level approaches to
update the system as a whole by running two par-
allel instances [8] or using virtualization technolo-
gies [17, 24] have also been explored. These ap-
proaches, however, require ad-hoc infrastructures—a
separate execution environment or virtual machines—
and are usually more tailored to full system updates.
In the present paper, we mainly focus on live update
for operating systems (OSes). There are a number of
reasons to concentrate our attention on operating sys-
tems. First, OSes are plagued with continuous main-
tenance updates. Second, high availability of oper-
ating systems is a major concern. Downtime in an
OS directly translates to downtime for all the hosted
applications. Finally, operating systems offer a com-
plete set of functionalities and update scenarios. This
is useful for our analysis. Furthermore, system ad-
ministrators, programmers, and other categories of
users are already familiar with many real-life exam-
ples of OS updates.

We now turn our attention to live update solutions de-
scribed in the literature. System research in the area of
live update is generally focused on designing frame-
works to seamlessly apply online changes of any sort
to existing software systems.

The dominant approach is to glue changes into the
running system by loading the update, executing a
state transfer function provided by the author of the
update, and redirecting execution to the new version.
Loading the update is usually accomplished through
some form of dynamic linking or special support of-
fered by the runtime—e.g. linking a component in
a component-based system. The purpose of the state
transfer function is to convert the old state of the sys-
tem into a valid new state before resuming execu-
tion in a consistent way. For example, if new data

structures are included in the update, the state transfer
function must initialize them with meaningful values
before the new version can start executing properly.
When state transfer completes, execution is redirected
to the new version by exploiting some form of indirec-
tion mechanism specific to the language or runtime
environment used. Many techniques to add a level of
indirection and redirect execution are described in the
literature, such as: function pointers [22], dynamic in-
strumentation [ 19], indirection tables [4], interceptors
and naming services [!]. The live update framework
incorporates the ability to compare the old version and
the new version of the system to figure out how to ap-
ply changes correctly. Using these techniques, execu-
tion is resumed on the new version seamlessly, with-
out the original version being aware of the update.

As a result of this model, much attention has
been dedicated to backward compatibility and trans-
parency. These properties have been largely promoted
as key success criteria for live update technologies.
Unfortunately, despite the ability to support legacy
systems, assuming that the live update infrastructure
is invisible to the development process delegates to
the infrastructure the entire responsibility of applying
the update and ensuring that the resulting configura-
tion is valid. This process is generally complicated
and error-prone.Conversely, programmers developing
a new version of the system are certainly aware of all
the changes that they made and can provide directions
on how to apply them properly at runtime.

Due to the high complexity involved, most live update
solutions do not attempt to address the general safety
of an update [18]. In the literature, the role of safety
constraints in live update solutions is controversial.
The reason for this lies at the theoretical foundations
of live update. Pioneering work on the validity of a
live update was undertaken by Gupta [14] and has
been highly influential in succeeding research.

In Gupta’s work the validity of a live update is
formally proven undecidable in the general case.
Namely, given an arbitrary system at an arbitrary
point in time, an online change, and a state transfer
function, it is not possible to determine if the update
will result in a valid configuration for the system.

Gupta’s result has led many researchers to neglect up-
date safety and focus more on type safety and other
properties. Many models impose restrictions on the
type of an update, others ignore update safety or con-
servatively assume that system maintainers can some-
how be given the responsibility to recognize whether
or not an update is valid.

Other approaches specific to event-driven systems
have suggested using atomicity at the level of an event
to make sure that each event-generated transaction
is entirely executed on a single version of the sys-
tem [16]. Supporting only atomicity at the level of
an event, however, reduces the degree of flexibility,



since atomicity constraints cannot be adapted to each
particular update. This may cause excessive system
disruption for small updates [26], as well as hamper
the ability to support more complex updates that re-
quire stronger atomicity guarantees.

