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Abstract

Gossip-based aggregation is an emerging paradigm
to perform distributed computations and measure-
ments in a large-scale setting. In this paper we ex-
plore the possibility of using gossip-based aggrega-
tion to estimate churn in arbitrarily large networks.
To this end, we introduce a new model to compute lo-
cal estimates and formally prove how aggregated val-
ues closely match the real churn with high accuracy
independently of the network setting. Experimental
results confirm the viability of our approach.

1 Introduction

Gossip-based protocols for large-scale communica-
tion are becoming increasingly popular due to their
scalability and reliability properties. At the funda-
mentals of existing gossip-based protocol implemen-
tations lies a primary component called peer sampling
service [10]. This service aims to provide an abstrac-
tion of a stream of randomly selected peers to the
application layer, thus making a gossip-based proto-
col theoretically independent of network complexity
and dynamics. In practice, most peer sampling ser-
vice implementations target a specific network setting
or are specifically optimized for particular scenarios
(e.g. fault-tolerance, load-balancing). This clearly re-
duces the level of transparency at the application layer
with respect to the conditions of the underlying net-
work.
A step forward in this direction is provided by Jel-
asity et al. in [10]. Their work acknowledges the
need to employ different policies at a peer sampling
service level basing on the expected conditions of
the network. They describe a generic peer sampling
service implementation that can be tuned and opti-

mized for different scenarios. However, their analy-
sis develops under the assumption that responsibility
is given at the application layer to tune the underlying
peer sampling service properly; this is done a-priori,
based on the expected conditions of the environment.
This assumption, however, reduces the level of isola-
tion of gossip-based applications from underlying ser-
vices and may affect their portability to new deploy-
ment environments. Furthermore, a target environ-
ment may exhibit very different properties over time.
Therefore, statically tuning a peer sampling service
implementation to uniquely address specific proper-
ties may hardly be an effective solution.
The issues depicted above all come down to the way
existing large-scale applications are typically struc-
tured. Most attempts to cope with network com-
plexity and dynamics are targeted towards defining
a robust application design that can proactively han-
dle unpredictable situations. Gossip-based protocols
have received growing attention due to the way they
exploit and further develop this idea to an extreme.
While this is clearly a crucial aspect in designing
large-scale applications, we argue that it may not be
the definitive solution.
Our vision contemplates a design in which large-scale
applications can dynamically react to statically unpre-
dictable conditions. To date, we believe this aspect
has not received the required attention. For the ap-
plications to properly detect and cope with dynamics,
we aim to introduce some level of network awareness
in our system design. In this work, we explore the
first step in this direction for gossip-based applica-
tions. More specifically, we concentrate our attention
on a component that can provide realtime informa-
tion about the conditions of the underlying network
and can be seamlessly integrated into existing gossip-
based solutions on top of a generic peer sampling ser-
vice. We believe that the introduction of such com-
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ponent may aid in the design of gossip-based solu-
tions that can dynamically adapt to different settings
and achieve a better separation of concerns between
gossip-based services (e.g. peer sampling service,
topology management service) and higher-level appli-
cations.
In the present paper, we focus on the design of a large-
scale churn estimator based on gossip-based aggrega-
tion [8]. Our ultimate goal is to design a component
that can provide realtime estimates of churn in arbi-
trarily large networks. We believe this is an important
first step to address the issues discussed above. We
specifically concentrate our attention on churn as it is
a major factor that can quickly alter the conditions of
the network and have disruptive effects on the behav-
ior of large-scale applications [18].
Our work is organized as follows. We introduce
the most important contributions in the area in Sec-
tion 2. Section 3 introduces our churn model, ana-
lyzes the design of the churn estimator and addresses
the problem of providing accurate estimates. Sec-
tion 4 presents experimental results with respect to
different network settings. We conclude with final re-
marks and future work in Section 5.