3 The Taxonomy

In this section, we propose a taxonomy of live updates
and show that, in each scenario, the nature of the up-
date is crucial to determine the properties of the live
update process and the impact on a running system.
Rather than focusing on formal definitions or striv-
ing for completeness, we propose criteria to describe
the nature of an update and discuss possible scenar-
ios through examples. Each scenario in the taxonomy
defines a category of updates with an increasing level
of severity, resulting in higher update complexity and
more disruptive effects for the system.

Before detailing our analysis, it is appropriate to intro-
duce the reference model used. In the following, we
refer to a UNIX-like operating system with a standard
interface and a generic live update infrastructure. The
resulting software system is composed of a number
of dynamically updatable structural units. Depending
on the architecture of the OS and the runtime support
provided by the live update infrastructure, the struc-
tural unit used may be a function, object, or process.
We model the interactions between structural units by
means of generic message-passing. A message can be
interpreted as a function call for a function, a method
invocation for an object, and a signal or IPC call for
a process. The execution of the code of a structural
unit follows upon reception of a message. As in a
standard event-driven model, the main message flow
is generated in response to a system-level event.

The semantics of an interaction between multiple
structural units is defined by a protocol. We model a
protocol as the sequence of messages exchanged be-
tween an initiator and one or more structural units that
act as recipients. The initiator is the structural unit
that starts the protocol in response to a message re-
ceived that requires further processing.

Given the definition of the structural units, we
propose the following criteria to describe the nature
of an update.

Changes to code. Changes to code refer to
changes to algorithms or protocols and affect one or
more structural units.

Changes to data. Changes to data refer to changes to
data structures used by one or more structural units.
Resource-sensitive changes.  Resource-sensitive
changes refer to changes that impose new require-
ments for fundamental resources upon which the OS
relies. In our analysis, we primarily refer to hardware
resources. Examples include memory, disk, and pe-
ripheral devices.

3.1 Definition

Following the characterization of changes introduced
earlier, we present the taxonomy of live updates
broken down into the following six categories.

1. Update affects one structural unit

This category comprises changes to data and algo-
rithms isolated in a single structural unit. Common
updates in this category are small bug fixes, secu-
rity patches, and performance improvements. An
example of a bug fix is changing a test for ¢+ < j to
1 < j. An example of security patch is performing
bound checking on a string to avoid buffer overflow
attacks. An example of performance improvement is
a new algorithm that first checks for the common case
before using a more general and slower approach.

2. Update affects protocol

This category comprises changes to a protocol
between two or more structural units and may include
changes to code and data. Changes to a protocol
refer to changes to the number or type of recipients,
changes to the number, order, or semantics of the
messages exchanged, as well as changes to the
content or meaning of any of the fields in a message.
An example is changing the message format for a call
to the disk driver to represent a block number in 48
bits instead of 32.

3. Update affects global data

This category comprises changes to global data
structures that are shared across multiple structural
units. Also in this category is a change to global
data constants, like renumbering all the error codes.
Other examples are changing the representation
of a process identifier from 16 bits to 32 bits or
of an inode shared across multiple structural units
throughout the system. An additional example is a
change to data shared in a specific subsystem, such
as a change to the format of internal IOCTL codes.

4. Update affects global algorithm

This category comprises changes to a global algo-
rithm that may affect multiple structural units. An
example is moving the code to add a new inode to
the inode table to a different structural unit, as a
consequence of system restructuring. Another ex-
ample is an improved implementation of a file usage
counter. Assume the original version incremented a
counter in the inode at open() time. Imagine that,
after noticing that some files are opened but never ac-
cessed, the code to increment the counter is moved to
the time when the first read() or write() is processed.

5. Update affects data on the disk
Updates in this category are generally concerned
with data stored on the disk. A first example is a



change to the format of the disk image used for
process checkpointing. Another example is a change
to the encoding of temporary files for internal use.
More advanced examples include: (i) changing the
executable format, or (ii) changing the file system
format, for example to store additional information
(e.g. more disk addressed) in the inode on the disk.

6. Update affects hardware requirements

This category comprises changes that impose new
hardware requirements. Examples include changes
to minimum requirements for storage, memory, or
processor speed and changes to hardware supported.
Practical examples in this category can be found in
many new releases of publicly available OSes. For
example, with the release of Mac OS X v10.5 (Leop-
ard), Apple dropped support for all PowerPC G3
processors and for PowerPC G4 processors with
clock speeds below 867 MHz. Another example is
the transition from Windows XP to Windows Vista.
Minimum requirements went from 64 MB to 512 MB
for RAM and from 1.5 GB to 15 GB for disk space
available. In addition, Vista dropped support for older
motherboard technologies like the ISA bus and APM
and for every graphics card not compatible with the
DirectX 9 specifications.

3.2 Consequences

In this section, we discuss each category of live up-
dates in detail and analyze the consequences for the
update process. The gold standard is being able to do
with live update something that previously required a
reboot. As we will show, this is not always possible,
but we would like to get as close as we can.

3.2.1 Update affects one structural unit

In the simple case, the update can be performed by
atomically replacing the structural unit. That is, we
can apply changes when the structural unit is not pro-
cessing a message. Recall the security patch exam-
ple proposed earlier. If we replace the structural unit
when no message is being processed, all the messages
following the update will use the new code and be ver-
ified as expected to avoid possible buffer overflows.
The same considerations apply to the bug fix exam-
ple, but state transfer is necessary to initialize the new
data type correctly.

In other cases, an update that uses atomicity at the
structural unit level may not be as effective. For ex-
ample, imagine a protocol to write a chunk of data to
a file. The protocol consists of multiple iterations be-
tween the virtual file system layer and a specific file
system implementation. Assume that the original file
system implementation used buffered writes and only
flushed all the content received at the last interaction.
If the file system implementation is changed to per-

form unbuffered writes, the change affects only a sin-
gle structural unit. Yet, if we allow the replacement of
the file system when the protocol is in progress, addi-
tional state transfer is necessary to flush the content
of the buffer to the disk before resuming execution. If
the update used atomicity at the protocol level—that
is changes are applied only when the protocol is not
in progress, no state transfer would be necessary.

In more advanced cases, atomicity at the structural
unit level may be insufficient to apply online changes
correctly. Consider the same protocol described
above. Assume that the file system implementation
is changed to collect statistics on the duration of a
write(), storing a timestamp when the first message
from the virtual file system layer is received and an-
other one at the last interaction. If changes are ap-
plied when the protocol is in progress, no state trans-
fer is possible to bring the new version to a valid state.
Atomicity at the protocol level would make the update
feasible and simple. As an alternative, if some impre-
cision is tolerable in the statistics collected, the state
transfer function can be instructed to use the times-
tamp of the time changes are applied.

3.2.2 Update affects protocol

In the simple case, the update can be performed by re-
placing all the structural units affected when the pro-
tocol is not in progress. Recall the driver operation
example. In this scenario, the message format used
in the protocol is changed. If we replace the driver
and the counterpart when there is no communication
in progress, all the following protocol instances will
use the new format without breaking the semantics of
the protocol.

In other cases, the update may require synchroniza-
tion with additional structural units. For example,
imagine a filter driver that detects low-level data cor-
ruption. The driver intercepts each write request to the
disk driver and breaks it down into a first call to write
the data block to the disk and a subsequent call to read
the content back and compare it with the original data
block. Consider an internal module of the filter driver
that compares the two blocks. Assume the module is
a structural unit that exposes a service protocol to re-
ceive the original block in the first message and the
block read from the disk in a second message. To im-
plement the service efficiently, a single-message inner
protocol is used to interact with another structural unit
whose job is computing the checksum for each block
received in the message. If in a new version of the
system the inner protocol is changed to use a more
efficient checksumming algorithm, changes also af-
fect the execution of the service protocol. If we re-
place the module and the checksum helper by using
atomicity at the inner protocol level, no state trans-
fer is possible to bring the new version of the module
to a valid state in the general case, because the origi-



nal data block may have been lost. In contrast, if we
allowed the update at a time when neither protocols
were in progress, the resulting configuration would be
valid and no state transfer necessary.