2 Related Work

Aggregation is a key functional building block for
many applications: Cortese et al. in [4] point out
how DHT-based peer data management requires such
functionality to provide data indexing. With respect
to completely decentralized scenarios, Cai et al. [3]
propose aggregation to solve the problem of global
knowledge of available resources based on local in-
formation. Previous studies have defined the fun-
damentals to use aggregation in different contexts.
Kempe et al. [12] provide the first theoretical grounds
on how the information is effectively disseminated.
Bawa et al. [1] employ these concepts to identify the
primitives that can be straightforwardly implemented
(i.e. computation of minimum, maximum, sum, count
and average). Starting with Jelasity et al. [8] more im-
portance is given to a fully decentralized implemen-
tation using gossip-based algorithms. Further stud-
ies [11, 5] concentrate on convergence properties and
describe how to perform gossip-based aggregation ef-
ficiently.
The idea of using aggregation in large-scale mea-
surement applications has been suggested in differ-
ent studies. Shafaat et al. [19] describe a robust ap-
proach to estimate the network size in structured over-
lays using gossip-based aggregation. While network
size estimates can provide insightful information on
network dynamics, they are not alone sufficient to es-
timate churn at an appropriate level of granularity. In
large dynamic networks, where joins and departures
constantly compensate each other, considerable fluc-

tuations of the network size are rare, while the impact
of churn can still be significant.
Binzenhofer et al. [2] address the problem of estimat-
ing the level of churn in a network. Their approach is
tailored to structured peer-to-peer networks based on
a Distributed Hash Table. Finally, Gramoli et al. [7]
present an algorithm more focused on detecting and
assessing churn in arbitrary networks. Their analy-
sis is most similar, in spirit, to our work. The model
they use is, however, limited to overlay networks that
can be represented as an undirected graph. To date,
the problem of estimating churn in arbitrary networks
has indeed not received much attention. Most studies
focus on assessing the effects of churn and evaluate
the performance of different systems under realistic or
artificial churn scenarios [15, 14, 13, 20]. Other stud-
ies [18, 17, 16, 21, 6] are targeted towards designing
or improving existing systems to minimize the dis-
ruptive effects of churn. We believe that estimating
churn in realtime in arbitrary networks is equally—if
not even more—important to foster a completely new
design perspective, with applications that can handle
churn reactively and in an effective way.

3 The Churn Estimator

Our analysis on the design of a churn estimator starts
from establishing a formal definition of churn suitable
for our study. In the literature different churn mod-
els are commonly used. In [2] the amount of time a
node spends in the system (online time) and outside
the system (offline time) is used to model the churn
rate. This is also similar to modeling the session time
and the lifetime of a node or their difference (avail-
ability time). One of the major problems with these
models is that they are only applicable in particular
settings. They all assume that offline nodes will re-
join the network later and that their identity can be
kept track of. Another churn model is used in [10],
where the churn rate is formally defined as the num-
ber of nodes that are replaced by new nodes in each
cycle, assuming a cycle-driven model for gossiping.
We also assume a cycle-driven model in the present
paper (i.e. we model a time unit as a cycle) but, in
contrast, we establish a more general definition that
can be applied to any setting.
We introduce two separate definitions to model churn
in a network of arbitrary size and topology: the join
rate, defined as the ratio of nodes joining the network
at a given cycle, and the departure rate, defined as the
fraction of nodes leaving the network at a given cycle.
Note that both definitions are able to capture churn in
a fine-grained way and are completely independent of
the network size. This is a key advantage because
different join or departure rates can be compared over
time and between different settings.
We now sketch the requirements for our churn esti-



mator. First off, the estimates of the join rate and
the departure rate should be as accurate as possible
and highly independent of the conditions of the net-
work, i.e. the accuracy of the estimates should by
no means be affected by the level of churn present in
the network. Furthermore, the estimated rates should
cope with every possible scenario in the lifetime of
a node: entering or leaving the network, failures,
crashes, restarts, etc.. Finally, estimates must be con-
tinuously updated since they are only useful if they
are able to capture network dynamics with good time
resolution.
To design a churn rate estimator that can be used in
many different settings. we concentrate on a model
that requires only very few assumptions on the nature
of the underlying overlay network. More specifically,
we assume that each node has knowledge of exactlyC
other random nodes in the network. In our prototype,
we enforce this behavior by running our churn esti-
mator on top of a reference implementation of a peer
sampling service [10], whose cache size is fixed to C.
Moreover, we make the assumption that each node is
at any time able to determine whether each of its cur-
rent C neighbors is no longer part of the network. We
enforce this by monitoring the state of outgoing links
in each node. Finally, we assume a system in which
every node joining the network is required to contact
an existing peer by means of a special JOIN message.
This is already required in most large-scale systems
during the bootstrapping phase.
To estimate the join rate and departure rate defined
above, our goal is to sample their values at a given
cycle and perform a run of gossip-based aggregation
to compute the estimates accurately. In the follow-
ing, we consider a network of initial size N , with
D departures and J joins at the particular cycle con-
sidered. Our intent is to estimate the instantaneous
join rate and the instantaneous departure rate as J