3.2.3 Update affects global data

In the simple case, the update can be performed by re-
placing all the structural units affected when none of
them is actively accessing the global data changed.
Recall the process identifier example. Assume we
changed the internal representation of the process
identifier to use a larger data type. If the identifier
is shared, for example, between two separate struc-
tural units such as the process manager and the mem-
ory manager, the update can be performed when both
structural units are not actively processing a message
that involves access to the identifier.

In other cases, the update may require higher levels of
synchronization. Recall the error code example. As-
sume we introduced additional internal error codes for
an exec() system call to handle unexpected error con-
ditions with a finer level of granularity. If we allow the
replacement of all the structural units affected when
the system call is in progress, the resulting configura-
tion may not behave correctly. In particular, some of
the new error conditions may not have been recorded
in the old version of the code before the update was
performed. In that case, no state transfer is possible
to bring the new version to a valid state. In contrast, if
we allowed the update only at a time when the system
call was not in progress, the resulting configuration
would be valid and no state transfer necessary.

3.2.4 Update affects global algorithm

In the simple case, updates in this category re-
quire proper synchronization between all the struc-
tural units affected. Recall the file usage counter
example, where an update moves the code to incre-
ment a file usage counter from open() to the first time
read() or write() is processed. If the update is per-
formed when no file is opened, the resulting config-
uration is valid and no state transfer is necessary. In
the opposite situation, state transfer is required to ad-
just the value of the counter properly. In particular,
for each open file, the state transfer function should
decrement the counter if the file has never been read
or written before. How hard it is to access this infor-
mation determines the level of complexity of the state
transfer function. If this information is not accessible,
no state transfer is possible to bring the new version
to a valid state.

In other more advanced cases, live update may not
be possible at all. For example, consider a change to
the generation algorithm of the random number gen-
erator. If running applications or structural units of

the OS rely on a sequence of random numbers pro-
vided by the generator, a live update would break this
assumption regardless of when changes are applied.
The only reliable solution here is a conventional re-
boot update.

3.2.5 Update affects data on the disk

In the simple case, the update can be performed by
replacing all the structural units affected when none
of them is actively accessing the changed data. Recall
the process checkpointing example and consider an
update to support a compressed disk image. Assume
the disk image is shared between two structural units
to respectively checkpoint and resume execution of
a process. When the structural units are not actively
processing a message, the update can be safely per-
formed. A state transfer function will be necessary to
read the content of the image from the disk, compress
existing data, and write everything back to the disk.
The duration of the update process and the impact on
the system depend on the size of the disk image and
the complexity of the compression algorithm.

In other cases, a reboot may be desirable or required
to update the system. For instance, imagine that the
file system format is changed. Assume that the for-
mat of the inode on the disk is changed to support
32-bit UIDs. If a spare partition is available, the up-
date can be performed live although slowly. The sys-
tem can run mkfs on the new partition, laying down
the file system in the new format and then copying all
the files. When they are all copied, it has to go back
to copy files changed since copying began, repeatedly
until done.

In more advanced cases, the update on an existing sys-
tem may not be possible at all. Consider a change in
the file system format to count the number of times
every file has been accessed. No state transfer can
bring the new version of the system to a valid state.
But neither can a reboot. It cannot be done at all.

3.2.6 Update affects hardware requirements

Updates in this category can only be supported if ex-
isting hardware matches the new requirements. Con-
sider an update that changes the minimum RAM re-
quirements from 512 MB to 1 GB. If the machine has
already 1 GB of RAM available, the update can be ap-
plied immediately. If it has only 512 MB, new hard-
ware (more memory) will have to be purchased and a
reboot done.