N ,
and D

N , respectively. To maintain our estimates up-
to-date, we periodically restart the gossip-based ag-
gregation algorithm using a fixed epoch length δ and
lightweight synchronization mechanisms as also done
in prior work [8]. To obtain fresh estimates at each cy-
cle, we allow δ instances of the aggregation algorithm
running in parallel, each one starting at a different cy-
cle within an epoch. As a result, our churn estima-
tor service provides continuously updated estimates
of both J

N and D
N to the application layer.

3.1 Model

In the following, we introduce our model and prove
it formally. We consider a network of size N at a
generic cycle tc, withD nodes recognized as departed
at tc. We now make the assumption that each node
counts the number of neighbors departing from the
network at tc. What would happen if we used that

value to initialize a distributed averaging algorithm
based on aggregation starting at tc? To address this
question, let us first consider the indegree distribution
of a generic node in the network at cycle tc. From our
assumptions in Section 3 we know that, for each node
ni in the network, the following equivalence holds:

outdegree(ni) = C

In contrast, the value of indegree(ni) depends on
how well the network is balanced. Nevertheless, we
know that the following result holds globally:

N∑
i=1

outdegree(ni) =

N∑
i=1

indegree(ni)

Therefore we can assume the following:

AV Gi(outdegree(ni)) = AV Gi(indegree(ni)) = C

Let us now look at the number of links pointing to a
generic node di leaving the network at cycle tc. We
refer to this quantity as the ghost indegree of a depart-
ing node di as seen from nodes still part of the net-
work. We indicate this quantity as GindegreeAL(di).
We also introduce the notion of ghost indegree of a
departing node di as seen from nodes departing from
the network in the same cycle. We quantify it as the
number of links pointing to di from any other depart-
ing node before leaving the network. We indicate this
quantity as GindegreeDEP (di). We can finally de-
fine the ghost indegree of a departing node di as:

Gindegree(di) = GindegreeAL(di) + GindegreeDEP (di)

Under the assumption that departures do not depend
on the indegree distribution and can be modeled as a
random sample of the original network, we may ex-
pect at cycle tc the following equivalence:

AV Gi(Gindegree(di)) = outdegree(ni) = C (1)

The equation above uses the idea that a random sam-
ple of a set should maintain the arithmetic mean of
the original values. This is obviously more true when
the number of samples is large and the distribution
of values is not too skewed. We will confirm this in-
tuition later. Let us now look at the distribution of
GindegreeAL(di). We define P (AL) as the proba-
bility of a generic node ni still being part of the net-
work at cycle tc. Assuming again that departures rep-
resent a random sample of the original network, the
following equation naturally holds:

GindegreeAL(di) = Gindegree(di) · P (AL)

= Gindegree(di) ·
N −D

N − 1
(2)

In contrast, if we look at the distribution of
GindegreeAL(di) for a given node di over time, we



get very different results depending on the topology
management scheme used, as depicted in Figure 1.
We discuss the topology management schemes exam-
ined in detail in Section 4.
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Figure 1: Comparison of the distribution of
GindegreeAL(di) over time with respect to the
adopted topology management scheme.

Figure 1 shows how fast the nodes in the network tend
to forget about departed nodes. In particular we ob-
serve that it greatly varies depending on the policy
adopted by the peer sampling service (PSS) (see [10]
and Sec. 4 for more details). It is now clear how we
can by no means make any assumption on the ghost
indegree distribution of a departing node over time if
we want our churn estimator to be used in different
settings. Namely, our churn estimator should be pos-
sibly used in conjunction with an arbitrary topology
management scheme. Since our model highly relies
on the ghost indegree distribution of departing nodes,
we conclude that nodes should monitor departures
only on a per-cycle basis. In the most general case,
we can easily achieve this effect by tagging each mon-
itored departing node with a timestamp and check-
ing the timestamp again in the following cycles to de-
cide whether or not to include the node in the current
set of departing nodes. Hereafter, we safely assume
that only nodes departing in the current cycle are ac-
counted by each node in its set of departing neighbors.
We can now answer our first question, since we have
already computed the average number of links point-
ing to each node departing at cycle tc from nodes that
are still part of the network. As pointed out earlier, we
assume the gossip-based averaging algorithm start-
ing at cycle tc and being initialized with the values
monitored in the same cycle. We also exclude nodes
joining the network at cycle tc from the aggregation
process. Under these assumptions, the following re-
sult holds after δ cycles, namely when the aggregation
process completes.