4 Discussion

In the previous section, we analyzed the consequences
of several scenarios drawn from the categories pro-
posed in the taxonomy. Our analysis did not aim at



generality but was instead driven by concrete exam-
ples to explore the properties and limitations of live
update. Each scenario revealed an increasing level of
severity of an update from different perspectives. In
the following, we discuss our findings.

First, a live update is not always feasible. We showed
examples where no synchronization mechanism and
state transfer function could be provided to perform
a live update resulting in a valid system configura-
tion. In many cases, a reboot is necessary to perform
the update. In other cases, manual intervention of the
system administrator may be required. In the most
unfortunate cases, the update cannot be done at all.

Second, a live update is not necessarily desirable. In
some cases, the live update process can cause sig-
nificant disruption for the running system. As the
complexity of changes and state transfer increases,
the update process may take longer and the impact
on the system become more evident. In particular, a
resource-consuming update process may be problem-
atic or not feasible at all if, for example, state trans-
fer involves copying large chunks of memory and not
enough extra memory is available. When substantial
disruption is expected, applying changes online can
be inconvenient.

Third, the constraints required for the system at up-
date time vary. We observed that updates of different
natures may require different levels of atomicity to be
applied online. In simple cases, no synchronization is
necessary to perform the update. In other cases, atom-
icity at different levels may be required to guarantee a
safe update process and a valid resulting configuration
for the system. We also noted that, for higher levels
of severity, enforcing the level of atomicity required
is increasingly difficult and expensive.

Finally, the complexity of state transfer depends on
the constraints imposed at update time. In many
cases, we observed that the level of atomicity required
at update time can be relaxed. Nevertheless, as we
gradually relax constraints imposed at update time,
we observe an increasingly complicated state transfer.
In some circumstances, constraints cannot be further
relaxed or state transfer will become infeasible.

In summary, important results can be drawn from the
scenarios presented. For high levels of severity, live
update—or even a conventional reboot update for that
matter—may be expensive or infeasible. But in most
other cases, the properties of the live update process
are well-defined. Given an update with known char-
acteristics, a desirable stable state for the system at
update time can be easily established.

In addition, our investigation shows that the dominant
assumptions used in the literature may lead to unde-
sirable effects. In particular, restricting the design to
support only atomicity at the event level will result in
reduced flexibility with important consequences. For
example, using quiescence [16] as the only stability

condition is unnecessarily expensive in the average
case, as also argued in [26]. In highly connected sys-
tems such as OSes, this condition translates to syn-
chronizing a large part of the system regardless of the
nature of the update. As a result, it may be neces-
sary to freeze the entire system even to apply a minor
and local bug fix. Furthermore, for updates with high
levels of severity this condition may not even provide
adequate support. For instance, recall the file usage
counter example. If we want to avoid updating when
applications have still some files opened, blocking the
entire system will not really be of any help.

In the opposite direction, assuming that updates can
be performed at an arbitrary moment results in poor
stability guarantees. As a result, the complexity
of state transfer grows unnecessarily with increas-
ing levels of severity, forcing the programmer to deal
with more and more undesirable conditions. Imagine
changing the semantics of a protocol between the pro-
cess manager and the virtual file system and allowing
the update while the protocol is in progress. The com-
plexity of state transfer would reflect the complexity
of the protocol and the changes made.

4.1 Towards Update-aware Systems

In the previous sections, we argued that the nature of
the update is crucial to build a dependable live update
solution. We believe the system should support live
update by design and published updates should con-
tain more information about what they affect and how,
thus allowing the system to apply them safely at the
right time. Note that we are talking about both small
security patches as well as functional changes from
one version to the next.

To address this challenge, in our prior work, we have
presented a new model for dependable live update, in
which the system is update-aware and cooperates dur-
ing the update process [10]. The system is designed
to be highly modular and broken down into separate
components. The software developers producing the
update, in turn, must include both code changes and
update constraints in a live update package of a pre-
determined format. The update constraints are direc-
tives the system must satisfy at update time to apply
changes online in a reliable way.

When an update becomes available, the system allows
an update manager to notify all the components that
must be replaced and ask them to converge to a par-
ticular state as required by the update. Each compo-
nent supports by design a number of states it is able to
converge to in bounded time. The update constraints
included in the live update package must specify the
state each affected component has to reach before up-
dating. When a component is ready, it will save its
state in a safe place and send back to the update man-
ager a ready message. When all components have re-
sponded, the system is ready to be updated. In spirit,



this design is similar to a two-phase commit. Then the
new components are loaded into the running system.
At that point, state transfer takes place and the new
version can safely resume execution.

It is easy to show that this update-centric model re-
sults in higher flexibility and solves the problem of
establishing a safe update time structurally. For ex-
ample, recall the scenario described in the taxonomy
when a protocol between two components (e.g. the
virtual filesystem and the disk driver) changes. The
software developers must include the new version of
the two components in the package and, at the same
time, specify a safe state for each component at up-
date time. For example, an appropriate state for both
components may be no disk I/O in progress. As a re-
sult, when the two components are replaced at the end
of the update process, no protocol will be in progress
and state transfer will probably not even be necessary.
In the opposite direction, an update including a small
security fix for a particular component can probably
be applied almost immediately with minimal service
disruption if the state required at update time is sim-
ply no activity in progress.

5 Related Work

To our knowledge, no previous study has tried to as-
sess the general properties and limitations of live up-
dates from a broad perspective and establish an ad-
equate taxonomy based on the nature of an update.
Classifications of update types from a functional point
of view have been occasionally proposed to illustrate
the properties of a live update solution [19].

As for update safety and other dependability proper-
ties, previous work is largely concerned with theoreti-
cal aspects and standard definitions for the validity of
an update in general.

Gupta [14] and other researchers [23] deal with the
general undecidability of the validity of an update
and formalize sufficient conditions in specific appli-
cation domains. The focus here is on formal defini-
tions rather than system design.

Bloom and Day [5] investigate the limitations of state
transfer in the general case when the original specifi-
cations of a module are violated. Our analysis gen-
eralizes the state transfer problem and shows how,
given an update of a particular nature, the feasibility
and complexity of state transfer vary depending on the
state of the system at update time.

Kramer and Magee [16] describe a model for dis-
tributed systems and propose the use of transactions
to ensure atomicity. The general validity of an update
is determined by ensuring that each event-generated
transaction is entirely executed on a single version
of the system. Their analysis focuses on atomicity
at the level of a system-wide transaction and does
not consider lower levels of atomicity. In addition,
their model ignores global or persistent state whose

scope is not limited to a single transaction. Similar
approaches, such as the one described in [26], use
stronger assumptions on the structure of the system
to relax constraints on atomicity.

Other studies have used transactions or similar ideas
to ensure atomicity. For example, in object-oriented
communities, researchers have described approaches
to update multithreaded programs and guarantee
atomicity of execution [20], or proposed the use of
transactions and dependency analysis for type-safe
atomic updates of multiple classes [27].

Neamtiu et al. [21] introduce the notion of transac-
tional version consistency (TVC) and describe so-
termed contextual effects similar to some of those
scenarios presented in our taxonomy. They recog-
nize the need to ensure atomicity at different levels
of granularity and propose a model for live update.
They suggest that programmer should explicitly des-
ignate blocks of code as transactions whose execution
is guaranteed to be atomic during the update process.
In our analysis, we show that the level of atomicity
and the constraints required at update time depend on
the nature of the update itself. Hard-coding those con-
straints at design time is likely to be complicated and
also hamper software evolution.

In prior work, Neamtiu et al. also describe Gin-
seng [22], a complete live update solution for C pro-
grams. In this case, they do not address transac-
tional version consistency but restrict the solution to
programmer-annotated safe update points that are still
hard-coded in the original version. Static analysis is
used to ensure type-safe live updates.

Hicks [15] proposes a similar approach to update
programs written in Popcorn (a C-like type-safe lan-
guage). Update patches are automatically generated
from two versions of the source code and contain ini-
tialization and state transfer routines. Patches are then
compiled into native verifiable code and dynamically
linked to the running program. As before, program-
mers are required to annotate safe update points in the
original code.