Theorem 1. If we let each non-joining node compute
Di

C (where Di is the number of departing neighbors

seen by a generic node node ni at cycle tc) and use
it as the initial value of a distributed averaging algo-
rithm, the global aggregated value Âd will converge
to:

Âd =
D

N
· N

N − 1
(3)

Proof. If we let each non-joining node count
the number of departing neighbors Di and sum
all the contributions globally, we naturally get∑D

i=1 GindegreeAL(di). For linearity, if we select
Di

C as the initial value of a distributed averaging al-
gorithm among N − D non-joining nodes, we will
converge to the following global aggregated value:

Âd =

∑D
i=1 GindegreeAL(di)

N −D
· 1

C
(4)

And by using the result from Equation 2:

Âd =

∑D
i=1 Gindegree(di) ·

N−D
N−1

N −D
· 1

C

=

∑D
i=1 Gindegree(di)

N − 1
· 1

C
(5)

As done earlier, we now assume the set of departing
nodes as a good random sample of the original net-
work. Thus, given the result from Equation 1, we get:

Âd =
D ·AV Gi(Gindegree(di))

N − 1
· 1

C

=
D · C
N − 1

· 1

C

=
D

N − 1
(6)

Therefore:

Âd =
D

N
· N

N − 1
(7)

Hence, the original thesis is proved.

The result above shows how Âd ≈ D
N for large net-

works, namely when N � 1. In addition, the error
of the estimate is independent of the departure rate.
More specifically, we can quantify the relative error
as:

η =

∣∣∣Âd − D
N

∣∣∣
D
N

=
Âd

D
N

− 1

=
N

N − 1
− 1

=
1

N − 1
(8)

As remarked earlier, we may also expect a larger er-
ror of our estimate Âd due to the approximation in-
troduced by Equation 1. We expect our global aggre-
gated value to match more closely the value computed



above as the fraction of departing nodes increases and
the network becomes more balanced. In practice, ex-
perimental results presented in Section 4 show how
we get accurate results even for unbalanced networks
and low departure rates. We now turn our attention to
estimating the join rate J

N . We again assume a gossip-
based averaging scheme initiated at cycle tc by every
non-joining node still part of the network. In con-
trast, we now select a different initial value for each
participant ni. Every node ni initializes its local es-
timate with Ji, i.e. the number of nodes that joined
the network at cycle tc by sending a JOIN message
to node ni. Under these assumptions, the following
result holds once the aggregation process completes.

Theorem 2. If we let each non-joining node compute
Ji, where Ji is the number of joining neighbors at cy-
cle tc by node ni, and use it as the initial value of
a distributed averaging algorithm, the global aggre-
gated value will converge to:

Âj =
J
N

1− D
N

(9)

Proof. If we let each non-joining node count the num-
ber of joining neighbors Ji and sum all the contribu-
tions globally, we naturally obtain J . Thus, if we se-
lect Ji as the initial value of a distributed averaging
algorithm among N −D non-joining nodes, we will
converge to the following global aggregated value:

Âj =
J

N −D

=
J
N

1− D
N

(10)

Hence, the original thesis is proved.

The result above directly suggests a method to esti-
mate the join rate J

N . If we assume Âd ≈ D
N as done

earlier, we get:

J

N
= Âj · (1− Âd) (11)

We don’t provide a formal expression for the relative
error here, as it is dependent on the deviation of the
aggregated value Âd from the actual departure rate
D
N . However, we’ve already discussed above how we
expect the error to be negligible for large networks.
The model introduced in this section gives us the the-
oretical basis to design our churn estimator based on
gossip-based aggregation. We showed how it is pos-
sible to estimate the join rate and the departure rate
by monitoring local changes and performing a two-
value gossip-based averaging algorithm. In the next
section we then provide experimental results showing
the viability of our approach.