Other approaches propose static analysis to improve
update safety. For example, OPUS [2] uses static
analysis to warn programmers when changes to pro-
grams are likely to result in an unsafe dynamic up-
date. In particular, warnings are reported when an up-
date includes modifications to nonlocal program state.
Unfortunately, no other system support is provided to
ensure the general validity of an update and the solu-
tion described is limited to type safety.

The vast majority of the other approaches described
in the literature do not address in detail consistency
problems or the validity of an update in general. Most
work limits the analysis to type safety and generally
disallows updates to active code [3,9, 13] or permits
cross-version execution [0, 7, 19]. In both cases, it is
explicitly or implicitly assumed that interleaving code



from two different versions of the system does not af-
fect the overall validity of execution. Unfortunately,
no method of validation or system support is provided
to verify this assumption in practice.

6 Conclusions

Despite being a promising solution to mitigate main-
tenance downtime in systems that require nonstop op-
eration, general-purpose live update is still largely
perceived as an obscure niche by most end users.
Many practical properties and limitations of live up-
date are still ill-understood and have arguably not re-
ceived the required attention in the literature.

In this paper, we have presented a taxonomy of live
updates and proposed concrete examples to uncover
those characteristics. We have discussed different
scenarios with an increasing level of severity and an-
alyzed implications for the live update process and
issues in designing dependable live update infras-
tructures. From our analysis, an important aspect
emerges: the nature of an update is central in design-
ing systems that support live update with strong safety
and predictability guarantees.

We have discussed shortcomings in existing live
update solutions and justified the need for a new
update-centric model, where the system is receptive to
changes and programmers collaborate to the common
intent. This vision can only be realized if the system
is designed to be live updatable and each update car-
ries with it adequate information to determine what
changed and when it can be applied. For the update-
aware systems we envision, feasibility, predictability,
and safety of a live update are dealt with at design
time, during the software development process.

7 Acknowledgments

This work has been supported by The European Re-
search Council under grant ERC Advanced Grant
227874.

References

[1] J. P. A. Almeida, M. V. Sinderen, and L. Nieuwenhuis. Transparent
dynamic reconfiguration for CORBA. In Proc. of the Third Int’l Symp.
on Distributed Objects and Applications, pages 197-207, 2001.

2

G. Altekar, I. Bagrak, P. Burstein, and A. Schultz. OPUS: Online
patches and updates for security. In Proc. of the 14th USENIX Security
Symp., volume 14, pages 19-19, 2005.

3

J. Arnold and M. F. Kaashoek. Ksplice: Automatic rebootless kernel
updates. In Proc. of the Fourth ACM European Conf. on Computer
systems, pages 187-198, 2009.

[4] A.Baumann, J. Appavoo, R. W. Wisniewski, D. D. Silva, O. Krieger,
and G. Heiser. Reboots are for hardware: Challenges and solutions
to updating an operating system on the fly. In Proc. of the USENIX
Annual Tech. Conf., pages 1-14, 2007.

[5] T. Bloom and M. Day. Reconfiguration and module replacement in
Argus: Theory and practice. Software Engineering J., 8(2):102-108,
1993.

[

(8]

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

H. Chen, R. Chen, F. Zhang, B. Zang, and P. Yew. Live updating
operating systems using virtualization. In Proc. of the Second Int’l
Conf. on Virtual Execution Environments, pages 35-44, 2006.

H. Chen, J. Yu, R. Chen, B. Zang, and P. Yew. POLUS: A POwer-
ful live updating system. In Proc. of the 29th Int’l Conf. on Software
Engineering, pages 271-281, 2007.

T. Dumitras, J. Tan, Z. Gho, and P. Narasimhan. No more HotDepen-
dencies: Toward dependency-agnostic online upgrades in distributed
systems. In Proc. of the Third Workshop on Hot Topics in System De-
pendability, page 14, 2007.

O. Frieder and M. E. Segal. On dynamically updating a computer pro-
gram: From concept to prototype. J. Syst. Softw., 14(2):111-128, 1991.

C. Giuffrida and A. S. Tanenbaum. Cooperative update: a new model
for dependable live update. In Proceedings of the 2nd International
Workshop on Hot Topics in Software Upgrades, pages 1-6, 2009.

J. Gray and D. P. Siewiorek. High-Availability computer systems.
IEEE Computer, 24:39-48, 1991.

P. Grubb and A. A. Takang. Software maintenance: Concepts and
practice. World Scientific, 2nd edition, 2003.

D. Gupta and P. Jalote. On line software version change using state
transfer between processes. Softw. Pract. and Exper., 23(9):949-964,
1993.

D. Gupta, P. Jalote, and G. Barua. A formal framework for on-line soft-
ware version change. IEEE Trans. Softw. Eng., 22(2):120-131, 1996.

M. Hicks. Dynamic software updating. PhD thesis, University of Penn-
sylvania, 2001.

J. Kramer and J. Magee. The evolving philosophers problem: Dy-
namic change management. [/EEE Trans. Softw. Eng., 16(11):1293—
1306, 1990.

D. E. Lowell, Y. Saito, and E. J. Samberg. Devirtualizable virtual ma-
chines enabling general, single-node, online maintenance. ACM SIG-
PLAN Notices, 39(11):211-223, 2004.

K. Makris and R. Bazzi. Immediate multi-threaded dynamic software
updates using stack reconstruction. Technical Report TR-08-007, Ari-
zona State University, 2008.

K. Makris and K. D. Ryu. Dynamic and adaptive updates of non-
quiescent subsystems in commodity operating system kernels. In Proc.
of the Second ACM SIGOPS/EuroSys European Conf. on Computer
Systems, pages 327-340, 2007.

Y. Murarka and U. Bellur. Correctness of request executions in online
updates of concurrent object oriented programs. In Proc. of the 15th
Asia-Pacific Software Engineering Conf., pages 93-100, 2008.

1. Neamtiu, M. Hicks, J. S. Foster, and P. Pratikakis. Contextual effects
for version-consistent dynamic software updating and safe concurrent
programming. In Proc. of the 35th Annual ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages, pages 37-49, 2008.

I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical dynamic
software updating for C. ACM SIGPLAN Notices, 41(6):72-83, 2006.

M. Niamanesh, N. F. Nobakht, R. Jalili, and F. H. Dehkordi. On va-
lidity assurance of dynamic reconfiguration for component-based pro-
grams. Electronic Notes in Theoretical Computer Science, 159:227—
239, 2006.

S. Potter and J. Nieh. Reducing downtime due to system maintenance
and upgrades. In Proc. of the 19th USENIX Systems Administration
Conf., pages 6-6, 2005.

C. A.N. Soules, D. D. Silva, M. Auslander, G. R. Ganger, and M. Os-
trowski. System support for online reconfiguration. In Proc. of the
USENIX Annual Tech. Conf., pages 141-154, 2003.

Y. Vandewoude, P. Ebraert, Y. Berbers, and T. D’Hondt. Tranquility:
A low disruptive alternative to quiescence for ensuring safe dynamic
updates. IEEE Trans. Softw. Eng., 33(12):856-868, 2007.

S. Zhang and L. Huang. Type-Safe dynamic update transaction. In
Proc. of the 31st Annual Int’l Computer Software and Applications
Conf., volume 2, pages 335-340, 2007.



	Introduction
	Live Update
	Contributions of this Paper

	Models for Live Update
	The Taxonomy
	Definition
	Consequences
	Update affects one structural unit
	Update affects protocol
	Update affects global data
	Update affects global algorithm
	Update affects data on the disk
	Update affects hardware requirements


	Discussion
	Towards Update-aware Systems

	Related Work
	Conclusions
	Acknowledgments