4 Experimental Results

In this section, we present our experimental analysis
carried out using the cycle-driven PeerSim simulation
environment [9]. In the experiments we use the im-
plementation of our churn estimator described in the
paper1. Our prototype system runs on top of the ref-
erence implementation of a peer sampling service in-
troduced in [10]. We don’t explore the entire design
space described in [10], but, following their findings,
we constantly set the view propagation policy to push-
pull and the peer selection policy to tail with the hunt-
ing property. We are, in contrast, interested in experi-
menting different view selection policies described in
the paper by varying H , the self-healing parameter,
and S, the swap parameter.
In the following, we show how the experimental re-
sults closely match our model and the assumptions
made in the previous sections. To verify the cor-
rectness of our model independently of the topology
management scheme employed, we repeat each test in
three different scenarios:

PSS(healer) H = C
2 , S = 0 – Peer sampling service

with healer policy, i.e. keep the freshest entries.

PSS(swapper) H = 0, S = C
2 – Peer sampling ser-

vice with swapper policy, i.e. minimize loss of
information.

Random Graph – Static topology initialized as a
random graph.

As such policies are used to produce and maintain the
network topology, in our experiments we always run
an initial bootstrapping phase of 100 cycles to approx-
imate a system in a steady state (with the obvious ex-
ception of the Random Graph scheme).
We also test our model against several setting con-
ditions. In the detail, Section 4.1 shows how the as-
sumptions used in our model always hold despite vari-
ations in departure rate and network size. For lack of
space, we concentrate on the departure rate, but sim-
ilar results can be obtained for the join rate. Subse-
quently, in Section 4.2, we run experiments in simi-
lar scenarios to show how the faithfulness of our es-
timates is not anyhow tied to the setting. We finally
conclude in Section 4.3 with an analysis on the con-
vergence properties of our approach.

4.1 Ghost Indegree Deviation

In this section we focus on the validation of the as-
sumptions made in Section 3.1 to develop our model.
More specifically, we want to verify how departures
can be effectively modeled as a random sample of the

1Source-code: http://www.few.vu.nl/˜ortolani/
files/peersim_churn.tar.bz2

http://www.few.vu.nl/~ortolani/files/peersim_churn.tar.bz2
http://www.few.vu.nl/~ortolani/files/peersim_churn.tar.bz2


network maintaining the arithmetic mean of the orig-
inal indegree distribution. This assumption was used
earlier to establish the following equivalences:

AV Gi(Gindegree(di)) = C and P (AL) =
N −D

N − 1

Validating these assumptions requires us to (i) run ex-
periments and measure the value of the average ghost
indegree and of P (AL) and (ii) compare the results
with the ones estimated by our model. This is equiva-
lent to a soundness assessment of the following equa-
tion by calculating the error committed.

AV Gi(GindegreeAL(di)) = C · N −D

N − 1
(12)
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Figure 2: Deviation from the real average value of
GindegreeAL(di) computed against different net-
work sizes.

To this end, we report in Figure 2 the deviation of
our original estimation of AV Gi(GindegreeAL(di))
against different network sizes. In Figure 4, we finally
analyze the deviation in three different departure rate
scenarios:

Heavy Departure rate within the range [0.10, 0.55].

Moderate Dep. rate within the range [0.01, 0.10].

Light Departure rate within the range [0.001, 0.01].

As documented by the figures, experimental results
show how the assumptions behind our model are
solid. More specifically, our original estimation of
AV Gi(GindegreeAL(di)) always shows a negligi-
ble error (in the order of magnitude of 10−3) and is
not anyhow dependent of the network size (Figure 2)
or the real departure rate in the network (Figure 4).
Although oscillatory, the error is always bounded.
No notable differences are worth reporting about the
different view selection policies adopted by the peer
sampling service: the only exception is PSS(swapper)
which makes, as expected, our approach more steady
with increasingly large network sizes.

Finally, we point out how our assumptions still hold
even in the worst case scenario depicted in Sec-
tion 3.1: unbalanced networks and low departure
rates. Figure 4(c) shows how the error is still negligi-
ble for very low departure rates and using PSS(healer)
as topology management scheme that is known to pro-
duce poorly-balanced networks [10].

4.2 Accuracy of Estimates

In the previous section we focused on validating the
assumptions behind our model. The following test
cases now aim to establish the quality of the estimates
of the departure rate compared to the real values. This
means assessing the validity of the result derived from
Theorem 1:

Âd ≈ D

N
As done earlier, we test our model against variations
of the departure rate (heavy, moderate and light), net-
work size, and topology management scheme.
We start our validation by analyzing Figure 5, depict-
ing the value of the estimates against different de-
parture rates. The results confirm the validity of our
model: in each scenario, our approach is able to esti-
mate a value closely matching the real one with a very
negligible error. A slightly more noticeable error (in
the order of 10−3) can be observed with very low de-
parture rates. This confirms our original intuition, as
discussed in the previous section.
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Figure 3: Estimated D
N against different network

sizes.

Figure 3 shows another important property of our ap-
proach: the estimates are highly independent of the
current network size. We have experienced negligible
oscillations only with very small values of N . This
behavior reflects the approximation ( N

N−1 ≈ 1) used
in our model to compute the estimate of the departure
rate (see Theorem 1).
To conclude, we also confirm how the topology man-
agement scheme does not affect the reliability of our
estimates. Thus, our approach can be effectively used



in several different settings. This property perfectly
matches our original requirements.

4.3 Convergence

We use the same approach adopted in [8] to study
the convergence of our algorithm: for each cycle, we
compute the normalized variance of the distribution
of values possessed by all the nodes in the network.
More formally, at cycle i we calculate the normalized
variance yi as:

yi =
σ2
i

σ2
0

(13)

We now present experimental results for a network
size of 104 and a departure rate of 0.1. Similar trends
can be observed in different settings. As also docu-
mented in other studies on gossip-based aggregation,
Figure 6 shows how our gossip-based averaging algo-
rithm converges to very accurate results in just a few
cycles.
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D
N in a run of the gossip-based averaging algorithm.

We want to stress out how the convergence is
not affected by the strategy the peer sampling ser-
vice is adopting: both policies PSS(healer) and
PSS(swapper) show almost identical convergence
trends.

5 Conclusions and Future Work

In this paper we have presented a churn estimator
based on gossip-based aggregation. The service has
been designed to run on top of a generic peer sam-
pling service implementation, while requiring very
few assumptions on the network setting and being
suitable for a broad range of application scenarios.
The churn model adopted is very generic but fine-
grained: we estimate the join rate and departure rate
separately and the definitions we use are completely
independent of the network size. We have introduced

a model to determine the initial values of the gossip-
based aggregation algorithm and formally prove the
high accuracy of the resulting estimates. We have also
presented a prototype based on the ideas described in
the paper and showed that experimental results match
closely our theoretical analysis. Experimental evi-
dence confirmed that our approach is resilient to vari-
ations in setting conditions, such as topology manage-
ment scheme, network size, and departure rate.
In future work, we are planning to evaluate our model
in more realistic scenarios using a trace-driven ap-
proach, with multiple instances of the aggregation al-
gorithm running in parallel and restarted periodically.
Evaluating our approach in real-world scenarios is
important to assess the accuracy of our aggregation
algorithm in presence of a significant level of churn
in the network. Jelasity et al. [8] present promising
results in this respect, showing that the estimates pro-
vided by a gossip-based averaging algorithm are fairly
accurate even in overly pessimistic churn scenarios
and for extremely skewed initial distributions. In ad-
dition, we are planning to extend our analysis to sce-
narios where the departures cannot be assumed as a
random sample of the original network and, specif-
ically, are not completely independent of the inde-
gree distribution. Examples include application do-
mains where node failures can occur as a consequence
of distributed denial-of-service attacks or resource-
limited environments where the probability of crash
for a node could possibly be related to the number
of its ingoing links. We finally remark how, in our
vision, the design of a churn estimator should be con-
sidered as the first ground stone to solve the problem
of network awareness. We therefore plan to explore
the possibility of using realtime network sampling to
improve existing gossiping protocols and applications
and ensure a better level of isolation between layers.
Examples include: an adaptive peer sampling service,
adaptive topology management, and QoS-aware pro-
tocols and applications that can better adapt to the
conditions of the network and degrade service grace-
fully when necessary.
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Figure 4: Deviation from the real average value of GindegreeAL(di) computed against different departure rates.
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Figure 5: Estimated D
N against three different departure rates.
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